Techniques of Estimating Thermodynamic Properties for Some

of Complex Compounds," 214 p., D. Van Nostrand Co. ... 25, Burlington House, London (1971). ... 644 p., Cornell University Press, Ithaca, New York, 19...
0 downloads 0 Views 2MB Size
18 Techniques of Estimating Thermodynamic Properties for Some Aqueous Complexes of Geochemical Interest DONALD LANGMUIR

1

Downloaded by FUDAN UNIV on December 27, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch018

Department of Geosciences, Pennsylvania State University, University Park, PA 16802

A host of v a r i a b l e s can i n f l u e n c e the s t a b i l i t y of an aqueous complex r e l a t i v e to i t s uncomplexed addends. Among these a r e : (a) the valences of the addends; (b) t h e i r d i s t a n c e of approach i n the complex; (c) the degree of cdvalency of t h e i r bonding; (d) the number of l i g a n d s c o o r d i n a t i n g the c a t i o n or c a t i o n s i n the complex; (e) the packing arrangement of c a t i o n s and l i g a n d s i n the complex; and more s u b t l e c o n s i d e r a t i o n s , i n c l u d i n g ( f ) the p o l a r i z a b i l i t y or d e f o r m a b i l i t y of the e l e c t r o n cloud surrounding the addends; and (g) l i g a n d f i e l d e f f e c t s f o r t r a n s i t i o n metal complexes i n p a r t i c u l a r (5, 6.). Of these, the most important v a r i a b l e s are the valences of the addends and t h e i r s e p a r a t i o n d i s t a n c e i n the complex. As a r u l e , the s t a b i l i t y of complexes formed w i t h a given l i g a n d i n c r e a s e s w i t h c a t i o n valence and decreases w i t h c a t i o n r a d i u s . This i s expected, based s t r i c t l y on Coulombic arguments. Equations to p r e d i c t the thermodynamic p r o p e r t i e s of complexes as f u n c t i o n s of valence of addends and the r e c i p r o c a l of t h e i r r a d i i or s e p a r a t i o n d i s t a n c e abound i n the l i t e r a t u r e . The best known of these are the simple Coulombic expression of Denison and Ramsey (7) and the equations of Bjerrum and of G i l k e r s o n and Fuoss (8^, 9) . As the covalency and p o l a r i z a b i l i t y (etc.) of a s s o c i a t i n g addends i n c r e a s e s , however, the simple Coulombic models tend to f a i l . They do, n e v e r t h e l e s s s t i l l suggest l i m i t i n g values f o r the thermodynamic p r o p e r t i e s of comp l e x a t i o n . Because of t h e i r convenience and general u t i l i t y , the simple charge-distance equations are discussed a t some l e n g t h i n t h i s paper i n connection w i t h f r e e energy and entropy data f o r s u l f a t e , f l u o r i d e , and phosphate complexes. P r e d i c t i n g the s t a b i l i t y of complexes which owe t h e i r exi s t a n c e to important non-Coulombic c o n t r i b u t i o n s can be d i f f i c u l t . Where increased covalent bonding between c a t i o n s and a given l i g a n d i s i n v o l v e d , p l o t s of s t a b i l i t y versus i o n i z a t i o n p o t e n t i a l or e l e c t r o n e g a t i v i t y (EN) of the c a t i o n are sometimes u s e f u l (5^, 10). In any case, the best general approach i s to compare the Current address: Department of Chemistry and Geochemistry, Mines, Golden, C O 80401 1

Colorado School of

0-8412-0479-9/79/47-093-353$08.25/0 © 1979 American Chemical Society Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

354

CHEMICAL MODELING IN AQUEOUS SYSTEMS

s t a b i l i t i e s of complexes formed w i t h a common l i g a n d where the c a t i o n s considered e x h i b i t s i m i l a r or s y s t e m a t i c a l l y t r e n d i n g behavior i n complexation. Here, c l a s s i f i c a t i o n s d i s t i n g u i s h i n g c a t i o n s and l i g a n d s are u s e f u l . These i n c l u d e the c l a s s A, B, and C c a t i o n groupings of Schwarzenbach ( 2 ) , and the hard and s o f t a c i d and base designations of Pearson C D and Ahrland (A.) . A v a r i e t y of e s t i m a t i o n and c o r r e l a t i o n techniques are pre­ sented i n t h i s paper. They i n c l u d e p l o t s i n v o l v i n g the thermo­ dynamic p r o p e r t i e s of_metal complexes w i t h the l i g a n d s HCO3 , ~_ C O 3 " , SO^-, OH , SH , the halogens ( e s p e c i a l l y F ), and H P04 (n = 0-3), p l o t t e d a g a i n s t , f o r example: (a) the v a l u e of η i n H P 0 4 " ; (b) the EN of the c a t i o n or EN order of l i g a n d s ; (c) the l i g a n d number ( f o r complexes of U and Th); and (d) z+z_/d, where z+ and z_ are the valences of the c a t i o n and l i g a n d , r e s p e c t i v e l y , and d t h e i r d i s t a n c e of s e p a r a t i o n i n the complex. The thermodynamic data p l o t t e d i n the f i g u r e s or discussed i n the t e x t have been obtained from references i n c l u d i n g Y a t s i m i r s k i i and V a s i l ' e v ( I T ) , Ringbom (123, S i l l en and M a r t e l l (12_, 2A), Christensen et a l . (15), and Smith and M a r t e l l (16). Other sources have included Wagman et a l . (17) f o r thorium complexes, and Langmuir (18) f o r uranium complexes. Whenever p o s s i b l e , the thermodynamic data are f o r 25°C and zero i o n i c s t r e n g t h ( I = 0 ) . When s t a b i l i t y constants were reported f o r higher i o n i c strengths but could be corrected to I = 0, t h i s has been done, using the extended Debye-Huckel equation or mean s a l t c a l c u l a t i o n s (10. _1£) · 2

Downloaded by FUDAN UNIV on December 27, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch018

n

n

3

n

n

Complexes Formed by H y d r o l y s i s of

Cations

An a p p r e c i a t i o n of the nature and s t a b i l i t y of complexes formed by h y d r o l y s i s of c a t i o n s i s important because: 1) such complexes are the predominant forms of occurrence and t r a n s p o r t of many c a t i o n s i n n a t u r a l waters; and 2) the occurrence of impor­ tant amounts of other types of complexes i n v o l v i n g the same c a t i o n r e q u i r e s that t h e i r l i g a n d s compete e f f e c t i v e l y w i t h the l i g a n d s formed by h y d r o l y s i s of the c a t i o n . In general, hydro­ l y s i s of monovalent and d i v a l e n t c a t i o n s produces H20-cation complexes or aquo-cations. In c o n t r a s t , smaller c a t i o n s of v a l ­ ence 3+ to 6+ u s u a l l y e x i s t as OH-or O^ - c a t i o n complexes i n water. The l a r g e r monovalent a l k a l i metals Rb and Cs ( 6 - f o l d c r y s t a l l o g r a p h i c r a d i i of 1.47 and 1.67 A, r e s p e c t i v e l y ) are thought to be e s s e n t i a l l y unassociated w i t h water molecules ( 1 ) . However, the smaller monovalent and most d i v a l e n t c a t i o n s form strong aquo-complexes. Thus, the r e a c t i o n -

+

Mg

2 +

+ nH 0 = M g ( H 0 ) 2

2

+

2 + n

has a Gibbs f r e e energy (AG°) of about -460 kcal/mol. (Here, η corresponds to the number of water molecules i n two l a y e r s of

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

18.

LANGMUiR

Aqueous

Complexes

of Geochemical

Interest

355

c o o r d i n a t i n g water ( 1 ) ) . For most c a t i o n s , the immediate hydra­ t i o n envelope around the c a t i o n contains s i x water molecules (20). In t h i s f i r s t envelope, the water d i p o l e s are o r i e n t e d w i t h t h e i r oxygens towards the c a t i o n and protons away (21). Second and t h i r d l a y e r s of water may a l s o be s i g n i f i c a n t l y a s s o c i a t e d w i t h the c a t i o n , although these are more l o o s e l y held. The strength o f bonding between the inner sphere o f water d i p o l e s and a p o s i t i v e l y charged core i o n increases q u a l i t a t i v e l y as the charge d e n s i t y of the core i o n i n c r e a s e s . The d i r e c t dependence o f charge d e n s i t y on the valence ( z ) and i t s i n v e r s e dependence on i o n i c r a d i u s ( r , i n Angstroms) has l e d t o the concept of i o n i c p o t e n t i a l (Ip) which i s defined as z+/r. The valence of most geochemically important c a t i o n s o r c a t i o n s i n t h e i r oxy- and hydroxy-complexes i s p l o t t e d against the c a t i o n r a d i i i n Figure 1. Most o f the r a d i i are from Shannon and P r e w i t t (22) and, when the data e x i s t , are f o r the c a t i o n s a t t h e i r appropriate c o o r d i n a t i o n numbers w i t h oxygen o r h y d r o x y l . The p l o t shows, i n general, that a t pH values between 2 and 12 and a t 25°C, the l a r g e r monovalent and d i v a l e n t c a t i o n s occur as simple c a t i o n s o r aquo-ions. I f we d e f i n e a hydroxycation as a c a t i o n whose f i r s t . OH complex pre­ dominates over the unhydrolyzed c a t i o n a t some pH below 7, then Be, Cu, Sn, Hg, and Pb are a l l hydroxycations (23). 2_ With i n c r e a s i n g i o n i c p o t e n t i a l of the c a t i o n , OH and then 0 -bonding o f the core c a t i o n becomes important. The OH and 0 ~-bonded c a t i o n s become predominant forms even i n very a c i d waters. For the oxycations (e.g., U02 , V0 ) and oxyanions (e.g., SO^ ", PO4 ", 0 0 ~ ) , the cation-oxygen bond i s a strong covalent one, so that these complexes p e r s i s t as such i n most r e a c t i o n s that form l a r g e r complexes. However, f o r d i - and t r i ­ v a l e n t c a t i o n s , the hydroxy complexes may be l e s s s t a b l e than complexes formed w i t h other l i g a n d s . The dashed l i n e s i n Figure 1 are drawn t o roughly separate groups o f c a t i o n s by t h e i r ten­ dency towards formation o f 0H~ and 0 complexes i n water. These l i n e s c l e a r l y do not y i e l d groupings based simply on i o n i c poten­ t i a l , which would p l o t as s t r a i g h t l i n e s passing through zero f o r both v a r i a b l e s i n Figure 1. The s t o i c h i o m e t r i e s o f known o r presumed complexes formed by h y d r o l y s i s of c a t i o n s have been l i s t e d i n Table I . The best d i s c u s s i o n o f the s t a b i l i t i e s and behavior o f most o f these species i s given by Baes and Mesmer (23).

Downloaded by FUDAN UNIV on December 27, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch018

+

2

2+

2

3

2+

2

3

Inner and Outer Sphere Complexes As noted above, most metal c a t i o n s i n pure water are complex­ ed w i t h H2O, OH , or 0 ~. Formation of a complex w i t h another l i g a n d then may i n v o l v e d i s p l a c i n g one o r more water molecules from the c o o r d i n a t i o n sheath of the c a t i o n by the l i g a n d . Thus, 2

M(H 0) + L = M(H 0) ,L + H O ζ η ζ η—1 ζ 9

o

When one or more h y d r a t i o n spheres remain a f t e r complexation, then

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Downloaded by FUDAN UNIV on December 27, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch018

356

CHEMICAL MODELING IN AQUEOUS SYSTEMS

I

-> x

.

υ

_|

"

1

S

C r

Ν

1—VI

1

Se Mnj.

Ρ

As

Mo\ _> %Te W

j

w

I

oxyanions

'

— ^

U

I

^

F e , V , ^ p f C u o ^ e / t

0

Βοβ

/ C o \ Z n

1

8

^

Cd

M n

Ca

^Rb

BO

#

Ra

Sn

Na cations

1

Γ

hydroxyanions

^

-1



1

V Sn Pb JMO.AU

M

σ

'

1

hydroxycations Sb

/Te

^

1

1

U

'

"5

1

j

ο

ο

1

I

I

I

I 0.5

I

8 I

hydroxycations I

Ionic Radii

I

I 1.0

. 1.5

(Â)

Figure 1. Valence of core cations in their aquo-complexes plotted against crystal radii of the cations. The radii are mostly from Shannon and Prewitt (22). (%) Cations; (O) hydroxycations and hydroxyanions; (χ) oxycations; ( Q ) oxyanions. See caption to Table I.

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

18.

LANGMUiR

Downloaded by FUDAN UNIV on December 27, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch018

Table. I.

Aqueous

Complexes

of Geochemical

Interest

Species formed by h y d r o l y s i s of cations i n water at 25°C, and pH 2-12. Only species which may exceed 10% of the t o t a l core c a t i o n concentration are l i s t e d . Cations are w r i t t e n as f r e e species i f they occur c h i e f l y as such i n the pH range 2-12. When a c a t i o n i s l e s s s t a b l e than i t s hydroxy or oxy-complex at a pH below 7, the hydroxy or oxy-complex i s l i s t e d instead of the f r e e c a t i o n . Most of the f r e e c a t i o n s occur as H^O-complexes. Elements such as C u ( I I ) , F e ( I I I ) and Th(IV) which form polymers, are assumed to occur at Sb(OH)5-n ] +.

2

5

ΝΟ" ~>

u0

n

2

n

2

n

2

11

H C r O " [ 0 , l ] , H Mo0 " [0-2], H S 0 " [ 0 , l ] , H SeO " η 4 η 4 η 4 η 4 [0,11 H W O [ 0 - 2 ] , MnO ", TeO ( O H ) " " [nm = 06, ' η 4 4 n m 15, 24], ( U 0 ) ^ ( 0 H ) " [nm = 10, 11, 22, 35], 2 n ~ 'm W..Ο " 12~39' 2_n

2

2 n

o

y

6

2 n

m

m

v

6

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

n

358

CHEMICAL MODELING IN AQUEOUS SYSTEMS

the complex i s c a l l e d outer sphere o r an i o n p a i r . Bonding i s c h i e f l y l o n g range and e l e c t r o s t a t i c . The i o n p a i r may p e r s i s t through a number o f c o l l i s i o n s w i t h water molecules. Examples of i o n p a i r s are most monovalent and d i v a l e n t oxyanion complexes formed w i t h a l k a l i metals and a l k a l i earths ( f o r example, NaHC03 , SrC03°, CaNÛ3 , and MgHP04°). The l i s t a l s o i n c l u d e s most monov a l e n t and d i v a l e n t metal s u l f a t e and c h l o r i d e complexes. A v a i l able data suggest the f o l l o w i n g l o g K values f o r i o n p a i r s : ML p a i r s ^ 0 - 1 ; ML2 o r M2L p a i r s ^.7 - 1.3, and M2L2 p a i r s 2.3 - 3 . 2 . For i o n p a i r s , K values tend t o be roughly constant f o r a given l i g a n d w i t h metal c a t i o n s o f i d e n t i c a l valence and roughly the same s i z e . For example, the d i v a l e n t metal s u l f a t e i o n p a i r s formed w i t h Ca, Mg, N i , Zn, Cu, Co, Cd, Mn, Fe, and Cu have l o g K values from 2.28 t o 2.35 (see F i g u r e 2 ) . T h i s behavior r e f l e c t s the l a r g e l y e l e c t r o s t a t i c a t t r a c t i o n between the i o n s , n e a r l y independent o f the d e t a i l e d e l e c t r o n c o n f i g u r a t i o n of the c a t i o n ( 1 ) . When complexation i n v o l v e s displacement by the l i g a n d o f water molecules immediately adjacent t o the c a t i o n so t h a t the l i g a n d contacts the c a t i o n , the complex i s c a l l e d i n n e r sphere. Such complexes are g e n e r a l l y more s t a b l e than outer sphere complexes o r i o n p a i r s . A c t u a l l y , there are no pure " i n n e r " o r "outer" sphere complexes. For example, even i n SO4 complexes o f Be, Mg, Zn, N i , Co, and Mn, about 10% of the bonding i s inner and 90% outer sphere. For C r - s u l f a t e , the p r o p o r t i o n s become more than 70% inner and 30% outer sphere ( 1 ) . +

a s s o c

Downloaded by FUDAN UNIV on December 27, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch018

a s s o c

a s s o c

3 +

Electronegativity P a u l i n g (24) has defined e l e c t r o n e g a t i v i t y (EN) as the power of an atom to a t t r a c t e l e c t r o n s . The concept i s u s e f u l i n comp a r i n g s t a b i l i t i e s of i n n e r sphere complexes when t h e i r bonding i s s i g n i f i c a n t l y c o v a l e n t . The degree o f covalency (as opposed to i o n i c i t y ) o f bonding i n the complex i n c r e a s e s as the d i f f e r ence i n EN (ΔΕΝ) o f the c a t i o n and l i g a n d approaches zero. Based on bonds i n c r y s t a l s , P a u l i n g computes t h a t roughly when ΔΕΝ 1.5. Based on the r e l a t i v e s o l u b i l i t i e s o f t h e i r s a l t s , EN values f o r CO 2~\ -

2

2

2

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

18.

Aqueous Complexes of Geochemical Interest

LANGMUiR

Downloaded by FUDAN UNIV on December 27, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch018

7.0

6.0

• so|"

Δ

ε ο ο Ξ

7 /

ο CO* x ΗΡ0|' HCO;

CO'

5.0

ο

V

/

4.0 ΗΡ0

χ/

Δ

3.0 n — •

— —-

u

π

2- •

S0 -Έ-° 4

D

α

π

-

π

—* τ -

2.0 HCO;

i.oh Βα

I Sr

Ca

Mg

111 I

II

in

Be I P b I Cd |UCv>|Co| Ni 'ode Mn Zn VO Fe Cu Hg

I

_J

2.0

I.0 I.5 Electronegativity of Cation

Figure 2. Stabilities of some 1:1 oxyanion complexes plotted against the electro­ negativity of the cation. Literature data have been corrected to I = 0 when necessary. Lines through the data for HCOf and SO ' complexes are for mean values. Curves drawn through the ΗΡΟ/' and CO/' data have no statistical significance. 2

/f

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

359

CHEMICAL MODELING IN AQUEOUS SYSTEMS

360

HP04 ~,

and SO^^ should decrease from near 4 to about 3 i n the order SO^ > HPO4 "" > C O 3 " . Thus, covalency of bonding should be l e a s t f o r the s u l f a t e complexes and greatest f o r the carbonate complexes, which are apparently f o r the most p a r t of inner sphere character f o r c a t i o n EN values above 1.5. For the a l k a l i n e e a r t h s , bonding w i t h a l l four l i g a n d s shown i n Figure 2 i s l a r g e l y i o n i c ( i . e . , independent of EN) be­ cause of t h e i r predominantly outer sphere c h a r a c t e r . The s l i g h t decrease i n s t a b i l i t y of these complexes g e n e r a l l y , from Ba through Be, may r e f l e c t the l i g a n d s c l o s e r approach to the r e l a t i v e l y unhydrated Ba i o n (Ip = 1.5), a p r o x i m i t y not p o s s i b l e i n the case of Mg (Ip = 3 . 0 ) or Be (Ip = 5.7). These s m a l l e r ions s t r o n g l y r e t a i n t h e i r waters of h y d r a t i o n i n complex form­ ation. -

Z

2-

2

2

Downloaded by FUDAN UNIV on December 27, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch018

1

Schwarzenbach's and Pearson's C l a s s i f i c a t i o n s There are no simple r u l e s i n v o l v i n g addend s i z e , valence, Ip, or EN that can e x p l a i n a l l the observed s t a b i l i t i e s of com­ p l e x e s . However, f u r t h e r i n s i g h t s are provided through approaches suggested by Schwarzenbach ( 2 ) , and Pearson (3) and Ahrland (4). Pearson and Ahrland c l a s s i f y c a t i o n s and l i g a n d s as 'hard or s o f t a c i d s or bases. Soft i n f e r s the s p e c i e s ' e l e c t r o n cloud i s deformable or p o l a r i z a b l e and may enter i n t o e l e c t r o n i c a l l y unique s t a t e s i n complexation. Hard addends are comparatively r i g i d and non-deformable and show an absence of e l e c t r o n i c i n t e r a c t i o n s i n complexation. Schwarzenbach (2) (see a l s o P h i l l i p s and W i l l i a m s ( 3 Q ) ; N a n c o l l a s , (1)) d e f i n e s three c l a s s e s of complexes. Class A i n c l u d e s metal c a t i o n s which have noble gas c o n f i g u r a t i o n s . These are l i s t e d below. 1

!

T

Cation ( i n c r e a s i n g covalency Be +

Na , K', Rb"*

Mg , A l 2+

3 +

Sc , 2 +

3+

cs

3 +

Sr , Y ,

Ti

4 +

Zr

4 +

•HCO cd

ω

u

g

•H

Cs

Ba

Atomic C o n f i g u r a t i o n He

2+

Ca

> )

2+

, La

>·> Ο β CD

Ne

> Ο

Kr

Ar

u

Xe

Class A c a t i o n s have s p h e r i c a l symmetry and low p o l a r i z a b i l i t y and thus are 'hard spheres' (31). Pearson's hard a c i d s i n c l u d e the above, but a l s o M n , U O ^ , V0 , C r , F e , C o , G a , S i , U^ , and T h . These c a t i o n s tend to form l a r g e l y e l e c t r o s t a t i c bonds w i t h l i g a n d s , e s p e c i a l l y when the l i g a n d s are hard (have low 2+

+

2+

3 +

3 +

3 +

3 +

4 +

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4 +

18.

361

Aqueous Complexes of Geochemical Interest

LANGMUiR

p o l a r i z a b i l i t y ) and the c a t i o n s monovalent or d i v a l e n t . Important complexes are formed with hard l i g a n d s F , H2O, and 0H~. Carbon­ ate and bicarbonate complexes are a l s o important but only f o r the monovalent and e s p e c i a l l y d i v a l e n t c a t i o n s . The s t a b i l i t y of_ complexes i s g e n e r a l l y i n the order OH~>F , C 0 3 ~ > H P 0 4 " » N 0 3 and P 0 ^ 3 " » H P 0 4 ~ > S 0 4 ~ . Complexes are u s u a l l y not formed with S, N, C, CI , Br , or Γ , because these species cannot compete with H2O or OH . Complexes probably increase g e n e r a l l y i n s t a b i l i t y i n the order I