Subscriber access provided by NORTH CAROLINA A&T UNIV
Note
Exploring Gold Catalysis in 1,6-Conjugate Addition/Domino Electrophilic Cyclization Cascade: Synthesis of Cyclohepta[b]indoles Abhijeet S Jadhav, Yogesh A Pankhade, and Ramasamy Vijaya Anand J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00607 • Publication Date (Web): 30 May 2018 Downloaded from http://pubs.acs.org on May 31, 2018
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Exploring Gold Catalysis in 1,6-Conjugate Addition/Domino Electrophilic Cyclization Cascade: Synthesis of Cyclohepta[b]indoles
Abhijeet S. Jadhav, Yogesh A. Pankhade and Ramasamy Vijaya Anand*
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab –140306. India. E-mail:
[email protected] OH
O R2
R2
R2 R4
PPh 3AuCl (5 mol %) AgOTf (5 mol %)
R3
+ R1
R1
= aryl, alkyl R 2 = tBu, Me R 3 = alkyl, alkoxy, etc.
N R5
R2 R4
R3
THF, rt
R 4 = H, alkyl, halo, etc. R 5 = H, Me, Et
N R5 R1 50-99% yield (35 examples)
ABSTRACT: An effective method for the construction of structurally complex fused cyclohepta[b]indole core has been developed through an intermolecular 1,6-conjugate addition of indoles to 2-alkynyl p-quinone methides followed by an intramolecular electrophilic cyclization under oxophilic and alkynophilic gold catalysis.
Ring-fused indole is deliberated as one of the privileged structural motifs in the area of drug discovery.1 Especially, the cyclohepta[b]indole core (a seven-membered ring fused with an indole at 2 and 3 positions) attracted the synthetic community due to its prevalent occurrence in many biologically significant natural products (1-3, Fig. 1).2 Moreover, many unnatural/synthetic cyclohepta[b]indole derivatives, such as 4, 5 and 6 (Fig. 1), have shown
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Figure 1. Some biologically active cyclohepta[b]indoles
noteworthy therapeutic deeds.2 The combination of unmatched medicinal properties as well as the structural complexity made the cyclohepta[b]indole motif a valuable and also a synthetically challenging target. As a result, many well- designed approaches have been established for the construction of cyclohepta[b]indole core,2 mostly through metal catalyzed three-component or two-component [4+3]-cycloaddition reactions,3 dearomative indole [5+2]-cycloaddition reactions,4 [3,3]-sigmatropic rearrangements,5 iodine mediated6 or Aucatalyzed electrophilic cyclizations,7 metal-catalyzed intramolecular cyclizations8 and multicatalytic orthogonal tandem catalysis approach.9 In addition, a few enantioselective protocols have been developed to access enantiomerically pure cyclohepta[b]indole derivatives.10 However, although all the above-mentioned processes are elegant, most of them involve a multi-step approach. Therefore, developing a one-pot domino process to access cyclohepta[b]indole core is indeed highly desirable. While exploring p-quinone methides (p-QMs)11 as electrophiles in 1,6-conjugate addition of a variety of nucleophiles to access unsymmetrical diaryl- and triarylmethanes,12 we envisaged that by using an appropriately modified p-QM having another electrophilic centre at the o-position of the aryl moiety, it could be possible to access cyclohepta[b]indole core through 1,6-conjugate addition of an indole to the p-QM followed by intramolecular cyclization. In this context, we thought that the presence of an alkyne moiety at the o-position
ACS Paragon Plus Environment
Page 2 of 43
Page 3 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
of the aryl ring of p-QM (7) would serve as the secondary electrophile, which can be easily activated by electrophilic metal catalysts (Scheme 1). In line with this concept, we sought to develop a domino process to synthesize cyclohepta[b]indole derivatives using a suitable catalytic system. Since this process involves two steps, i.e., the 1,6-conjugate addition of indole to p-QM followed by intramolecular cyclization, selecting the most suitable catalytic system is a challenging task as both the steps require catalytic activation.
Scheme 1. Proposed domino process to access cyclohepta[b]indoles Keeping all the above-mentioned aspects in mind, we started the optimization studies using an alkynylated p-QM 7a and indole 8a under various catalytic systems and conditions (Table 1). Our initial attempt using either PPh3AuCl or AgOTf as a catalyst in DCE at room temperature was not encouraging as the expected product 10a was not observed under the reaction conditions (entries 1 & 2). Since the combination of Ag and Au has been proven to be one of the best catalytic system in many domino organic transformations leading to complex systems,13 we thought of exploring this combination in our optimization studies. To our delight, when a reaction was performed with the combination of AgOTf (5 mol%) and PPh3AuCl (5 mol%) as catalysts in DCE, the expected product 10a was isolated in 88% yield (entry 3). The structure of 10a was unambiguously confirmed by X-ray crystallography. Further elaboration of optimization studies (entries 4-6) in other solvents revealed that THF was the most suitable solvent for this transformation and, in that case, 10a was obtained in 96% isolated yield within 2.5 h (entry 6). When the catalyst loading was reduced to 2.5 mol% each, 10a was obtained in 88% yield; however, the reaction took relatively longer time for
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 43
completion (entry 7). The optimization studies were then extended using the combination of different silver and gold Table 1. Optimization studiesa O tBu
OH tBu
tBu
tBu
catalyst(s) [5-10 mol%]
+ Ph 7a (1.1 equiv)
N H
solvent, rt
8a (1 equiv)
NH 10a
Ph
entry
catalyst
solvent
1 2 3b 4b 5b 6b 7c 8b 9b 10b 11 12 13 14 15b,d
PPh3AuCl (5 mol %) AgOTf (5 mol %) AgOTf/PPh3AuCl AgOTf/PPh3AuCl AgOTf/PPh3AuCl AgOTf/PPh3AuCl AgOTf/PPh3AuCl AgSbF6/PPh3AuCl AgNTf2/PPh3AuCl AgOTf/AuCl t Bu3PAuNTf2 (5 mol %) PPh3AuNTf2 (5 mol %) Cu(OTf)2 (5 mol %) PdCl2 (5 mol %) AgOTf/PPh3AuCl
DCE DCE DCE MeCN PhMe THF THF THF THF THF THF THF THF THF THF
Time [h] 24 24 2.5 24 24 2.5 14 3 5 3 2.5 4 24 24 2.5
yield [%] nd nd 88 20 92 96 88 94 76 90 88 85 nd nd 90
a Reaction conditions: All reactions were carried out with 0.075 mmol of 7a and 0.068 mmol of 8a in solvent (1.5 mL) at room temperature. b 5 mol% each of Ag and Au catalysts were used. c 2.5 mol% each of Ag and Au catalysts were used. d Reaction was carried out with 1.4 mmol of 7a and 1.28 mmol of 8a. DCE = 1,2dichloroethane. nd = not detected.
catalysts in THF at room temperature (entries 8-10). However, in all those cases, although the reaction was taking place efficiently, the yield of 10a was a bit inferior when compared to entry 6. Interestingly, when the reaction was carried with more reactive cationic gold (I) complexes such as, tBu3PAuNTf2 or Ph3PAuNTf2, 10a was obtained in 88 and 85% isolated yields, respectively (entries 11 & 12). These experiments clearly indicate that the cationic gold catalyst is responsible to drive the 1,6-conjugate addition as well as the electrophilic cyclization. Moreover, these experiments also confirm the oxophilic nature of the gold catalysts. In fact, the oxophilic gold catalysis14 is relatively an under explored area till now. In the present case, we believe that the gold catalyst acts as an oxophilic catalyst by activating the carbonyl group of 7a and facilitates the 1,6-conjugate addition of 8a to 7a.
ACS Paragon Plus Environment
Page 5 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Even in the case of entry 6, the cationic gold species Ph3PAuOTf (generated in situ by the reaction of AgOTf and Ph3PAuCl), is actually involved in the catalytic process. Other metal catalysts, such as Cu(OTf)2 and PdCl2 failed to catalyze this transformation (entries 13 & 14). A relatively large scale reaction was performed using 7a (0.56 g, 1.4 mmol scale) and indole 8a (1.28 mmol) under the best conditions (entry 5) and, in this case, 10a was isolated in 90% yield (entry 15).
Scheme 2. Substrate scope O
OH
R1
R1
R3
R1
+
R2 7b-p (1.1 equiv.)
N H
THF, rt
NH R2 10b-p
OH tBu
tBu
R1
R3
8a (1 equiv.)
OH tBu
AgOTf (5 mol %) PPh 3AuCl (5 mol%)
OH tBu
tBu
OH tBu
tBu
tBu
Y NH
NH
NH
X
Me
NH Ph
10m, X = Me; Y = H, 5 h, 88% X 10n, X = H; Y = OMe, 12 h, 65% OMe 10b, X = 4-Ph, 4 h, 50% 10l, 1 h, 60% 10k, 3 h, 80% 10c, X = 4-Me, 2.5 h, 99% OH OH 10d, X = 4-tBu, 2.5 h, 90% tBu tBu Me Me 10e, X = 4-n-pentyl, 3 h, 86% 10f, X = 4-OMe, 2.5 h, 99% 10g, X = 4-OPh, 2.5 h, 94% 10h, X = 2-Cl, 2.5, 90% 10i, X = 3-F, 5 h, 91% NH N 10j, X = 4-COOMe, 8 h, 96% H Me Ph 2 10p, 5 h, 86% 10o, R = H, 5 h, 41%
After finding an optimal condition for this transformation (Table 1, entry 6), the substrate scope was investigated using a wide range of alkynylated p-QMs (7b-p) and the results are summarized in Scheme 2. Most of the alkynylated p-QMs (7b-h & 7k), bearing electron-rich aryl substituents at the alkyne part, underwent smooth transformation to their respective cyclohepta[b]indole derivatives (10b-h & 10k) in moderate to excellent yields. Interestingly, other p-QMs (7i & 7j), substituted with electron-poor aryl groups at the alkyne part, also reacted with indole and provided the corresponding products 10i and 10j in 91 and 96% yields respectively. In the case of 7l, where the alkyne is substituted with an aliphatic group, the expected cyclohepta[b]indole derivative 10l was obtained in 60% isolated yield. Other p-QMs 7m & 7n (substituted at the benzene ring) also provided the expected products
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 43
10m and 10n in 88 and 65% yields, respectively. To examine the reactivity of terminal alkynes in this methodology, an experiment was conducted with the p-QM containing terminal alkyne 7o (R2 = H) under standard conditions. Interestingly, in this case, the expected cyclohepta[b]indole was not obtained. Instead, a carbazole derivative 10o was obtained in 41% isolated yield. This protocol was also elaborated for another p-QM 7p, derived from 2,6-dimethylphenol, and the expected product 10p was obtained in 86% yield.
The scope of this transformation was also extended by treating 7a with a variety of substituted indoles under the optimized reaction conditions, and results are summarized in Scheme 3. In general, alkyl, alkoxy and halo-substituted indoles (8b-l & 8p) reacted smoothly and provided the corresponding products 11b-l & 11p in moderate to excellent yields (63-99%). Remarkably, electron-poor indole 8m also provided the corresponding product 11m in 93% yield. Aryl and vinyl substituted indoles (8n, 8o, 8q & 8r) furnished the corresponding cyclohepta[b]indole derivatives (11n, 11o, 11q & 11r) in the range of 65-99% yields. This methodology was also found to be suitable for N-alkylated indoles (8s-u) and, in those case, the desired products 11s-u were obtained in the range of 57-73% yields.
Scheme 3. Substrate scope with different indoles O
OH
tBu
tBu
tBu
+ Ph 7a (1.1 equiv.)
N R1
8b-u (1 equiv) tBu
tBu
R2
THF, rt
N R1
11b-u OH
OH
OH tBu
tBu
AgOTf (5 mol %) PPh 3 AuCl (5 mol%)
R2
tBu
Ph tBu
Ph OH
tBu
tBu
tBu
X Y NH Ph
Z
NH
NH
11b, X = Me; Y, Z = H, 3 h, 96% 11c, X = Et; Y, Z = H, 2.5 h, 76% 11d, X = OMe; Y, Z = H, 3 h, 63% 11e, Z = Et; X, Y = H,3 h, 69% 11f, X = OBn; Y, Z = H, 2.5 h, 90% 11g, X = I; Y, Z = H, 3 h, 70% 11h, X = Br; Y, Z = H, 3 h, 80% 11i, X = Cl; Y, Z = H, 3 h, 99% 11j, Y = Cl; X, Z = H, 3 h, 99% 11k, X = F, Y, Z = H, 4 h, 68% 11l, X = F; Y = Cl; Z = H, 4 h, 64% 11m, X = CO 2Me, Y, Z = H, 7 h, 93%
NH
Ph 11o, 2 h, 87%
Ph 11n, 3 h, 99%
Ph 11p, 3 h, 79%
X OH tBu
OH tBu
tBu
tBu
NH Ph 11q, X = H, 2 h, 65% 11r, X = Ph, 3 h, 83%
X
N R Ph 11s, R = Me, X = H, 2.5 h, 73% 11t, R = Et, X = H,10 h, 68% 11u, R = Me, X = CH2OMe, 5 h, 57%
ACS Paragon Plus Environment
Page 7 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
To identify the possible intermediate in this transformation, a few control experiments were performed (Scheme 4). We believed that the reaction was proceeding through the intermolecular 1,6-conjugate addition of indole to the 2-alkynyl p-QM followed by an intramolecular electrophilic cyclization. In this context, a few experiments were performed using a p-QM 7q [without the alkyne substituent] and indole 8a (Scheme 4). When 7q was treated with indole using 5 mol% of AgOTf in THF at rt, the 1,6-adduct 9a was obtained in 65% yield. However, the reaction took very long time to complete (36 h). When the same reaction was performed using the combination of Ag and Au catalysts, 9a was obtained in 80% yield within 5 min. These experiments evidently indicate that the 1,6-adduct is the most probable intermediate in this transformation. Then, we thought of performing additional experiments with the isolated intermediate 9 (which was conveniently prepared in 90% yield by treating 7a with 8a in the presence of 5 mol% of Bi(OTf)3 in DCE at rt). When 9 was subjected to ring-closure in the presence of AgOTf or PPh3AuCl, in neither case, 10a was observed. Interestingly, when the combination of both the catalysts was employed, 10a was obtained in 80% yield (Scheme 4). From these experiments, one can confidently confirm that the cationic gold (I) species (generated by the reaction of AgOTf with PPh3AuCl) is responsible in driving the 1,6-conjugate addition as well as electrophilic cyclization steps by acting as an oxophilic and alkynophilic catalyst, respectively. Moreover, these experiments also clearly confirm that the reaction is actually proceeding through the intermediate 9. O tBu
tBu
+ 7q
AgOTf (5 mol %), THF, rt
OH tBu
tBu
36 h, 65% OR N H 8a
AgOTf (5 mol %), PPh 3AuCl (5 mol %), THF, rt 5 min, 80%
9a
NH
---------------------------------------------------------------------------------------------------------------------------------------------
OH tBu
HO tBu
NH 9
Ph
AgOTf (5 mol %), THF, rt OR PPh 3 AuCl (5 mol %), THF, rt NO REACTION! AgOTf (5 mol %) PPh 3 AuCl (5 mol %) THF, rt, 2.5 h, 80%
tBu
tBu
NH 10a
Scheme 4. Control experiments
ACS Paragon Plus Environment
Ph
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 43
Based on the above-mentioned control experiments, a plausible mechanism has been proposed (Scheme 5). Initially, the cationic gold (I) species are generated by the anion metathesis reaction of AgOTf with PPh3AuCl.15 This active cationic gold complex acts as an oxophilic catalyst and activates the carbonyl of 7a, which facilitates the addition of indole to form 1,6-adduct 9. Now, there are two possible ways in which the electrophilic cyclization can occur. One possibility is that the intermediate 12 undergoes 6-endo-dig cyclization through the activation of alkyne moiety by Au-catalyst to give a spirocyclic intermediate 13 (Path A in Scheme 5),7b which on ring expansion provides the carbocation 14.16 Elimination of a proton from 14 followed by protonation generates the product 10a with the regeneration of active Au-catalyst. Another possibility is that the intermediate 12 undergoes 7-endo-dig cyclization to give intermediate 15,17 which on aromatization followed by protonation produces the product 10a with the elimination of active Au-catalyst (Path B in Scheme 5).
H+
[Au]
Ar
Ar
10a
H N
NH H
R
R [Au]
13
14
[Au] oxophilic
[Au] Path A 6-endo-dig
O tBu
tBu
Ar
Ar [Au] NH
7a
N H R
NH
R
8a
R 12
alkynophilic [Au]
9
Path B 7-endo-dig [Au]
H+
Ar
10a
N
[Au]
H R 15
H
Scheme 5. Plausible mechanism
To improve the substrate scope of this transformation further, we performed de-tertbutylation reaction of 10a with excess of AlCl3 in benzene, and the de-tert-butylated product 16 was obtained in 80% yield within an hour (Scheme 6).
ACS Paragon Plus Environment
Page 9 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
OH tBu
OH tBu
AlCl3 (10 equiv.) NH Ph 10a
C6H6, 55 oC, 1 h
NH Ph 16, 80%
Scheme 6. De-tert-butylation of 10a
In conclusion, we have developed an effective method for the synthesis of cyclohepta[b]indole derivatives through gold catalyzed intermolecular 1,6-conjugate addition of indoles to 2-alkynyl p-quinone methides followed by an intramolecular electrophilic cyclization. We have also shown the oxophilic nature of the cationic gold species in activating the p-quinone methide through control experiments. Experimental Section
General Information All reactions were carried out under argon atmosphere employing flame-dried glass wares. Most of the reagents and starting materials were purchased from commercial sources and used as such. 4-(2-bromobenzylidene)-2,6-di-tert-butylcyclohexa-2,5-dienone (pQuinone methide) and 4-(2-bromobenzyl)-2,6-dimethylphenol were prepared by following a literature procedure.12a,18 Melting points were recorded on SMP20 melting point apparatus and are uncorrected. 1H, 13C and 19F spectra were recorded in CDCl3 (400, 100 and 376 MHz respectively) on Bruker FT-NMR spectrometer. Chemical shift (δ) values are reported in parts per million (ppm) relative to TMS and the coupling constants (J) are reported in Hz. High resolution mass spectra were recorded on Waters Q-TOF Premier-HAB213 spectrometer. FT-IR spectra were recorded on a Perkin‒Elmer FT-IR spectrometer. Thin layer chromatography was performed on Merck silica gel 60 F254 TLC plates. Column chromatography was carried out through silica gel (100-200 mesh) using EtOAc/hexane as an eluent.
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 43
General procedure for the synthesis of 2-alkynylated p-quinone methides (7a-n, 7p and 17): Terminal acetylene (1.22 mmol) was added to a stirred solution of PdCl2(PPh3)2 (0.04 mmol), CuI (0.04 mmol), and 4-(2-bromobenzylidene)-2,6-di-tert-butylcyclohexa-2,5-dienone (0.8 mmol) in triethylamine (5 mL) at room temperature and the reaction mixture was heated to 70 °C under an inert atmosphere. After completion of the reaction (by TLC), triethylamine was removed under reduced pressure and the reaction mixture was then diluted with dichloromethane (30 mL) and water (10 mL). Organic layer was separated and the aqueous layer was extracted with DCM (20 mL x 2). The combined organic layer was dried over anhydrous sodium sulphate, filtered and concentrated under reduced pressure. The residue was purified through silica gel column chromatography using hexane/EtOAc to obtain pure alkynylated p-quinone methide derivatives. 2,6-di-tert-butyl-4-(2-(phenylethynyl)benzylidene)cyclohexa-2,5-dienone (7a) Rf = 0.6 (5% EtOAc in hexane); yellow solid (290 mg, 91% yield); m. p. = 140-142 ℃; 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 7.1 Hz, 1H), 7.53-7.47 (m, 3H), 7.45-7.39 (m, 4H), 7.37-7.36 (m, 3H), 7.09 (s, 1H), 1.36 (s, 9H), 1.27 (s, 9H);
13
C NMR (100 MHz, CDCl3) δ
186.8, 149.4, 148.1, 141.1, 137.7, 135.1, 133.0, 132.8, 131.7, 131.7, 130.8, 129.0, 128.9, 128.6, 128.3, 124.3, 123, 95.7, 87.7, 35.6, 35.2, 29.7, 29.6; FT-IR (neat): 2957, 2217, 1614, 1566, 1492, 1361, 1254, 1091, 820, 755 cm-1; HRMS (ESI): m/z calcd for C29H31O [M+H]+: 395.2375; found : 395.2358. 4-(2-([1,1'-biphenyl]-4-ylethynyl)benzylidene)-2,6-di-tert-butylcyclohexa-2,5-dienone (7b) Rf = 0.5 (5% EtOAc in hexane); orange solid (258 mg, 69% yield); m. p. = 127-129 ℃; 1H NMR (400 MHz, CDCl3) δ 7.69-7.67 (m, 1H), 7.63-7.61 (m, 4H), 7.60-7.57 (m, 3H), 7.50-
ACS Paragon Plus Environment
Page 11 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
7.44 (m, 5H), 7.43-7.37 (m, 2H), 7.14 (s, 1H), 1.40 (s, 9H), 1.31 (s, 9H);
13
C NMR (100
MHz, CDCl3) δ 186.8, 149.4, 148.1, 141.6, 141.1, 140.3, 137.7, 135.0, 132.9, 132.8, 132.1, 130.7, 129, 128.97, 128.3, 127.9, 127.2, 127.1, 127.1, 124.3, 121.8, 95.7, 88.4, 35.6, 35.2, 29.7, 29.6; FT-IR (neat): 2957, 2214, 1614, 1566, 1456, 1486, 1361, 1254, 1091 cm-1; HRMS (ESI): m/z calcd for C35H35O [M+H]+: 471.2688; found : 471.2708. 2,6-di-tert-butyl-4-(2-(p-tolylethynyl)benzylidene)cyclohexa-2,5-dienone (7c) Rf = 0.6 (5% EtOAc in hexane); orange solid (254 mg, 77% yield); m. p. = 148-150 ℃; 1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 7 Hz, 1H), 7.54 (s, 1H), 7.47-7.44 (m, 2H), 7.41-7.36 (m, 4H), 7.17 (d, J = 7.7 Hz, 2H), 7.1 (s, 1H), 2.38 (s, 3H), 1.36 (s, 9H), 1.27 (s, 9H);
13
C
NMR (100 MHz, CDCl3) δ 186.8, 149.4, 148.1, 141.2, 139.1, 137.6, 135.1, 132.9, 132.7, 131.6, 130.7, 129.3, 129, 128.4, 128.1, 124.5, 119.9, 96, 87.1, 35.6, 35.2, 29.7, 29.6, 21.7; FT-IR (neat): 2957, 2217, 1614, 1566, 1510, 1361, 1254, 1090, 815, 757, cm-1; HRMS (ESI):
m/z calcd for C30H33O [M+H]+: 409.2531; found : 409.2513 2,6-di-tert-butyl-4-(2-((4-(tert-butyl)phenyl)ethynyl)benzylidene)cyclohexa-2,5-dienone (7d) Rf = 0.6 (5% EtOAc in hexane); orange solid (292 mg, 67% yield); m. p. = 85-87 ℃; 1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 7 Hz, 1H), 7.53 (s, 1H), 7.46-7.44 (m, 4H), 7.40-7.38 (m, 4H), 7.09 (s, 1H), 1.36 (s, 9H), 1.33 (s, 9H), 1.27 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 186.8, 152.3, 149.4, 148.1, 141.2, 137.6, 135.1, 132.9, 132.7, 131.5, 130.8, 129, 128.3, 128.2, 125.6, 124.6, 120, 96, 87.1, 35.6, 35.2, 35, 31.3, 29.7, 29.65; IR (neat): 2958, 2217, 1615, 1361, 1458, 1256, 834, 757 cm-1; HRMS (ESI): m/z calcd for C33H39O [M+H]+: 451.3001; found : 451.3018. 2,6-di-tert-butyl-4-(2-((4-pentylphenyl)ethynyl)benzylidene)cyclohexa-2,5-dienone (7e)
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Rf = 0.6 (5% EtOAc in hexane); orange gummy solid (281 mg, 75% yield); 1H NMR (400 MHz, CDCl3) δ 7.64-7.62 (m, 1H), 7.54 (s, 1H), 7.47-7.43 (m, 3H), 7.41-7.36 (m, 3H), 7.18 (d, J = 8.1 Hz, 2H), 7.1 (d, J = 2 Hz, 1H), 2.62 (t, J = 7.6 Hz, 2H), 1.66-1.58 (m, 2H), 1.37 (s, 9H), 1.34-1.30 (m, 4H), 1.28 (s, 9H), 0.9 (t, J = 6.7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 186.8, 149.3, 148.1, 144.2, 141.3, 137.6, 135.1, 132.9, 132.7, 131.6, 130.7, 129, 128.7, 128.4, 128.1, 124.5, 120.1, 96.1, 87.1, 36, 35.5, 35.2, 31.6, 31.1, 29.7, 29.6, 22.7, 14.2; IR (neat): 2958, 2929, 2861, 2215, 1614, 1567, 1362, 1179, 949, 758 cm-1; HRMS (ESI): m/z calcd for C34H41O [M+H]+: 465.3157; found : 465.3141. 2,6-di-tert-butyl-4-(2-((4-methoxyphenyl)ethynyl)benzylidene)cyclohexa-2,5-dienone (7f) Rf = 0.5 (5% EtOAc in hexane); orange solid (240 mg, 70% yield); m. p. = 139-141 ℃; 1H NMR (400 MHz, CDCl3) δ 7.64-7.59 (m, 1H), 7.53 (s, 1H), 7.46-7.42 (m, 4H), 7.41-7.35 (m, 2H), 7.09 (d, J = 2.2 Hz, 1H), 6.90-6.87 (m, 2H), 3.84 (s, 3H), 1.36 (s, 9H), 1.27 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 186.8, 160.1, 149.4, 148.1, 141.3, 137.5, 135.1, 133.2, 132.8, 132.7, 130.7, 129, 128.4, 128, 124.7, 115.1, 114.2, 95.9, 86.5, 55.5, 35.6, 35.2, 29.7, 29.6; IR (neat): 2957, 2212, 1614, 1566, 1511, 1361, 1288, 1251, 1091, 1031, 831, 757 cm-1; HRMS (ESI): m/z calcd for C30H33O2 [M+H]+: 425.2481; found : 425.2474. 2,6-di-tert-butyl-4-(2-((4-phenoxyphenyl)ethynyl)benzylidene)cyclohexa-2,5-dienone (7g) Rf = 0.5 (5% EtOAc in hexane); orange gummy solid (259 mg, 67% yield); 1H NMR (400 MHz, CDCl3) δ 7.64-7.62 (m, 1H), 7.52 (s, 1H), 7.48-7.43 (m, 4H), 7.41-7.35 (m, 4H), 7.16 (t, J = 7.4 Hz, 1H), 7.09 (d, J = 2.2 Hz, 1H) 7.05 (d, J = 7.7 Hz, 2H), 7-6.96 (m, 2H), 1.35 (s, 9H), 1.27 (s, 9H)
13
C NMR (100 MHz, CDCl3) δ 186.8, 158.2, 156.4, 149.4, 148.1, 141.1,
137.6, 135, 133.4, 132.9, 132.8, 130.8, 130.1, 129, 128.4, 128.2, 124.4, 124.2, 119.7, 118.5, 117.4, 95.4, 87.1, 35.6, 35.2, 29.7, 29.6; IR (neat): 2957, 2214, 1614, 1587, 1566, 1505,
ACS Paragon Plus Environment
Page 12 of 43
Page 13 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
1488, 1361, 1241, 1167, 1023 cm-1; HRMS (ESI): m/z calcd for C35H35O2 [M+H]+: 487.2637; found : 487.2650. 2,6-di-tert-butyl-4-(2-((2-chlorophenyl)ethynyl)benzylidene)cyclohexa-2,5-dienone (7h) Rf = 0.6 (5% EtOAc in hexane); orange solid (232 mg, 66% yield); m. p. = 130-132 ℃; 1H NMR (400 MHz, CDCl3) δ 7.71-7.67 (m, 2H), 7.57-7.55 (m, 1H), 7.52-7.50 (m, 1H), 7.467.38 (m, 4H), 7.31-7.24 (m, 2H), 7.12 (d, J = 1.6 Hz, 1H), 1.35 (s, 9H), 1.28 (s, 9H);
13
C
NMR (100 MHz, CDCl3) δ 186.8, 149.6, 148.1, 141.2, 138, 136.1, 135.3, 133.4, 132.9, 132.6, 130.5, 129.8, 129.6, 128.9, 128.7, 128.1, 126.8, 124, 123, 92.7, 92.6, 35.6, 35.2, 29.7; IR (neat): 2956, 1614, 1566, 1482, 1361, 1254, 1023, 820, 754 cm-1; HRMS (ESI): m/z calcd for C29H30ClO [M+H]+: 429.1985; found : 429.1967. 2,6-di-tert-butyl-4-(2-((3-fluorophenyl)ethynyl)benzylidene)cyclohexa-2,5-dienone (7i) Rf = 0.6 (5% EtOAc in hexane); yellow solid (211 mg, 63% yield); m. p. = 128-130 ℃; 1H NMR (400 MHz, CDCl3) δ 7.65-7.63 (m, 1H), 7.49-7.46 (m, 2H), 7.44-7.38 (m, 3H), 7.357.28 (m, 2H), 7.21-7.18 (m, 1H), 7.09-7.04 (m, 2H), 1.36 (s, 9H), 1.26 (s, 9H);
13
C NMR
(100 MHz, CDCl3) δ 186.8, 162.5 (d, JC-F = 245.4 Hz), 149.5, 148.3, 140.6, 137.9, 134.9, 133.04, 133.0, 130.8, 130.2 (d, JC-F = 8.6 Hz), 129.0, 128.7, 128.2, 127.6 (d, JC-F = 3.0 Hz), 124.8 (d, JC-F = 9.5 Hz), 123.7, 118.5 (d, JC-F = 22.7 Hz), 116.2 (d, JC-F = 21.1 Hz), 94.2 (d,
JC-F = 3.4 Hz), 88.6, 35.6, 35.2, 29.7, 29.6; 19F NMR (376 MHz, CDCl3) δ -112.58; IR (neat): 2957, 1614, 1580, 1361, 1254, 1214, 870, 783, 757, 680 cm-1; HRMS (ESI): m/z calcd for C29H30FO [M+H]+: 413.2281; found : 413.2263 Methyl
4-((2-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1
ethynyl) benzoate (7j)
ACS Paragon Plus Environment
ylidene)methyl)phenyl)
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 14 of 43
Rf = 0.3 (5% EtOAc in hexane); yellow solid (200 mg, 55% yield); m. p. = 159-161 ℃; 1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 7.9 Hz, 2H), 7.65 (d, J = 7.4 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 7.49-7.45 (m, 3H), 7.40-7.38 (m, 2H), 7.09 (s, 1H), 3.93 (s, 3H), 1.36 (s, 9H), 1.25 (s, 9H);
13
C NMR (100 MHz, CDCl3) δ 186.7, 166.6, 149.5, 148.3, 140.6, 137.9, 134.9,
133.1, 133, 131.6, 130.8, 130, 129.7, 129, 128.8, 128.2, 127.6, 123.6, 94.7, 90.6, 52.5, 35.6, 35.2, 29.7, 29.6; IR (neat): 2956, 2213, 1726, 1614, 1307, 1276, 1361, 1107, 1018, 916, 768 cm-1; HRMS (ESI): m/z calcd for C31H33O3 [M+H]+: 453.2430; found : 453.2413. 2,6-di-tert-butyl-4-(2-((4-methoxy-2-methylphenyl)ethynyl)benzylidene)cyclohexa-2,5dienone (7k) Rf = 0.4 (5% EtOAc in hexane); orange solid (288 mg, 81% yield); m. p. = 166-168 ℃; 1H NMR (400 MHz, CDCl3) δ 7.64-7.61 (m, 1H), 7.58 (s, 1H), 7.48-7.44 (m, 3H), 7.42-7.38 (m, 2H), 7.08-7.07 (m, 1H), 6.79-6.78 (m, 1H), 6.75-6.72 (m, 1H), 3.82 (s, 3H), 2.49 (s, 3H), 1.35 (s, 9H), 1.28 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 186.8, 160.1, 149.4, 148.1, 142.1, 141.5, 137.2, 135.1, 133.5, 132.6, 132.4, 130.5, 129, 128.2, 127.9, 125, 115.3, 115.1, 111.6, 95.2, 90.3, 55.4, 35.6, 35.2, 29.7, 29.7, 21.3; IR (neat): 2956, 2204, 1613, 1556, 1500, 1239, 1163, 1040, 816, 757 cm-1; HRMS (ESI): m/z calcd for C31H35O2 [M+H]+: 439.2637; found : 439.2619. 2,6-di-tert-butyl-4-(2-(3-cyclohexylprop-1-yn-1-yl)benzylidene)cyclohexa-2,5-dienone (7l) Rf = 0.7 (5% EtOAc in hexane); orange solid (217 mg, 66% yield); m. p. = 87-89 ℃; 1H NMR (400 MHz, CDCl3) δ 7.51-7.49 (m, 2H), 7.42-7.40 (m, 2H), 7.36-7.30 (m, 2H), 7.05 (d,
J = 2 Hz, 1H), 2.37 (d, J = 6.5 Hz, 2H), 1.87 (d, J = 11.7 Hz, 2H), 1.77-1.73 (m, 2H), 1.701.53 (m, 3H), 1.34 (s, 9H), 1.28 (s, 9H), 1.21-1.14 (m, 2H), 1.12-1.05 (m, 2H);
13
C NMR
(100 MHz, CDCl3) δ 186.8, 149.3, 147.9, 141.9, 137.5, 135.2, 132.8, 132.2, 130.6, 128.9,
ACS Paragon Plus Environment
Page 15 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
128.3, 127.5, 125.3, 96.4, 79.9, 37.6, 35.6, 35.1, 32.9, 29.7, 29.6, 27.6, 26.4, 26.3; IR (neat): 2924, 2853, 2225, 1615, 1566, 1449, 1361, 1254, 888, 757 cm-1; HRMS (ESI): m/z calcd for C30H39O [M+H]+: 415.3001; found : 415.3018. 2,6-di-tert-butyl-4-(4-methyl-2-(phenylethynyl)benzylidene)cyclohexa-2,5-dienone (7m) Rf = 0.6 (5% EtOAc in hexane); orange gummy solid (290 mg, 88% yield); 1H NMR (400 MHz, CDCl3) δ 7.53-7.50 (m, 3H), 7.49-7.46 (m, 2H), 7.39-7.35 (m, 4H), 7.23 (d, J = 7.92 Hz, 1H), 7.09 (d, J = 2.2 Hz, 1H) 2.41 (s, 3H), 1.36 (s, 9H), 1.28 (s, 9H);
13
C NMR (100
MHz, CDCl3) δ 186.8, 149.2, 147.9, 141.3, 139.4, 135.2, 134.9, 133.5, 132.3, 131.7, 130.7, 129.4, 128.8, 128.6, 128.4, 124.2, 123, 95.3, 87.8, 35.5, 35.2, 29.7, 29.6, 21.3; FT-IR (neat): 2956, 2211, 1613, 1567, 1455, 1360, 1255, 1023, 889, 754, cm-1; HRMS (ESI): m/z calcd for C30H33O [M+H]+: 409.2531; found : 409.2521. 2,6-di-tert-butyl-4-(5-methoxy-2-(phenylethynyl)benzylidene)cyclohexa-2,5-dienone (7n) Rf = 0.5 (5% EtOAc in hexane); brown solid (282 mg, 82% yield); m. p. = 153-155 ℃; 1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 8.5 Hz, 1H), 7.50-7.47 (m, 4 H ), 7.37-7.33 (m, 3H), 7.09 (d, J = 2.2 Hz, 1H), 6.99 (d, J = 2.4 Hz, 1H), 6.94 (dd, J = 6.0 2.5 Hz, 1H), 3.87 (s, 1H), 1.35 (s, 9H), 1.27 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 186.7, 159.4, 149.4, 148.2, 140.9, 139, 135, 134.2, 132.9, 131.6, 128.54, 128.51, 128.3, 123.3, 116.6, 115.6, 115.5, 94.2, 87.7, 55.6, 35.6, 35.2, 29.69, 29.67; IR (neat): 2956, 2922, 2218, 1614, 1457, 1361, 1260, 835, 751 cm-1; HRMS (ESI): m/z calcd for C30H33O2 [M+H]+: 425.2481; found : 425.2465. 2,6-di-tert-butyl-4-(2-((trimethylsilyl)ethynyl)benzylidene)cyclohexa-2,5-dienone (17) Rf = 0.6 (5% EtOAc in hexane); yellow gummy liquid (235 mg, 75% yield); 1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 7.6 Hz, 1H), 7.46-7.38 (m, 4H), 7.33 (t, J = 7.4 Hz, 1H), 7.04 (d,
J = 1.3 Hz, 1H), 1.34 (s, 9H), 1.28 (s, 9H), 0.26 (s, 9H);
13
C NMR (100 MHz, CDCl3) δ
186.8, 149.5, 148.2, 141.2, 138.1, 135.2, 133.0, 132.6, 130.4, 128.8, 128.5, 128.1, 124.2, ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
103.1, 101.5, 35.6, 35.1, 29.7, 29.6, 0.04; FT-IR (neat): 2955, 2155, 1617 cm-1; HRMS (ESI):
m/z calcd for C26H35OSi [M+H]+: 391.2457; found : 391.2465. 2,6-di-tert-butyl-4-(2-ethynylbenzylidene)cyclohexa-2,5-dienone (7o) To a solution of 2,6-di-tert-butyl-4-(2-((trimethylsilyl)ethynyl)benzylidene)cyclohexa-2,5dienone 17 (205 mg, 0.64 mmol) in DMF (5 mL) was added potassium fluoride (52 mg, 0.89 mmol). The resulting mixture was stirred at room temperature for 4 h. The mixture was poured into water and then extracted with dichloromethane (15 mL x 2). The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude mixture was purified through silica gel column chromatography to afford pure 2,6-di-tert-butyl-4-(2-ethynylbenzylidene)cyclohexa-2,5-dienone 7o (184 mg, 90% yield) as a yellow solid; Rf = 0.6 (5% EtOAc in hexane); m. p. = 148-150 ℃; 1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 7.6 Hz, 1H), 7.47-7.41 (m, 3H), 7.38-7.34 (m, 2H), 7.07 (s, 1H), 3.42 (s, 1H), 1.34 (s, 9H), 1.28 (s, 9H);
13
C NMR (100 MHz, CDCl3) δ 186.8, 149.6,
148.2, 140.5, 138.3, 135.1, 133.6, 132.9, 130.8, 129.0, 128.9, 128.0, 123.1, 83.6, 81.7, 35.6, 35.2, 29.7; FT-IR (neat): 3299, 2956, 2101 cm-1; HRMS (ESI): m/z calcd for C23H27O [M+H]+: 319.2062; found : 319.2053. 4-(2-bromobenzylidene)-2,6-dimethylcyclohexa-2,5-dienone (18) A mixture of potassium ferricyanide ( 1.04 g, 3.17 mmol) and potassium hydroxide (0.19 g, 3.3 mmol, 4.2 equiv) in water (5 mL) was added to a solution of 4-(2-bromobenzyl)-2,6dimethylphenol18 (0.23 g, 0.79 mmol) in hexanes (25 mL) under inert atmosphere. The reaction mixture was stirred at room temperature for 1 h. The aqueous layer was separated and extracted with hexanes (50 mL x 2). The combined organic layers dried over sodium sulfate, filtered and concentrated by rotary evaporation. The resulting crude mixture was filtered through a short plug of silica gel column to afford pure 4-(2-bromobenzylidene)-2,6-
ACS Paragon Plus Environment
Page 16 of 43
Page 17 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
dimethylcyclohexa-2,5-dienone (0.21 g, 92% yield) as a yellow solid; Rf = 0.4 (10% EtOAc in hexane); m. p. = 108-110 ℃; 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.0 Hz, 1H), 7.43-7.39 (m, 2H), 7.30-7.25 (m, 2H), 7.22 (s, 1H), 7.13 (s, 1H), 2.07 (s, 3H), 7.02 (s, 3H); 13
C NMR (100 MHz, CDCl3) δ 187.5, 141.1, 138.4, 138.1, 136.4, 135.7, 133.3, 132.5,
132.47, 131.3, 130.5, 127.5, 125.1, 17.0, 16.4; FT-IR (neat): 2922, 1619 cm-1; HRMS (ESI):
m/z calcd for C15H14BrO [M+H]+: 289.0228; found : 289.0220. 2,6-dimethyl-4-(2-(phenylethynyl)benzylidene)cyclohexa-2,5-dienone (7p) The reaction was performed in 0.55 mmol scale of 18; Rf = 0.4 (10% EtOAc in hexane); orange gummy solid (40 mg, 24% yield); 1H NMR (400 MHz, CDCl3) δ 7.65-7.63 (m, 2H), 7.54-7.48 (m, 4H), 7.45-7.36 (m, 6H), 7.14 (s, 1H), 2.09 (s, 3H), 2.06 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 187.6, 141.3, 138.8, 137.9, 137.4, 136.2, 132.9, 132.5, 131.7 (2C), 131.0, 129.2, 128.9, 128.6, 128.4, 124.4, 122.9, 96.0, 87.4, 17.0, 16.4; FT-IR (neat): 2922, 2214 1617 cm-1; HRMS (ESI): m/z calcd for C23H19O [M+H]+: 311.1436; found : 311.1449. General procedure for the synthesis of cyclohepta[b]indole derivatives (10a-p & 11b-o): A mixture of indole (0.1 mmol), 2-alkynylated p-quinone methide (0.11 mmol) AgOTf (0.005 mmol) and PPh3AuCl (0.005 mmol) in dry THF (2 mL) stirred under inert atmosphere and the progress was monitored by TLC. After completion of the reaction, solvent was removed under reduced pressure and the residue was directly loaded on a silica gel column and eluted using EtOAc/hexane mixture to obtain pure cyclohepta[b]indol derivatives. 2,6-di-tert-butyl-4-(6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12-yl)phenol (10a) The reaction was performed in 0.042 mmol scale of 8a; Rf = 0.3 (5% EtOAc in hexane); white solid (20.7 mg, 86% yield); m. p. = 223-225 ℃ ; 1H NMR (400 MHz, CDCl3) δ 7.917.89 (m, 2H), 7.56-7.54 (m, 3H), 7.49-7.41 (m, 5H), 7.32-7.27 (m, 2H), 7.23-7.17 (m, 2H), ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
6.95 (s, 1H), 6.85 (s, 2H), 5.81 (s, 1H), 4.93 (s, 1H), 1.25 (s, 18H);
Page 18 of 43
13
C NMR (100 MHz,
CDCl3) δ 151.9, 141.2, 140.7, 136.9, 135, 134.8, 134.1, 133.3, 131.7, 131.5, 130.7, 130.5, 129, 128.8, 128.3, 127.9, 126.1, 125.1, 124, 122.9, 119.8, 118.8, 118.4, 110.9, 46.9, 34.3, 30.4; FT-IR (neat): 3633, 3430, 1599, 1321, 1372, 1230, 1157, 766, 740, 699 cm-1; HRMS (ESI): m/z calcd for C37H38NO [M+H]+: 512.2935; found : 512.2935. 4-(6-([1,1'-biphenyl]-4-yl)-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12-yl)-2,6-di-
tert-butylphenol (10b) The reaction was performed in 0.085 mmol scale of 8a; Rf = 0.1 (5% EtOAc in hexane); white solid (25 mg, 50% yield); m. p. = 223-225 ℃; 1H NMR (400 MHz, CDCl3) δ 7.96 (s, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.7-7.66 (m, 4H), 7.63-7.61 (m, 2H), 7.56 (d, J = 7.6 Hz, 1H), 7.52-7.48 (m, 3H), 7.45-7.39 (m, 2H), 7.34-7.3 (m, 2H), 7.25-7.18 (m, 2H), 7.01 (s, 1H), 6.86 (s, 2H), 5.83 (s, 1H), 4.93 (s, 1H), 1.26 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 151.9, 141.3, 141.2, 140.6, 139.6, 136.9, 135, 134.8, 134.1, 132.9, 131.6, 131.5, 130.6, 130.5, 129.4, 129.1, 129, 127.9, 127.7, 127.5, 127.2, 126.1, 124, 123, 119.8, 118.9, 118.4, 111, 46.9, 34.3, 30.4; FT-IR (neat): 3445, 3234, 2957, 1614, 1566, 1486, 1254, 1091, 1023 cm-1; HRMS (ESI): m/z calcd for C43H42NO [M+H]+: 588.3266; found : 588.3246. 2,6-di-tert-butyl-4-(6-(p-tolyl)-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (10c) The reaction was performed in 0.068 mmol scale of 8a; Rf = 0.3 (5% EtOAc in hexane); white solid (35.6 mg, 99% yield); m. p. = 222-224 ℃; 1H NMR (400 MHz, CDCl3) δ 7.947.92 (m, 2H), 7.58 (d, J = 7.5 Hz, 1H), 7.51-7.43 (m, 4H), 7.35-7.29 (m, 4H), 7.25-7.20 (m, 2H), 6.97 (s, 1H), 6.89 (s, 2H), 5.84 (s, 1H), 4.96 (s, 1H), 2.47 (s, 3H), 1.29 (s, 18H);
13
C
NMR (100 MHz, CDCl3) δ 151.9, 141.2, 138.2, 137.8, 136.8, 135.1, 134.8, 134.1, 133.2, 131.9, 131.4, 130.4, 130.2, 129.5, 128.9, 128.87, 127.9, 126, 124, 122.8, 119.7, 118.6, 118.4,
ACS Paragon Plus Environment
Page 19 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
110.9, 46.9, 34.3, 30.4, 21.4; FT-IR (neat): 3637, 3460, 2958, 2872, 1600, 1152, 814, 805, 741 cm-1; HRMS (ESI): m/z calcd for C38H40NO [M+H]+: 526.3110; found : 526.3091. 2,6-di-tert-butyl-4-(6-(4-(tert-butyl)phenyl)-5,12-dihydrobenzo[4,5]cyclohepta[1,2-
b]indol-12-yl)phenol (10d) The reaction was performed in 0.068 mmol scale of 8a; Rf = 0.4 (5% EtOAc in hexane); pale yellow solid (34.7 mg, 90% yield); m. p. = 220-222 ℃; 1H NMR (400 MHz, CDCl3) δ 7.91 (s, 1H), 7.88 (d, J = 7.4 Hz, 1H), 7.52 (d, J = 7.5 Hz, 1H), 7.47-7.46 (m, 5H), 7.40 (t, J = 7.2 Hz, 1H), 7.31-7.27 (m, 2H), 7.22-7.15 (m, 2H), 6.92 (s, 1H), 6.80 (s, 2H), 5.79 (s, 1H), 4.90 (s, 1H), 1.39 (s, 9H), 1.23 (s, 18H);
13
C NMR (100 MHz, CDCl3) δ 151.9, 151.4, 141.1,
137.7, 136.8, 135.1, 134.7, 134.2, 133.1, 131.9, 131.4, 130.5, 130.4, 128.8, 128.7, 128, 126, 125.7, 124, 122.8, 119.7, 118.5, 118.4, 110.9, 46.8, 34.9, 34.3, 31.5, 30.4; FT-IR (neat): 3647, 3319, 2961, 1656, 1364, 1317, 1267, 1154, 828, 744 cm-1; HRMS (ESI): m/z calcd for C41H46NO [M+H]+: 568.3579; found : 568.3553. 2,6-di-tert-butyl-4-(6-(4-pentylphenyl)-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (10e) The reaction was performed in 0.068 mmol scale of 8a; Rf = 0.4 (5% EtOAc in hexane); pale yellow solid (34 mg, 86% yield); m. p. = 90-92 ℃; 1H NMR (400 MHz, CDCl3) δ 7.90-7.86 (m, 2H), 7.53 (d, J = 7.5 Hz, 1H), 7.46-7.38 (m, 4H), 7.30-7.24 (m, 4H), 7.22-7.15 (m, 2H), 6.91 (s, 1H), 6.81 (s, 2H), 5.78 (s, 1H), 4.90 (s, 1H), 2.66 (t, J = 7.5 Hz, 2H), 1.69-1.66 (m, 2H), 1.42-1.38 (m, 4H), 1.23 (s, 18H), 0.94-0.92 (m, 3H);
13
C NMR (100 MHz, CDCl3) δ
151.9, 143.3, 141.2, 137.9, 136.8, 135.1, 134.7, 134.1, 133.3, 131.9, 131.4, 130.4, 130.3, 128.9, 128.84, 128.81, 127.9, 126, 124, 122.8, 119.7, 118.5, 118.4, 110.9, 46.8, 35.9, 34.3, 31.8, 31.4, 30.4, 22.7, 14.2; FT-IR (neat): 3639, 3394, 2957, 2929, 2858, 1655, 1603, 1263,
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 43
1153, 1021, 743 cm-1; HRMS (ESI): m/z calcd for C42H48NO [M+H]+: 582.3736; found : 582.3712. 2,6-di-tert-butyl-4-(6-(4-methoxyphenyl)-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol12-yl)phenol (10f) The reaction was performed in 0.068 mmol scale of 8a; Rf = 0.1 (5% EtOAc in hexane); white solid (36.4 mg, 99% yield); m. p. = 88-90 ℃; 1H NMR (400 MHz, CDCl3) δ 7.88-7.87 (m, 2H), 7.52 (d, J = 7.6 Hz, 1H), 7.47-7.44 (m, 3H), 7.39 (d, J = 7.4 Hz, 1H), 7.30-7.26 (m, 2H), 7.22-7.15 (m, 2H), 6.97 (d, J = 7.8 Hz, 2H), 6.89 (s, 1H), 6.84 (s, 2H), 5.78 (s, 1H), 4.91 (s, 1H), 3.87 (s, 3H), 1.24 (s, 18H);
13
C NMR (100 MHz, CDCl3) δ 159.8, 151.9, 141.2,
136.8, 135.1, 134.8, 134.1, 133.1, 132.9, 132, 131.3, 130.4, 130.2, 129.9, 128.8, 127.9, 126, 124, 122.8, 119.7, 118.5, 118.4, 114.2, 110.9, 55.6, 46.9, 34.3, 30.4; FT-IR (neat): 3632, 3391, 2958, 1652, 1606, 1510, 1248, 1175, 1032, 828, 744 cm-1; HRMS (ESI): m/z calcd for C38H38NO2 [M-H]+: 540.2903; found : 540.2924. 2,6-di-tert-butyl-4-(6-(4-phenoxyphenyl)-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol12-yl)phenol (10g) The reaction was performed in 0.085 mmol scale of 8a; Rf = 0.1 (5% EtOAc in hexane); white solid (48.4 mg, 94% yield); m. p. = 116-118 ℃; 1H NMR (400 MHz, CDCl3) δ 7.927.90 (m, 2H), 7.57-7.46 (m, 4H), 7.45-7.40 (m, 3H), 7.32-7.29 (m, 2H), 7.25-7.17 (m, 3H), 7.14-7.08 (m, 4H), 6.95 (s, 1H), 6.86 (s, 2H), 5.82 (s, 1H), 4.95 (s, 1H), 1.26 (s, 18H);
13
C
NMR (100 MHz, CDCl3) δ 157.7, 156.8, 151.9, 141.2, 136.8, 135.4, 135, 134.8, 134, 132.6, 131.7, 131.4, 130.5, 130.3, 130.3, 130, 128.9, 127.9, 126.1, 124, 123.9, 122.9, 119.8, 119.5, 119.5, 118.7, 118.4, 110.9, 46.8, 34.3, 30.4; FT-IR (neat): 3635, 3406, 2960, 1652, 1588, 1434, 1316, 1242, 1166 cm-1; HRMS (ESI): m/z calcd for C43H42NO2 [M+H]+: 604.3216; found : 604.3243.
ACS Paragon Plus Environment
Page 21 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
2,6-di-tert-butyl-4-(6-(2-chlorophenyl)-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (10h) The reaction was performed in 0.068 mmol scale of 8a; Rf = 0.2 (5% EtOAc in hexane); white solid (33.6 mg, 91% yield); m. p. = 236-238 ℃; 1H NMR (400 MHz, CDCl3) δ 7.957.93 (m, 1H), 7.58 (s, 1H), 7.54-7.43 (m, 4H), 7.37-7.33 (m, 4H), 7.26-7.24 (m, 1H), 7.217.19 (m, 2H), 6.85 (s, 1H), 6.71 (s, 2H), 5.85 (s, 1H), 4.92 (s, 1H), 1.22 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 151.8, 139.9, 139.4, 137, 135.2, 134.6, 134.6, 133.6, 132.2, 131.8, 131.6, 131.3, 131.0, 130.2, 129.6, 129.5, 128.3, 127.1, 126.3, 124.2, 124.2, 122.8, 120, 118.8, 118.3, 110.9, 46.4, 34.2, 30.3; FT-IR (neat): 3639, 3464, 2957, 1340, 1233, 1152, 764, 742 cm-1; HRMS (ESI): m/z calcd for C37H37ClNO [M+H]+: 546.2564; found : 546.2540. 2,6-di-tert-butyl-4-(6-(3-fluorophenyl)-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (10i) The reaction was performed in 0.068 mmol scale of 8a; Rf = 0.2 (5% EtOAc in hexane); pale yellow solid (32.6 mg, 91% yield); m. p. = 102-104 ℃; 1H NMR (400 MHz, CDCl3) δ 7.88 (d, J = 7.5 Hz, 1H), 7.84 (s, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.47-7.38 (m, 3H), 7.32-7.30 (m, 3H), 7.24-7.17 (m, 3H), 7.1 (td, J = 8.3, 1.7 Hz, 1H), 6.94 (s, 1H), 6.80 (s, 2H), 5.79 (s, 1H), 4.93 (s, 1H), 1.23 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 163.1 (d, JC-F = 245.1 Hz), 151.9, 142.9 (d, JC-F = 7.3 Hz), 141.4, 137, 134.9, 134.7, 133.9, 132.2 (d, JC-F = 2.0 Hz), 131.5, 131.2, 131.1, 130.5, 130.3 (d, JC-F = 8.2 Hz), 129.3, 127.8, 126.1, 124.6 (d, JC-F = 2.6 Hz), 123.9, 123.1, 119.9, 119.3, 118.5, 115.9 (d, JC-F = 21.6 Hz), 115.2 (d, JC-F = 21 Hz), 111, 46.8, 34.3, 30.3;
19
F NMR (376 MHz, CDCl3) δ -112.62; FT-IR (neat): 3637, 3398, 2960,
1651, 1611, 1484, 1435, 1265, 1155, 877, 787, 742 cm-1; HRMS (ESI): m/z calcd for C37H37FNO [M+H]+: 530.2859; found : 530.2841.
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
methyl 4-(12-(3,5-di-tert-butyl-4-hydroxyphenyl)-5,12-dihydrobenzo[4,5]cyclohepta[1,2-
b]indol-6-yl)benzoate (10j) The reaction was performed in 0.068 mmol scale of 8a; Rf = 0.4 (10% EtOAc in hexane); pale yellow solid (37.5 mg, 97% yield); m. p. = 111-113 ℃; 1H NMR (400 MHz, CDCl3) δ 8.1 (d, J = 7.6, 2H), 7.92-7.89 (m, 2H), 7.61 (d, J = 7.7, 2H), 7.55 (d, J = 7.7, 1H), 7.49 (d, J = 7.6, 1H), 7.44 (t, J = 7.4, 1H), 7.33-7.29 (m, 2H), 7.25-7.18 (m, 2H), 7 (s, 1H), 6.83 (s, 2H), 5.81 (s, 1H), 4.93 (s, 1H), 3.95 (s, 3H), 1.24 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 166.9, 151.9, 145.2, 141.5, 137, 134.9, 134.7, 133.9, 132.5, 131.6, 130.9, 130.5, 130.1, 129.8, 129.4, 128.9, 127.8, 126.1, 123.9, 123.9, 123.2, 120, 119.4, 118.5, 111, 52.4, 46.8, 34.3, 30.4; FT-IR (neat): 3635, 3361, 2956, 1714, 1651, 1608, 1363, 1282, 1117, 1019, 774, 743 cm-1; HRMS (ESI): m/z calcd for C39H38NO3 [M-H]+: 568.2852; found : 568.2829. 2,6-di-tert-butyl-4-(6-(4-methoxy-2-methylphenyl)-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12-yl)phenol (10k) The reaction was performed in 0.068 mmol scale of 8a; Rf = 0.2 (5% EtOAc in hexane); white solid (30.1 mg, 80% yield); m. p. = 191-193 ℃; 1H NMR (400 MHz, CDCl3) δ 7.94 (d,
J = 7.1 Hz, 1H), 7.54-7.49 (m, 3H), 7.43 (t, J = 7.2, 1H), 7.36-7.32 (m, 2H), 7.22-7.17 (m, 3H), 6.84-6.81 (m, 2H), 6.71-6.67 (m, 3H), 5.86 (s, 1H), 4.91 (s, 1H), 3.84 (s, 3H), 1.27 (s, 3H), 1.19 (s, 18H);
13
C NMR (100 MHz, CDCl3) δ 159.6, 151.7, 139.2, 139, 136.7, 135.9,
134.7, 133.3, 132.8, 132.7, 132.5, 131.1, 131, 130.9, 129.1, 128.3, 126.3, 124.2, 124.2, 122.6, 120, 118.5, 118.2, 116, 111.1, 110.9, 55.4, 46.2, 34.2, 30.2, 19.9; FT-IR (neat): 3640, 3370, 2963, 1604, 1502, 1239, 1163, 743 cm-1; HRMS (ESI): m/z calcd for C39H42NO2 [M+H]+: 556.3216; found : 556.3241. 2,6-di-tert-butyl-4-(6-(cyclohexylmethyl)-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol12-yl)phenol (10l)
ACS Paragon Plus Environment
Page 22 of 43
Page 23 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
The reaction was performed in 0.068 mmol scale of 8a; Rf = 0.4 (5% EtOAc in hexane); white solid (21.4 mg, 60% yield); m. p. = 234-236 ℃; 1H NMR (400 MHz, CDCl3) δ 7.967.94 (m, 2H), 7.41-7.33 (m, 4H), 7.28-7.20 (m, 3H), 6.72 (s, 1H), 6.61 (s, 2H), 5.75 (s, 1H), 4.88 (s, 1H), 2.64 (dd, J = 13.8, 0.7, 1H), 2.24-2.18 (m, 1H), 1.49-1.32 (m, 3H), 1.21 (s, 18H), 1.06-0.68 (m, 7H), 0.5-0.4 (m, 1H);
13
C NMR (100 MHz, CDCl3) δ 151.6, 138.8,
136.7, 135.9, 134.6, 133.1, 132.4, 130.6, 130.56, 130.4, 130.3, 128.6, 128.3, 126.2, 124.1, 122.5, 120, 119.7, 118.1, 110.8, 46, 44.5, 37.4, 34.2, 34.1, 32, 30.3, 26.5, 26.3, 26.2; FT-IR (neat): 3642, 3424, 2923, 2852, 1651, 1234, 1156, 879, 742 cm-1; HRMS (ESI): m/z calcd for C38H46NO [M+H]+: 532.3579; found : 532.3557. 2,6-di-tert-butyl-4-(9-methyl-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (10m) The reaction was performed in 0.085 mmol scale of 8a; Rf = 0.3 (5% EtOAc in hexane); colourless gummy solid (39.7 mg, 88% yield); 1H NMR (400 MHz, CDCl3) δ 7.89-7.85 (m, 2H), 7.56-7.54 (m, 2H), 7.48-7.40 (m, 4H), 7.28-7.16 (m, 5H), 6.92 (s, 1H), 6.89 (s, 2H), 5.77 (s, 1H), 4.92 (s, 1H), 2.39 (s, 3H), 1.26 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 151.9, 140.8, 138.6, 136.8, 135.4, 134.8, 134.76, 134.5, 133.2, 132.0, 131.7, 130.9, 130.4, 129.9, 129.0, 128.8, 128.2, 127.9, 124.0, 122.8, 119.7, 118.9, 118.4, 110.8, 46.6, 34.3, 30.4, 21.0; FT-IR (neat): 3637, 2956, 1728, 1434, 1375, 1334, 1152, 748 cm-1; HRMS (ESI): m/z calcd for C38H40NO [M+H]+: 526.3110; found : 526.3088. 2,6-di-tert-butyl-4-(10-methoxy-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol12-yl)phenol (10n) The reaction was performed in 0.085 mmol scale of 8a; Rf = 0.1 (5% EtOAc in hexane); colourless gummy solid (30 mg, 65% yield); 1H NMR (400 MHz, CDCl3) δ 7.88-7.84 (m, 2H), 7.53-7.50 (m, 2H), 7.46-7.37 (m, 4H), 7.28-7.24 (m, 1H), 7.22-7.15 (m, 2H), 7.07 (d, J
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 24 of 43
= 2.6 Hz, 1H), 6.90 (brs, 3H), 6.85 (dd, J = 8.5, 2.6 Hz, 1H), 5.72 (s, 1H), 4.92 (s, 1H), 3.88 (s, 3H), 1.25 (s, 18H);
13
C NMR (100 MHz, CDCl3) δ 160.8, 152.0, 142.6, 140.8, 136.7,
134.9, 134.3, 133.1, 131.9, 131.4, 130.4, 129.0, 128.8, 128.2, 128.0, 127.9, 123.9, 122.7, 119.7, 118.2, 117.8, 115.3, 112.0, 110.8, 55.6, 47.3, 34.3, 30.4; FT-IR (neat): 3637, 2956, 1727, 1435, 1604, 1375, 1048, 748 cm-1; HRMS (ESI): m/z calcd for C38H40NO2 [M+H]+: 542.3059; found : 542.3045. 2,6-di-tert-butyl-4-(6-methyl-5H-benzo[b]carbazol-11-yl)phenol (10o) The reaction was performed in 0.12 mmol scale of 8a; Rf = 0.3 (5% EtOAc in hexane); white solid (21.6 mg, 41% yield); m. p. = 244-246 ℃; 1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 8.4 Hz, 1H), 7.96-7.94 (m, 2H), 7.58-7.54 (m, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.39-7.34 (m, 2H), 7.30 (s, 2H), 6.95-6.90 (m, 2H), 5.39 (s, 1H), 2.90 (s, 3H), 1.49 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 153.5, 142.3, 138.0, 136.4, 133.4, 131.1, 129.8, 128.1, 127.5, 127.1, 126.8, 124.8, 124.4, 123.5, 123.5, 122.8, 122.2, 119.1, 110.2, 110.0, 34.7, 30.7, 13.0; FT-IR (neat): 3630, 3433, 2957 cm-1; HRMS (ESI): m/z calcd for C31H34NO [M+H]+: 436.2640; found : 436.2628. 2,6-dimethyl-4-(6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12-yl)phenol (10p) The reaction was performed in 0.068 mmol scale of 8a; Rf = 0.5 (10% EtOAc in hexane); white solid (25 mg, 86% yield); m. p. = 120-122 ℃; 1H NMR (400 MHz, CDCl3) δ 7.92 (s, 1H), 7.86 (d, J = 7.4 Hz, 1H), 7.56-7.51 (m, 3H), 7.47-7.38 (m, 5H), 7.33-7.28 (m, 2H), 7.257.18 (m, 2H), 6.93 (s, 1H), 6.55 (s, 2H), 5.77 (s, 1H), 4.34 (s, 1H), 2.03 (s, 6H);
13
C NMR
(100 MHz, CDCl3) δ 150.3, 141.3, 140.6, 136.9, 134.9, 134.0, 133.5, 132.1, 131.4, 130.5, 130.2, 128.9, 128.88, 128.83, 128.3, 127.7, 127.5, 126.0, 123.0, 122.0, 120.0, 118.3, 118.2,
ACS Paragon Plus Environment
Page 25 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
111.0, 45.7, 16.1; FT-IR (neat): 3568, 3414, 2923 cm-1; HRMS (ESI): m/z calcd for C31H26NO [M+H]+: 428.2014; found : 428.2026. 2,6-di-tert-butyl-4-(2-methyl-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (11b) The reaction was performed in 0.076 mmol scale of 8b; Rf = 0.2 (5% EtOAc in hexane); white solid (38.2 mg, 96% yield); m. p. = 231-233 ℃; 1H NMR (400 MHz, CDCl3) δ 7.79 (s, 1H), 7.67 (s, 1H), 7.57-7.55 (m, 3H), 7.48-7.40 (m, 5H), 7.29 (td, J = 7.1, 1 Hz, 1H), 7.18 (d,
J = 8.2 Hz, 1H), 7.05 (dd, J = 8.2, 1 Hz, 1H), 6.94 (s, 1H), 6.87 (s, 2H), 5.79 (s, 1H), 4.94 (s, 1H), 2.52 (s, 3H), 1.27 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 151.9, 141.3, 140.7, 135.3, 135, 134.8, 134, 133.4, 131.9, 131.5, 130.5, 130.4, 129, 128.92, 128.9, 128.8, 128.2, 128.1, 126, 124.6, 124, 118.2, 118, 110.6, 46.9, 34.3, 30.4, 21.8; FT-IR (neat): 3635, 3388, 2959, 2873, 1655, 1434, 1364, 1306, 1230, 765, 700 cm-1; HRMS (ESI): m/z calcd for C38H40NO [M+H]+: 526.3110; found : 526.3088. 2,6-di-tert-butyl-4-(2-ethyl-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (11c) The reaction was performed in 0.1 mmol scale of 8c; Rf = 0.2 (5% EtOAc in hexane); white solid (40.9 mg, 76% yield); m. p. = 184-186 ℃; 1H NMR (400 MHz, CDCl3) δ 7.77-7.74 (m, 2H), 7.59-7.57 (m, 2H), 7.53 (d, J = 7.1 Hz, 1H), 7.49-7.39 (m, 5H), 7.29 (td, J = 7.5, 1.2 Hz, 1H), 7.16 (t, J = 7.3 Hz, 1H), 7.07 (d, J = 3 Hz, 1H), 6.97 (s, 1H), 6.87 (s, 2H), 5.79 (s, 1H), 4.92 (s, 1H), 2.83-2.68 (m, 2H), 1.28 (t, J = 7.6 Hz, 3H), 1.25 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 151.9, 141.5, 140.7, 135.7, 135, 134.8, 134.1, 133.4, 131.4, 131.1, 130.6, 130.4, 129, 128.9, 128.8, 128.3, 127.6, 126.3, 126, 124, 121.4, 120.1, 119.5, 116.2, 47.1, 34.3, 30.4, 24, 13.9; FT-IR (neat): 3637, 3469, 2962, 1654, 1598, 1434, 1362, 1265, 1234, 1155, 1120 cm-1; HRMS (ESI): m/z calcd for C39H42NO [M+H]+: 540.3266; found : 540.3246.
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
2,6-di-tert-butyl-4-(2-methoxy-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol12-yl)phenol (11d) The reaction was performed in 0.01 mmol scale of 8d; Rf = 0.1 (5% EtOAc in hexane); white solid (34.2 mg, 63% yield); m. p. = 92-94 ℃; 1H NMR (400 MHz, CDCl3) δ 7.77 (s, 1H), 7.56-7.51 (m, 3H), 7.47-7.40 (m, 5H), 7.32-7.28 (m, 2H), 7.17 (d, J = 7.8 Hz, 1H), 6.9 (s, 1H), 6.87 (dd, J = 8.8, 2.4 Hz, 1H), 6.83 (s, 2H), 5.73 (s, 1H), 4.93 (s, 1H), 3.92 (s, 3H), 1.25 (s, 18H);
13
C NMR (100 MHz, CDCl3) δ 154.3, 151.9, 141.2, 140.7, 135.1, 134.8, 134.1,
133.4, 132.6, 132.2, 131.5, 130.5, 130.4, 129, 128.9, 128.8, 128.3, 128.3, 126.1, 124, 118.5, 113.4, 111.8, 99.7, 56.0, 46.9, 34.3, 30.4; FT-IR (neat): 3635, 3418, 2957, 1653, 1599, 1487, 1434, 1264, 1219, 1110, 1032 cm-1; HRMS (ESI): m/z calcd for C38H40NO2 [M+H]+: 542.3059; found : 542.3048. 2,6-di-tert-butyl-4-(4-ethyl-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (11e) The reaction was performed in 0.13 mmol scale of 8a; Rf = 0.2 (5% EtOAc in hexane); white solid (48.6 mg, 69% yield); m. p. = 181-183 ℃; 1H NMR (400 MHz, CDCl3) δ 7.76-7.73 (m, 2H), 7.58 (d, J = 7.1 Hz, 2H), 7.54 (d, J = 7.5 Hz, 1H), 7.49-7.39 (m, 5H), 7.29 (t, J = 7.4 Hz, 1H), 7.16 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 7.1 Hz, 1H), 6.97 (s, 1H), 6.87 (s, 2H), 5.79 (s, 1H), 4.92 (s, 1H), 2.84-2.68 (m, 2H), 1.28 (t, J = 7.7 Hz, 3H), 1.25 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 151.9, 141.5, 140.7, 135.8, 135.0, 134.8, 134.2, 133.4, 131.4, 131.1, 130.7, 130.4, 129.0, 128.9, 128.8, 128.3, 127.6, 126.3, 126.0, 124.0, 121.5, 120.1, 119.6, 116.2, 47.1, 34.3, 30.4, 24.0, 13.9; FT-IR (neat): 3650, 3370, 2959, 1441cm-1; HRMS (ESI): m/z calcd for C39H42NO [M+H]+: 540.3266; found : 540.3245. 2,6-di-tert-butyl-4-(2-(phenoxymethyl)-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-
b]indol-12-yl)phenol (11f)
ACS Paragon Plus Environment
Page 26 of 43
Page 27 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
The reaction was performed in 0.067 mmol scale of 8e; Rf = 0.1 (5% EtOAc in hexane); white solid (37.2 mg, 90% yield); m. p. = 215-217 ℃; 1H NMR (400 MHz, CDCl3) δ 7.77 (s, 1H), 7.55-7.52 (m, 5H), 7.48-7.44 (m, 3H), 7.42-7.39 (m, 5H), 7.36 (d, J = 7.2 Hz, 1H), 7.30 (t, J = 7.4 Hz, 1H) 7.18 (d, J = 8.7 Hz, 1H), 6.95 (dd, J = 8.7, 2.1 Hz, 1H), 6.91 (s, 1H), 6.83 (s, 2H), 5.72 (s, 1H), 5.20-5.13 (m, 2H), 4.93 (s, 1H), 1.25 (s, 18H);
13
C NMR (100 MHz,
CDCl3) δ 153.6, 151.9, 141.2, 140.7, 137.7, 135, 134.8, 134, 133.4, 132.6, 132.4, 131.5, 130.5, 130.46, 129, 128.9, 128.8, 128.7, 128.7, 128.3, 128, 127.9, 126.1, 124, 118.5, 114, 111.7, 101.5, 71.1, 46.9, 34.3, 30.4; FT-IR (neat): 3633, 3424, 2958, 1651, 1485, 1451, 1225, 1110, 1025, 766, 737 cm-1; HRMS (ESI): m/z calcd for C44H42NO2 [M-H]+: 616.3216; found : 616.3243. 2,6-di-tert-butyl-4-(2-iodo-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (11g) The reaction was performed in 0.1 mmol scale of 8f; Rf = 0.2 (5% EtOAc in hexane); white solid (44.3 mg, 70% yield); m. p. = 258-260 ℃; 1H NMR (400 MHz, CDCl3) δ 8.20 (s, 1H), 7.93 (s, 1H), 7.56-7.51 (m, 3H), 7.47-7.41 (m, 6H), 7.31 (t, J = 7.4 Hz, 1H), 7.05 (d, J = 8.5 Hz, 1H), 6.96 (s, 1H), 6.80 (s, 2H), 5.70 (s, 1H), 4.95 (s, 1H), 1.25 (s, 18 H); 13C NMR (100 MHz, CDCl3) δ 152, 141.1, 140.3, 135.7, 134.9, 134.7, 133.5, 132.8, 132.6, 131.6, 131.5, 131.1, 130.5, 130.4, 129.2, 128.94, 128.9, 128.4, 127.3, 126.2, 123.9, 117.5, 112.9, 83.2, 46.7, 34.3, 30.3; FT-IR (neat): 3634, 3422, 2958, 1598, 1434, 1361, 1301, 1265, 1232, 1155, 1119 cm-1; HRMS (ESI): m/z calcd for C37H37INO [M+H]+: 638.1920; found : 638.1930. 4-(2-bromo-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12-yl)-2,6-di-tertbutylphenol (11h) The reaction was performed in 0.051 mmol scale of 8g; Rf = 0.2 (5% EtOAc in hexane); pale yellow solid (24 mg, 80% yield); m. p. = 90-92 ℃; 1H NMR (400 MHz, CDCl3) δ 7.98 (d, J =
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1.5 Hz, 1H), 7.90 (s, 1H), 7.55-7.50 (m, 3H), 7.47-7.41 (m, 5H), 7.33-7.26 (m, 2H), 7.15 (d, J = 8.7 Hz, 1H), 6.95 (s, 1H), 6.79 (s, 2H), 5.69 (s, 1H), 4.93 (s, 1H), 1.24 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 152, 141.1, 140.3, 135.3, 134.9, 134.8, 133.5, 133.1, 132.9, 131.6, 131.5, 130.5, 129.6, 129.3, 129, 128.9, 128.4, 126.2, 125.7, 123.9, 121, 117.9, 113.1, 112.4, 46.7, 34.3, 30.3; FT-IR (neat): 3636, 3425, 2958, 1233, 1155, 1119, 983, 766, 738, 701 cm-1; HRMS (ESI): m/z calcd for C37H37BrNO [M+H]+: 590.2059; found : 590.2045. 2,6-di-tert-butyl-4-(2-chloro-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (11i) The reaction was performed in 0.057 mmol scale of 8h; Rf = 0.2 (5% EtOAc in hexane); white solid (28.6 mg, 99% yield); m. p. = 200-202 ℃; 1H NMR (400 MHz, CDCl3) δ 7.90 (s, 1H), 7.83 (d, J = 1.3 Hz, 1H), 7.55-7.50 (m, 3H), 7.47-7.41 (m, 5H), 7.31 (td, J = 7.4, 1 Hz, 1H), 7.20-7.13 (m, 2H), 6.95 (s, 1H), 6.79 (s, 2H), 5.70 (s, 1H), 5.94 (s, 1H), 1.24 (s, 18H); 13
C NMR (100 MHz, CDCl3) δ 152, 141.1, 140.3, 135.1, 134.9, 134.8, 133.6, 133.2, 132.9,
131.6, 131.5, 130.5, 129.2, 129, 129, 128.9, 128.4, 126.2, 125.5, 123.9, 123.2, 118, 117.9, 112, 46.8, 34.3, 30.3; FT-IR (neat): 3636, 3424, 2959, 1651, 1598, 1233, 1155, 1060, 766, 738 cm-1; HRMS (ESI): m/z calcd for C37H37ClNO [M+H]+: 546.2564; found : 546.2543. 2,6-di-tert-butyl-4-(3-chloro-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (11j) The reaction was performed in 0.051 mmol scale of 8i; Rf = 0.2 (5% EtOAc in hexane); pale yellow solid (28.4 mg, 99% yield); m. p. = 123-125 ℃; 1H NMR (400 MHz, CDCl3) δ 7.86 (s, 1H), 7.77 (d, J = 8.5 Hz, 1H), 7.53-7.45 (m, 6H), 7.43-7.41 (m, 2H), 7.33-7.30 (m, 1H), 7.27-7.26 (m, 1H), 7.14 (dd, J = 8.5, 1.7 Hz, 1H), 6.95 (s, 1H), 6.77 (s, 2H), 5.73 (s, 1H), 4.93 (s, 1H), 1.23 (s, 18H);
13
C NMR (100 MHz, CDCl3) δ 152, 141, 140.3, 137, 134.9,
134.86, 133.7, 133, 132.4, 131.5, 131.2, 130.5, 129.2, 128.93, 128.9, 128.6, 128.4, 126.5,
ACS Paragon Plus Environment
Page 28 of 43
Page 29 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
126.2, 123.9, 120.6, 119.3, 118.6, 110.9, 46.7, 34.3, 30.3; FT-IR (neat): 3637, 3418, 2959, 1652, 1364, 1234, 1155, 1063, 916, 766, 700 cm-1; HRMS (ESI): m/z calcd for C37H37ClNO [M+H]+: 546.2564; found : 546.2542. 2,6-di-tert-butyl-4-(2-fluoro-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (11k) The reaction was performed in 0.14 mmol scale of 8a; Rf = 0.1 (5% EtOAc in hexane); pale yellow solid (50 mg, 68% yield); m. p. = 233-235 ℃; 1H NMR (400 MHz, CDCl3) δ 7.85 (s, 1H), 7.56-7.51 (m, 4H), 7.49-7.40 (m, 5H), 7.32 (td, J = 7.4, 0.7 Hz, 1H), 7.19 (dd, J = 8.8, 4.3 Hz, 1H), 6.98-6.93 (m, 2H), 6.83 (s, 2H), 5.70 (s, 1H), 4.95 (s, 1H), 1.26 (s, 18H);
13
C
NMR (100 MHz, CDCl3) δ 158.1 (d, JC-F = 233.3 Hz), 152.0, 141.1, 140.4, 134.9 (2C), 133.8, 133.6, 133.3, 133.1, 131.5, 131.2, 130.5, 129.2, 129.0, 128.9, 128.4, 128.3 (d, JC-F = 9.6 Hz), 126.2, 123.9, 118.7 (d, JC-F = 4.9 Hz), 111.6 (d, JC-F = 9.4 Hz), 111.3 (d, JC-F = 26.3 Hz), 103.2 (d, JC-F = 23.5 Hz), 46.9, 34.3, 30.3;
19
F NMR (376 MHz, CDCl3) δ -124.16; FT-IR
(neat): 3635, 3452 2957 cm-1; HRMS (ESI): m/z calcd for C37H37FNO [M+H]+: 530.2859; found : 530.2833. 2,6-di-tert-butyl-4-(3-chloro-2-fluoro-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-
b]indol-12-yl)phenol (11l) The reaction was performed in 0.059 mmol scale of 8j; Rf = 0.1 (5% EtOAc in hexane); pale yellow solid (21.3 mg, 64% yield); m. p. = 135-137 ℃; 1H NMR (400 MHz, CDCl3) δ 7.87 (s, 1H), 7.58 (d, J = 9.7 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.49-7.47 (m, 4H), 7.45-7.38 (m, 3H), 7.35-7.28 (m, 2H), 6.96 (s, 1H), 6.76 (s, 2H), 5.63 (s, 1H), 4.95 (s, 1H), 1.24 (s, 18H); 13
C NMR (100 MHz, CDCl3) δ 153.3 (d, JC-F = 236.8 Hz), 152.1, 141.0, 140.2, 135.0, 134.8,
134.0, 133.4, 132.9, 132.8, 131.7 (d, JC-F = 2.9 Hz), 130.5, 129.3, 128.9 (d, JC-F = 1.5 Hz), 128.5, 126.9 (d, JC-F = 8.5 Hz), 126.4, 123.8, 118.6 (d, JC-F = 4.8 Hz), 116.4 (d, JC-F = 21.4
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Hz), 112.1, 106.8, 104.3 (d, JC-F = 23.5 Hz), 46.8, 34.3, 30.3; 19F NMR (376 MHz, CDCl3) δ -126.45; FT-IR (neat): 3636, 3423, 2959, 1651, 1476, 1451, 1317, 1116, 854, 767, 738, 699 cm-1; HRMS (ESI): m/z calcd for C37H34ClFNO [M-H]+: 562.2313; found : 562.2338. Methyl
12-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-phenyl-5,12-dihydrobenzo[4,5]-
cyclohepta[1,2-b]indole-2-carboxylate (11m) The reaction was performed in 0.057 mmol scale of 8o; Rf = 0.4 (10% EtOAc in hexane); pale yellow solid (30.3 mg, 93% yield); m. p. = 128-130 ℃; 1H NMR (400 MHz, CDCl3) δ 8.67 (s, 1H), 8.08 (s, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 7.5 Hz, 1H), 7.52-7.50 (m, 2H), 7.48-7.41 (m, 5H), 7.33-7.27 (m, 2H), 6.98 (s, 1H), 6.79 (s, 2H), 5.85 (s, 1H), 4.93 (s, 1H), 3.96 (s, 3H), 1.23 (s, 18H);
13
C NMR (100 MHz, CDCl3) δ 168.3, 152, 141.1, 140.2,
139.2, 134.9, 134.8, 133.5, 133.1, 132.8, 131.7, 131.6, 130.6, 129.3, 129, 128.9, 128.5, 127.6, 126.3, 124.3, 123.9, 121.9, 121.5, 119.5, 110.6, 52, 46.6, 34.3, 30.3; FT-IR (neat): 3636, 3332, 2955, 1698, 1652, 1619, 1246, 1121, 767, 700 cm-1; HRMS (ESI): m/z calcd for C39H40NO3 [M+H]+: 570.3008; found : 570.3030. (E)-2,6-di-tert-butyl-4-(6-phenyl-2-styryl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol12-yl)phenol (11n) The reaction was performed in 0.068 mmol scale of 8n; Rf = 0.1 (5% EtOAc in hexane); white solid (41.8 mg, 99% yield); m. p. = 254-256 ℃; 1H NMR (400 MHz, CDCl3) δ 8 (s, 1H), 7.9 (s, 1H), 7.61-7.54 (m, 5H), 7.49-7.42 (m, 6H), 7.39 (t, J = 7.4 Hz, 2H), 7.33 (d, J = 6.4 Hz, 1H), 7.29-7.24 (m, 3H), 7.15 (d, J = 16.3 Hz, 1H), 6.95 (1H), 6.85 (s, 2H), 5.85 (s, 1H), 4.94 (s, 1H), 1.26 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 151.9, 141.2, 140.5, 138.2, 136.7, 135, 134.9, 133.9, 133.2, 132.5, 131.5, 130.9, 130.5, 130.2, 129.5, 129.1, 129, 128.9, 128.8, 128.3, 128.28, 127.1, 126.4, 126.2, 126.1, 124, 121.8, 118.8, 116.9, 111.2, 46.7, 34.3,
ACS Paragon Plus Environment
Page 30 of 43
Page 31 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
30.4; FT-IR (neat): 3636, 3417, 2956, 2924, 2854, 1597, 1362, 1264, 1156, 960, 766, 699 cm1
; HRMS (ESI): m/z calcd for C45H42NO [M-H]+: 612.3266; found : 612.3229.
2,6-di-tert-butyl-4-(13-phenyl-7,14-dihydrobenzo[g]benzo[4,5]cyclohepta[1,2-b]indol-7yl)phenol (11o) The reaction was performed in 0.074 mmol scale of 8m; Rf = 0.1 (5% EtOAc in hexane); pale yellow solid (36.3 mg, 87% yield); m. p. = 103-104 ℃; 1H NMR (400 MHz, CDCl3) δ 8.57 (s, 1H), 7.95 (t, J = 9 Hz, 2H), 7.87 (t, J = 7.9 Hz, 1H), 7.61-7.58 (m, 4H), 7.51-7.40 (m, 7H), 7.34-7.30 (m, 1H), 6.94 (s, 1H), 6.84 (s, 2H), 5.88 (s, 1H), 4.93 (s, 1H), 1.24 (s, 18H); 13
C NMR (100 MHz, CDCl3) δ 151.9, 141.1, 140.8, 135.2, 134.8, 134, 133.3, 131.8, 131.4,
131.1, 130.5, 130.4, 129.9, 129.1, 129.03, 129, 128.9, 128.4, 126.1, 125.5, 124.3, 124, 123.7, 121.6, 120.9, 120.5, 119.7, 118.4, 47, 34.3, 30.4; FT-IR (neat): 3639, 3433, 2957, 1651, 1433, 1363, 1146, 802, 745, 701 cm-1; HRMS (ESI): m/z calcd for C41H38NO [M-H]+: 560.2953; found : 560.2931. 2,6-di-tert-butyl-4-(5-phenyl-2,3,4,11-tetrahydro-1H-benzo[4,5]cyclohepta[1,2-
b]cyclopenta[g]indol-11-yl)phenol (11p) The reaction was performed in 0.13 mmol scale of 8a; Rf = 0.3 (5% EtOAc in hexane); white solid (52 mg, 79% yield); m. p. = 242-244 ℃; 1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8.1 Hz, 1H), 7.64 (s, 1H), 7.59 (d, J = 6.8 Hz, 2H), 7.53 (d, J = 7.5 Hz, 1H), 7.49-7.38 (m, 5H), 7.31-7.27 (m, 1H), 7.13 (d, J = 8.1 Hz, 1H), 6.94 (s, 1H), 6.88 (s, 2H), 5.80 (s, 1H), 4.92 (s, 1H), 3.13-3.04 (m, 2H), 3.02-2.97 (m, 1H), 2.93-2.85 (m, 1H), 2.27-2.12 (m, 2H), 1.26 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 151.9, 141.4, 140.9, 139.7, 135.1, 134.8, 134.2, 133.5, 131.3, 130.8, 130.4, 130.2, 129.0 (2C), 128.8, 128.79, 128.2, 126.6, 125.9, 125.2, 124.0, 119.7, 116.8, 116.5, 47.3, 34.3, 33.4, 30.4, 27.1, 25.5; FT-IR (neat): 3642, 3454, 2956 cm-1; HRMS (ESI): m/z calcd for C40H42NO [M+H]+: 552.3266; found : 552.3248.
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 32 of 43
2,6-di-tert-butyl-4-(2,6-diphenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (11q) The reaction was performed in 0.077 mmol scale of 8l; Rf = 0.1 (5% EtOAc in hexane); pale yellow solid (30.3 mg, 65% yield); m. p. = 112-114 ℃; 1H NMR (400 MHz, CDCl3) δ 8.09 (s, 1H), 7.93 (s, 1H), 7.72 (d, J = 7.8 Hz, 2H), 7.58-7.56 (m, 3H), 7.49-7.41 (m, 8H), 7.367.29 (m, 3H), 6.97 (s, 1H), 6.69 (s, 2H), 5.87 (s, 1H), 4.94 (s, 1H), 1.26 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 151.9, 142.7, 141.3, 140.6, 136.4, 135, 134.9, 133.9, 133.3, 133.2, 132.5, 131.5, 130.9, 130.5, 129.1, 129, 128.9, 128.8, 128.4, 128.3, 127.5, 126.5, 126.1, 124, 122.8, 118.9, 116.8, 111.2, 46.8, 34.3, 30.4; FT-IR (neat): 3632, 3419, 2958, 1651, 1598, 1472, 1265, 1155, 764, 699 cm-1; HRMS (ESI): m/z calcd for C43H40NO [M-H]+: 586.3110; found : 586.3134. 4-(2-([1,1'-biphenyl]-4-yl)-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)-2,6-di-tert-butylphenol (11r) The reaction was performed in 0.14 mmol scale of 8a; Rf = 0.1 (5% EtOAc in hexane); white solid (77 mg, 83% yield); m. p. = 282-284 ℃; 1H NMR (400 MHz, CDCl3) δ 8.17 (s, 1H), 7.94 (s, 1H), 7.84-7.82 (m, 2H), 7.76-7.72 (m, 4H), 7.61-7.53 (m, 5H), 7.52-7.43 (m, 6H), 7.41-7.31 (m, 3H), 7.00 (s, 1H), 6.92 (s, 2H), 5.92 (s, 1H), 4.97 (s, 1H), 1.29 (s, 18H);
13
C
NMR (100 MHz, CDCl3) δ 152.0, 141.6, 141.3, 141.1, 140.6, 139.3, 136.5, 135.0, 134.9, 133.9, 133.2, 132.7, 132.5, 131.5, 131.0, 130.5, 129.1, 129.0, 128.9, 128.86, 128.5, 128.3, 127.7, 127.6, 127.3, 127.2, 126.1, 124.0, 122.7, 118.9, 116.7, 111.3, 46.8, 34.3, 30.4; FT-IR (neat): 3633, 3423, 2956 cm-1; HRMS (ESI): m/z calcd for C49H46NO [M+H]+: 664.3579; found : 664.3546. 2,6-di-tert-butyl-4-(5-methyl-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (11s)
ACS Paragon Plus Environment
Page 33 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
The reaction was performed in 0.076 mmol scale of 8k; Rf = 0.4 (5% EtOAc in hexane); white solid (29 mg, 73% yield); m. p. = 217-219 ℃; 1H NMR (400 MHz, CDCl3) δ 7.90 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 7.5 Hz, 2H), 7.40-7.33 (m, 5H), 7.31-7.29 (m, 3H), 7.26-7.18 (m, 2H), 7.03 (s, 1H), 6.73 (s, 2H), 5.76 (s, 1H), 4.88 (s, 1H), 3.14 (s, 3H), 1.21 (s, 18H);
13
C
NMR (100 MHz, CDCl3) δ 151.8, 143.5, 142.2, 139.6, 134.9, 134.6, 133.6, 133.4, 133.2, 132.5, 130.7, 129.9, 128.7, 128.6, 127.8, 127.6, 127.2, 125.9, 123.9, 122.5, 121.6, 119.5, 118.2, 109.5, 46.1, 34.3, 32.5, 30.3; FT-IR (neat): 3635, 2958, 1656, 1363, 1321, 1233, 1161, 741, 699 cm-1; HRMS (ESI): m/z calcd for C38H40NO [M+H]+: 526.3110; found : 526.3094. 2,6-di-tert-butyl-4-(5-ethyl-6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12yl)phenol (11t) The reaction was performed in 0.17 mmol scale of 8a; Rf = 0.5 (10% EtOAc in hexane); pale yellow solid (63 mg, 68% yield); m. p. = 194-196 ℃; 1H NMR (400 MHz, CDCl3) δ 7.94 (d,
J = 7.6 Hz, 1H), 7.51-7.49 (m, 2H), 7.42 (dd, J = 7.4, 1.4 Hz, 1H), 7.39-7.36 (m, 4H), 7.357.31 (m, 3H), 7.30-7.26 (m, 1H), 7.25-7.21 (m, 1H), 6.99 (s, 1H), 6.78 (d, J = 0.7 Hz, 2H), 5.79 (s, 1H), 4.92 (s, 1H), 3.91-3.82 (m, 1H), 3.47-3.38 (m, 1H), 1.25 (s, 18H), 0.89 (t, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 151.8, 143.5, 142.2, 138.8, 135.0, 134.6, 133.9, 133.6, 132.6, 132.5, 130.7, 129.9, 128.5 (2C), 128.47, 127.9, 127.6, 125.8, 123.9, 122.4, 122.3, 119.5, 118.3, 109.8, 46.1, 39.5, 34.3, 30.3, 14.6; FT-IR (neat): 3635, 2959 cm-1; HRMS (ESI): m/z calcd for C39H42NO [M+H]+: 540.3266; found : 540.3252. 2,6-di-tert-butyl-4-(2-(methoxymethyl)-5-methyl-6-phenyl-5,12dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12-yl)phenol (11u) The reaction was performed in 0.11 mmol scale of 8a; Rf = 0.5 (5% EtOAc in hexane); white solid (36 mg, 57% yield); m. p. = 219-221 ℃; 1H NMR (400 MHz, CDCl3) δ 7.86 (s, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.41-7.36 (m, 5H), 7.34-7.23 (m, 4H), 7.03 (s, 1H), 6.73 (s, 2H),
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 34 of 43
5.76 (s, 1H), 4.88 (s, 1H), 4.66-4.60 (m, 2H), 3.42 (s, 3H), 3.13 (s, 3H), 1.21 (s, 18H);
13
C
NMR (100 MHz, CDCl3) δ 151.8, 143.4, 142.1, 139.3, 134.9, 134.6, 133.8, 133.5, 133.3, 132.6, 130.7, 130.0, 129.1, 128.7, 128.6, 127.8, 127.6, 127.1, 125.9, 123.9, 123.2, 121.5, 118.1, 109.5, 75.8, 57.9, 46.1, 34.3, 32.6, 30.3; FT-IR (neat): 3637, 2955, 1453 cm-1; HRMS (ESI): m/z calcd for C40H44NO2 [M+H]+: 570.3372; found : 570.3358. Preparation
of
4-((1H-indol-3-yl)(2-(phenylethynyl)phenyl)methyl)-2,6-di-tert-
butylphenol (9) A mixture of indole (8a) (1 equiv.), 2-alkynylated p-quinone methide (7a) (1.1 equiv.) and Bi(OTf)3 (0.05 equiv.) in DCE (1.5 mL) stirred at room temperature. After completion of the reaction, solvent was removed under reduced pressure and the residue was directly loaded on a silica gel column and eluted using EtOAc/hexane mixture to obtain pure 4-((1H-indol-3yl)(2-(phenylethynyl)phenyl)methyl)-2,6-di-tert-butylphenol; Rf
= 0.1 (5% EtOAc in
hexane); pale yellow solid (17.2 mg, 80% yield); m. p. = 99-101 ℃; 1H NMR (400 MHz, CDCl3) δ 7.95 (s, 1H), 7.58-7.55 (m, 1H), 7.42-7.39 (m, 2H), 7.34 (d, J = 8.1 Hz, 1H), 7.317.27 (m, 4H), 7.20-7.19 (m, 3H), 7.18-7.16 (m, 1H), 7.13 (s, 2H), 6.99 (t, J = 7.3 Hz, 1H), 6.64 (d, J = 1.2 Hz, 1H), 6.20 (s, 1H), 5.05 (s, 1H), 1.34 (s, 18H);
13
C NMR (100 MHz,
CDCl3) δ 152.1, 146.8, 136.9, 135.4, 133.5, 132.3, 131.7, 128.8, 128.4, 128.36, 128.2, 127.3, 126.1, 125.8, 124.2, 123.6, 123, 122.1, 120.8, 120.2, 119.4, 111, 94, 88.8, 46.7, 34.5, 30.5; FT-IR (neat): 3399, 3277, 2922, 2856, 2091, 1672, 1593, 1362, 1233, 1075, 998, 760 cm-1; HRMS (ESI): m/z calcd for C37H38NO [M+H]+: 512.2953; found : 512.2941. Synthesis of 4-(6-phenyl-5,12-dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12-yl)phenol (16) AlCl3 (68 mg, 0.13 mmol) was added to a solution of 10a (177 mg, 1.3 mmol) in 5 mL of benzene, and the resulting mixture was stirred at 55 °C temperature until 10a was completely consumed (by TLC). The reaction mixture was quenched with water and extracted with ethyl
ACS Paragon Plus Environment
Page 35 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
acetate (3 × 5 mL). The combined organic layers were evaporated using a rotary evaporator. The crude reaction mixture was loaded on a silica gel column and purified using a hexane/EtOAc
mixture
as
an
eluent
to
obtain
pure
4-(6-phenyl-5,12-
dihydrobenzo[4,5]cyclohepta[1,2-b]indol-12-yl)phenol. Rf = 0.5 (30% EtOAc in hexane); pale yellow solid (41.2 mg, 80% yield); m. p. = 230-232 ℃;; 1H NMR (400 MHz, CDCl3) δ 7.90-7.88 (m, 2H), 7.55 (d, J = 7.2 Hz, 1H), 7.50-7.37 (m, 7H), 7.35-7.19 (m, 4H), 6.93 (s, 1H), 6.77 (d, J = 8.2 Hz, 2H), 6.53-6.49 (m, 2H), 5.80 (s, 1H), 4.56 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 153.5, 140.8, 140.5, 136.8, 135.2, 135.1, 133.5, 132.0, 131.4, 130.5, 130.3, 129.0, 128.9, 128.9, 128.5, 128.3, 127.7, 126.2, 123.1, 120.0, 118.6, 118.3, 114.4, 111.1, 45.6; FT-IR (neat): 3412, 3057, 2926, 1610, 1508, 1447, 1335, 1262, 909, 745, 700 cm-1; HRMS (ESI): m/z calcd for C29H22NO [M+H]+: 400.1701; found : 400.1694.
Supporting Information 1
H, 13C and 19F spectra of all new compounds.
Notes
The Authors declare no competing financial interest. Acknowledgements The authors gratefully acknowledge DST-SERB (EMR/2015/001759) for the financial support and IISER Mohali for the infrastructure. ASJ and YAP thank IISER Mohali for a research fellowship. The NMR and HRMS facilities at IISER Mohali are gratefully acknowledged. XtaLabmini single crystal X-ray facility of the Department of Chemical Sciences at IISER Mohali is acknowledged for the data collections. References
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 36 of 43
1. For a recent review: Gataullin, R. R. New Syntheses of Cycloalka[b]indoles Russ. J. Org. Chem. 2016, 52, 1227-1263. 2. For a recent comprehensive review on cyclohepta[b]indoles, see: Stempel, E.; Gaich, T. Cyclohepta[b]indoles: A Privileged Structure Motif in Natural Products and Drug Design. Acc. Chem. Res. 2016, 49, 2390-2402 and references cited therein.
3. For selected examples: (a) Han, X.; Li, H.; Hughes, R. P.; Wu, J. Gallium(III)‐ Catalyzed Three‐Component [4+3] Cycloaddition Reactions. Angew. Chem., Int. Ed. 2012, 51, 10390-10393. (b) Shu, D.; Song, W.; Li, X.; Tang, W. Rhodium‐ and
Platinum‐Catalyzed
[4+3]
Cycloaddition
with
Concomitant
Indole
Annulation: Synthesis of Cyclohepta[b]indoles. Angew. Chem., Int. Ed. 2013, 52, 3237-3240. (c) Kusama, H.; Sogo, H.; Saito, K.; Suga, T.; Iwasawa, N. Construction of Cyclohepta[b]indoles via Platinum-Catalyzed Intermolecular Formal [4+3]-Cycloaddition Reaction of α,β-Unsaturated Carbene Complex Intermediates with Siloxydienes. Synlett 2013, 24, 1364-1370. (d) He, S.; Hsung, R. P.; Presser, W. R.; Ma, Z. –X.; Haugen, B. J. An Approach to Cyclohepta[b]indoles Through an Allenamide [4+3] Cycloaddition–Grignard Cyclization–Chugaev Elimination Sequence. Org. Lett. 2014, 16, 2180-2183. (e) Zhang, J.; Shao, J.; Xue, J.; Wang, Y.; Li, Y. One Pot Hydroamination/[4+3] Cycloaddition: Synthesis Towards the Cyclohepta[b]indole Core of Silicine and Ervatamine. RSC Adv. 2014, 4, 63850-63854. (f) Liu, J.; Wang, L.; Wang, X.; Xu, L.; Hao, Z.; Xiao, J. Fluorinated Alcohol-Mediated [4+3] Cycloaddition Reaction of Indolyl Alcohols with Cyclopentadiene. Org. Biomol. Chem. 2016, 14, 11510-11517. (g) Li, Y.; Zhu, C. –Z.; Zhang, J. Gold‐Catalyzed [4+3] Cycloaddition/C–H Functionalization Cascade: Regio‐ and Diastereoselective Route to Cyclohepta[b]indoles. Eur. J. Org. Chem. 2017, 6609-6613.
ACS Paragon Plus Environment
Page 37 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
4. Mei, G.; Yuan, H.; Gu, Y.; Chen, W.; Chung, L. W.; Li, C. –C. Dearomative Indole [5+2] Cycloaddition Reactions: Stereoselective Synthesis of Highly Functionalized Cyclohepta[b]indoles. Angew. Chem., Int. Ed. 2014, 53, 1105111055. 5. Chakraborty,
A.;
Goswami,
K.;
Adiyala
A.; Sinha,
S. Syntheses
of
Spiro[cyclopent[3]ene‐1,3′‐indole]s and Tetrahydrocyclohepta[b]indoles from 2,3‐Disubstituted Indoles Through Sigmatropic Rearrangement. Eur. J. Org. Chem. 2013, 7117-7127. 6. (a) Gawande, S. D.; Kavala, V.; Zanwar, M. R.; Kuo, C. –W.; Huang, H. –N.; He, C. –H.; Kuo, T. –S.; Yao, C. –F. Molecular Iodine‐Mediated Cascade Reaction of 2‐Alkynylbenzaldehyde and Indole: An Easy Access to Tetracyclic Indoloazulene Derivatives. Adv. Synth. Catal. 2013, 355, 3022-3036. (b) Sarkar, S.; Bera k.; Jana, U. Tandem C-3/C-2 Annulation of Indole, Benzofuran, and Benzothiophene with 2-Alkynyl Benzylalcohol: An Efficient Approach to the Diverse Tetracyclic Heteroazulene Ring Systems. Tetrahedron Lett. 2014, 55, 6188-6192. 7. (a) Xie, X.; Du, X.; Chen, Y.; Liu, Y. One-Pot Synthesis of Indole-Fused Scaffolds via Gold-Catalyzed Tandem Annulation Reactions of 1,2-Bis(alkynyl)2-en-1-ones with Indoles. J. Org. Chem. 2011, 76, 9175-9181. (b) Xu, S.; Zhou, Y.; Xu, J.; Jiang, H.; Liu, H. Gold-Catalyzed Michael Addition/Intramolecular Annulation Cascade: An Effective Pathway for the Chemoselective- and Regioselective Synthesis of Tetracyclic Indole Derivatives in Water. Green Chem. 2013, 15, 718-726. (c) Hamada, N.; Yoshida, Y.; Oishi, S.; Ohno, H. GoldCatalyzed Cascade Reaction of Skipped Diynes for the Construction of a Cyclohepta[b]pyrrole Scaffold. Org. Lett. 2017, 19, 3875-3878. (d) Inamdar, S. M.; Gonnade, R. G.; Patil, N. T. Synthesis of Annulated bis-Indoles Through
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Au(I)/Brønsted Acid-Catalyzed Reactions of (1H-indol-3-yl)(aryl)methanols with 2-(Arylethynyl)-1H-Indoles. Org. Biomol. Chem. 2017, 15, 863-869. 8. For selected examples: (a) Ishikura, M.; Kato, H. A Synthetic use of the Intramolecular Alkyl Migration Process in Indolylborates for Intramolecular Cyclization: A Novel Construction of Carbazole Derivatives. Tetrahedron 2002, 58, 9827-9838. (b) Liu, C.; Widenhoefer, R. A. Palladium-Catalyzed Cyclization/Carboalkoxylation of Alkenyl Indoles. J. Am. Chem. Soc. 2004, 126, 10250-10251. (c) Sun, K.; Liu, S.; Bec, P. M.; Driver, T. G. Rhodium‐Catalyzed Synthesis of 2,3‐Disubstituted Indoles from β,β‐Disubstituted Styryl Azides. Angew. Chem., Int. Ed. 2011, 50, 1702-1706. (d) Tong, S.; Xu, Z.; Mamboury, M.; Wang, Q.; Zhu, J. Aqueous Titanium Trichloride Promoted Reductive Cyclization of o‐Nitrostyrenes to Indoles: Development and Application to the Synthesis of Rizatriptan and Aspidospermidine. Angew. Chem., Int. Ed. 2015, 54, 11809-11812. 9. Mishra, U. K.; Yadav, S.; Ramasastry, S. S. V. One-Pot Multicatalytic Approaches for the Synthesis of Cyclohepta[b]indoles, Indolotropones, and Tetrahydrocarbazoles. J. Org. Chem. 2017, 82, 6729-6737. 10. (a) Loh, C. C. J.; Badorrek, J.; Raabe G.; Enders, D. Merging Organocatalysis and Gold Catalysis: Enantioselective Synthesis of Tetracyclic Indole Derivatives Through a Sequential Double Friedel–Crafts Type Reaction. Chem. Eur. J. 2011, 17, 13409-13414. (b) Gritsch, P. J.; Stempel, E.; Gaich, T. Enantioselective Synthesis of Cyclohepta[b]indoles: Gram-Scale Synthesis of (S)-SIRT1-Inhibitor IV. Org. Lett. 2013, 15, 5472-5475. (c) Dange, N. S.; Hong, B. –C.; Lee, C. –C.; Lee, G. –H. One-Pot Asymmetric Synthesis of Seven-Membered Carbocycles
ACS Paragon Plus Environment
Page 38 of 43
Page 39 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Cyclohepta[b]indoles via a Sequential Organocatalytic Michael/Double Friedel– Crafts Alkylation Reaction. Org. Lett. 2013, 15, 3914-3917. 11. For selected recent examples, where p-QMs have been used as electrophiles: (a) Chu, W. –D.; Zhang, L. –F.; Bao, X.; Zhao, X. –H.; Zeng, C.; Du, J. –Y.; Zhang, G. –B.; Wang, F. –X.; Ma, X. –Y.; Fan, C. –A. Asymmetric Catalytic 1,6‐ Conjugate Addition/Aromatization of para‐Quinone Methides: Enantioselective Introduction of Functionalized Diarylmethine Stereogenic Centers. Angew. Chem., Int. Ed. 2013, 52, 9229-9233. (b) Caruana, L.; Kniep, F.; Johansen, T. K.; Poulsen, P. H.; Jørgensen, K. A. A New Organocatalytic Concept for Asymmetric α-Alkylation of Aldehydes. J. Am. Chem. Soc. 2014, 136, 15929-15932. (c) Wang, Z.; Wong, Y. F.; Sun, J. Catalytic Asymmetric 1,6‐Conjugate Addition of para‐Quinone Methides: Formation of All‐Carbon Quaternary Stereocenters. Angew. Chem., Int. Ed. 2015, 54, 13711-13714. (d) Zhao, K.; Zhi, Y.; Wang, A.; Enders, D. Asymmetric Organocatalytic Synthesis of 3-Diarylmethine-Substituted Oxindoles Bearing a Quaternary Stereocenter via 1,6-Conjugate Addition to paraQuinone Methides. ACS Catal. 2016, 6, 657-660. (e) Shen, Y.; Qi, J.; Mao, Z.; Cui, S. Fe-Catalyzed Hydroalkylation of Olefins with para-Quinone Methides. Org. Lett. 2016, 18, 2722-2725. (f) Gao, S.; Xu, X.; Yuan, Z.; Zhou, H.; Yao, H.; Lin, A. 1,6‐Addition Arylation of para‐Quinone Methides: An Approach to Unsymmetrical Triarylmethanes. Eur. J. Org. Chem. 2016, 3006-3012. (g) Roiser, L.; Waser, M. Enantioselective Spirocyclopropanation of para-Quinone Methides Using Ammonium Ylides. Org. Lett. 2017, 19, 2338-2341. (h) Yuan, Z.; Liu, L.; Pan, R.; Yao, H.; Lin, A. Silver-Catalyzed Cascade 1,6Addition/Cyclization of para-Quinone Methides with Propargyl Malonates: An Approach to Spiro[4.5]deca-6,9-dien-8-ones. J. Org. Chem. 2017, 82, 8743-8751.
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 40 of 43
(i) Pan, R.; Hu, L.; Han, C.; Lin, A.; Yao, H. Cascade Radical 1,6Addition/Cyclization of para-Quinone Methides: Leading to Spiro[4.5]deca-6,9dien-8-ones. Org. Lett. 2018, 20, 1974-1977. 12. (a)
Reddy,
V.;
Anand,
Diarylindolylmethanes
R.
through
V. Expedient
Access
Palladium-Catalyzed
to
Unsymmetrical
Domino
Electrophilic
Cyclization–Extended Conjugate Addition Approach. Org. Lett. 2015, 17, 33903393.
(b)
Ramanjaneyulu,
B.
T.;
Mahesh,
S.;
Anand,
R.
V.
Bis(amino)cyclopropenylidene-Catalyzed 1,6-Conjugate Addition of Aromatic Aldehydes to para-Quinone Methides: Expedient Access to α,α′-Diarylated Ketones. Org. Lett. 2015, 17, 3952-3955. (c) Arde, P.; Anand, R. V. NHeterocyclic Carbene Catalysed 1,6-Hydrophosphonylation of p-Quinone Methides and Fuchsones: An Atom Economical Route to Unsymmetrical Diaryland Triarylmethyl Phosphonates. Org. Biomol. Chem. 2016, 14, 5550-5554. (d) Goswami, P.; Anand, R. V. Bi(OTf)3 Catalyzed Solvent Free Approach to Unsymmetrical Diaryl(2‐indolyl)methanes Through 1,6‐Conjugate Addition of 3‐ Substituted Indoles to para‐Quinone Methides. Chemistry Select 2016, 1, 25562559; (e) Goswami, P.; Singh, G.; Anand, R. V. N-Heterocyclic Carbene Catalyzed 1,6-Conjugate Addition of Me3Si-CN to para-Quinone Methides and Fuchsones: Access to α-Arylated Nitriles Org. Lett. 2017, 19, 1982-1985. (f) Jadhav, A. S.; Anand, R. V. 1,6-Conjugate Addition of Zinc Alkyls to paraQuinone Methides in a Continuous-Flow Microreactor. Org. Biomol. Chem. 2017, 15, 56-60. (g) Mahesh, S.; Anand, R. V. B(C6F5)3 Catalysed Reduction of paraQuinone Methides and Fuchsones to Access Unsymmetrical Diaryl- and Triarylmethanes: Elaboration to Beclobrate. Org. Biomol. Chem. 2017, 15, 83938401.
ACS Paragon Plus Environment
Page 41 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
13. For selected reviews; (a) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Ligand Effects in Homogeneous Au Catalysis. Chem. Rev. 2008, 108, 3351-3378. (b) Arcadi, A. Alternative Synthetic Methods Through New Developments in Catalysis by Gold. Chem. Rev. 2008, 108, 3266-3325. (c) Yang, W.; Hashmi, A. S. K. Mechanistic Insights into the Gold Chemistry of Allenes. Chem. Soc. Rev. 2014, 43, 29412955. (d) Dorel, R.; Echavarren, A. M. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem. Rev. 2015, 115, 9028-9072. (e) Lo, V. K. –Y.; chan, A. O. –Y.; Che, C. –M. Gold and Silver Catalysis: From Organic Transformation to Bioconjugation. Org. Biomol. Chem. 2015, 13, 66676680. (f) Zi, W.; Toste, F. D. Recent Advances in Enantioselective Gold Catalysis. Chem. Soc. Rev. 2016, 45, 4567-4589. (g) Liu, L.; Zhang, J. GoldCatalyzed Transformations of α-Diazocarbonyl Compounds: Selectivity and Diversity. Chem. Soc. Rev. 2016, 45, 506-516. 14. For selected examples; (a) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. 1,2Halogen Migration in Haloallenyl Ketones: Regiodivergent Synthesis of Halofurans. J. Am. Chem. Soc. 2005, 127, 10500-10501. (b) Georgy, M.; Boucard, V.; Campagne, J. -M. Gold(III)-Catalyzed Nucleophilic Substitution of Propargylic Alcohols. J. Am. Chem. Soc. 2005, 127, 14180-14181. (c) Aponick, A.; Li, C. -Y.; Biannic, B. Au-Catalyzed Cyclization of Monoallylic Diols. Org. Lett. 2008, 10, 669-671. (d) Hikawa, H.; Suzuki, H.; Azumaya, I. Au(III)/TPPMSCatalyzed Benzylation of Indoles with Benzylic Alcohols in Water. J. Org. Chem. 2013, 78, 12128-12135. 15. (a) Patrick, S. R.; Boogaerts, I. I. F.; Gaillard, S.; Slawin, A. M. Z.; Nolan, S. P. The Role of Silver Additives in Gold-Mediated C–H Functionalisation. Beilstein J. Org. Chem. 2011, 7, 892-896. (b) Wang, D.; Cai, R.; Sharma, S.; Jirak, J.;
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Thummanapelli, S. K.; Akhmedov, N. G.; Zhang, H.; Liu, X.; Petersen, J. F.; Shi, X. “Silver Effect” in Gold(I) Catalysis: An Overlooked Important Factor. J. Am. Chem. Soc. 2012, 134, 9012-9019. (c) Zhdanko, A.; Maier, M. E. Explanation of “Silver Effects” in Gold(I)-Catalyzed Hydroalkoxylation of Alkynes. ACS Catal. 2015, 5, 5994-6004. (d) Ranieri, B.; Escofet, I.; Echavarren, A. M. Anatomy of Gold Catalysts: Facts and Myths. Org. Biomol. Chem. 2015, 13, 7103-7118. 16. (a) Zhuo, C. -X.; Wu, Q. -F.; Zhao, Q.; Xu, Q. -L.; You, S. -L. Enantioselective Functionalization of Indoles and Pyrroles via an in Situ-Formed Spiro Intermediate. J. Am. Chem. Soc. 2013, 135, 8169-8172. (b) Zheng, C.; Wu, Q. -F.; You, S. -L. A Combined Theoretical and Experimental Investigation into the Highly Stereoselective Migration of Spiroindolenines. J. Org. Chem. 2013, 78, 4357-4365. (c) Yang, Z. -P.; Zhuo, C. -X.; You, S. -L. Ruthenium‐Catalyzed Intramolecular Allylic Dearomatization/Migration Reaction of Indoles and Pyrroles. Adv. Synth. Catal. 2014, 356, 1731-1734. (d) Wu, Q. -F.; Zheng, C.; Zhuo, C. -X.; You, S. -L. Highly Efficient Synthesis and Stereoselective Migration Reactions of Chiral Five-Membered Aza-Spiroindolenines: Scope and Mechanistic Understanding Chem. Sci. 2016, 7, 4453-4459. 17. Kong, X. -F.; Zhan, F.; He, G. -X.; Pan, C. -X.; Gu, C. -X.; Lu, K.; Mo, D. -L.; Su, G. -F. Gold-Catalyzed Selective 6-exo-dig and 7-endo-dig Cyclizations of Alkyn-Tethered Indoles to Prepare Rutaecarpine Derivatives. J. Org. Chem. 2018, 83, 2006-2017. 18. Uno, T.; Yamamoto, S.; Yamane, A.; Kubo, M.; Itoh, T. Asymmetric Anionic Polymerizations
of
7‐(o‐substituted
phenyl)‐2,6‐Dimethyl‐1,4‐benzoquinone
Methides: Electrostatic Interaction and Steric, Inductive, and Resonance Effects
ACS Paragon Plus Environment
Page 42 of 43
Page 43 of 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
of the ortho‐Substituent on the Optical Activity. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55, 1048-1058.
ACS Paragon Plus Environment