11 Temperature Dependence of the Stability and the Activity of Immobilized Glucose Isomerase J. A. ROELS and R. VAN TILBERG
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
Gist-Brocades N.V., Research and Development, P.O. Box 1, 2600 MA Delft, The Netherlands
A number o f microorganisms are capable o f transforming g l u cose i n t o i t s isomer f r u c t o s e by the a c t i o n o f the enzyme glucoseisomerase. This property i s o f p o t e n t i a l commercial s i g n i f i c a n c e as the enzyme can i n p r i n c i p l e be used t o produce a mixture o f glucose and f r u c t o s e using a corn based glucose syrup as a source of raw m a t e r i a l . This mixture i s termed high f r u c t o s e corn syrup (HFCS). HFCS i s considered t o be an important competitor f o r saccharose as a sweetener. In i n d u s t r i a l p r a c t i c e an immobilized form o f glucoseisomerase i s used. G i s t Brocades' immobilized glucoseisomerase, Maxazyme GI-immob c o n s i s t s o f p a s t e u r i z e d whole c e l l s o f Aotinoplanes missourïensis entrapped i n g e l a t i n i n such a way t h a t , a f t e r c r o s s l i n k i n g with glutaraldehyde, the s u b s t r a t e , glucose, and the produ c t , f r u c t o s e , can d i f f u s e more o r l e s s f r e e l y i n t o and out o f the particles. In t h i s paper a mathematical model w i l l be presented d e s c r i b i n g the conversion process i n a f i x e d bed r e a c t o r . The model a l lows the c a l c u l a t i o n o f the temperature dependence o f the i n i t i a l a c i t i v i t y o f the immobilized enzyme. I t a l s o p r e d i c t s the s t a b i l i ty o f t h a t a c t i v i t y as a f u n c t i o n o f the o p e r a t i n g temperature. The model i s o f an approximative nature and the s i m p l i f i c a t i o n s which are introduced allow an a n a l y t i c a l s o l u t i o n o f the equations o f the model. The r e s u l t s o f the t h e o r e t i c a l deductions are v e r i f i e d experimentally. Mathematical
model
Enzyme k i n e t i c s . The k i n e t i c s o f transformation processes c a t a l y s e d by a s i n g l e enzyme are o f t e n described using the Michaelis-Menten equation (1). The d e r i v a t i o n o f t h i s equation i s , however, based on two assumptions. The pseudo steady s t a t e hypothes i s (2_) with r e s p e c t t o the intermediary enzyme-substrate complex i s v a l i d and the reverse r e a c t i o n from product t o s u b s t r a t e can be
979 Sufiifify t i b i a l Society
1155 16th St. N. W. Washington, D. C. Microbial 20036 Cells Venkatsubramanian; Immobilized ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
148
IMMOBILIZED MICROBIAL CELLS
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
n e g l e c t e d . In general the f i r s t assumption i s taken f o r granted i n enzyme c a t a l y s i s . The l a t t e r assumption i s only j u s t i f i e d i f the absolute value o f the free enthalpy change o f the r e a c t i o n i s l a r g e compared to the product o f u n i v e r s a l gas constant and abso l u t e temperature. This presents problems i n the case o f the con v e r s i o n o f glucose to f r u c t o s e , the standard f r e e enthalpy change being -400 J/mole at 60°C; the product o f u n i v e r s a l gas constant and absolute temperature being 2750 J/mole. Fratzke et a l . (3^) performed a mathematical a n a l y s i s based on the f o l l o w i n g k i n e t i c scheme:
G + Ε τψ=* XE ψ=ψ Ε + F i n which G Ε XE F k^, k ^, k^
3
(1)
i s glucose i s the free enzyme i s the intermediary enzyme-substrate complex i s fructose e k i n e t i c constants
a r >
k_2
As can be seen the reverse r e a c t i o n i s i n c l u d e d i n the scheme pro posed by Fratzke e t a l . (3). The r e s u l t s o f t h e i r a n a l y s i s , which again i n c l u d e s the steady s t a t e hypothesis with respect t o the enzyme-substrate com p l e x , i s the f o l l o w i n g k i n e t i c equation: =
r
r
S
T
(C
s, max K
f
+ (C s
i n which r
X
-
s
C ) s
^
X
-
C ) s
s
i s the r a t e o f conversion o f glucose t o f r u c t o s
se (mole/m^s ) r i s the apparent maximal forward r a t e o f the cons, max . _ / , / ^ \ v e r s i o n o f glucose t o f r u c t o s e (mole/nrs) K i s a pseudo Michaelis-Menten constant f o r the s u b s t r a t e (mole/m ) C i s the glucose c o n c e n t r a t i o n (mole/m ) C i s the glucose c o n c e n t r a t i o n corresponding to thermodynamic e q u i l i b r i u m (mole/m^) I f equation (2) i s a p p l i e d t o a conversion process using the f r e e whole c e l l s o f an organism a convenient formulation o f equation (2) i s the f o l l o w i n g : T
T
s
3
3
g
x
g
V =
r
S
f
s, max
κ·
. C„ (C E s
+ (C s
s
-
C*) s y
C*) s
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
^
11.
Immobilized Glucose Isomerase
ROELS A N D V A N TKLBURG
149
T
i n which V
i s the maximum s p e c i f i c r a t e o f f r u c t o s e formas, max _ , _ . / , „ * s t i o n (mole/kg organism dry matter ss ) i s the c o n c e n t r a t i o n o f the organism (kg dry matter/m ) The "constants" V and K are r a t h e r complex f u n c t i o n s o f the k i n e t i c constants and the e q u i l i b r i u m glucose c o n c e n t r a t i o n : 3
f
T
s
V*
m
a
= s, max
x
S
.
.k
χ
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
K
K
=
's
K ^ -
MF "
1
{ ( K
^
MF
+
[E]
0
2
L
(4)
1
MG
K
^G
C
· *>
· s
+
«MF ·
W
( 5 )
i n which Κ
i s the e q u i l i b r i u m constant f o r the conversion o f glucose t o f r u c t o s e (-) K^p i s the Michaelis-Menten constant f o r the conversion of f r u c t o s e to glucose, being equal t o (k_2 + k ) / k _ (mole/m ) i s the Michaelis-Menten constant f o r the conversion o f glucose t o f r u c t o s e , b e i n g equal t o (k_! + k ) / k! (mole/m ) [E] i s the i n t r i n s i c enzyme c o n c e n t r a t i o n p e r u n i t o f mi croorganism dry matter (mole/kg dry matter) Adopting the values o f the k i n e t i c constants given by Fratzke et a l . i t can be shown t h a t f o r the c o n d i t i o n s p r e v a i l i n g i n the f i x e d bed conversion process, C - C i s s m a l l as compared t o K . At an i n i t i a l syrup glucose c o n c e n t r a t i o n o f 3000 moles/m and a r e l a t i v e conversion t o f r u c t o s e o f 45%, K i s o f the order o f 5000 moles/m and C - C* v a r i e s between about 1000 moles/m and 20 moles/m (column i n l e t and column o u t l e t r e s p e c t i v e l y ) . Under these c o n d i t i o n s equation (3) can t o a f a i r degree o f approximation be s i m p l i f i e d t o : 3
2
2
3
2
x
f
s
s
3
T
S
3
3
g
3
r
= Κ (C - C*) s s s i n which Κ i s a pseudo f i r s t order r a t e constant given by: k
( K * + 1) [E] . c
9
Κ = K
[
(
1
+
F
(7)
K
*
(6)
Ç
κ», c " , s
I t i s important t o note t h a t equation (7) i m p l i e s the pseudo f i r s t order r a t e constant t o be a f u n c t i o n o f C and hence o f the i n i t i a l glucose c o n c e n t r a t i o n C Q , Κ f o r m a l l y cannot be consid ered a t r u e k i n e t i c constant. For the purpose o f the present model, d e s c r i b i n g a s i t u a t i o n i n which the i n i t i a l glucose c o n c e n t r a t i o n i s a constant, Κ can be considered to be a constant but i f the r e x
S
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
150
IMMOBILIZED MICROBIAL CELLS
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
s u i t s are t r a n s l a t e d t o other i n i t i a l glucose concentrations equa t i o n (7) has t o be taken i n t o account. The e f f i c i e n c y f a c t o r f o r an immobilized enzyme. In general the conversion r a t e o f an immobilized enzyme i s lower than t h a t of an equal amount o f the free enzyme. T h i s decreased a c t i v i t y i s caused by d i f f u s i o n a l l i m i t a t i o n s to the r a t e a t which the subtrate i s t r a n s p o r t e d t o the s i t e o f r e a c t i o n i n the immobilized en zyme p a r t i c l e s . In chemical engineering the s u b j e c t o f the i n t e r play between d i f f u s i o n a l l i m i t a t i o n s and chemical k i n e t i c s i n het erogeneous c a t a l y s i s has been e x t e n s i v e l y s t u d i e d . The s t a t e o f the a r t on t h i s s u b j e c t i s described by S a t t e r f i e l d (_4 ). For the case o f a f i r s t order r e a c t i o n i n a s p h e r i c a l p a r t i c l e a r e l a t i o n s h i p between an e f f i c i e n c y f a c t o r , η, and a dimens i o n l e s s number, the so c a l l e d T h i e l e f a c t o r , Φ, can be shown to be given by:
Φ
tanl^
Φ
i n which η i s the r a t i o o f the general conversion i n the p a r t i c l e to the conversion i n absence o f d i f f u s i o n a l l i m i t a tions ( - ) Φ i s the T h i e l e f a c t o r being d e f i n e d as
Φ
=
R
O)
^
P\/D" P
i n which k i s a f i r s t order r e a c t i o n r a t e constant (1/s) D i s the d i f f u s i v i t y o f the r e a c t a n t i n the c a t a l y s t par t i c l e (m /s) Rpthe p a r t i c l e r a d i u s (m) 2
I f the s i m p l i f i e d pseudo f i r s t order equation f o r the conver s i o n r a t e o f glucose to f r u c t o s e , equation ( 6 ) , i s assumed to be s u f f i c i e n t l y accurate, the conversion r a t e o f p a r t i c l e s i n which whole c e l l s are immobilized i s given by: r i n which η
= Κ η C . V si e
s
(10)
i s the e f f i c i e n c y f a c t o r given by equation ( 8 ) , the T h i e l e f a c t o r b e i n g given by (11)
Κ Ό
i s the pseudo f i r s t order r a t e constant given by equa t i o n (7) (1/s) i s the c o e f f i c i e n t o f d i f f u s i o n f o r glucose i n the p a r t i c l e s (m /s) 2
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
11.
ROELS AND V A N TILBURG
Immobilized Glucose Isomerase
151
C . i s the s u b s t r a t e c o n c e n t r a t i o n a t the p a r t i c l e s i n t e r f a c e (mole/m ) ^ i s the amount o f immobilized enzyme present (m ) 3
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
The e f f e c t o f the temperature. The o p e r a t i n g temperature a f f e c t s the i s o m e r i z a t i o n process i n two important ways. F i r s t l y the pseudo f i r s t order r a t e constant Κ i s expected to i n c r e a s e with i n c r e a s i n g temperature. In the present treatment the r e l a t i o n s h i p between Κ and temperature w i l l be assumed t o be o f the Arrhenius type: -ΔΗι / RT e
Κ = A
(12)
i n which: A i s a constant (1/s) ΔΗ^ i s the a c t i v a t i o n enthalpy o f the enzyme-catalysedi s o m e r i z a t i o n o f glucose t o f r u c t o s e (J/mole) R i s the u n i v e r s a l gas constant (J/mole K) Τ i s the absolute temperature (K) Secondly the d e a c t i v a t i o n r a t e o f the enzyme a c t i v i t y i s as sumed t o i n c r e a s e with i n c r e a s i n g temperature. I t i s assumed t h a t the pseudo f i r s t order r a t e constant Κ decreases with time accord ing t o : -k t Κ = K e ο d
(13)
i n which Κ i s the i n i t i a l pseudo f i r s t order r a t e constant (1/s) k^ i s the d e a c t i v a t i o n constant (1/day) t i s the o p e r a t i n g time (days) For the temperature dependence o f the d e a c t i v a t i o n constant an Arrhenius r e l a t i o n s h i p i s assumed: -ΔΗ* / RT k
d
i n which A an2
= A e
Z
(14)
2
i s a constant i s the a c t i v a t i o n enthalpy o f the enzyme d e a c t i v a t i o n process
Model f o r f i x e d bed i s o m e r i z a t i o n . In i n d u s t r i a l p r a c t i c e immobilized glucoseisomerase i s o f t e n a p p l i e d t o the i s o m e r i z a t i o n of glucose i n a f i x e d bed r e a c t o r . Under the assumptions about the k i n e t i c s presented above the c o n s t r u c t i o n o f a simple mathematical model f o r t h i s process i s q u i t e s t r a i g h t f o r w a r d . A balance equation f o r glucose over an i n f i n i t e s i m a l s l i c e o f the f i x e d bed (see f i g u r e 1) can be formula ted as follows : V dC - -K ÎC - C > · Π d s s s
ε
~ )
A
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
(15)
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
152
IMMOBILIZED MICROBIAL CELLS
V (m/s> C 0 (mole/m 3
3
s
H
V
Figure 1.
Model for fixed-bed isomerization
(
m /S) 3
CsE (mole/m )
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
3
11.
ROELS AND
VAN
TILBURG
i n which V i s the flow r a t e o f the glucose syrup through f i x e d bed (m3/s) ε i s the p o r o s i t y o f the bed (-) ^ A i s the f i x e d bed cross s e c t i o n (m ) h i s the height coordinate (m) The boundary c o n d i t i o n s f o r equation (15) are : C C
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
i n which C
s
= C
n
sO
= C ^ s sE
153
Immobilized Glucose Isomerase
the
h = 0 (16) h = H
i s the glucose c o n c e n t r a t i o n i n the syrup e n t e r i n g the column (mole/m^) C ^ i s the glucose c o n c e n t r a t i o n i n the isomerized syrup l e a v i n g the column (mole/m ) The s o l u t i o n o f (15) with the boundary c o n d i t i o n s according to (16) i s given by: g 0
S
3
„ _ Κ η( 1 - ε) A .Η - In ((C - C*) / (C ρ - C*)) so s sE s
,
.
V
Several assumptions are i m p l i c i t i n the d e r i v a t i o n presented here; two o f the important ones are : - the r e s i s t a n c e f o r mass t r a n s f e r to the p a r t i c l e s can be ne glected - the syrup flows through the column i n i d e a l p l u g flow Equation (17) gives the r e l a t i o n s h i p between the flow r a t e , V, which r e s u l t s i n conversion to an e x i t glucose c o n c e n t r a t i o n C £ as a f u n c t i o n o f Κ and η. As Κ was assumed to decrease with ope r a t i n g time (equation (13)) and η i s , through the T h i e l e f a c t o r , a f u n c t i o n o f K,the product Kn w i l l decrease with time. The de r i v a t i o n presented above i s only v a l i d i f the pseudo steady s t a te hypothesis i s invoked with respect to the change o f Κ with time. Κ i s assumed to be v i r t u a l l y constant during the residence time o f the syrup i n the column. I f t h i s assumption i s not made the simple d i f f e r e n t i a l equation (15) has to be r e p l a c e d by a s e t of simultaneous p a r t i a l d i f f e r e n t i a l equations i n time and height and the s o l u t i o n becomes by no means t r i v i a l . The pseudo steady s t a t e hypothesis with respect to Κ i s , however, q u i t e reasonable as the residence time i n the column i s o f the order o f one hour and the time constant o f the d e a c t i v a t i o n process i s o f the order o f 1 t o 100 days. Equation (17) can thus be used to s p e c i f y the flow v e l o c i t y at any moment during the operating time i f the mo mentary value o f Κ i s c a l c u l a t e d according to equation (13). s
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
154
IMMOBILIZED MICROBIAL CELLS
Experimental The parameters o f the model and t h e i r temperature dependences were estimated on the b a s i s o f f i x e d bed experiments on a l a b o r a t o r y s c a l e . The enzyme used was Gist-Brocades immobilized glucose isomerase, Maxazyme GI-immob. The glucose "syrup" was a 45% w/w s o l u t i o n o f c r y s t a l l i n e dextrose i n d i s t i l l e d water c o n t a i n i n g 3 mM o f MgS0 and 100 ppm S 0 . The pH o f the syrup was 7.5. The f i x e d bed enzyme r e a c t o r was a jacketed g l a s s column provided with a f i l t e r p l a t e and c o n t a i n i n g about 30 ml o f bulk volume o f the immobilized enzyme. The conversion was determined p o l a r o m e t r i c a l l y as w e l l as by means o f high performance l i q u i d chromotography. The range o f o p e r a t i n g temperatures was 55 to 75°C. Two types o f expe riments were performed. Three s e t s o f experiments were performed at constant flow r a t e o f the s u b s t r a t e s o l u t i o n , the percentage glucose isomerized being determined as a f u n c t i o n o f o p e r a t i n g time. One set o f experiments was conducted at constant f r a c t i o n a l conversion to f r u c t o s e , the flow r a t e b e i n g determined as a func t i o n o f operating time. The d u r a t i o n of the experiments v a r i e d from 5 days at the h i g h e s t temperature t o more than 100 days at the lowest temperature. The parameters o f the model were estimated from the e x p e r i mental data using a non l i n e a r m u l t i v a r i a t e curve f i t t i n g t e c h n i que. In t h i s process the temperature dependence o f the d i f f u s i o n c o e f f i c i e n t f o r glucose was assumed to be s m a l l i n the range o f temperatures s t u d i e d . The e q u i l i b r i u m constant K was assumed t o be given by: f
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
4
2
x
K* = 28.8
exp (-1100 / RT)
(18)
This equation i s based on data reported by Fratzke et a l . (_3). The d i f f u s i o n c o e f f i c i e n t f o r glucose i n the immobilized en zyme p a r t i c l e s , ID , was estimated to be 6.7x10" (m2/s). A r e a sonable value i f i t i s compared with the value o f 8 . 8 x l 0 (m /s) obtained by V e l l e n g a (5^) f o r a d i f f e r e n t k i n d o f immobilized g l u coseisomerase. The dependence o f the estimated values o f the i n i t i a l value of the pseudo f i r s t order r a t e constant, KQ, on temperature was i n t e r p r e t e d i n terms o f an Arrhenius r e l a t i o n s h i p . In f i g u r e 2 the Arrhenius p l o t f o r K , s t a n d a r d i z e d , w i t h i n each s e t o f e x p e r i ments, with respect t o the i n i t i a l value o f the pseudo f i r s t order r a t e constant a t 65°C, KQ 5 5 , i s shown. The a c t i v a t i o n enthalpy o f the r e a c t i o n i s estimated'to be 79x10 J/mole. This can be compa red with a value reported by Fratzke et a l . being 70x10 J/mole. The dependence o f the experimental values o f the d e a c t i v a t i o n constant on temperature i s shown i n an Arrhenius p l o t i n f i g u r e 3. The a c t i v a t i o n enthalpy o f the d e a c t i v a t i o n r e a c t i o n i s estimated to be 2 0 ^ 1 0 J/mole. This agrees w e l l with e a r l i e r r e s u l t s o f Fratzke et a l . ( 3 ) , 204X10 J/mole and N i e l s en ( Ο , 197xl0 J/mole. 11
- 1 1
0
3
3
3
3
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
3
2
ROELS A N D V A N TILBURG
Immobilized Glucose Isomerase
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
11.
Figure 2.
Arrhenius relationship for fixed-bed initial activity. (Φ) Constant version, ( Δ , • , O) constant flow.
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
156
IMMOBILIZED MICROBIAL CELLS
From f i g u r e s 2 and 3 i t i s a l s o c l e a r that the r e s u l t s o f the constant flow experiments agree w e l l with those o f the con s t a n t conversion experiment. This may be considered an i n d i c a t i o n that the assumption o f n e g l i g a b l e d i f f u s i o n a l r e s i s t a n c e f o r g l u cose t r a n s p o r t t o the p a r t i c l e s i s c o r r e c t . In t a b l e I the k i n e t i c constants and t h e i r temperatures de pendences f o r the present immobilized enzyme and some other r e l e vant data have been summarized.
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
E v a l u a t i o n o f the model The model was a p p l i e d t o estimate the t h e o r e t i c a l r e l a t i o n ship between the f i x e d bed i n i t i a l flow v e l o c i t y r e s u l t i n g i n 45% of glucose b e i n g isomerized t o f r u c t o s e and the ope r a t i n g temperature f o r an immobilized enzyme d e f i n e d by the char a c t e r i s t i c s given i n t a b l e I . The r e s u l t s o f t h i s e v a l u a t i o n , i n terms o f the i n i t i a l flow v e l o c i t y r e l a t i v e to that a t 65°C, are shown i n an Arrhenius p l o t i n f i g u r e 4. The experimental r e s u l t s used i n the parameter e s t i m a t i o n are a l s o shown. The t h e o r e t i c a l r e l a t i o n s h i p i s shown t o be d e f i n i t e l y non l i n e a r i n an Arrhenius plot. To o b t a i n a b e t t e r understanding o f the i n f l u e n c e o f the ac t i v i t y o f the f r e e enzyme on t h i s r e l a t i o n s h i p c a l c u l a t i o n s were performed f o r a f r e e enzyme a c t i v i t y twice as w e l l as h a l f o f that o f the reference s i t u a t i o n s p e c i f i e d i n t a b l e I . Table I .
Parameter values f o r reference s i t u a t i o n
K
0,65
=
K
0,T
=
k
d
=
3 .0 χ 10
3
(1/s) ί exp (
9
oo m 4 .83 χ 10
1 .51
κ
10
Ό
= 6 .7 κ Ι Ο "
R Ρ
= 6 χ 10
-4
3 0
1 1
9500x ^—)
exp (-
2
7 ° )
(1/s)
(1/day)
2
(m /s)
(m)
The r e s u l t i n g Arrhenius p l o t s are shown i n f i g u r e 5. As can be seen the i n i t i a l f r e e enzyme a c t i v i t y a f f e c t s the Arrhenius p l o t . T h i s , i n combination with the already mentioned non l i n e a r i t y o f the Arrhenius p l o t , shows that d i r e c t e s t i m a t i o n o f the a c t i v a t i o n enthalpy o f r e a c t i o n from an Arrhenius p l o t o f the i n i t i a l flow rel o c i t y cannot be r i g h t . This i s a l s o i l l u s t r a t e d i n f i g u r e 6; the
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
ROELS A N D V A N
Figure 3.
TiLBURG
Immobilized Glucose Isomerase
Arrhenius rehtionship for deactivation constant. (Φ) Constant conver sion, (Δ, • , O) constant flow.
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
157
IMMOBILIZED MICROBIAL CELLS
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
158
Figure 4. Experimental data and theoretical relationship between fixed-bed initial flow velocity and temperature. (Φ) Constant conversion, ( Δ , O) con stant flow.
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
ROELS A N D V A N
Figure 5.
Immobilized Glucose Isomerase
159
Characteristics of the Arrhenius plot of fixed-bed initial flow velocity for different activities of the free enzyme
lnV
Figure 6.
TiLBURG
0
Overall characteristics of the Arrhenius plot of fixed-bed initial flow velocity
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
160
IMMOBILIZED MICROBIAL CELLS
c h a r a c t e r i s t i c s o f the Arrhenius p l o t o f i n i t i a l flow v e l o c i t y are shown f o r a broad temperature range. The slope o f the Arrhenius p l o t corresponds to h a l f the a c t i v a t i o n enthalpy o f the a c t i v i t y of the free enzyme at high temperatures and i s equal to the slope corresponding t o the a c t i v a t i o n enthalpy a t low temperatures. In the intermediary temperature range the slope g r a d u a l l y decreases with i n c r e a s i n g temperature. In f i g u r e 7 the t h e o r e t i c a l r e l a t i o n s h i p between the i n i t i a l flow v e l o c i t y r e s u l t i n g i n a f i x e d percentage o f conversion and the a c t i v i t y o f the f r e e enzyme i s shown. The r e l a t i o n s h i p i s l i n ear i f the f r e e enzyme has a very low a c t i v i t y o r , a l t e r n a t i v e l y , i f the p a r t i c l e r a d i u s i s very s m a l l or the d i f f u s i v i t y o f glucose very high (low T h i e l e f a c t o r ) . At high T h i e l e f a c t o r s (enzyme a c t i v i t y very h i g h , radius l a r g e , d i f f u s i v i t y low) a square r o o t r e l a t i o n s h i p i s obtained. To show the relevance o f both types o f behaviour to the immobilized enzyme used i n the present i n v e s t i g a t i o n i t s expected behaviour at temperatures o f 50 and 80°C i s shown i n f i g u r e 7. The present model a l s o allows c a l c u l a t i o n o f the r e l a t i o n ship between flow v e l o c i t y at constant r e l a t i v e conversion and o p e r a t i n g time i n a f i x e d bed. In the past l i n e a r as w e l l as exp o n e n t i a l functions have been proposed f o r t h i s p r o p e r t y . In f i gure 8 the expected r e l a t i o n s h i p s according to the present model, l i n e a r decay and exponential decay are shown. The r e s u l t s of one r e p r e s e n t a t i v e experiment have a l s o been shown. The present theory r e s u l t s i n a decay curve which i s between the l i n e a r and exponential r e l a t i o n s h i p s . The assumption o f l i n e a r decay i n volves an underestimation o f the a c t i v i t y h a l f l i f e ; the assumpt i o n o f exponential decay, however, overestimates the h a l f l i f e of the i n i t i a l flow v e l o c i t y . In f i g u r e 9 the t h e o r e t i c a l r e l a t i o n s h i p between the h a l f l i f e o f the i n i t i a l flow v e l o c i t y at 45% r e l a t i v e conversion and temperature i s shown i n an Arrhenius p l o t . The r e s u l t s obtained i n the experiments used i n the parameter e s t i m a t i o n are a l s o shown. The o v e r a l l c h a r a c t e r i s t i c s o f the Arrhenius p l o t o f flow vel o c i t y h a l f l i f e are shown i n f i g u r e 10. The p l o t i s l i n e a r with a slope corresponding to the d e a c t i v a t i o n a c t i v a t i o n enthalpy o f the f r e e enzyme a t low temperatures (low T h i e l e f a c t o r s ) . The h a l f l i f e o f the immobilized enzyme a c t i v i t y i s equal to t h a t o f the f r e e enzyme. In the intermediary range o f T h i e l e f a c t o r s or temperatures the slope slowly decreases then i n c r e a s e s again to the slope corresponding to the d e a c t i v a t i o n a c t i v a t i o n enthalpy o f the f r e e enzyme. At high T h i e l e f a c t o r s or high temperatures the slope again corresponds to the d e a c t i v a t i o n a c t i v a t i o n enthalpy but the a c t i v i t y h a l f l i f e o f the immobilized enzyme i s twice t h a t o f the f r e e enzyme. From the foregoing i t i s c l e a r t h a t the i n i t i a l flow v e l o c i ty h a l f l i f e o f the immobilized enzyme i s determined not only by the d e a c t i v a t i o n p r o p e r t i e s o f the f r e e enzyme but a l s o by the
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
ROELS A N D V A N
TiLBURG
Immobilized Glucose Isomerase
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
11.
0
5
10
15 t i m e (days)
Figure 8.
Decay of the fixed-bed velocity at constant relative conversion: (O) experimental.
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
161
IMMOBILIZED MICROBIAL CELLS
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
162
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
ROELS A N D V A N TILBURG
Immobilized Glucose Isomerase
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
11.
Figure 10.
Overall characteristics of the Arrhenius plot of initial flow velocity half life
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
163
IMMOBILIZED MICROBIAL CELLS
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
164
p r o p e r t i e s o f the p a r t i c l e s and i n p a r t i c u l a r the p a r t i c l e r a d i u s and the glucose d i f f u s i v i t y i n the p a r t i c l e s . The s i g n i f i c a n c e o f d i f f u s i o n a l l i m i t a t i o n t o the h a l f l i f e o f the immobilized enzyme used i n the present i n v e s t i g a t i o n i s i l l u s t r a t e d i n f i g u r e 11 where the r a t i o o f the a c t i v i t y h a l f l i f e o f the immobilized en zyme t o the estimated a c t i v i t y h a l f l i f e o f the free enzyme i s shown as a f u n c t i o n o f temperature. The immobilized enzyme a c t i v i ty h a l f l i f e i s h i g h e r by 10 t o 60% than the h a l f l i f e o f the free enzyme a c t i v i t y . One o f the i m p l i c a t i o n s o f the remarks made above i s that e s t i m a t i o n o f the a c t i v a t i o n enthalpy o f the d e a c t i v a t i o n o f the free enzyme from an Arrhenius p l o t o f the flow v e l o c i t y h a l f l i f e o f the immobilized enzyme i n a f i x e d bed i s , i n g e n e r a l , not j u s t i f i e d . One remark s t i l l needs t o be made. Most experiments were per formed a t a constant flow r a t e through the f i x e d bed and the de crease i n the f r a c t i o n o f glucose isomerized was observed as a f u n c t i o n o f time. In the foregoing d i s c u s s i o n we r e f e r r e d t o the h a l f l i f e o f the i n i t i a l flow v e l o c i t y a t constant r e l a t i v e con v e r s i o n and t h i s i s d e f i n i t e l y d i f f e r e n t from the r e l a t i v e conver s i o n h a l f l i f e a t constant flow r a t e . In general the h a l f l i f e o f the l a t t e r property i s c o n s i d e r a b l y longer than that o f the former. The present model furthermore p r e d i c t s that the h a l f l i f e o f the r e l a t i v e conversion a t constant flow r a t e i s dependent on the i n i t i a l glucose c o n c e n t r a t i o n and the i n i t i a l r e l a t i v e conversion. On i n s p e c t i o n o f equation (17) i t i s c l e a r that the h a l f l i f e o f the i n i t i a l flow v e l o c i t y a t constant r e l a t i v e conversion i s equal t o the h a l f l i f e o f the property In ( ( C o - C*) / ( C - C*)) a t con stant flow r a t e and our c a l c u l a t i o n s o f the i n i t i a l flow v e l o c i t y h a l f l i f e from the constant flow experiments were based on t h i s equivalency. Figure 9 shows that the h a l f l i f e estimates from the constant flow experiments obtained i n t h i s way do indeed agree with those obtained d i r e c t l y from constant conversion experiments. A commercially i n t e r e s t i n g property o f an immobilized enzyme i s i t s p r o d u c t i v i t y , the t o t a l cumulative amount o f syrup conver ted, during the time i t i s used f o r p r o d u c t i o n . In p r i n c i p l e the r e l a t i o n s h i p between amount o f syrup converted and o p e r a t i n g time can be obtained by i n t e g r a t i o n o f the equation f o r the flow v e l o c i t y r e s u l t i n g i n a given percentage o f r e l a t i v e conversion o f glucose (equation (17)) with r e s p e c t t o time i . e . : s
s E
t V ( t ) dt
(19)
ο i n which V ( t ) i s given by equation (17), the values o f Κ i s c a l c u l a t e d as a f u n c t i o n o f o p e r a t i n g time from equation (13) and the e f f i c i e n c y f a c t o r i s c a l c u l a t e d from equation ( 8 ) . The T h i e l e f a c t o r t o be s u b s t i t u t e d i n equation (8) i s given as a f u n c t i o n o f time by the f o l l o w i n g equation:
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
11.
ROELS AND V A N TILBURG
165
Immobilized Glucose Isomerase
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
18h
1.4 h
1.2r
10
55 Figure 11.
60
65
70
75
80
T°C
Theoretical relationship on ratio between activity half life of free and immobilized enzyme
Venkatsubramanian; Immobilized Microbial Cells ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
166
IMMOBILIZED MICROBIAL CELLS
-i k t Φ = Φ e ο d
i n which Φ
(20)
i s the i n i t i a l T h i e l e f a c t o r being given by:
ο
ο
p
(21)
Ό
y
By combination o f equations ( 2 1 ) , (20) and (13) i t can be shown that the momentary value o f Κ can a l s o be w r i t t e n as :
Downloaded by UNIV OF ROCHESTER on August 31, 2017 | http://pubs.acs.org Publication Date: August 16, 1979 | doi: 10.1021/bk-1979-0106.ch011
2
Φ Κ = Κ ^ ο ,ζ Φ ο
(22)
Equation (19) can now with the a i d o f equations ( 1 7 ) , (21) and (22) be evaluated t o : t p
( t )
=
Γ i
P ( l - ε) . A.H
R
2
ρ
l
n
c
so c
s E
c
3
|
- C
1
φ
t a n h
*
_ U
d
t
(
2
3
)
φ
x
Equation (23) s t i l l presents a r a t h e r complex problem i f s t r a i g h t f o r w a r d i n t e g r a t i o n i s attempted. I t can however be sim p l i f i e d considerably by the f o l l o w i n g manipulations F i r s t i t i s recognized that the f o l l o w i n g r e l a t i o n s h i p h o l d s :
dt = 4 r · (1Φ αΦ
From equation (20)
dΦ
(24)
i s c a l c u l a t e d t o be
]