J. Chem. Eng. Data 1989, 34, 137-139
Scheme I 8
I
2 R
I
M
Na, 140’C Pantanol
4
a
Na, 140’C Pantanol
R-X
4,k Indeed, they lead back to the 9-0~0homologues within a few weeks even if they are bottled in brown flasks, safe from air. This has been proved by TLC.
Experlmental Sectlon Alkylation of #( IOH)-AcrMlhon.B 2 : General procedures. A stirred mixture of 9( 1OHjgcridinones 2 (10 mmol), alkylating agents (15 mmol), triethylbenzylammonium chloride (0.3 mmol), aqueous 50% sodium hydroxide (10 mL), and butanone (20 mL) is refluxed for about 2 h at 80 OC. The reaction mixture is poured into hot water and left overnight at room temperature. The precipitated solid is collected, washed with water, and dried before recrystallization from ethanol or ethanol-water mixture. Akylation ot 28. A stirred mixture of 9( 1OH)acridinones 2 (15 mmol), alkylating agents (37.5 mmol), triethylbenzylammonium chloride (7.5 mmol), aqueous 50% potassium hydroxide (75 mL), and toluene (150 mL) is refluxed for 5 days. The toluene layer is separated, washed three times with water (50 mL each time), dried with sodium sulfate, and evaporated in vacuo. The residual oil is recrystallized from light petroleum and provides a microcrystalline yellow powder.
137
Preparation of 9,IO-Dlhydroacrldlnes 3 : General Proce dure. 9( 10H)-Acridinone (10 mmol) is refluxed with pentanol (150 mL) and treated with sodium (7.5 g) added in small amounts until the sodium has dissolved and the greenish fluorescence has vanished. After cooling and cautiously diluting wlth water (150 mL), pentanol was distllled off in a current of steam. The residue of 9,lOdihydroacridine was filtered off, washed with water, dried, and recrystallized from ethanol. 77th -Layer Chromatography. Thin-layer chromatography was carried out on silica gel plates (20 X 20 cm). Experiments were performed in Desaga tanks, with the following system: chloroform: ethanol: dioxane (93-5-2 v/v). Plates were examined under an ultraviolet lamp (366 nm) yielding fluorescent spots (R,values of 2 are about 0.60: R,values of 3 are about 0.78). Reglrtry No. 2, 578-95-0 2a, 719-54-0; 2b, 60536-17-6; 2c, 60536223; 26, 13396-07-1; 20, 117121-15-0 3a, 4217-54-3; 3b, 18448-45-8; 3C, 102008-08-2 3d, 78305-1 1-0; 39, 94436-61-0; 4, 92-81-9.
Literature Clted (1) Lerman. L. S. J. Mol. 6/01.1981, 3 , 18. (2) Cain, B. F.; Atwell, G. J.; Seelye, R. N. J . Med. Chem. 1988, 9, 217. (3) Radzikowskl, C.; Ledochowski, 2.; Ledochowski, A. Acta Unio Int. Cancer 1982, 187, 222. (4) Osuna, A.; Rodriguez-Santiago, J. I.; Ruir Perez, L. M.; Gamano. F.; CaStanyS, S.; (Uovannangeil, G.; Galy, A. M.; Qaly. J. P.; Soyfer, J. C.; Barbe. J. Chemotherapy 1987, 33, 18. (5) Sharpies, D.;Barbe, J.; Galy, A. M.; Galy, J. P. Chemotherepy 1987, 33,347. (6) Blake, A.; Peacocke, A. R. Biopo&mrs 1988, 6, 1225. (7) Ullmann, F.; b a g , R. Ber. Dtsch. Chem. Ges. 1907, 40, 2515. (8) Nishl, H.; Kohno, H.; Kano, T. Bull. Chem. Soc.Jpn. 1981, 54, 18g7. (9) Gab’, J. P.; Eiguero. J.; Vincent. E. J.; Qaly, A. M.; Barbe. J. Synthesis 1970, 944. (10) Vldal, R.; Qaly, J. P.; Vincent, E. J.; Qaly, A. M.: Barbe, J. Heterocycles 1988, 24, 1419. (11) Ammor, S.; Gab, A. M.; Galy, J. P.; Barbe, J. J. Chem. Eng. Data 1988, 31, 374. (12) A m m , S.; Brouant, P.; Gaiy, A. M.; Sharples. D.; Qaly, J. P.; Soyfer, J. C.; Barbe, J. EW. J. Med. Chem. 1987, 22, 125. (13) Potescu, I. D.; Suclu, D. J . Prekt. Chem. 1978, 318. 515. (14) Plctet. A.; Patry. E. 6er. Msch. Chem. Ges. 1902, 35, 2534. (15) Mllls, J. (Ell Lllly and Co.) US. Patent 2 528 162, 1950. Recelved for review May 3, 1988. Accepted August 1. 1988.
Synthesis and Properties of Substituted Dicinnamylidene Cycloketones Mohammad M. AI-Arab* and I m a d A. Abu-Yousef Department of Chemistry, Yarmouk University, Irbid, Jordan
Mfferent substltuted dlclnnamylldene cycloketones were syntheslzed vla base-catalyzed condensatlons of substltuted clnnamaldehydes and dlfferent cycloketones. The reactlon products were ldentlfled on the bask of their Infrared, proton and carbon-13 nuclear magnetlc resonance, and ultravlolet spectral data as well as elemental analysis. Some of the syntheslred compounds show fluorescence propertles In solutlon.
I ntroductlon
In the course of our study on the condensation of cr,&unsaturated Michael acceptors with compounds having active 0021-958818911734-0137$01.50/0
Table I. Results for Substituted Dicinnamylidene Cycloketones (IIIa-k) mol reaction crystn yp, yield: comDd formula time. min solvent C % IIIa C,HmO 20 C2H60H 209-210 84 IIIb C%HN03 30 CH3COOH 204-205 I1 IIIc CZrHZ2O 50 CZHEOH 185-186 85 IIId CNHmNzOS CH3COOH 220-221 20 91 IIIe CzsH,03 CZHSOH 203-205 60 18 IIIf CSHzrO 30 CzHSOH 164-166 84 20 CHSCOOH 215-216 85 C%H22N205 I1k IIIh C27HBO3 CZHSOH 141-142 13 20 IIIi C,HuO CZHSOH 212-214 60 65 50 C2H5OH 110-112 68 IIIj C27H2803 IIIk CmHN03 20 15 C2HSOH 193-194 These reported yield values are for crude products.
0 1989 American Chemical Society
138 Journal of Chemical and Engineering Data, Vol. 34, No. 1, 1989
Table XI. Infrared, Ultraviolet, and Proton Nuclear Magnetic Resonance Spectral Data of Compounds IIIa-k electronic spectra IR spectra NMR (CDClS) (EtOH) (CHCM compd X-,nm e , ,A nm e cm-’ Y 6 assignt 404 44 800 IIIa 407 65 733 2.91 (s) 3045} C-H 2950 6.95-7.35 (m) 1655 C=O 1630 C=C
IIIb
IIIC
IIId
426
388
376
76 775
62 030
64 450
427
387
377
55 410
53 030
37 960
;g;} i:;:} 1645 1620 16051 1490
c-c
1630
C-H C=O C=C
1605) 1495
c-c
iii:} 1655 1625
IIIe
IIIf
409
388
70 430
70 625
406
380
64 850
44 020
;E} );:32
IIIh
IIIi
IIIj
IIIk
406
356
351
354
61 475
53 515
61 670
58 950
53 610
379
404
352
349
349
67 560
l6O01 1490
16101
44 900
62 075
49 850
41 600
i1645 :}
C-H C=O C=C
1625 l6O5I 1505
c=c
1650 1625
C-H C=O C=C
1590 ‘“O01
c-c
$E:1650 }
C-H
1630
C=O C=C
l6O01 1590
c-c
i:1660 !}
C-H
1635
C=O C=C
1600) 1510
c-c
z:;}
1665 1630
2.89 (8) 3.90 ( 8 ) 7.05-7.62 (m)
4 6 14
1.89 (m) 2.15 (dd) 6.80-7.30 (m)
2 4 16
1.60 (m) 2.75 (dd) 7.00-7.45 (m)
2 4 14
1.91 (m) 2.79 (dd) 3.89 ( 8 ) 6.95-7.29 (m)
2 4 6
1.20 (d) 2.33-2.71 (m)
3 5
7.05-7.32 (m)
14
16
c-c C-H C=O C=C
i:;:}
16
c-c
c=c
1590
378
C=O C=C
1645 1630
1630
IIIg
C-H
C-H C=O C=C
i1655 :}
4
c-c C-H C=O C=C
iii:} 1650
no. H
C-H C=O C=C
1.15 (d) 2.20-2.30 (m) 7.10-7.45 (m)
1.18 (d) 2.30-2.89 (m) 3.86 (s) 7.05-7.37 (m)
3 5 14 3 5 3 14
1.75 (m) 2.92 (m) 6.80-7.25 (m)
4 4 16
1.76 (m) 2.95 (m) 3.85 ( 8 ) 6.95-7.25 (m)
4 4 6
1.66 (m) 2.80 (m) 3.85 (s) 7.10-7.50 (m)
6 4 6
14
14
Journal of Chemical and Engineering Data, Vol. 34, No. 1, 7989 139
Scheme I
Table 111. Carbon-13 Chemical Shift Values for Compounds I11 0
P- 3 /
X-'
c-1
compd IIIa IIIb
-'X
c-2 128.4 128.9
194.6 194.7
c-3 24.1 24.1
I
I1 I11
compd IIIC IIId IIIe IIIf IIIg IIIh
c-1 188.0 179.4 188.6 188.5 188.2 188.6
c-2 127.2 128.3 126.9 128.7 127.5 128.1
c-3 26.7 26.8 26.7 34.9 34.9 34.6
c-4 22.2 22.1 22.3 28.5 28.4 28.5
j
k
I cyclopentanone cyclopentanone cyclohexanone cyclohexanone cyclohexanone 4-methylcyclohexanone 4-methylcyclohexanone 4-methylcyclohexanone cycloheptanone cycloheptanone cyclooctanone
I11
X H 2-methoxy H 2-nitro 2-methoxy H 2-nitro 2-methoxy H 2-methoxy 2-methoxy
Table IV. Fluorescence Data for Compounds I11 in
compd IIIi IIIj
c-1 197.9 203.7
c-2 127.2 127.9
c-3 27.8 31.2
c-4 27.1 27.7
Acetonitrile Solutions" compd excitationb IIIa 468 IIIb 490 IIIe 468 IIIf 468 IIIg 500
emissionb 546 536 532 510 548
a Measurements were recorded on a Perkin-Elmer MPF-44B spectrophotofluorometer using acetonitrile as solvent. Wavelengths are in nm.
comud IIIk
C-1 204.8
c-2 126.2
c-3 55.6
c-4 39.2
c-5 30.4
methylene groups (7), we reported the condensation of aphenyl-p-morphollnoacetophenone with ethyl arylpropiolates and the condensation of ethyl arylpropiolates with cycloketones (2). Since the benzyl cyanides are good Michael donors and useful reagents for carbon-carbon bond formations, we also reported the reaction between different ethyl cinnamates and benzyl cyanides (3)as well as the reaction between different substituted chalcones with a variety of substituted phenylacetonitriles (#, 5). AlJobour and Shandala (6) have reported the condensation of phenyipropiolic esters with a- and P-tetralones in the presence of sodium ethoxlde to yield 5,6-dihydro-7,&benzofhvones and ethyl &P-tetrabn- 1-yl)cinnamates, as a result of Claisen and Michael reactions, respectively. A literature search (7-9) revealed that little, if any, information was available concerning the condensation of substituted cinnamaldehydes with different cycloketones and the fluorescence properties of the reaction products (70, 77). Experimental Section Infrared spectra (Table 11) were recorded as KBr disk using a Pye-Unicam SP 300 instrument. Proton and carbon-I3 spectra (Table 111) were run on a Bruker WP 80-SY instrument using deuteriated chloroform containing tetramethylsilane as internal standard. Ultraviolet spectra were recorded in ethanol and chloroform solutlons using a Varian DMS 100 spectrophotometer. Compounds were analyzed at M-H-W Laboratories, Phoenix, AZ. Melting points (Table I) were determined on an Electrothermal melting point apparatus and were uncorrected. Elemental analyses in agreement with theoretical values were obtained and submitted for review. Table I V shows the fluorescence data of some products 111.
I n each reaction, a (1:2) molar ratio of cyclic ketones and substituted clnnamaldehydes were added successively to a mixture of sodium in absolute ethanol (200 mL). The mixture was stirred at room temperature for 20-60 min. A heavy solid was formed, separated by suction filtration, washed with a small amount of petroleum ether (40-60 OC) and then recrystallized from the appropriate solvent. Partial evaporation of the mother liquor yielded a further amount of the desired products as shown in Scheme I. Registry No. I 1 (X = H), 104-55-2; I 1 (X = 2-methoxy), 1504-74-1; I 1 (X = 2-nltro), 1466-88-2; I I I a , 21856-78-0; I I I b , 117069-05-3; I I I c . 18977-4&7; I I I d , 117069084, I I I e , 117069-07-5; IIIf, 25672-064; I I I g , 117069-08-6; I I I h , 117069-09-7; IIIi, 21856-79-1; I I I j , 117069-10-0; I I I k , 117069-1 1-1; cyclopentanone, 120-92-3; cyclohexanone, 108-94-1; 4-methylcyclohexanone, 589-92-4; cycioheptanone, 502-42-1; cyclooctanone. 502-49-8.
Llterature CAed (1) Shandala, M. Y.; ACKhashab, A.; Ai-Arab, M. M. J . IraqlChem. SOC.
ia77,2,53. (2) Shandala, M. Y.; ACKhashab, A.; AIJobour, N. H.; AI-Arab, M. M. J. Rakt. Chem. 1979, 327, 899. (3) ACArab, M. M.; Issa, A. M. J. Chem. Eng. Data 1988, 3 1 , 261. (4) Ai-Arab, M. M. Chem. S u . 1987, 27, 453. (5) AI-Arab, M. M.; Issa, A. M. Collect. Czech. Chem. Commun. 1987, 52, 1021. (6) AIJobour, N. H.; Shandala, M. Y. J. Heterocycl. Chem. 1980, 17, 941. (7) Austerweii, 0 . V.; Pallaud, R. J. Appl. Chem. 1955, 213. ( 8 ) Vorliinder, D.; Hobohm, K. Ser. Dtsch. Chem. Ges. 1896, 26, 1836. (9) Leonard, N. J.; Miller, L. A.; Berry, J. W. J . Am. Chem. Soc.1957, 79, 1402. (IO) Burckhaher, J. H.; Sam, J.; Hail, L. A. R. J . Am. Chem. SOC. 1959, 8 7 , 394. (11) Sinsheimer, J. E.; Stewart, J. T.; Burckhalter, J. H. J . Pharm. Sci. 1988. 5 7 , 1938. Received for review April 29, 1988. Revised August 12, 1988. Accepted August 26, 1988. We thank Yarmouk University for the flnanclal support of this work.