Studies on the Interactions of Saccharides and Methyl Glycosides with

Jul 21, 2014 - E-mail: [email protected] (P. K. Banipal). [email protected] (Amanpreet K. Hundal). [email protected] (Neha ...
0 downloads 0 Views 3MB Size
Article pubs.acs.org/jced

Studies on the Interactions of Saccharides and Methyl Glycosides with Lithium Chloride in Aqueous Solutions at (288.15 to 318.15) K Parampaul K. Banipal,* Amanpreet K. Hundal, Neha Aggarwal, and Tarlok S. Banipal Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India S Supporting Information *

ABSTRACT: Standard partial molar volumes, V2o, at infinite dilution and viscosity B-coefficients (employing the Jones−Dole equation) have been calculated from the respective density and efflux time measurements for various solutes (mono-, di-, and trisaccharides, and their derivatives; methyl glycosides) in aqueous solutions of lithium chloride of (0.5, 1.0, 2.0, and 3.0) mol·kg−1 at temperatures of (288.15 to 318.15) K. The corresponding transfer parameters, interaction coefficients, partial molar expansibilities, and dB/dT coefficients have been evaluated and discussed in terms of the solute−solvent and solute−cosolute interactions. The results have been compared for the solutes studied in the presence of (1:1 and 1:2/2:1) electrolytes to arrive at the conclusions of how these solutes interact with the mono- and divalent cations.

1. INTRODUCTION Saccharides and their derivatives are important chemicals in life processes. With the recognition of these compounds in various biological processes such as protein/enzyme stability, cell−cell recognition (immune responses), protective efficacy (glycopeptides of Antarctic fish), and so forth, the understanding of their hydration characteristics is very important.1−3 The properties of saccharide solutions are of great interest in various aspects of basic research and applications.4−12 The conversion of saccharides into biofuels and other biomaterials has been currently one of the most intensive persuits worldwide.5,6 Thermodynamic and transport properties play a pivotal role in the study of reaction conditions (e.g., feasibility and optimization) of industrial processes. The properties are also useful in geochemical studies to assess the relative stabilities of biomolecules at high temperature and pressure.13 The interactions of saccharides with inorganic salts are of great interest due to the importance of saccharide−metal complexes in chemistry and biology. In spite of the weak complexes formed (stability constant, β < 10), their interactions are selective. Many studies are available on the interactions of saccharides with Groups I and II metal ions, but a relationship of thermodynamic properties with the size or charge of the complexed cations has not been established.14 Further, the thermodynamic information on alkali metal chlorides (particularly LiCl) is not available as a function of temperature.15 The properties of Li+ ions and its compounds show similarities with Group II elements (particularly Mg2+) than they show toward their own group. Therefore, it will be interesting to study that how Li+ ions will influence the hydration behavior of saccharides. Further the accurate data on thermodynamic and transport properties are useful to test the models designed to understand the hydration of ions.16 The efficiency of an © 2014 American Chemical Society

absorption refrigeration machine and heat pump cycles is largely dependent on the physical and chemical properties of heat transfer (LiCl/LiBr + CH3OH) fluids.17 The microstructure of LiCl(aq) solutions at near- and supercritical conditions are of interest in industrial applications and geochemistry.18 In view of increasing biological and technological applications, physicochemical properties of saccharides have been studied in a variety of aqueous electrolyte solutions. In continuation of our previous studies,19−25 we report in present work the apparent molar volumes, V2,ϕ, and viscosities, η, for various monosaccharides; (+)-D-xylose (Xyl), (−)-D-arabinose (Ara), (−)-D-ribose (Rib), (−)-D-fructose (Fru), (+)-Dgalactose (Gal), (+)-D-mannose (Man), and (+)-D-glucose (Glc), disaccharides; (+)-melibiose (Mel), (+)-cellobiose (Cel), (+)-lactose monohydrate (Lac), (+)-maltose monohydrate (Mal), (+)-trehalose dihydrate (Tre), and sucrose (Suc), trisaccharide; (+)-raffinose pentahydrate (Raf) and methyl glycosides; (+)-methyl α-D-glucopyranoside (Me α-Glc), methyl α-D-xylopyranoside (Me α-Xyl) and methyl β-Dxylopyranoside (Me β-Xyl) in (0.5, 1.0, 2.0, and 3.0) mol· kg−1 aqueous solutions of lithium chloride (LiCl) at (288.15, 298.15, 308.15, and 318.15) K. Standard partial molar volumes of transfer, ΔtV2o, at infinite dilution and viscosity B-coefficients of transfer of saccharides and their derivatives (solutes) from water to aqueous solutions of LiCl (cosolute) have been determined. Partial molar expansion coefficients, (∂V2o/∂T)P, second-order derivatives (∂2V2o/∂T2)P, the dB/dT coefficients, and interaction coefficients (YAB, YABB) have been determined. Received: February 14, 2014 Accepted: July 8, 2014 Published: July 21, 2014 2437

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Their signs and magnitudes have been interpreted in terms of various molecular interactions. The behavior of various solutes studied in LiCl(aq) solutions has been compared with that observed in aqueous solutions of alkali and alkaline earth metal chlorides.

V2, ϕ = [M /ρ] − [(ρ − ρo )/(mA ρρo )]

where M and mA are the molar mass and molality of the solute; ρo and ρ are the densities of solvent and solution, respectively. The densities and V2,ϕ results are given in Table 2. The densities of solutes in solutions {representative 3-D plot (Figure 1) of ρ vs mA, molality of (+)-D-mannose in mB = 0.5 mol·kg−1 LiCl solutions} increase with concentration of cosolute (LiCl) but decrease with the rise of temperature. The combined uncertainty in apparent molar volumes, U(V2,ϕ) resulting from the experimentally measured densities, u(ρ) = 2.67·10−3 kg·m−3, molalities u(m) = 1.08·10−6 mol·kg−1, and temperature u(T) = 0.01 K ranges from (0.16 to 0.06)·10−6 m3· mol−1 (level of confidence = 0.95, k ≈ 2) for the low (≤ 0.04 mol·kg−1) and high concentration range of the solutes, respectively. Infinite-dilution standard partial molar volumes (V2o = Vo2,ϕ) were evaluated by least-squares fitting of the following equation to the V2,ϕ data as

2. EXPERIMENTAL SECTION The sources along with mole fraction purity of chemicals used are given in Table 1. The chemicals were dried over anhydrous Table 1. Specifications of the Chemicals Used compound (+)-D-xylose (Xyl) (−)-D-arabinose (Ara) (−)-D-ribose (Rib) (+)-D-glucose (Glc) (+)-D-mannose (Man) (+)-D-galactose (Gal) (−)-D-fructose (Fru) (+)-melibiose (Mel) (+)-cellobiose (Cel) sucrose (Suc) (+)-maltose monohydrate (Mal) (+)-lactose monohydrate (Lac) (+)-trehalose dehydrate (Tre) (+)-raffinose pentahydrate (Raf) (+)-methyl α-D-glucopyranoside (Me α-Glc) methyl α-D-xylopyranoside (Me αXyl) methyl β-D-xylopyranoside (Me βXyl) lithium chloride (LiCl)

source

grade/mole fraction puritya

SRLb SRL SRL SRL SRL SRL SRL SRL SRL Lancaster SRL SRL SRL SRL SRL

AR/0.999 AR/0.999 AR/0.999 AR/0.994 AR/0.999 AR/0.997 AR/0.994 AR/0.994 AR/0.994 AR/0.990 AR/0.994 AR/0.999 AR/0.998 AR/0.999 AR/0.989

SD Fine Chem. Ltd. SD Fine Chem. Ltd. CDHc

AR/0.980

(1)

V2, ϕ = V2° + Svm

(2)

V2o

The values along with slopes (Sv) for the solutes are given in Table 3. The V2o values increase with cosolute (LiCl) concentration as well as with temperature. Infinite-dilution standard partial molar volumes of transfer, ΔtV2o, of each solute from water to aqueous lithium chloride solutions have been calculated as Δt V2 o = V2 o{in LiCl(aq)} − V2 o{in H 2O(l)}

(3)

and plotted vs mB, molality of LiCl (only representative plots are given in Figure 2a−g). The ΔtV2o values for most solutes are positive (except in few cases) and increase with concentration of LiCl at all of the temperatures studied. The ΔtV2o values also increase with the rise of temperature. In the case of pentoses (Figure 2a), the ΔtV2o values show a slight dip at mB ≈ 0.5 mol·kg−1, and the values become positive afterward. The hexoses show a continuous increase in ΔtV2o values at all concentrations and temperatures (Figure 2b). Among the disaccharides, only (+)-maltose monohydrate (Figure 2c) shows some leveling-off effect for the ΔtV2o values at higher concentrations from mB ≈ (2.0 to 3.0) mol·kg−1, whereas the rest of the disaccharides show a linear increase at all concentrations (Figure 2d). The (+)-trehalose dihydrate and (+)-raffinose pentahydrate show almost similar behavior (Figure 2e). Therefore, it may be noticed that the variation of ΔtV2o values for various saccharides with the concentration of LiCl is not the same. However, the ΔtV2o values of saccharides increase linearly with the increase in NaCl concentration reported earlier.25 The methyl α-D-xylo- and methyl β-D-xylo-pyranosides (Figure 2f) have negative Δ t V 2o values in the lower concentration range of LiCl and show a minima at mB ≈ 0.6 mol·kg−1, and values increase continuously afterward which become positive at higher concentrations of LiCl. However, in the case of the (+)-methyl α-D-glucopyranoside, the ΔtV2o values increase with the concentration of LiCl (Figure 2g), and the magnitudes are higher in comparison to Me α-Xyl and Me β-Xyl. The ΔtV2o values increase systematically with the complexity of saccharides as Xyl < Ara < Rib < Man < Fru < Glc < Gal < Mel < Cel < Suc < Mal < Lac < Tre < Raf. A similar behavior for volumes of mono-, di-, and trisaccharides was observed in NaCl(aq)25 and KCl(aq)22 solutions. The hydration of saccharide/derivative molecules in water has relations with the stereochemistry, and the most crucial

AR/0.980 AR/0.999

a

As declared by supplier. bSisco Research Laboratory, India. cCentral Drug House Pvt. Ltd., India.

CaCl2 in a vacuum desiccator for 48 h before use. All of the solutions were prepared freshly on a mass basis with a Mettler balance having a precision of ± 0.01 mg in double-distilled, deionized, and degassed water. A vibrating-tube digital densimeter (model DMA 60/602, Anton Paar, Austria) was used to measure the densities of the solutions. An efficient constant temperature bath (Julabo F 25/ Germany) with stability within ± 0.01 K was used to control the temperature of the water circulating around the densimeter cell. The details of principle and functioning of the densimeter have been described elsewhere.25 Densities for pure water have been taken from the literature.26 The viscosities of solutions were measured by using Ubbelohde-type capillary viscometer, calibrated by measuring the efflux time of pure water from (298.15 to 318.15) K. The efflux time was measured with a digital stopwatch with a resolution of ± 0.01 s, and the average of at least four flow time readings was considered as the final value. The temperature of the water surrounding the viscometer was controlled within ± 0.01 K. The reproducibility of the measured viscosities was better than ± 0.002 mPa·s.

3. RESULTS AND DISCUSSION Apparent molar volumes, V2,ϕ, of the saccharides and methyl glycosides studied in LiCl(aq), mB = (0.5, 1.0, 2.0, and 3.0) mol· kg−1 solutions at (288.15, 298.15, 308.15, and 318.15) K were determined from the experimentally measured densities: 2438

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Table 2. Densities, ρ, and Apparent Molar Volumes, V2,ϕ, of Saccharides and Methyl Glycosides in Water and LiCl(aq) Solutions over the Temperature Range (288.15 to 318.15) K ρ·10−3

mAa mol·kg

−1

kg·m

−3

V2,ϕ·106 −1

m ·mol 3

ρ·10−3

mA mol·kg

−1

T/K = 288.15 K

kg·m

−3

V2,ϕ·106 −1

m ·mol 3

ρ·10−3

mA mol·kg

−1

298.15 K

0.00000 0.05004 0.07584 0.10076 0.12470 0.18456 0.20098

1.012049 1.014769 1.016160 1.017498 1.018773 1.021941 1.022803

95.02 95.03 95.03 95.06 95.08 95.09

0.00000 0.05004 0.07584 0.10076 0.12470 0.18456 0.20098

1.009463 1.012153 1.013527 1.014845 1.016100 1.019215 1.020056

0.00000 0.05320 0.06417 0.09053 0.11023 0.12576 0.14627

1.023756 1.026586 1.027164 1.028548 1.029577 1.030384 1.031445

95.63 95.65 95.69 95.72 95.74 95.77

0.00000 0.05320 0.06417 0.09053 0.11023 0.12576 0.14627

1.020938 1.023707 1.024269 1.025609 1.026596 1.027369 1.028377

0.00000 0.04697 0.06820 0.09017 0.10207 0.12224 0.14850

1.045096 1.047451 1.048495 1.049562 1.050136 1.051097 1.052335

97.53 97.70 97.89 97.97 98.14 98.34

0.00000 0.04697 0.06820 0.09017 0.10207 0.12224 0.14850

1.041174 1.043515 1.044561 1.045634 1.046212 1.047187 1.048448

0.00000 0.05104 0.06726 0.08277 0.09384 0.11584 0.15527

1.062674 1.065167 1.065949 1.066695 1.067224 1.068269 1.070122

97.79 97.85 97.89 97.92 97.99 98.11

0.00000 0.05104 0.06726 0.08277 0.09384 0.11584 0.15527

1.057689 1.060140 1.060908 1.061639 1.062159 1.063186 1.065005

0.04764 0.06284 0.09294 0.10034 0.13348 0.16027

1.014756 1.015614 1.017305 1.017718 1.019564 1.021044

92.61 92.62 92.65 92.66 92.69 92.72

0.04764 0.06284 0.09294 0.10034 0.13348 0.16027

1.012131 1.012974 1.014633 1.015039 1.016846 1.018294

0.05214 0.06284 0.08034 0.11036 0.12048 0.14723

1.026644 1.027226 1.028180 1.029802 1.030335 1.031760

93.53 93.64 93.70 93.82 93.94 94.04

0.05214 0.06284 0.08034 0.11036 0.12048 0.14723

1.023784 1.024361 1.025299 1.026900 1.027434 1.028844

0.05876 0.07496 0.09286 0.12088 0.14249 0.16647

1.048204 1.049051 1.049984 1.051435 1.052548 1.053775

94.95 94.98 95.01 95.06 95.09 95.13

0.05876 0.07496 0.09286 0.12088 0.14249 0.16647

1.044232 1.045066 1.045983 1.047410 1.048503 1.049707

kg·m

−3

V2,ϕ·106 m ·mol 3

−1

ρ·10−3

mA mol·kg

−1

308.15 K (+)-D-Xylose mBb = 0.5 mol·kg−1 0.00000 95.72 0.05004 95.75 0.07584 95.79 0.10076 95.86 0.12470 95.94 0.18456 95.99 0.20098 mB = 1.0 mol·kg−1 0.00000 96.85 0.05320 96.93 0.06417 97.11 0.09053 97.27 0.11023 97.38 0.12576 97.55 0.14627 mB = 2.0 mol·kg−1 0.00000 98.00 0.04697 98.06 0.06820 98.15 0.09017 98.19 0.10207 98.25 0.12224 98.32 0.14850 mB = 3.0 mol·kg−1 0.00000 98.79 0.05104 98.86 0.06726 98.91 0.08277 98.94 0.09384 99.01 0.11584 99.14 0.15527 (−)-D-Arabinose mB = 0.5 mol·kg−1 93.51 0.04764 93.56 0.06284 93.65 0.09294 93.67 0.10034 93.76 0.13348 93.83 0.16027 mB = 1.0 mol·kg−1 94.42 0.05214 94.47 0.06284 94.57 0.08034 94.67 0.11036 94.72 0.12048 94.80 0.14723 mB = 2.0 mol·kg−1 95.90 0.05876 95.94 0.07496 95.98 0.09286 96.03 0.12088 96.07 0.14249 96.12 0.16647

2439

kg·m

−3

V2,ϕ·106 m3·mol−1

318.15 K

1.006130 1.008799 1.010159 1.011464 1.012702 1.015791 1.016628

96.28 96.35 96.41 96.52 96.58 96.61

0.00000 0.05004 0.07584 0.10076 0.12470 0.18456 0.20098

1.002068 1.004703 1.006050 1.007341 1.008572 1.011629 1.012453

97.12 97.14 97.19 97.25 97.30 97.35

1.017112 1.019858 1.020412 1.021736 1.022714 1.023474 1.024473

97.45 97.57 97.79 97.94 98.09 98.25

0.00000 0.05320 0.06417 0.09053 0.11023 0.12576 0.14627

1.012401 1.015128 1.015685 1.017017 1.018007 1.018783 1.019805

98.02 98.04 98.10 98.13 98.16 98.19

1.036240 1.038549 1.039582 1.040644 1.041216 1.042181 1.043427

98.88 98.93 98.97 99.00 99.05 99.12

0.00000 0.04697 0.06820 0.09017 0.10207 0.12224 0.14850

1.031324 1.033603 1.034620 1.035665 1.036227 1.037175 1.038401

99.74 99.82 99.89 99.93 100.00 100.08

1.051579 1.054004 1.054767 1.055493 1.056010 1.057031 1.058845

99.58 99.60 99.63 99.65 99.69 99.76

0.00000 0.05104 0.06726 0.08277 0.09384 0.11584 0.15527

1.047466 1.049839 1.050585 1.051294 1.051798 1.052793 1.054562

100.72 100.76 100.81 100.84 100.90 100.99

1.008761 1.009591 1.011223 1.011623 1.013408 1.014830

94.41 94.48 94.60 94.62 94.67 94.77

0.04764 0.06284 0.09294 0.10034 0.13348 0.16027

1.004654 1.005467 1.007076 1.007459 1.009201 1.010590

95.52 95.63 95.68 95.80 95.92 96.05

1.019933 1.020505 1.021435 1.023020 1.023547 1.024941

95.05 95.10 95.19 95.30 95.37 95.47

0.05214 0.06284 0.08034 0.11036 0.12048 0.14723

1.015169 1.015729 1.016643 1.018199 1.018715 1.020083

96.24 96.30 96.37 96.48 96.56 96.65

1.039234 1.040050 1.040946 1.042338 1.043403 1.044578

97.14 97.19 97.24 97.33 97.39 97.45

0.05876 0.07496 0.09286 0.12088 0.14249 0.16647

1.034258 1.035052 1.035923 1.037273 1.038309 1.039441

98.34 98.45 98.57 98.73 98.81 98.95

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

1.053964 1.055062 1.055638 1.056504 1.057251 1.058154

97.80 97.85 97.88 97.93 97.97 98.02

0.04820 0.07064 0.08246 0.10036 0.11586 0.13472

1.049789 1.050858 1.051418 1.052262 1.052988 1.053868

99.18 99.24 99.27 99.32 99.36 99.41

1.008813 1.009858 1.010490 1.011416 1.012545 1.013697

96.73 96.79 96.83 96.89 96.94 97.03

0.05074 0.07074 0.08289 0.10078 0.12268 0.14527

1.004723 1.005751 1.006372 1.007276 1.008378 1.009506

97.45 97.61 97.69 97.85 97.98 98.10

1.019600 1.020746 1.021518 1.022233 1.022828 1.024571

98.53 98.63 98.71 98.77 98.82 98.96

0.04924 0.07224 0.08788 0.10240 0.11456 0.15046

1.014842 1.015966 1.016724 1.017423 1.018006 1.019710

99.68 99.79 99.87 99.95 100.00 100.17

1.038358 1.039680 1.040180 1.041010 1.042660 1.043807

100.21 100.23 100.23 100.25 100.27 100.28

0.04436 0.07228 0.08288 0.10057 0.13592 0.16064

1.033405 1.034702 1.035192 1.036007 1.037626 1.038750

101.27 101.30 101.31 101.33 101.36 101.38

1.053850 1.054403 1.055581 1.056075 1.057259 1.058045

101.54 101.57 101.62 101.65 101.70 101.75

0.05008 0.06240 0.08878 0.09994 0.12678 0.14476

1.049669 1.050207 1.051353 1.051835 1.052990 1.053758

103.01 103.02 103.04 103.05 103.07 103.09

1.009292 1.010680 1.011875 1.012336 1.014253 1.015615

114.15 114.23 114.29 114.33 114.42 114.50

0.04838 0.06989 0.08851 0.09575 0.12594 0.14759

1.005198 1.006575 1.007761 1.008219 1.010124 1.011478

115.00 115.05 115.08 115.11 115.16 115.21

1.020106 1.021122 1.022091 1.023874 1.024603 1.026348

116.67 116.77 116.85 117.00 117.08 117.25

0.04815 0.06472 0.08061 0.11013 0.12234 0.15179

1.015358 1.016363 1.017320 1.019081 1.019804 1.021530

117.69 117.76 117.84 118.00 118.05 118.21

1.039515 1.040425 1.041574 1.042678 1.043311 1.044874

118.89 118.96 119.02 119.08 119.12 119.20

0.05587 0.07161 0.09160 0.11094 0.12212 0.14983

1.034550 1.035449 1.036585 1.037678 1.038308 1.039859

120.03 120.05 120.08 120.10 120.11 120.14

−1

0.04820 0.07064 0.08246 0.10036 0.11586 0.13472

1.065149 1.066289 1.066876 1.067771 1.068539 1.069470

95.59 95.63 95.77 95.84 95.92 95.99

0.04820 0.07064 0.08246 0.10036 0.11586 0.13472

1.060121 1.061241 1.061828 1.062713 1.063475 1.064398

0.05074 0.07074 0.08289 0.10078 0.12268 0.14527

1.014830 1.015917 1.016576 1.017541 1.018719 1.019925

94.56 94.58 94.59 94.61 94.63 94.66

0.05074 0.07074 0.08289 0.10078 0.12268 0.14527

1.012214 1.013287 1.013933 1.014877 1.016031 1.017212

0.04924 0.07224 0.08788 0.10240 0.11456 0.15046

1.026354 1.027555 1.028366 1.029117 1.029744 1.031582

96.07 96.11 96.16 96.19 96.21 96.28

0.04924 0.07224 0.08788 0.10240 0.11456 0.15046

1.023503 1.024689 1.025491 1.026233 1.026852 1.028669

0.04436 0.07228 0.08288 0.10057 0.13592 0.16064

1.047312 1.048693 1.049212 1.050078 1.051793 1.052981

97.70 97.75 97.80 97.83 97.91 97.97

0.04436 0.07228 0.08288 0.10057 0.13592 0.16064

1.043358 1.044715 1.045227 1.046078 1.047758 1.048919

0.05008 0.06240 0.08878 0.09994 0.12678 0.14476

1.065087 1.065675 1.066929 1.067457 1.068721 1.069562

98.39 98.41 98.44 98.45 98.48 98.50

0.05008 0.06240 0.08878 0.09994 0.12678 0.14476

1.060039 1.060612 1.061832 1.062346 1.063574 1.064392

0.04838 0.06989 0.08851 0.09575 0.12594 0.14759

1.015285 1.016707 1.017930 1.018402 1.020363 1.021756

112.35 112.43 112.49 112.53 112.64 112.72

0.04838 0.06989 0.08851 0.09575 0.12594 0.14759

1.012665 1.014073 1.015286 1.015755 1.017702 1.019085

0.04815 0.06472 0.08061 0.11013 0.12234 0.15179

1.026837 1.027881 1.028875 1.030706 1.031456 1.033249

114.58 114.71 114.81 114.99 115.06 115.24

0.04815 0.06472 0.08061 0.11013 0.12234 0.15179

1.023974 1.025004 1.025985 1.027789 1.028531 1.030301

0.05587 0.07161 0.09160 0.11094 0.12212 0.14983

1.048483 1.049418 1.050598 1.051729 1.052380 1.053974

116.51 116.65 116.78 116.90 116.96 117.14

0.05587 0.07161 0.09160 0.11094 0.12212 0.14983

1.044498 1.045422 1.046585 1.047704 1.048346 1.049927

mB = 3.0 mol·kg 96.61 0.04820 96.67 0.07064 96.69 0.08246 96.73 0.10036 96.77 0.11586 96.81 0.13472 (−)-D-Ribose mB = 0.5 mol·kg−1 95.30 0.05074 95.37 0.07074 95.43 0.08289 95.54 0.10078 95.61 0.12268 95.69 0.14527 mB = 1.0 mol·kg−1 96.83 0.04924 96.88 0.07224 96.91 0.08788 96.94 0.10240 96.96 0.11456 97.02 0.15046 mB = 2.0 mol·kg−1 98.56 0.04436 98.67 0.07228 98.70 0.08288 98.75 0.10057 98.88 0.13592 98.98 0.16064 mB = 3.0 mol·kg−1 99.78 0.05008 99.79 0.06240 99.84 0.08878 99.85 0.09994 99.89 0.12678 99.92 0.14476 (+)-D-Glucose mB = 0.5 mol·kg−1 113.16 0.04838 113.22 0.06989 113.26 0.08851 113.28 0.09575 113.35 0.12594 113.41 0.14759 mB = 1.0 mol·kg−1 115.63 0.04815 115.73 0.06472 115.82 0.08061 116.00 0.11013 116.06 0.12234 116.22 0.15179 mB = 2.0 mol·kg−1 117.77 0.05587 117.83 0.07161 117.93 0.09160 118.00 0.11094 118.05 0.12212 118.15 0.14983

2440

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

1.054411 1.055792 1.056522 1.057221 1.059147 1.060903

119.89 119.96 119.98 120.00 120.08 120.15

0.05011 0.07487 0.08802 0.10067 0.13584 0.16827

1.050248 1.051608 1.052327 1.053016 1.054917 1.056655

121.07 121.09 121.10 121.11 121.14 121.16

1.009353 1.011016 1.012689 1.013933 1.014675 1.016073

113.24 113.31 113.37 113.43 113.46 113.52

0.04864 0.07402 0.09976 0.11904 0.13059 0.15247

1.005262 1.006912 1.008575 1.009810 1.010545 1.011934

114.02 114.06 114.09 114.14 114.18 114.22

1.020252 1.021514 1.022381 1.023221 1.023612 1.026158

114.00 114.01 114.02 114.03 114.04 114.06

0.04835 0.06795 0.08146 0.09462 0.10076 0.14091

1.015501 1.016746 1.017600 1.018429 1.018815 1.021319

115.04 115.07 115.09 115.11 115.12 115.19

1.039797 1.040540 1.041320 1.042515 1.043927 1.045056

116.00 116.01 116.02 116.03 116.05 116.06

0.05765 0.06981 0.08260 0.10230 0.12570 0.14452

1.034828 1.035558 1.036323 1.037495 1.038876 1.039980

117.15 117.18 117.22 117.27 117.34 117.39

1.054186 1.055202 1.056266 1.057308 1.058428 1.059997

118.61 118.70 118.79 118.88 118.93 119.07

0.04498 0.06274 0.08150 0.10003 0.11998 0.14839

1.050032 1.051034 1.052084 1.053113 1.054213 1.055770

119.70 119.75 119.82 119.90 119.97 120.04

1.009420 1.010041 1.012176 1.013392 1.014205 1.016304

112.80 112.85 113.00 113.08 113.13 113.27

0.04932 0.05874 0.09135 0.11009 0.12268 0.15546

1.005318 1.005931 1.008041 1.009243 1.010046 1.012118

113.80 113.85 113.99 114.07 114.12 114.26

1.019986 1.021552 1.022775 1.024408 1.025396 1.027034

114.74 114.77 114.80 114.84 114.87 114.91

0.04476 0.06939 0.08874 0.11474 0.13058 0.15697

1.015235 1.016780 1.017987 1.019598 1.020574 1.022191

115.85 115.88 115.90 115.93 115.95 115.98

1.038956 1.040275 1.041743 1.042291 1.044196 1.045530

116.91 116.96 117.02 117.04 117.11 117.17

0.04466 0.06657 0.09116 0.10039 0.13267 0.15549

1.034002 1.035303 1.036756 1.037299 1.039186 1.040510

118.01 118.03 118.04 118.05 118.07 118.09

−1

0.05011 0.07487 0.08802 0.10067 0.13584 0.16827

1.065619 1.067048 1.067796 1.068516 1.070493 1.072287

117.17 117.32 117.44 117.50 117.70 117.88

0.05011 0.07487 0.08802 0.10067 0.13584 0.16827

1.060567 1.061969 1.062709 1.063416 1.065366 1.067144

0.04864 0.07402 0.09976 0.11904 0.13059 0.15247

1.015326 1.017015 1.018712 1.019977 1.020730 1.022151

111.88 111.97 112.07 112.11 112.15 112.21

0.04864 0.07402 0.09976 0.11904 0.13059 0.15247

1.012705 1.014374 1.016047 1.017294 1.018032 1.019429

0.04835 0.06795 0.08146 0.09462 0.10076 0.14091

1.026966 1.028255 1.029140 1.029998 1.030396 1.032990

112.28 112.31 112.33 112.35 112.37 112.44

0.04835 0.06795 0.08146 0.09462 0.10076 0.14091

1.024110 1.025382 1.026256 1.027104 1.027499 1.030061

0.05765 0.06981 0.08260 0.10230 0.12570 0.14452

1.048749 1.049512 1.050312 1.051540 1.052990 1.054150

113.98 113.99 114.00 114.01 114.03 114.04

0.05765 0.06981 0.08260 0.10230 0.12570 0.14452

1.044776 1.045528 1.046317 1.047527 1.048955 1.050098

0.04498 0.06274 0.08150 0.10003 0.11998 0.14839

1.065364 1.066417 1.067524 1.068612 1.069777 1.071426

116.28 116.30 116.31 116.32 116.33 116.35

0.04498 0.06274 0.08150 0.10003 0.11998 0.14839

1.060330 1.061359 1.062436 1.063491 1.064622 1.066212

0.04932 0.05874 0.09135 0.11009 0.12268 0.15546

1.015421 1.016059 1.018256 1.019510 1.020349 1.022518

110.90 110.92 110.99 111.03 111.05 111.12

0.04932 0.05874 0.09135 0.11009 0.12268 0.15546

1.012794 1.013424 1.015589 1.016824 1.017650 1.019783

0.04476 0.06939 0.08874 0.11474 0.13058 0.15697

1.026701 1.028300 1.029546 1.031207 1.032209 1.033869

112.87 113.00 113.09 113.20 113.28 113.39

0.04476 0.06939 0.08874 0.11474 0.13058 0.15697

1.023849 1.025434 1.026670 1.028321 1.029319 1.030973

0.04466 0.06657 0.09116 0.10039 0.13267 0.15549

1.047889 1.049244 1.050755 1.051318 1.053277 1.054648

114.83 114.88 114.93 114.96 115.03 115.09

0.04466 0.06657 0.09116 0.10039 0.13267 0.15549

1.043928 1.045264 1.046753 1.047309 1.049239 1.050592

mB = 3.0 mol·kg 118.67 0.05011 118.75 0.07487 118.79 0.08802 118.84 0.10067 118.95 0.13584 119.04 0.16827 (+)-D-Mannose mB = 0.5 mol·kg−1 112.69 0.04864 112.81 0.07402 112.97 0.09976 113.04 0.11904 113.12 0.13059 113.21 0.15247 mB = 1.0 mol·kg−1 113.18 0.04835 113.22 0.06795 113.24 0.08146 113.26 0.09462 113.27 0.10076 113.34 0.14091 mB = 2.0 mol·kg−1 115.00 0.05765 115.02 0.06981 115.03 0.08260 115.05 0.10230 115.07 0.12570 115.09 0.14452 mB = 3.0 mol·kg−1 117.56 0.04498 117.64 0.06274 117.74 0.08150 117.84 0.10003 117.91 0.11998 118.04 0.14839 (+)-D-Galactose mB = 0.5 mol·kg−1 111.83 0.04932 111.85 0.05874 111.98 0.09135 112.04 0.11009 112.07 0.12268 112.18 0.15546 mB = 1.0 mol·kg−1 113.74 0.04476 113.80 0.06939 113.85 0.08874 113.91 0.11474 113.95 0.13058 114.01 0.15697 mB = 2.0 mol·kg−1 115.85 0.04466 115.90 0.06657 115.96 0.09116 115.98 0.10039 116.06 0.13267 116.11 0.15549

2441

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

1.054542 1.055727 1.056823 1.057445 1.058383 1.059500

118.71 118.75 118.78 118.80 118.83 118.87

0.05125 0.07199 0.09128 0.10228 0.11896 0.13894

1.050378 1.051545 1.052624 1.053237 1.054163 1.055265

119.87 119.89 119.90 119.91 119.92 119.94

1.009579 1.011884 1.014293 1.015617 1.018128 1.019483

113.51 113.59 113.66 113.70 113.77 113.84

0.05228 0.08769 0.12506 0.14578 0.18537 0.20704

1.005479 1.007758 1.010138 1.011446 1.013923 1.015267

114.43 114.52 114.60 114.65 114.74 114.79

1.020374 1.021421 1.022303 1.023446 1.024208 1.026583

114.78 114.85 114.90 114.96 115.00 115.13

0.05087 0.06740 0.08140 0.09963 0.11184 0.15027

1.015617 1.016649 1.017518 1.018643 1.019392 1.021729

115.91 115.98 116.04 116.11 116.16 116.32

1.039171 1.040284 1.041629 1.042706 1.043549 1.045077

117.24 117.28 117.32 117.37 117.41 117.46

0.04849 0.06710 0.08973 0.10799 0.12237 0.14856

1.034215 1.035312 1.036638 1.037702 1.038535 1.040041

118.31 118.35 118.40 118.43 118.46 118.52

1.054017 1.054937 1.056815 1.057888 1.058649 1.060435

118.70 118.72 118.75 118.77 118.79 118.82

0.04211 0.05815 0.09108 0.11005 0.12358 0.15549

1.049865 1.050771 1.052617 1.053673 1.054422 1.056177

119.80 119.82 119.86 119.88 119.90 119.94

1.013196 1.016952 1.019263 1.021180 1.022304 1.025030

216.77 216.84 216.88 216.92 216.94 217.00

0.05725 0.08832 0.10766 0.12384 0.13338 0.15671

1.009062 1.012771 1.015049 1.016938 1.018045 1.020729

218.40 218.57 218.68 218.77 218.81 218.93

1.023798 1.025584 1.028146 1.030451 1.033115 1.034747

218.44 218.49 218.56 218.62 218.69 218.74

0.05540 0.07046 0.09226 0.11207 0.13521 0.14952

1.019034 1.020809 1.023356 1.025649 1.028301 1.029927

219.85 219.86 219.88 219.90 219.92 219.94

1.042137 1.043447 1.045393 1.047562 1.049012 1.051552

221.80 221.82 221.87 221.92 221.95 222.00

0.05120 0.06275 0.08004 0.09949 0.11259 0.13574

1.037158 1.038452 1.040373 1.042516 1.043944 1.046448

223.51 223.56 223.65 223.71 223.78 223.87

−1

0.05125 0.07199 0.09128 0.10228 0.11896 0.13894

1.065729 1.066951 1.068080 1.068720 1.069686 1.070837

116.41 116.46 116.50 116.53 116.57 116.61

0.05125 0.07199 0.09128 0.10228 0.11896 0.13894

1.060698 1.061903 1.063018 1.063649 1.064605 1.065742

0.05228 0.08769 0.12506 0.14578 0.18537 0.20704

1.015601 1.017979 1.020464 1.021832 1.024425 1.025832

111.29 111.34 111.39 111.42 111.47 111.50

0.05228 0.08769 0.12506 0.14578 0.18537 0.20704

1.012959 1.015297 1.017737 1.019081 1.021626 1.023005

0.05087 0.06740 0.08140 0.09963 0.11184 0.15027

1.027120 1.028200 1.029108 1.030285 1.031070 1.033512

112.51 112.58 112.66 112.73 112.78 112.96

0.05087 0.06740 0.08140 0.09963 0.11184 0.15027

1.024249 1.025310 1.026203 1.027361 1.028131 1.030532

0.04849 0.06710 0.08973 0.10799 0.12237 0.14856

1.048125 1.049273 1.050658 1.051767 1.052636 1.054207

114.86 114.93 115.02 115.09 115.14 115.23

0.04849 0.06710 0.08973 0.10799 0.12237 0.14856

1.044147 1.045274 1.046634 1.047722 1.048573 1.050116

0.04211 0.05815 0.09108 0.11005 0.12358 0.15549

1.065195 1.066145 1.068081 1.069186 1.069968 1.071804

116.24 116.29 116.37 116.42 116.47 116.54

0.04211 0.05815 0.09108 0.11005 0.12358 0.15549

1.060160 1.061091 1.062985 1.064067 1.064832 1.066622

0.05725 0.08832 0.10766 0.12384 0.13338 0.15671

1.019239 1.023064 1.025418 1.027372 1.028516 1.031296

214.08 214.13 214.16 214.18 214.20 214.24

0.05725 0.08832 0.10766 0.12384 0.13338 0.15671

1.016580 1.020356 1.022677 1.024601 1.025724 1.028457

0.05540 0.07046 0.09226 0.11207 0.13521 0.14952

1.030569 1.032386 1.034994 1.037336 1.040046 1.041702

215.58 215.67 215.77 215.88 215.97 216.05

0.05540 0.07046 0.09226 0.11207 0.13521 0.14952

1.027698 1.029505 1.032099 1.034433 1.037132 1.038787

0.05120 0.06275 0.08004 0.09949 0.11259 0.13574

1.051108 1.052443 1.054427 1.056639 1.058116 1.060703

218.76 218.79 218.84 218.89 218.93 218.99

0.05120 0.06275 0.08004 0.09949 0.11259 0.13574

1.047122 1.048442 1.050402 1.052586 1.054043 1.056596

mB = 3.0 mol·kg 117.51 0.05125 117.54 0.07199 117.56 0.09128 117.58 0.10228 117.60 0.11896 117.63 0.13894 (−)-D-Fructose mB = 0.5 mol·kg−1 112.45 0.05228 112.53 0.08769 112.62 0.12506 112.65 0.14578 112.72 0.18537 112.77 0.20704 mB = 1.0 mol·kg−1 113.66 0.05087 113.74 0.06740 113.82 0.08140 113.90 0.09963 113.96 0.11184 114.14 0.15027 mB = 2.0 mol·kg−1 116.14 0.04849 116.21 0.06710 116.29 0.08973 116.37 0.10799 116.43 0.12237 116.51 0.14856 mB = 3.0 mol·kg−1 117.61 0.04211 117.66 0.05815 117.77 0.09108 117.82 0.11005 117.87 0.12358 117.98 0.15549 (+)-Melibiose mB = 0.5 mol·kg−1 215.57 0.05725 215.73 0.08832 215.82 0.10766 215.90 0.12384 215.97 0.13338 216.08 0.15671 mB = 1.0 mol·kg−1 216.78 0.05540 216.81 0.07046 216.85 0.09226 216.89 0.11207 216.93 0.13521 216.96 0.14952 mB = 2.0 mol·kg−1 220.34 0.05120 220.38 0.06275 220.45 0.08004 220.53 0.09949 220.60 0.11259 220.69 0.13574

2442

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

1.057056 1.058858 1.060561 1.062191 1.063882 1.067176

224.90 224.94 224.97 225.00 225.03 225.09

0.04981 0.06648 0.08236 0.09768 0.11370 0.14528

1.052882 1.054665 1.056351 1.057964 1.059640 1.062902

226.51 226.53 226.54 226.56 226.57 226.61

1.012647 1.015498 1.017634 1.018576 1.021306 1.025412

214.31 214.46 214.59 214.64 214.77 214.97

0.05170 0.07478 0.09226 0.10002 0.12268 0.15726

1.008545 1.011379 1.013501 1.014437 1.017152 1.021232

215.44 215.59 215.72 215.77 215.90 216.10

1.023459 1.026706 1.029350 1.029397 1.032089 1.033948

215.30 215.39 215.45 215.46 215.51 215.57

0.05117 0.07785 0.09983 0.10023 0.12284 0.13862

1.018709 1.021934 1.024560 1.024606 1.027278 1.029126

216.49 216.59 216.67 216.69 216.76 216.81

1.042942 1.044955 1.047598 1.047751 1.049445 1.052821

220.84 220.87 220.91 220.92 220.95 221.00

0.05776 0.07543 0.09886 0.10023 0.11540 0.14596

1.037944 1.039930 1.042536 1.042687 1.044355 1.047680

222.72 222.78 222.85 222.86 222.92 223.01

1.056692 1.058735 1.060647 1.062522 1.062591 1.066344

223.81 223.85 223.89 223.92 223.93 224.00

0.04596 0.06462 0.08226 0.09970 0.10035 0.13574

1.052522 1.054541 1.056432 1.058284 1.058352 1.062061

225.44 225.48 225.52 225.56 225.57 225.65

1.012851 1.014804 1.017307 1.019385 1.021435 1.023881

215.00 215.02 215.04 215.05 215.07 215.09

0.05364 0.06947 0.08992 0.10704 0.12406 0.14453

1.008729 1.010662 1.013137 1.015190 1.017213 1.019625

216.48 216.54 216.61 216.67 216.74 216.82

1.022340 1.025574 1.027227 1.027960 1.030623 1.034082

217.79 217.84 217.87 217.89 217.93 217.99

0.04296 0.06998 0.08392 0.09014 0.11286 0.14275

1.017582 1.020782 1.022414 1.023138 1.025768 1.029181

219.33 219.45 219.52 219.56 219.65 219.78

1.041854 1.043887 1.045803 1.047689 1.050471 1.052505

221.95 221.98 222.00 222.02 222.05 222.07

0.04878 0.06674 0.08380 0.10072 0.12594 0.14457

1.036873 1.038879 1.040765 1.042621 1.045358 1.047353

223.75 223.84 223.93 224.00 224.09 224.18

−1

0.04981 0.06648 0.08236 0.09768 0.11370 0.14528

1.068251 1.070086 1.071821 1.073481 1.075205 1.078562

221.80 221.83 221.85 221.88 221.90 221.95

0.04981 0.06648 0.08236 0.09768 0.11370 0.14528

1.063210 1.065025 1.066739 1.068381 1.070082 1.073395

0.05170 0.07478 0.09226 0.10002 0.12268 0.15726

1.018674 1.021579 1.023760 1.024722 1.027510 1.031712

211.72 211.80 211.84 211.87 211.94 212.03

0.05170 0.07478 0.09226 0.10002 0.12268 0.15726

1.016036 1.018919 1.021082 1.022037 1.024804 1.028972

0.05117 0.07785 0.09983 0.10023 0.12284 0.13862

1.030206 1.033504 1.036186 1.036234 1.038965 1.040853

212.74 212.86 212.97 212.98 213.06 213.12

0.05117 0.07785 0.09983 0.10023 0.12284 0.13862

1.027340 1.030617 1.033286 1.033334 1.036052 1.037929

0.05776 0.07543 0.09886 0.10023 0.11540 0.14596

1.051998 1.054070 1.056789 1.056946 1.058690 1.062160

216.69 216.74 216.81 216.83 216.86 216.95

0.05776 0.07543 0.09886 0.10023 0.11540 0.14596

1.048002 1.050049 1.052734 1.052889 1.054609 1.058032

0.04596 0.06462 0.08226 0.09970 0.10035 0.13574

1.067959 1.070072 1.072051 1.073993 1.074064 1.077955

219.20 219.21 219.23 219.24 219.25 219.27

0.04596 0.06462 0.08226 0.09970 0.10035 0.13574

1.062918 1.065007 1.066964 1.068882 1.068952 1.072791

0.05364 0.06947 0.08992 0.10704 0.12406 0.14453

1.018868 1.020850 1.023389 1.025498 1.027578 1.030060

212.67 212.69 212.71 212.73 212.75 212.77

0.05364 0.06947 0.08992 0.10704 0.12406 0.14453

1.016232 1.018199 1.020718 1.022810 1.024874 1.027334

0.04296 0.06998 0.08392 0.09014 0.11286 0.14275

1.029060 1.032335 1.034006 1.034746 1.037436 1.040929

215.45 215.58 215.66 215.71 215.82 215.95

0.04296 0.06998 0.08392 0.09014 0.11286 0.14275

1.026208 1.029468 1.031133 1.031873 1.034558 1.038046

0.04878 0.06674 0.08380 0.10072 0.12594 0.14457

1.050814 1.052888 1.054841 1.056763 1.059600 1.061675

219.00 219.01 219.02 219.03 219.05 219.06

0.04878 0.06674 0.08380 0.10072 0.12594 0.14457

1.046822 1.048862 1.050778 1.052662 1.055437 1.057460

mB = 3.0 mol·kg 223.38 0.04981 223.44 0.06648 223.49 0.08236 223.53 0.09768 223.58 0.11370 223.67 0.14528 (+)-Cellobiose mB = 0.5 mol·kg−1 212.94 0.05170 213.01 0.07478 213.05 0.09226 213.07 0.10002 213.14 0.12268 213.23 0.15726 mB= 1.0 mol·kg−1 213.91 0.05117 213.97 0.07785 214.02 0.09983 214.03 0.10023 214.07 0.12284 214.12 0.13862 mB = 2.0 mol·kg−1 218.29 0.05776 218.37 0.07543 218.47 0.09886 218.49 0.10023 218.55 0.11540 218.68 0.14596 mB = 3.0 mol·kg−1 220.83 0.04596 220.87 0.06462 220.91 0.08226 220.94 0.09970 220.95 0.10035 221.02 0.13574 Sucrose mB = 0.5 mol·kg−1 213.81 0.05364 213.84 0.06947 213.87 0.08992 213.90 0.10704 213.92 0.12406 213.96 0.14453 mB = 1.0 mol·kg−1 216.48 0.04296 216.53 0.06998 216.56 0.08392 216.57 0.09014 216.61 0.11286 216.67 0.14275 mB = 2.0 mol·kg−1 220.75 0.04878 220.87 0.06674 221.00 0.08380 221.11 0.10072 221.26 0.12594 221.38 0.14457

2443

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

1.056852 1.059226 1.061209 1.062389 1.062410 1.066787

225.20 225.27 225.33 225.38 225.39 225.52

0.04808 0.07013 0.08876 0.09994 0.10015 0.14218

1.052677 1.055024 1.056986 1.058154 1.058175 1.062508

226.87 226.92 226.97 227.00 227.01 227.10

1.012743 1.015587 1.017544 1.020957 1.022589 1.025168

232.25 232.32 232.37 232.45 232.49 232.56

0.05254 0.07558 0.09159 0.11982 0.13347 0.15523

1.008589 1.011393 1.013322 1.016683 1.018291 1.020832

234.43 234.51 234.56 234.67 234.72 234.79

1.024546 1.026218 1.027275 1.029186 1.031380 1.034042

236.72 236.82 236.89 236.99 237.11 237.25

0.06206 0.07634 0.08543 0.10198 0.12118 0.14476

1.019737 1.021390 1.022436 1.024326 1.026500 1.029141

238.84 238.89 238.92 238.99 239.05 239.12

1.042195 1.043744 1.044642 1.046028 1.048382 1.049549

242.05 242.07 242.08 242.09 242.12 242.13

0.05319 0.06727 0.07548 0.08821 0.11005 0.12096

1.037168 1.038685 1.039564 1.040919 1.043221 1.044361

244.69 244.74 244.77 244.82 244.90 244.94

1.056415 1.057752 1.059171 1.061345 1.064884 1.067700

242.77 242.82 242.87 242.95 243.07 243.17

0.04429 0.05674 0.07005 0.09064 0.12469 0.15227

1.052207 1.053518 1.054909 1.057041 1.060514 1.063278

245.31 245.35 245.40 245.46 245.55 245.63

1.012709 1.014925 1.017510 1.019343 1.020309 1.023002

233.64 233.69 233.73 233.78 233.80 233.85

0.05286 0.07099 0.09234 0.10764 0.11574 0.13850

1.008589 1.010782 1.013342 1.015156 1.016113 1.018778

235.19 235.27 235.33 235.40 235.42 235.49

1.022449 1.026603 1.026937 1.029003 1.031570 1.034047

237.18 237.33 237.34 237.4 237.48 237.56

0.04454 0.07998 0.08286 0.10076 0.12325 0.14521

1.017692 1.021812 1.022143 1.024192 1.026739 1.029195

238.76 238.88 238.89 238.94 239.01 239.09

1.041807 1.043554 1.045243 1.046358 1.048365 1.051178

241.60 241.64 241.69 241.72 241.76 241.83

0.04946 0.06527 0.08068 0.09093 0.10950 0.13586

1.036827 1.038554 1.040221 1.041323 1.043302 1.046076

243.46 243.52 243.59 243.62 243.69 243.79

−1

0.04808 0.07013 0.08876 0.09994 0.10015 0.14218

1.068057 1.070480 1.072505 1.073710 1.073731 1.078200

221.84 221.92 221.98 222.02 222.04 222.17

0.04808 0.07013 0.08876 0.09994 0.10015 0.14218

1.063023 1.065426 1.067433 1.068630 1.068651 1.073088

0.05254 0.07558 0.09159 0.11982 0.13347 0.15523

1.018834 1.021756 1.023767 1.027276 1.028954 1.031610

228.40 228.44 228.46 228.51 228.54 228.57

0.05254 0.07558 0.09159 0.11982 0.13347 0.15523

1.016165 1.019047 1.021030 1.024489 1.026141 1.028753

0.06206 0.07634 0.08543 0.10198 0.12118 0.14476

1.031412 1.033139 1.034232 1.036209 1.038481 1.041244

232.51 232.55 232.57 232.61 232.66 232.71

0.06206 0.07634 0.08543 0.10198 0.12118 0.14476

1.028488 1.030187 1.031261 1.033205 1.035438 1.038147

0.05319 0.06727 0.07548 0.08821 0.11005 0.12096

1.051224 1.052818 1.053742 1.055167 1.057590 1.058790

237.89 237.91 237.92 237.94 237.97 237.99

0.05319 0.06727 0.07548 0.08821 0.11005 0.12096

1.047221 1.048794 1.049705 1.051110 1.053500 1.054684

0.04429 0.05674 0.07005 0.09064 0.12469 0.15227

1.067658 1.069036 1.070500 1.072743 1.076397 1.079306

238.30 238.34 238.37 238.43 238.52 238.60

0.04429 0.05674 0.07005 0.09064 0.12469 0.15227

1.062604 1.063964 1.065406 1.067617 1.071217 1.074084

0.05286 0.07099 0.09234 0.10764 0.11574 0.13850

1.018739 1.020995 1.023626 1.025496 1.026480 1.029226

230.93 230.95 230.97 230.98 230.99 231.01

0.05286 0.07099 0.09234 0.10764 0.11574 0.13850

1.016096 1.018331 1.020937 1.022787 1.023761 1.026477

0.04454 0.07998 0.08286 0.10076 0.12325 0.14521

1.029190 1.033419 1.033758 1.035857 1.038470 1.040988

234.30 234.46 234.48 234.59 234.67 234.77

0.04454 0.07998 0.08286 0.10076 0.12325 0.14521

1.026319 1.030505 1.030840 1.032919 1.035504 1.037995

0.04946 0.06527 0.08068 0.09093 0.10950 0.13586

1.050777 1.052561 1.054284 1.055424 1.057468 1.060339

238.30 238.35 238.40 238.42 238.49 238.56

0.04946 0.06527 0.08068 0.09093 0.10950 0.13586

1.046802 1.048571 1.050282 1.051413 1.053447 1.056302

mB = 3.0 mol·kg 223.33 0.04808 223.38 0.07013 223.44 0.08876 223.46 0.09994 223.47 0.10015 223.56 0.14218 (+)-Maltose Monohydrate mB = 0.5 mol·kg−1 230.22 0.05254 230.30 0.07558 230.36 0.09159 230.44 0.11982 230.50 0.13347 230.58 0.15523 mB = 1.0 mol·kg−1 234.47 0.06206 234.56 0.07634 234.62 0.08543 234.70 0.10198 234.79 0.12118 234.91 0.14476 mB = 2.0 mol·kg−1 239.79 0.05319 239.82 0.06727 239.84 0.07548 239.86 0.08821 239.90 0.11005 239.92 0.12096 mB = 3.0 mol·kg−1 240.34 0.04429 240.38 0.05674 240.43 0.07005 240.49 0.09064 240.60 0.12469 240.68 0.15227 (+)-Lactose Monohydrate mB = 0.5 mol·kg−1 232.26 0.05286 232.31 0.07099 232.35 0.09234 232.39 0.10764 232.41 0.11574 232.46 0.13850 mB = 1.0 mol·kg−1 235.78 0.04454 235.95 0.07998 235.98 0.08286 236.07 0.10076 236.17 0.12325 236.28 0.14521 mB = 2.0 mol·kg−1 239.80 0.04946 239.81 0.06527 239.82 0.08068 239.83 0.09093 239.84 0.10950 239.86 0.13586

2444

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

1.056977 1.058987 1.061027 1.064584 1.065758 1.068836

243.58 243.64 243.71 243.82 243.86 243.95

0.04991 0.06886 0.08832 0.12276 0.13428 0.16482

1.052802 1.054788 1.056802 1.060314 1.061472 1.064509

245.29 245.36 245.45 245.58 245.63 245.74

1.012125 1.014264 1.018515 1.021097 1.022292 1.024260

252.51 252.55 252.63 252.68 252.72 252.76

0.04854 0.06617 0.10171 0.12364 0.13389 0.15087

1.007976 1.010081 1.014258 1.016794 1.017967 1.019897

254.84 254.91 255.09 255.19 255.24 255.32

1.022885 1.025436 1.027583 1.029057 1.031539 1.034668

254.79 254.86 254.91 254.95 254.99 255.08

0.04822 0.06996 0.08845 0.10127 0.12302 0.15087

1.018097 1.020617 1.022739 1.024198 1.026650 1.029751

257.01 257.03 257.04 257.05 257.07 257.09

1.041656 1.043664 1.044282 1.047287 1.048948 1.052029

259.30 259.44 259.46 259.62 259.70 259.87

0.04829 0.06661 0.07227 0.10016 0.11578 0.14520

1.036659 1.038642 1.039251 1.042219 1.043861 1.046913

261.62 261.69 261.71 261.80 261.85 261.94

1.057230 1.058767 1.061376 1.063432 1.066586 1.067853

261.01 261.05 261.13 261.18 261.27 261.31

0.05249 0.06705 0.09208 0.11206 0.14319 0.15587

1.053017 1.054527 1.057094 1.059119 1.062226 1.063476

263.41 263.43 263.46 263.48 263.52 263.54

1.015600 1.019446 1.022408 1.024479 1.027824 1.032808

405.80 405.83 405.85 405.87 405.89 405.93

0.05160 0.07320 0.09009 0.10204 0.12158 0.15127

1.011469 1.015288 1.018228 1.020284 1.023605 1.028552

408.04 408.07 408.09 408.10 408.12 408.16

1.026056 1.027827 1.032912 1.035965 1.041694 1.043823

407.95 407.98 408.04 408.07 408.15 408.18

0.04998 0.06013 0.08976 0.10790 0.14270 0.15589

1.021282 1.023041 1.028091 1.031123 1.036816 1.038933

410.28 410.30 410.34 410.37 410.42 410.44

1.044610 1.049624 1.050982 1.054754 1.057621 1.061446

412.20 412.35 412.39 412.51 412.59 412.71

0.04927 0.07987 0.08830 0.11206 0.13045 0.15547

1.039639 1.044630 1.045982 1.049744 1.052604 1.056426

414.47 414.50 414.51 414.53 414.55 414.58

−1

0.04991 0.06886 0.08832 0.12276 0.13428 0.16482

1.068193 1.070252 1.072344 1.075998 1.077205 1.080373

239.89 239.90 239.92 239.94 239.95 239.97

0.04991 0.06886 0.08832 0.12276 0.13428 0.16482

1.063147 1.065179 1.067245 1.070847 1.072035 1.075151

0.04854 0.06617 0.10171 0.12364 0.13389 0.15087

1.018202 1.020398 1.024762 1.027415 1.028645 1.030666

248.56 248.59 248.67 248.71 248.73 248.77

0.04854 0.06617 0.10171 0.12364 0.13389 0.15087

1.015538 1.017706 1.022014 1.024632 1.025844 1.027839

0.04822 0.06996 0.08845 0.10127 0.12302 0.15087

1.029690 1.032310 1.034514 1.036027 1.038572 1.041782

250.69 250.79 250.87 250.93 251.01 251.13

0.04822 0.06996 0.08845 0.10127 0.12302 0.15087

1.026792 1.029378 1.031553 1.033046 1.035559 1.038732

0.04829 0.06661 0.07227 0.10016 0.11578 0.14520

1.050686 1.052762 1.053400 1.056506 1.058224 1.061418

254.66 254.76 254.78 254.92 254.99 255.10

0.04829 0.06661 0.07227 0.10016 0.11578 0.14520

1.046681 1.048732 1.049362 1.052436 1.054137 1.057303

0.05249 0.06705 0.09208 0.11206 0.14319 0.15587

1.068503 1.070087 1.072779 1.074900 1.078155 1.079463

256.28 256.32 256.40 256.45 256.54 256.58

0.05249 0.06705 0.09208 0.11206 0.14319 0.15587

1.063431 1.064993 1.067647 1.069740 1.072952 1.074245

0.05160 0.07320 0.09009 0.10204 0.12158 0.15127

1.021702 1.025622 1.028640 1.030751 1.034157 1.039235

400.99 401.04 401.07 401.10 401.15 401.21

0.05160 0.07320 0.09009 0.10204 0.12158 0.15127

1.019018 1.022900 1.025889 1.027978 1.031353 1.036382

0.04998 0.06013 0.08976 0.10790 0.14270 0.15589

1.032879 1.034686 1.039876 1.042992 1.048846 1.051021

402.99 403.00 403.04 403.06 403.10 403.12

0.04998 0.06013 0.08976 0.10790 0.14270 0.15589

1.029956 1.031741 1.036863 1.039936 1.045706 1.047848

0.04927 0.07987 0.08830 0.11206 0.13045 0.15547

1.053619 1.058730 1.060114 1.063965 1.066890 1.070801

407.18 407.27 407.30 407.36 407.42 407.48

0.04927 0.07987 0.08830 0.11206 0.13045 0.15547

1.049609 1.054668 1.056038 1.059847 1.062743 1.066611

mB = 3.0 mol·kg 241.65 0.04991 241.71 0.06886 241.76 0.08832 241.84 0.12276 241.88 0.13428 241.96 0.16482 (+)-Trehalose Dihydrate mB = 0.5 mol·kg−1 250.45 0.04854 250.49 0.06617 250.57 0.10171 250.62 0.12364 250.65 0.13389 250.69 0.15087 mB = 1.0 mol·kg−1 252.65 0.04822 252.74 0.06996 252.80 0.08845 252.86 0.10127 252.92 0.12302 253.01 0.15087 mB = 2.0 mol·kg−1 256.81 0.04829 256.83 0.06661 256.84 0.07227 256.87 0.10016 256.89 0.11578 256.92 0.14520 mB = 3.0 mol·kg−1 258.51 0.05249 258.54 0.06705 258.59 0.09208 258.62 0.11206 258.68 0.14319 258.70 0.15587 (+)-Raffinose Pentahydrate mB = 0.5 mol·kg−1 403.42 0.05160 403.45 0.07320 403.47 0.09009 403.49 0.10204 403.52 0.12158 403.56 0.15127 mB = 1.0 mol·kg−1 405.64 0.04998 405.68 0.06013 405.79 0.08976 405.86 0.10790 405.97 0.14270 406.02 0.15589 mB = 2.0 mol·kg−1 409.78 0.04927 409.86 0.07987 409.88 0.08830 409.95 0.11206 410.00 0.13045 410.07 0.15547

2445

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

414.80 414.83 414.88 414.94 414.97 415.03

0.05214 0.06506 0.09103 0.10817 0.12560 0.15049

1.055864 1.057881 1.061864 1.064437 1.067012 1.070624

417.45 417.53 417.69 417.82 417.95 418.09

135.69 135.76 135.84 135.96 136.13

0.05460 0.07040 0.08546 0.10706 0.14527

1.005149 1.006029 1.006863 1.008053 1.010134

137.16 137.20 137.24 137.29 137.38

136.96 136.98 137.01 137.02 137.05

0.05231 0.07019 0.10960 0.11238 0.14207

1.015222 1.016172 1.018246 1.018389 1.019929

138.80 138.86 138.97 138.99 139.07

138.29 138.36 138.45 138.47 138.55

0.05514 0.07719 0.10578 0.11240 0.14276

1.034134 1.035244 1.036672 1.037002 1.038501

139.99 140.00 140.02 140.02 140.04

138.65 138.73 138.78 138.85 138.91

0.05270 0.07698 0.09158 0.11420 0.13497

1.050043 1.051213 1.051911 1.052985 1.053964

140.47 140.52 140.55 140.59 140.63

116.86 116.94 116.98 117.05 117.09

0.05196 0.08516 0.10032 0.13458 0.15547

1.004434 1.005928 1.006604 1.008123 1.009043

118.19 118.23 118.26 118.30 118.32

117.55 117.61 117.66 117.77 117.81 117.85

0.05076 0.08086 0.10057 0.15463 0.17482 0.19360

1.014636 1.015946 1.016797 1.019107 1.019961 1.020750

118.93 118.96 118.99 119.05 119.07 119.09

119.21 119.25 119.32 119.38 119.40

0.05116 0.06274 0.08012 0.09596 0.10002

1.033405 1.033869 1.034561 1.035186 1.035346

120.69 120.74 120.81 120.88 120.90

119.93 119.96 119.99 120.01 120.04

0.05430 0.07690 0.09946 0.11597 0.13358

1.049554 1.050412 1.051264 1.051882 1.052540

121.44 121.46 121.48 121.50 121.51

−1

0.05214 0.06506 0.09103 0.10817 0.12560 0.15049

1.071289 1.073363 1.077461 1.080116 1.082775 1.086504

409.83 409.86 409.92 409.95 409.99 410.05

0.05214 0.06506 0.09103 0.10817 0.12560 0.15049

0.05460 0.07040 0.08546 0.10706 0.14527

1.015327 1.016263 1.017150 1.018415 1.020624

132.82 132.87 132.92 132.98 133.11

0.05460 0.07040 0.08546 0.10706 0.14527

0.05231 0.07019 0.10960 0.11238 0.14207

1.026775 1.027794 1.030018 1.030173 1.031827

134.22 134.26 134.34 134.35 134.41

0.05231 0.07019 0.10960 0.11238 0.14207

0.05514 0.07719 0.10578 0.11240 0.14276

1.048114 1.049303 1.050830 1.051181 1.052779

135.30 135.36 135.43 135.45 135.53

0.05514 0.07719 0.10578 0.11240 0.14276

0.05270 0.07698 0.09158 0.11420 0.13497

1.065456 1.066718 1.067471 1.068630 1.069684

135.62 135.69 135.73 135.78 135.84

0.05270 0.07698 0.09158 0.11420 0.13497

0.05196 0.08516 0.10032 0.13458 0.15547

1.014559 1.016143 1.016862 1.018475 1.019450

114.76 114.80 114.82 114.86 114.89

0.05196 0.08516 0.10032 0.13458 0.15547

0.05076 0.08086 0.10057 0.15463 0.17482 0.19360

1.026141 1.027538 1.028447 1.030913 1.031825 1.032669

115.26 115.30 115.32 115.38 115.40 115.42

0.05076 0.08086 0.10057 0.15463 0.17482 0.19360

0.05116 0.06274 0.08012 0.09596 0.10002

1.047329 1.047827 1.048571 1.049245 1.049416

116.87 116.92 116.98 117.03 117.05

0.05116 0.06274 0.08012 0.09596 0.10002

0.05430 0.07690 0.09946 0.11597 0.13358

1.064920 1.065841 1.066752 1.067414 1.068114

117.60 117.66 117.72 117.76 117.81

0.05430 0.07690 0.09946 0.11597 0.13358

mB = 3.0 mol·kg 1.066231 412.32 0.05214 1.060067 1.068289 412.33 0.06506 1.062111 1.072357 412.35 0.09103 1.066149 1.074993 412.36 0.10817 1.068762 1.077635 412.37 0.12560 1.071383 1.081341 412.39 0.15049 1.075056 (+)-Methyl α-D-Glucopyranoside mB = 0.5 mol·kg−1 1.012688 133.97 0.05460 1.009274 1.013611 133.99 0.07040 1.010170 1.014486 134.01 0.08546 1.011018 1.015736 134.03 0.10706 1.012222 1.017924 134.08 0.14527 1.014330 mB = 1.0 mol·kg−1 1.023897 135.53 0.05231 1.020011 1.024897 135.56 0.07019 1.020990 1.027080 135.62 0.10960 1.023132 1.027232 135.63 0.11238 1.023281 1.028857 135.67 0.14207 1.024875 mB = 2.0 mol·kg−1 1.044122 136.80 0.05514 1.039124 1.045283 136.86 0.07719 1.040259 1.046774 136.93 0.10578 1.041716 1.047116 136.95 0.11240 1.042051 1.048677 137.03 0.14276 1.043576 mB = 3.0 mol·kg−1 1.060400 137.26 0.05270 1.054240 1.061624 137.39 0.07698 1.055445 1.062353 137.46 0.09158 1.056164 1.063472 137.57 0.11420 1.057269 1.064487 137.68 0.13497 1.058275 Methyl α-D-Xylopyranoside mB = 0.5 mol·kg−1 1.011928 115.79 0.05196 1.008551 1.013481 115.86 0.08516 1.010075 1.014186 115.88 0.10032 1.010765 1.015766 115.94 0.13458 1.012314 1.016720 115.98 0.15547 1.013250 mB = 1.0 mol·kg−1 1.023275 116.35 0.05076 1.019401 1.024643 116.41 0.08086 1.020740 1.025532 116.44 0.10057 1.021608 1.027943 116.53 0.15463 1.023964 1.028834 116.56 0.17482 1.024833 1.029657 116.59 0.19360 1.025636 mB = 2.0 mol·kg−1 1.043366 117.89 0.05116 1.038380 1.043857 117.92 0.06274 1.038858 1.044588 117.97 0.08012 1.039571 1.045251 118.01 0.09596 1.040215 1.045421 118.02 0.10002 1.040379 mB = 3.0 mol·kg−1 1.059890 118.73 0.05430 1.053737 1.060794 118.77 0.07690 1.054623 1.061688 118.82 0.09946 1.055502 1.062338 118.85 0.11597 1.056142 1.063028 118.88 0.13358 1.056818

2446

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mA

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

mol·kg−1

kg·m−3

m3·mol−1

1.008423 1.008965 1.009687 1.011071 1.012739

118.22 118.26 118.30 118.37 118.44

0.05070 0.06284 0.07906 0.11040 0.14857

1.004290 1.004817 1.005520 1.006868 1.008494

119.91 119.92 119.93 119.95 119.98

1.019385 1.020378 1.021427 1.021968 1.023347

118.94 119.00 119.06 119.09 119.16

0.05207 0.07514 0.09970 0.11245 0.14520

1.014595 1.015553 1.016564 1.017086 1.018414

120.78 120.85 120.91 120.94 121.03

1.038502 1.039198 1.039844 1.040327 1.040843

119.89 119.97 120.04 120.09 120.15

0.05504 0.07230 0.08842 0.10054 0.11360

1.033491 1.034158 1.034775 1.035235 1.035727

121.91 121.99 122.07 122.14 122.21

1.053706 1.054425 1.055454 1.055979 1.056753

120.27 120.33 120.41 120.45 120.51

0.05404 0.07260 0.09941 0.11318 0.13366

1.049495 1.050181 1.051162 1.051662 1.052400

122.27 122.32 122.40 122.44 122.50

0.05070 0.06284 0.07906 0.11040 0.14857

1.014467 1.015040 1.015800 1.017256 1.019006

115.36 115.40 115.45 115.56 115.69

0.05070 0.06284 0.07906 0.11040 0.14857

1.011826 1.012387 1.013133 1.014566 1.016296

0.05207 0.07514 0.09970 0.11245 0.14520

1.026167 1.027217 1.028323 1.028894 1.030346

115.90 116.01 116.13 116.17 116.30

0.05207 0.07514 0.09970 0.11245 0.14520

1.023292 1.024323 1.025412 1.025974 1.027408

0.05504 0.07230 0.08842 0.10054 0.11360

1.047523 1.048271 1.048963 1.049480 1.050034

116.43 116.52 116.60 116.66 116.73

0.05504 0.07230 0.08842 0.10054 0.11360

1.043527 1.044252 1.044925 1.045427 1.045967

0.05404 0.07260 0.09941 0.11318 0.13366

1.064959 1.065731 1.066834 1.067398 1.068228

116.79 116.85 116.96 117.00 117.07

0.05404 0.07260 0.09941 0.11318 0.13366

1.059895 1.060641 1.061704 1.062244 1.063044

Methyl β-D-Xylopyranoside mB = 0.5 mol·kg−1 116.61 0.05070 116.62 0.06284 116.64 0.07906 116.67 0.11040 116.70 0.14857 mB = 1.0 mol·kg−1 117.15 0.05207 117.19 0.07514 117.23 0.09970 117.25 0.11245 117.30 0.14520 mB = 2.0 mol·kg−1 117.97 0.05504 118.05 0.07230 118.11 0.08842 118.16 0.10054 118.20 0.11360 mB = 3.0 mol·kg−1 118.47 0.05404 118.53 0.07260 118.65 0.09941 118.72 0.11318 118.79 0.13366

mA is the molality of saccharide in water or water + LiCl. bmB is the molality of LiCl in water. Standard uncertainties u are u(ρ) = 2.67·10−3 kg·m−3, u(m) = 1.08·10−6 mol·kg−1, u(T) = 0.01 K, and the combined uncertainty Uc is Uc(V2,ϕ) = (0.16 to 0.06)·10−6 m3·mol−1 (level of confidence = 0.95, k ≈ 2) for the low (≤0.04 mol·kg−1) and high concentration range of the saccharides. a

groups.27 Among the pentoses and hexoses, Ara (1a2e3e4a) and Gal (1e2e3e4a6e) containing axial(a) −OH(4) and equatorial(e) −OH(2) groups have higher ΔtV2o values, as these exhibit large disturbing effects on the water structure.7,27 These do not fit well into the structure of water; therefore, dehydration contributes more positive values to ΔtV2o in these cases. Fru (1e2a3e4e5a) has lower ΔtV2o values than aldohexoses, probably due to the exocyclic −CHOH moiety situated at the anomeric center, instead at the 5-position. The different nature of the keto (−CO) group and steric strain of furanose form may also be responsible for their lower ΔtV2o values. On average, the methyl hexopyranosides disturb more water molecules than the methyl pentopyranosides. Therefore, Me α-Glu has higher ΔtV2o values than Me α-Xyl and Me βXyl. Further, the low values of methyl glycosides than their respective parent saccharides may be due to the additional methoxy (−OCH3) group that introduces a hydrophobic hydration, hence manifesting significantly weaker hydration of derivatives in comparison to saccharides.27 The differences of transfer volumes among the Me α-Xyl and Me β-Xyl may be assigned to different types of linkage. Among the disaccharides, Lac consisting of Gal + Glc has the most, Suc consisting of Glc + Fru has the least, and Cel and Mal both consisting of Glc + Glc subunits have the moderate, disturbed hydration layers.23 As Lac does not fit well into the structure of water, therefore, dehydration contributes more positive values to ΔtV2o than others. The volumetric results can be explained by taking into consideration the effects of solute and cosolute on the tetrahedral structure of water and interactions between them.

Figure 1. Plot of density, ρ, vs molality, mA, for (+)-D-mannose in LiCl(aq) {mB = 0.5 mol·kg−1} solutions at (288.15, 298.15, 308.15, and 318.15) K.

factor is the position of −OH(4) group in conjunction with relative position of −OH(2) and the derivatization of −OH 2447

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Table 3. Infinite-Dilution Standard Partial Molar Volumes, V2o of Saccharides and Methyl Glycosides in Water and in LiCl(aq) Solutions over the Temperature Range (288.15 to 318.15) Ka V2o·106

mBb mol·kg

−1

T/K =

V2o·106

−1

m3·mol−1

m ·mol 3

288.15

0.0d 0.5 1.0 2.0 3.0

95.10 94.99 95.55 97.16 97.64

(2.82)c (0.48) (1.49) (7.99) (3.03)

0.0 0.5 1.0 2.0 3.0

94.61 94.51 95.97 97.59 98.34

(3.80) (1.04) (2.11) (2.34) (1.13)

0.0 0.5 1.0 2.0 3.0

111.05 111.73 112.19 113.94 116.26

(5.30) (3.17) (1.74) (0.69) (0.63)

0.0 0.5 1.0 2.0 3.0

110.18 111.20 112.28 114.68 116.13

(4.51) (1.35) (4.50) (3.72) (2.66)

0.0 0.5 1.0 2.0 3.0

210.17 211.57 212.52 216.52 219.16

(7.53) (2.93) (4.39) (2.96) (0.81)

0.0 0.5 1.0 2.0 3.0

226.55 228.31 232.36 237.79 238.18

(1.84) (1.68) (2.42) (1.46) (2.75)

0.0 0.5 1.0 2.0 3.0

242.15 248.46 250.49 254.45 256.13

(6.15) (2.05) (4.25) (4.56) (2.89)

0.0 0.5 1.0 2.0 3.0

131.96 132.65 134.11 135.16 135.48

(6.06) (3.18) (2.11) (2.61) (2.63)

0.0 0.5 1.0 2.0 3.0

116.18 115.19 115.69 116.15 116.60

(4.51) (3.38) (4.29) (5.09) (3.57)

298.15

308.15

(+)-D-Xylose (0.74) 96.20 (2.44) (1.79) 96.19 (2.15) (7.48) 97.01 (8.50) (3.23) 98.77 (2.34) (3.28) 99.49 (1.76) (−)-D-Ribose 95.09 (11.70) 96.62 (7.55) 95.08 (4.27) 96.57 (3.11) 96.77 (1.87) 98.41 (4.27) 98.40 (3.54) 100.18 (0.62) 99.70 (1.50) 101.43 (2.16) (+)-D-Mannose 111.67 (1.98) 112.30 (3.85) 112.44 (5.09) 113.11 (2.69) 113.10 (1.70) 113.97 (0.67) 114.95 (0.99) 115.96 (0.69) 117.35 (4.67) 118.43 (4.35) (−)-D-Fructose 111.09(11.28 112.12 (3.48) 112.35 (2.03) 113.40 (2.04) 113.42 (4.82) 114.61 (3.47) 115.96 (3.77) 117.13 (2.24) 117.47 (3.24) 118.66 (1.05) D-(+)-Cellobiose 211.31 (6.33) 212.42 (1.24) 212.80 (2.74) 214.00 (6.26) 213.79 (2.36) 215.15 (3.00) 218.04 (4.43) 220.73 (1.84) 220.73 (2.11) 223.71 (2.11) (+)-Maltose Monohydrate 228.12 (1.22) 229.73 (1.57) 230.04 (3.46) 232.09 (2.99) 234.16 (5.22) 236.33 (6.37) 239.69 (1.89) 241.99 (1.17) 240.20 (3.15) 242.61 (3.69) (+)-Trehalose Dihydrate 243.65 (3.27) 245.20 (2.69) 250.33 (2.34) 252.39 (2.43) 252.49 (3.48) 254.66 (2.74) 256.76 (1.14) 259.04 (5.73) 258.42 (1.83) 260.86 (2.89) (+)-Methyl α-D-Glucopyranoside 133.16 (5.15) 134.39 (14.69) 133.91 (1.19) 135.42 (4.93) 135.45 (1.57) 136.91 (0.97) 136.66 (2.61) 138.13 (2.99) 137.00 (5.06) 138.49 (3.17) Methyl β-D-Xylopyranoside 117.45 (5.34) 119.11 (8.26) 116.56 (0.93) 118.12 (2.21) 117.06 (1.61) 118.82 (2.36) 117.76 (3.94) 119.65 (4.41) 118.24 (4.15) 120.11 (3.00)

95.67 95.62 96.45 97.85 98.63

318.15

288.15

96.87 (1.85) 97.04 (1.50) 97.92 (1.85) 99.59 (3.34) 100.59 (2.62)

92.69 92.56 93.28 94.85 95.33

(7.42) (0.98) (5.18) (1.66) (4.95)

97.09 (1.30) 97.19 (6.95) 99.45 (5.06) 101.23 (0.94) 102.95 (0.82)

111.08 112.17 114.29 116.22 117.16

112.94 113.91 114.96 116.99 119.54

(1.93) (1.95) (1.62) (2.78) (3.43)

109.51(12.29) 110.80 (2.07) 112.67 (4.60) 114.72 (2.33) 116.29 (2.30)

112.94 114.31 115.70 118.21 119.75

(1.69) (2.31) (4.10) (2.06) (1.23)

212.98 213.99 215.32 218.62 221.72

(8.35) (1.58) (4.90) (2.73) (1.56)

213.52 215.13 216.30 222.53 225.33

(1.40) (6.26) (3.70) (3.31) (2.35)

210.87 212.59 215.23 218.97 221.67

(8.80) (1.10) (5.10) (0.64) (3.52)

231.31 234.24 238.63 244.49 245.19

(1.62) (3.55) (3.43) (3.71) (2.93)

225.89 230.88 234.09 238.15 239.85

(0.61) (0.92) (4.71) (3.02) (0.70)

246.79 254.60 256.97 261.47 263.35

(1.04) (4.74) (0.77) (3.27) (1.23)

395.48 400.87 402.93 407.04 409.72

(1.74) (2.22) (1.22) (2.84) (2.20)

135.67 137.03 138.65 139.96 140.37

(6.40) (2.42) (2.99) (0.58) (1.93)

116.21 114.69 115.21 116.69 117.46

(14.68) (1.24) (1.10) (3.57) (2.63)

120.74 119.87 120.66 121.62 122.11

(6.70) (0.70) (2.64) (5.14) (2.90)

(1.21) (3.74) (6.27) (6.55) (5.98)

298.15

308.15

(−)-D-Arabinose (2.06) 94.32 (0.40) (2.83) 94.29 (3.02) (4.01) 95.12 (4.42) (1.99) 96.97 (2.91) (2.29) 97.67 (2.57) (+)-D-Glucose 111.87 (0.09) 112.81 (0.72) 113.09 (2.47) 114.01 (3.50) 115.36 (5.72) 116.41 (5.52) 117.54 (4.10) 118.72 (3.25) 118.51 (3.16) 119.79 (2.15) (+)-D-Galactose 110.30 (5.58) 110.84 (2.64) 111.66 (3.35) 112.59 (4.41) 113.63 (2.41) 114.67 (1.54) 115.74 (2.36) 116.81 (2.32) 117.44 (1.35) 118.62 (1.80) (+)-Melibiose 214.18 (4.19) 215.50 (3.02) 215.27 (5.14) 216.64 (2.29) 216.68 (1.90) 218.27 (3.15) 220.12 (4.21) 221.67 (2.43) 223.24 (3.00) 224.81 (1.96) Sucrose 211.91 (3.18) 212.70 (1.03) 213.73 (1.60) 214.95 (0.96) 216.40 (1.89) 217.70 (2.02) 220.44 (6.56) 221.89 (1.23) 223.21 (2.48) 225.03 (3.45) (+)-Lactose Monohydrate 227.01 (2.57) 228.34 (2.53) 232.14 (2.51) 233.51 (2.46) 235.56 (4.96) 237.02 (3.72) 239.77 (0.69) 241.47 (2.67) 241.52 (2.65) 243.42 (3.25) (+)-Raffinose Pentahydrate 397.09 (3.54) 398.96 (1.53) 403.35 (1.42) 405.73 (1.29) 405.47 (3.56) 407.85 (2.12) 409.64 (2.75) 411.97 (4.80) 412.28 (0.70) 414.68 (2.36) Methyl α-D-Xylopyranoside 116.89 (1.04) 117.90 (0.75) 115.70 (1.80) 116.75 (2.22) 116.27 (1.66) 117.44 (2.10) 117.75 (2.68) 119.01 (3.89) 118.62 (1.93) 119.86 (1.36) 93.41 93.38 94.22 95.79 96.50

318.15 95.14 95.31 96.23 98.03 98.92

(1.32) (4.57) (4.29) (5.55) (2.66)

113.57 114.90 117.44 119.97 121.03

(1.45) (2.08) (5.05) (1.17) (0.77)

111.83 113.59 115.80 117.98 119.83

(13.65) (4.30) (1.15) (0.69) (0.76)

216.75 218.10 219.79 223.30 226.46

(2.60) (5.35) (0.95) (4.25) (0.97)

213.81 216.28 219.14 223.55 226.75

(2.41) (3.71) (4.53) (4.39) (2.49)

229.60 235.01 238.62 243.27 245.09

(1.04) (3.50) (3.22) (3.81) (3.95)

400.20 407.98 410.21 414.42 417.10

(5.58) (1.17) (1.49) (1.02) (6.63)

119.03 118.12 118.87 120.47 121.39

(1.87) (1.28) (1.13) (4.26) (0.91)

Standard deviations for fitting of eq 2 lie in the range of ± (0.01 to 0.05)·106 m3·mol−1. bmB is the molality of LiCl in water. cParentheses contain SV (m3·kg·mol−2) values. dReference 22. a

2448

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Figure 2. Standard partial molar volumes of transfer, ΔtVo2, vs molalities, mB, of LiCl of (a) (−)-D-arabinose, (b) (−)-D-fructose, (c) (+)-maltose monohydrate, (d) (+)-lactose monohydrate, (e) (+)-raffinose pentahydrate, (f) methyl β-D-xylopyranoside, and (g) (+)-methyl α-D-glucopyranoside at ⧫, 288.15 K; ■, 298.15 K; ▲, 308.15 K; ×, 318.15 K.

to “electrostriction” and decrease in hydrogen bonded network of water molecules in the solvation sphere, whereas the overlap of two hydrophobic hydration cospheres lead to negative volume change. In the currently studied ternary system, the

In light of the cosphere overlap model28 of Gurney, thermodynamic properties change due to overlap of hydration cospheres of molecules. The overlap of two ionic or hydrophilic-ionic species lead to positive volume change due 2449

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

order to make distinction between structure-making or -breaking ability of solutes, Hepler33 used a mathematical relation: (∂CoP,2/∂P)T = −T(∂2V2o/∂T2)P, which correlates the change in heat capacity with pressure to the second-order derivative of volume w.r.t. temperature. In the present study, the positive (∂2V2o/∂T2)P values obtained in most of the cases (Table S1) also supports the view that the saccharides and methyl glycosides behave as “structure makers” in the presence of lithium chloride solutions. Viscosity B-coefficients were determined by fitting the relative viscosities, ηr (ηr = η/ηo, where ηo and η are the viscosities of solvent and solution, respectively), data to the Jones−Dole equation:

hydrophilic−ionic interactions among the hydrophilic sites (−OH, −CO, and −O−) of the saccharides/methyl glycosides and the ions (Li+/Cl−) of the cosolute contribute positively, whereas the hydrophobic−ionic interactions among the hydrophobic alkyl groups (R = CH, CH2, CH3) of the solute and ions of the cosolute contribute negative volume change. The significant positive ΔtV2o obtained for most of the systems studied suggest that the hydrophilic−ionic interactions predominate and get strengthened with an increase in concentration of LiCl. In cases of pentoses and methyl glycosides (Me α-xyl and Me β-xyl), the negative contributions to ΔtV2o values (at low concentrations) from hydrophobic− ionic interactions decrease with the increase in temperature and concentration of cosolute. Using the Shahidi’s equation,29 the positive ΔtV2o values can be attributed to the decrease in the volume of shrinkage, Vshrinkage in LiCl(aq) solutions, and the reverse is true for the negative ΔtV2o values. The comparison of ΔtV2o values for saccharides and methyl glycosides studied in various cosolutes22,23,25 generally follows the order: MgCl2 > KCl > LiCl > NaCl. These results indicate that the interactions of solutes with divalent cations are stronger than with monovalent cations. Due to the high charge density as well as the ionic strength, the Mg2+ ions undergo more hydration than Li+, Na+, and K+ ions, thus resulting in large ΔtV2o values. In addition to the conformational and stereochemical aspects of the solutes, the size of metal ion also plays a crucial role in effective complexation with solutes. Frank30 explained that cations smaller than potassium ions {e.g. Li+ (crystal/ionic radius = 0.60 Å) and Na+ (ionic radius = 0.95 Å)} or more highly charged than potassium ions {e.g. Mg2+ (ionic radius = 0.65 Å) are net “structure formers”. Thus, cosolutes such as lithium, sodium, and magnesium chlorides will behave as net “structure makers”, and the cosolute KCl on the other hand, due to large-sized potassium ions (ionic radius = 1.33 Å), behaves as slightly “structure breaker”. The structure of water changes, when ions are introduced in it. Therefore, the concept of the hydrated ion as a species is very useful.16 It has been reported that Li+ ion is more heavily hydrated (radius = 3.66 Å) than Na+ (radius = 2.80 Å) and K+ (radius = 1.87 Å) ions of the same group and Mg2+ (radius = 2.08 Å) ion of the Group II. The effective radii of hydrated ions in solution are appreciably greater than their crystal radii, and the order is reversed for monovalent ions. The X-ray31 and Raman32 studies indicate that Cl− ions (common in all the cosolutes) break down the water structure. Therefore, from above observations, it may be concluded that both the interactions between saccharides/methyl glycosides (solutes) and ions of cosolute and their dehydration make positive contributions to ΔtV2o values. The expansion coefficients (∂V2o/∂T)P and second-order derivatives (∂2V2o/∂T2)P were determined by fitting the V2o results into the equation: V2 o = νo + ν1T + ν2T 2

ηr = 1 + Bc

(5)

where c is the molarity (calculated from molality and density data) of the solution in mol·dm−3. The viscosities of saccharides and methyl glycosides in water and in LiCl(aq) solutions are given in the Supporting Information (Table S2) as a function of molalities of solute and cosolute at (288.15 to 318.15) K. The viscosities, η, of the solutions increase {3-D plot (Figure 3) of η

Figure 3. Plot of viscosity, η, vs molality, mA, for (+)-D-mannose in LiCl(aq){mB = 0.5 mol·kg−1} solutions at (288.15, 298.15, 308.15, and 318.15) K.

vs mA for (+)-D-mannose in mB = 0.5 mol·kg−1 LiCl solutions} with the concentration of cosolute (LiCl) but decrease with the rise of temperature. The strong electric fields exerted by the ions can polarize water molecules, producing additional order beyond the first hydration layer. This interaction increases the solution viscosity. The positive and negative values of the Bcoefficients of an ion in water represent the structure-making and -breaking abilities, respectively.34 The B-coefficients are positive (Table 4) for the studied systems and increase with complexity of solutes, i.e., from mono- to di- to trisaccharides. Therefore, the increase in size of solute molecules results in larger B-coefficients. The B-coefficients decrease with the rise of temperature, suggesting that hydration effects in solution are strongly sensitive to temperature. The B-coefficients at (288.15, 298.15, 308.15, and 318.15) K, respectively, for the Li+ ions in water35 are (0.152, 0.146, 0.135, and 0.129) dm3·mol−1, which

(4)

where νo, ν1, and ν2 are constants. The (∂V2o/∂T)P values of solutes studied in LiCl(aq) solutions are positive (Table S1 given as the Supporting Information) and increase with temperature, except for Fru, Glu, Cel, and Raf, where a decrease in values has been observed. The (∂V2o/∂T)P values obtained in the presence of various cosolutes22,23 follow the order: MgCl2 > KCl > LiCl, which again reflects prominent differences in the nature of hydration characteristics of studied solutes which are strongly sensitive to the nature of the cosolute as well as temperature. In 2450

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Table 4. Viscosity B-Coefficients of Saccharides and Methyl Glycosides in Water and in LiCl(aq) Solutions over the Temperature Range (288.15 to 318.15) Ka B·103/m3·mol−1 saccharide

water

c

mBb

= 0.5

(−)-D-arabinose (−)-D-ribose (+)-D-xylose (−)-D-fructose (+)-D-galactose (+)-D-glucose (+)-D-mannose (+)-cellobiose (+)-melibiose sucrose (+)-lactose monohydrate (+)-maltose monohydrate (+)-trehalose dihydrate (+)-raffinose pentahydrate (+)-methylα-D-glucopyranoside methyl α-D-xylopyranoside methyl β-D-xylopyranoside

0.314 0.332 0.370 0.482 0.489 0.498 0.508 0.912 0.920 1.035 1.090 1.128 1.329 1.543 0.496 0.330 0.336

0.328 0.339 0.379 0.509 0.523 0.547 0.547 0.965 0.972 1.176 1.196 1.239 1.463 1.693 0.506 0.333 0.341

(−)-D-arabinose (−)-D-ribose (+)-D-xylose (−)-D-fructose (+)-D-galactose (+)-D-glucose (+)-D-mannose (+)-cellobiose (+)-melibiose sucrose (+)-lactose monohydrate (+)-maltose monohydrate (+)-trehalose dihydrate (+)-raffinose pentahydrate (+)-methylα-D-glucopyranoside methyl α-D-xylopyranoside methyl β-D-xylopyranoside

0.283 0.292 0.324 0.420 0.424 0.433 0.444 0.845 0.852 0.960 1.025 1.051 1.234 1.428 0.443 0.285 0.289

0.286 0.297 0.327 0.427 0.433 0.452 0.461 0.872 0.873 1.067 1.101 1.146 1.336 1.550 0.444 0.289 0.290

1.0 T = 288.15 K 0.334 0.371 0.413 0.521 0.550 0.587 0.582 1.016 1.012 1.195 1.213 1.258 1.481 1.726 0.555 0.346 0.350 T = 308.15 K 0.290 0.308 0.354 0.437 0.461 0.487 0.493 0.903 0.905 1.081 1.112 1.153 1.346 1.579 0.468 0.292 0.298

2.0

3.0

water

mBb = 0.5

0.366 0.399 0.446 0.586 0.604 0.639 0.633 1.066 1.065 1.244 1.270 1.318 1.531 1.788 0.619 0.407 0.390

0.413 0.442 0.497 0.639 0.650 0.692 0.683 1.119 1.125 1.299 1.314 1.377 1.586 1.933 0.642 0.445 0.436

0.311 0.319 0.336 0.451 0.455 0.461 0.471 0.878 0.885 0.996 1.048 1.086 1.277 1.479 0.465 0.307 0.314

0.316 0.324 0.343 0.467 0.475 0.499 0.499 0.920 0.926 1.113 1.142 1.189 1.384 1.626 0.469 0.308 0.317

0.309 0.339 0.386 0.495 0.505 0.529 0.536 0.946 0.952 1.121 1.159 1.199 1.387 1.619 0.535 0.337 0.325

0.347 0.363 0.424 0.546 0.551 0.573 0.583 0.994 0.995 1.183 1.215 1.252 1.444 1.731 0.552 0.371 0.361

0.273 0.280 0.309 0.381 0.388 0.409 0.415 0.807 0.813 0.916 0.980 1.005 1.189 1.365 0.412 0.259 0.266

0.272 0.283 0.311 0.384 0.393 0.416 0.421 0.821 0.827 1.015 1.042 1.089 1.286 1.465 0.407 0.260 0.264

1.0 T = 298.15 K 0.323 0.343 0.372 0.479 0.507 0.532 0.533 0.959 0.968 1.126 1.158 1.199 1.400 1.650 0.508 0.316 0.324 T = 318.15 K 0.277 0.291 0.333 0.393 0.409 0.449 0.450 0.852 0.848 1.020 1.053 1.095 1.291 1.498 0.431 0.264 0.272

2.0

3.0

0.351 0.376 0.406 0.540 0.554 0.582 0.577 1.009 1.015 1.172 1.210 1.253 1.450 1.693 0.572 0.371 0.357

0.394 0.408 0.453 0.598 0.606 0.629 0.634 1.059 1.060 1.230 1.260 1.309 1.505 1.814 0.593 0.408 0.396

0.287 0.308 0.365 0.446 0.460 0.494 0.491 0.897 0.901 1.055 1.094 1.136 1.326 1.526 0.491 0.300 0.291

0.324 0.337 0.404 0.487 0.501 0.539 0.538 0.943 0.946 1.113 1.152 1.186 1.379 1.646 0.511 0.331 0.325

Standard deviations for fitting in eq 5 lie in the range of (0.001 to 0.003)·103 m3·mol−1. bmB (mol·kg−1) is the molality of LiCl in water. cReference 24. a

are fairly large in comparison to B-coefficients of K+ ions (−0.022, −0.009, 0.004, and 0.014) dm3·mol−1 and smaller than B-coefficients of Mg2+ ions (0.411, 0.385, and 0.362) dm3· mol−1, while those for Cl− ions (−0.022, −0.005, 0.004, and 0.014) dm3·mol−1 are same in three cosolutes. The Bcoefficients of Li+(aq) and Mg2+(aq) ions decrease, whereas for K+(aq) ions increase with temperature. The B-coefficients for solutes in LiCl(aq) and other metal chlorides are larger than those in water, indicating that the presence of cosolute strengthens the structure of the solution. The dB/dT is known to be a better criterion for determining the structuremaking or breaking nature of any solute. From the temperature dependence of B-coefficients, the dB/dT values have been calculated. The negative magnitude of dB/dT coefficients (Table S3) increase with complexity of solutes and concentration of cosolute, which again suggests an increase in structural order36 of the solution due to more strengthening of hydrophilic-ionic interactions.

It is evident from plots of viscosity B-coefficients of transfer, ΔtB vs mB (representative Figure 4) that, for pentoses, generally there is a sharp increase in ΔtB values after mB ≈ 0.5 mol·kg−1 (Figure 4a) and the ΔtB values decrease with temperature. For hexoses, a sharp increase in ΔtB values (Figure 4b) has been observed at all concentrations. Among the disaccharides, (+)-cellobiose (Figure 4c) and (+)-melibiose show an almost linear increase in ΔtB values over the whole concentration range of LiCl studied. However, in the remaining disaccharides, the ΔtB values show a sharp increase up to mB ≈ 0.5 mol·kg−1; then the values remain almost same up to mB ≈ 1.0 mol·kg−1, and the values sharply increase afterward (Figure 4d). The (+)-raffinose pentahydrate (trisaccharide) shows a more or less similar behavior to that of disaccharides (Figure 4e). The ΔtB values increase systematically with the complexity of the solutes in the order: Ara < Rib < Xyl < Fru < Gal < Man < Glc < Mel < Cel < Lac < Mal < Tre < Suc < Raf. The (+)-methyl α-Dglucopyranoside (Figure 4f) shows a sharp increase in ΔtB values after mB ≈ 0.5 mol·kg−1 at all temperatures. However, in 2451

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Figure 4. Viscosity B-coefficients of transfer, ΔtB, vs molalities, mB, of LiCl of (a) (+)-D-xylose, (b) (+)-D-galactose, (c) (+)-cellobiose, (d) (+)-maltose monohydrate, (e) (+)-raffinose pentahydrate, (f) (+)-methyl α-D-glucopyranoside, and (g) methyl α-D-xylopyranoside at ⧫, 288.15 K; ■, 298.15 K; ▲, 308.15 K; ×, 318.15 K.

methyl α-D-xylo- and methyl β-D-xylo-pyranosides (Figure 4g), a sharp increase in ΔtB values takes place after mB ≈ 1.0 mol· kg−1. It may be noted that the ΔtB and ΔtVo2 values are lower

in the cases of methyl glycosides than their parent saccharides, which may be due to presence of the additional methoxy, −OCH3 group. Among the pentoses and hexoses, Xyl 2452

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Na+, and K+) do not change the taste quality of solutes, but with increase in the charge of cation (Mg2+) the taste quality of solutes deviates from sweet taste. Our previous studies also suggested that with increase in size of anion, the taste quality of solutes deviates from sweet taste. The borate anion19 (B4O72−) makes some monosaccharides bitter, and phosphate anions20 (H2PO4−) make few derivatives bitter in taste, whereas chloride22,25 (Cl−) and acetate21 (CH3COO−) anions do not have any appreciable effect on the taste of the saccharides.

(1e2e3e4e), Rib(1e2e3a4e), and Glu(1e2e3e4e6e) each containing equatorial (e) −OH(4) and equatorial (e) −OH(2) groups interact strongly with cosolute, which offer greater resistance to the movement of solute molecules resulting higher ΔtB values.7,24 Interaction coefficients have been determined from transfer parameters by using the McMillan−Mayer theory of solutions37,38 as Δt Y o 2(Δt V o 2 or Δt B) = 2YABmB + 3YABBmB 2

(6)

where A and B denote the solute and cosolute, respectively. In most cases, the pair interaction coefficients, YAB (VAB or ηAB), are positive, and their magnitudes increase with complexity of solutes, whereas the triplet interaction coefficients, YABB (VABB or ηABB), have negative values, and their magnitudes decrease with the complexity of the solutes. Further the volumetric interaction coefficients increase, whereas viscometric interaction coefficients decrease with temperature in all cases (Tables S4−S5). As the magnitudes of triplet interaction coefficients are small, hence the pairwise interactions between saccharides/methyl glycosides and LiCl are most favorable. The relative weightings of the coefficients may be judged from their contributions to transfer volumes. Overall, the contributions of pair interaction coefficients for each solute are positive and increase linearly, whereas the triplet, VABB, coefficients are negative and vary nonlinearly (plots not given). This suggests that interactions occur due to the overlap of hydration spheres of the solutes and Li+/Cl− ions. Among the disaccharides, Tre has highest VAB values indicating that it interacts strongly with cosolute ions. Tre is also well-known39 for its peculiar antidesiccant properties in plants. Mal having more flexible α 1 → 4 glycosidic bond has higher VAB values than Cel having β 1 → 4 linkage. As the folding of Mal is more important due to hydrophobic interactions, so it interacts stronger with cosolute than Cel. These observations are clear manifestations of various stereochemical effects. The magnitudes of pair interaction coefficients for systems studied22,23,25 in the presence of various cosolutes follow the order: MgCl2 > NaCl > KCl > LiCl, which indicates that the 2:1 electrolyte influences the values of the volumetric and viscometric properties to a greater extent than a 1:1 electrolyte. Therefore, saccharides/methyl glycosides have stronger interactions with divalent cations (Mg2+) than univalent (Li+/K+/ Na+) cations. The taste behavior11,40 of various solutes can be analyzed on the basis of apparent massic volumes, vϕ, calculated as vϕ = V2,ϕ/M. The vϕ values (data not given) of all of the studied mono-, di-, and trisaccharides in water lie in the clean sweet taste quality range (0.61 to 0.67)·10−3 m3·kg−1. Among the derivatives, the vϕ values of Me Glu lie in the sweet (0.67 to 0.70)·10−3 m3·kg−1 range, but the values for Me α-Xyl and Me β-Xyl lie in the bitter (0.71 to 0.74)·10−3 m3 kg−1 taste range. In the presence of LiCl(aq) solutions, the values for all of the saccharides lie in the sweet (0.62 to 0.70)·10−3 m3·kg−1 taste range. However, the values of Me Glu shift to sweet−bitter at (0.68 to 0.72)·10−3 m3·kg−1, and of Me α-Xyl and Me β-Xyl are still in the bitter (0.70 to 0.75)·10−3 m3·kg−1 taste range. Similarly, we have also observed that in NaCl (aq) , 25 NaOOCCH3(aq),21 and KCl(aq)22 solutions, the vϕ values of the saccharides fall in the sweet taste range. In MgCl2(aq),23 the vϕ values of disaccharides remain in sweet, those of mono- and trisaccharides shift to sweet−bitter, and those of derivatives shift to bitter taste. This suggests that monovalent cations (Li+,

4. CONCLUSION The Vo2 and viscosity B-coefficients are positive for the studied systems and increase with complexity of solutes, i.e., from mono- to di- to trisaccharides. The magnitudes of these parameters also increase with concentration of cosolute. These along with dB/dT and (∂2V2o/∂T2)P values suggest that there is an overall structural increase of the solution in the presence of lithium chloride. The ΔtV2o values are positive for most solutes (except in few cases) and increase with the rise of temperature. However, the positive ΔtB values decrease with rise of temperature. The magnitudes of ΔtVo2 and ΔtB parameters are less in the case of methyl glycosides than their respective parent saccharides, maybe due to the hydrophobic effect of the methoxy (−OCH3) group. The comparison of the results indicate that interactions of saccharides and methyl glycosides with monovalent (Li+, Na+, K+) cations are weaker than those with divalent (Mg2+) cations. Ara and Gal containing ax −OH(4) and eq −OH(2) groups do not fit well into the structure of water; therefore, dehydration contributes more positive values to ΔtV2o than the others. Further, Tre has the highest VAB values suggesting that it interacts strongly with cosolute ions. The vϕ data indicate that monovalent ions do not change the sweet taste quality of saccharides too much; however, with an increase in the charge or size of the ion, the taste quality deviates to a large extent.



ASSOCIATED CONTENT

S Supporting Information *

Table S1, partial molar expansion coefficients, (∂V2o/∂T)P and second-order derivatives, (∂2V2o/∂T2)P, of saccharides and methyl glycosides in LiCl(aq) solutions over the temperature range (288.15 to 318.15) K; Table S2, viscosities, η, of saccharides and methyl glycosides in LiCl(aq) solutions over the temperature range (288.15 to 318.15) K; Table S3, the dB/ dT coefficients of saccharides and methyl glycosides in LiCl(aq) solutions; Table S4, pair, VAB, and triplet, VAB, interaction coefficients of saccharides and methyl glycosides in LiCl(aq) solutions over the temperature range (288.15 to 318.15) K. Table S5, pair, ηAB, and triplet, ηABB, interaction coefficients of saccharides and methyl glycosides in LiCl(aq) solutions over the temperature range (288.15 to 318.15) K. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Author

*Tel.: +91 183 2451357. Fax: +91 183 2258819/20. E-mail: [email protected] (P. K. Banipal). amanchahal.chem@ gmail.com (Amanpreet K. Hundal). chem.nehaaggarwal@ gmail.com (Neha Aggarwal). [email protected] (T. S. Banipal). 2453

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Funding

(18) Fedotova, M. V. Temperature and Density Effects on Structural Features of a Dilute Aqueous Lithium Chloride Solution at Near- and Supercritical Conditions. J. Mol. Liq. 2011, 164, 39−43. (19) Banipal, P. K.; Singh, V.; Banipal, T. S. Volumetric and Viscometric Studies on Saccharide-Disodium Tetraborate (Borax) Interactions in Aqueous Solutions. J. Chem. Eng. Data 2013, 58, 2355− 2374. (20) Banipal, P. K.; Aggarwal, N.; Banipal, T. S. Study on Interactions of Saccharides and their Derivatives with Potassium Phosphate Monobasic (1:1 Electrolyte) in Aqueous Solutions at Different Temperatures. J. Mol. Liq. 2014, 196, 291−299. (21) Banipal, P. K.; Singh, V.; Banipal, T. S. Ultrasonic Studies of Some Mono-, Di-, and Trisaccharides in Aqueous Sodium Acetate Solutions at Different Temperatures. Z. Phys. Chem. 2013, 227, 1707− 1722. (22) Banipal, P. K.; Chahal, A. K.; Banipal, T. S. Studies on Volumetric Properties of Some Saccharides in Aqueous Potassium Chloride Solutions over Temperature Range (288.15 to 318.15) K. J. Chem. Thermodyn. 2009, 41, 452−483. (23) Banipal, P. K.; Chahal nee Hundal, A. K.; Banipal, T. S. Effect of Magnesium Chloride (2:1 electrolyte) on the Aqueous Solution Behavior of Some Saccharides Over the Temperature Range of 288.15−318.15 K: a Volumetric Approach. Carbohydr. Res. 2010, 345, 2262−2271. (24) Banipal, P. K.; Chahal, A. K.; Singh, V.; Banipal, T. S. Rheological Behaviour of Some Saccharides in Aqueous Potassium Chloride Solutions over Temperature Range (288.15 to 318.15) K. J. Chem. Thermodyn. 2010, 42, 1024−1035. (25) Banipal, P. K.; Banipal, T. S.; Ahluwalia, J. C.; Lark, B. S. Partial Molar Heat Capacities and Volumes of Transfer of Some Saccharides from Water to Aqueous Sodium Chloride Solutions at T = 298.15 K. J. Chem. Thermodyn. 2002, 34, 1825−1846. (26) Kell, G. S. Density, Thermal Expansivity and Compressibility of Liquid Water from 0◦ to 150◦C: Correlations and Tables for Atmospheric Pressure and Saturation Reviewed and Expressed on 1968 Temperature Scale. J. Chem. Eng. Data 1975, 20, 97−105. (27) Galema, S. A.; Hoiland, H. Stereochemical Aspects of Hydration of Carbohydrates in Aqueous Solutions; Density and Ultrasound Measurements. J. Phys. Chem. 1991, 95, 5321−5326. (28) Gurney, R. W. Ionic Processes in Solution; McGraw Hill: New York, 1953; Vol. 3, Chapter 1, pp 1−20. (29) Shahidi, F.; Ferrell, P. G.; Edwards, J. T. Partial Molar Volumes of Organic Compounds in Water. III. Carbohydrates. J. Solution Chem. 1976, 5, 807−816. (30) Frank, H. S. Covalency in the Hydrogen Bond and the Properties of Water and Ice. Proc. R. Soc. (London) 1958, A 247, 481. (31) Brady, G. W. Structure in Ionic Solutions II. J. Chem. Phys. 1958, 28, 464−469. (32) Schultz, J. W.; Hornig, D. F. The Effect of Dissolved Alkali Halides on Raman Spectrum of Water. J. Phys. Chem. 1961, 65, 2131− 2138. (33) Hepler, L. G. Thermal Expansion and Structure in Water and Aqueous Solutions. Can. J. Chem. 1969, 47, 4613−4617. (34) Wen, W.-Y. Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes; Horne, R. A., Ed.; Wiley: New York, 1972; Chapter 15. (35) Donald, H.; Jenkins, B.; Marcus, Y. Viscosity B-Coefficients of Ions in Solution. Chem. Rev. 1995, 95, 2695−2724. (36) Tyrrell, H. J. V.; Kennerley, M. Viscosity B-coefficients between 5° and 20° for Glycolamide, Glycine, and N-Methylated Glycines in Aqueous Solution. J. Chem. Soc. (A) 1968, 2724−2728. (37) Kozak, J. J.; Knight, W.; Kauzmann, W. Solute-Solute Interactions in Aqueous Solutions. J. Chem. Phys. 1968, 68, 675−696. (38) McMillan, W. G., Jr.; Mayer, J. E. The Statistical Thermodynamics of Multicomponent Systems. J. Chem. Phys. 1945, 13, 276−305. (39) Miller, D. P.; De Pablo, J. J. Calorimetric Solution Properties of Simple Saccharides and their Significance for the Stabilization of

The authors are grateful to the Council of Scientific & Industrial Research (Scheme No.: 01/2518/11-EMR-II), New Delhi, India, for the financial support. Notes

The authors declare no competing financial interest.



REFERENCES

(1) Galema, S. A.; Howard, E.; Engberts, J. B. F. N.; Grigera, J. R. The Effect of Stereochemistry upon Carbohydrate Hydration. A Molecular Dynamic Simulation of β-D-Galactopyranose and (α, β)-Dtalopyranose. Carbohydr. Res. 1994, 265, 215−225. (2) Roy, M. N.; Dewan, R.; Roy, P. K.; Biswas, D. Apparent Molar Volumes and Viscosity B-Coefficients of Carbohydrates in Aqueous Cetrimonium Bromide Solutions at (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 2010, 55, 3617−3624. (3) Cardoso, M. V. C.; Carvalho, L. V. C.; Sabadini, E. Solubility of Carbohydrates in Heavy Water. Carbohydr. Res. 2012, 353, 57−61. (4) Kamburova, K. D.; Kirilov, P. P. Solubility and Critical Relative Humidity of the System (KH2PO4 + K2HPO4 + H2O) at 298.15 K. J. Chem. Eng. Data 2010, 55, 2225−2228. (5) Goldberg, R. N.; Tewari, Y. B. Thermodynamics of the Hydrolysis of Sucrose. J. Phys. Chem. Ref. Data 1989, 18, 809−880. (6) Goldberg, R. N.; Lang, B. E.; Coxon, B.; Decker, S. R. Saturation Molalities and Standard Molar Enthalpies of Solution of α-D-xylose(cr) in H2O(l); Standard Molar Enthalpies of Solution of 1,4-β-Dxylobiose(am), and 1,4-β-D-xylotriose(am) in H2O(l). J. Chem. Thermodyn. 2012, 52, 2−10. (7) Zhuo, K.; Liu, Q.; Wang, Y.; Ren, Q.; Wang, J. Volumetric and Viscosity Properties of Monosaccharides in Aqueous Amino Acid Solutions at 298.15 K. J. Chem. Eng. Data 2006, 51, 919−927. (8) Shekaari, H.; Kazempour, A. Density and Viscosity in Ternary DXylose + Ionic Liquid (1-Alkyl-3-Methylimidazolium Bromide) + Water Solutions at 298.15 K. J. Chem. Eng. Data 2012, 57, 3315−3320. (9) Chalikian, T. V. Ultrasonic and Densimetric Characterizations of the Hydration Properties of Polar Groups in Monosaccharides. J. Phys. Chem. B 1998, 102, 6921−6926. (10) Fucaloro, A. F.; Pu, Y.; Cha, K.; Williams, A.; Conrad, K. Partial Molar Volumes and Refractions of Aqueous Solutions of Fructose, Glucose, Mannose and Sucrose at 15.00, 20.00 and 25.00 °C. J. Solution Chem. 2007, 36, 61−80. (11) Parke, S. A.; Birch, G. G.; Dijk, R. Some Taste Molecules and their Solution Properties. Chem. Senses 1999, 24, 271−279. (12) Chenlo, F.; Moreira, R.; Pereira, G.; Vazquez, M. J. Viscosity of Binary and Ternary Aqueous Systems of NaH2PO4, Na2HPO4, Na3PO4, KH2PO4, K2HPO4, and K3PO4. J. Chem. Eng. Data 1996, 41, 906−909. (13) Amend, J. P.; Plyasunov, A. V. Carbohydrates in Thermophile Metabolism: Calculation of the Standard Molal Thermodynamic Properties of Aqueous Pentoses and Hexoses at Elevated Temperatures and Pressures. Geochim. Cosmochim. Acta 2001, 65, 3901−3917. (14) Desrosiers, N. M.; Lhermet, C.; Morel, J. P. Interactions between Cations and Sugars. Part (7)-Gibbs Energies, Enthalpies and Entropies of Association of the Trivalent Lanthanide Cations with Ribose in Water at 298.15 K. J. Chem. Soc. Faraday Trans. 1993, 89, 1223−1228. (15) Brown, B. R.; Origlia-Luster, M. L.; Niederhauser, T. L.; Woolley, E. M. Apparent Molar Volumes and Heat Capacities of Aqueous Lithium Chloride, Rubidium Chloride, and Cesium Chloride at Temperatures from (278.15 to 393.15) K at the Pressure 0.35 MPa. J. Chem. Thermodyn. 2004, 36, 331−339. (16) Hunt, J. P. Metal Ions in Aqueous Solution; W.A. Benjamin, Inc.: New York, 1965; Chapter 3, pp 19−44. (17) Safarov, J. T. Study of Thermodynamic Properties of Binary Solutions of Lithium Bromide or Lithium Chloride with Methanol. Fluid Phase Equilib. 2005, 236, 87−95. 2454

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455

Journal of Chemical & Engineering Data

Article

Biological Structure and Function. J. Phys. Chem. B 2000, 104, 8876− 8883. (40) Shamil, S.; Birch, G. G.; Mathlouthi, M.; Clifford, M. N. Apparent Molar Volumes and Tastes of Molecules with More Than One Sapophore. Chem. Senses 1987, 12, 397−409.

2455

dx.doi.org/10.1021/je5001523 | J. Chem. Eng. Data 2014, 59, 2437−2455