The DNA-esperamicin A1 complex. A model based on solvated

Chemistry Department, Wesleyan University,. Middletown, Connecticut 06457. Received December 8, 1992. Revised Manuscript Received June 25, 1993®...
0 downloads 0 Views 5MB Size
J. Am. Chem. SOC.1994,116, 15-29

15

The DNA-Esperamicin A 1 Complex. A Model Based on Solvated Molecular Dynamics Simulations D. R. Langley,'Jv* J. Golik,t B. Krishnan,t T. W. Doyle,? and D. L. Beveridge* Contributionfrom the Pharmaceutical Research Institute, Bristol-Myers Squibb Company, 5 Research Parkway, P.O. Box 5100, Wallingford, Connecticut 06492-7660, and Hall-Atwater Laboratories. Chemistry Department, Wesleyan University, Middletown, Connecticut 06457 Received December 8, 1992. Revis'ed Manuscript Received June 25, 1993"

Abstract: A solvated model for the DNA-esperamicin complex has been constructedand shown to be thermodynamically stable over a 300-ps molecular dynamics simulation. The dynamical model is consistent with all of the available experimental data. The model has been used to gain insights into (1) how esperamicin is activated into a DNA-cleaving molecule, (2) its mode of binding to DNA, (3) how the individual esperamicih residues contribute to its ability to bind with and cleave DNA, (4) the fate of the carbon-centered radicals, and ( 5 ) its DNA-cleavage patterns and cleavage sequence specificity. Furthermore, a comparison of the models for the DNA-esperamicin AI and DNA-esperamicin C complexes has been carried out to gain an understanding at the molecular level of the difference in the DNA-cutting abilitiesexhibited by these two esperamicin analogs. Finally, experimentaldata are presented that show that esperamicin Al undergoes fragmentation in the DNA-cleavage reaction. The DNA-esperamicin model has been used to provide a mechanistic rationale for the fragmentation reaction.

Introduction Esperamicin A1 (BMY-28175, Figure 1) is a metabolite of Actinomadura verrucosospora,l which was isolated from a soil sample collected at Pto Esperanza, Misions, Argentina. The esperamicins are members of the enediyne class of natural products, which includes neacarzinostatin,Hthe calicheamicins1D-l3 (Figure 2), the dynemicins,Ik17 and kedarcidin.lS24 Bristol-Myers Squibb Co. Wesleyan University. *Abstract published in Advunce ACS Abstructs, November 15, 1993. (1) Konishi, M.; Ohkuma, H.; Saitoh, K.4.; Kawaguchi, H. J. Antibiot. 1985,38, 1605-1609. (2) Goldberg, I. H. Acc. Chem. Res. 1991, 24, 191-198. (3) Edo, K.; Mizugaki, M.; Koide, Y.;Seto, H.; Furihata, K.; Otake, N.; Ishida, N. Tetruhedron Lett. 1985, 26, 331. (4) Hensons, 0. D.; Goldberg, I. H. J. Antibiot. 1989, 42, 761-768. (5) Hensons, 0.D.; Giner, J. L.; Goldberg, I. H. J. Am. Chem. Soc. 1989, I 1 1,3295-3299. (6) Myers, A. G.; Proteau, P. J.; Handel, T. M. J. Am. Chem. Soc. 1988, 110,7212. (7) Won, P. C.; Goldberg, I. H. Biochemistry 1992, 31, 1909-1917. (8) Dedon, P.C.; Jiang, Z.-W.; Goldberg, I. H. Biochemistry 1992, 31, 1917-1927. (9) Adjadj, E.; Quiniou, E.; Mispelter, J.; Favaudon, V.; Lhoste, J.-M. Eur. J. Biochem. 1992,203, 505-511. (10) Lee, M. D.; Dunne, T. S.;Siegal, M. M.; Chang, C. C.; Morton, G. 0.; Borders, D. B. J. Am. Chem. Soc. 1987,109, 3464-3466. (11) Lee, M. D.; Dunne, T. S.;Chang, C. C.; Ellestad, G. A,; Siegel, M. M.;Morton,G. 0.;McGahren, W. J.;Borders, D. B. J. Am. Chem.Soc. 1987, 109, 3466-3468. (12) Lee, M. D.; Manning, J. K.; Williams, D. R.; Kunk, N. A.; Testa, R. T.: Borders. D. B. J. Antibiot. 1989. 42. 1070-1087. '(13) L& M. D.; Dunne, T. S.;Chang, C. C.; Siegel, M. M.; Morton, G. 0.;Ellestad, G. A.; McGahren, W. J.; Borders, D. B. J. Am. Chem.Soc. 1992, 114. ..-,985-997. - -- - (14) Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki,T.; Kawaguchi, H.; VanDuyne G. D.; Clardy, J. J. Antibiot. 1989,42, 1449-1452. (15) Konishi, M.; Ohkuma, H.;Tsuno, T.; OLi, T.;VanDuyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 3715-3716. (16) Langley, D. R.; Doyle, T. W.; Beveridge, D. L. J. Am. Chem. Soc. 1991, 113,43954403. (17) Tokiwa, Y .; Miyoshi-Saitoh, M.; Kobayashi, H.; Sunaga, R.; Konishi, M.; Oki, T.; Iwasaki, S. J. Am. Chem. Soc. 1992,114, 41074110. (18) Lam, K. S.; Haler, G. A.; Gustavson, D. R.; Crosswell, A. R.; Veitch, J. M.; Forenza, S.; Tomita, K. J. Antibiot. 1991, 44, 472478. (19) Hofstead, S.J.; Matson, J. A.; Malacko, A. R.; Marquardt, H. J. Anribiot. 1992, 45, 1250-1254. (20) Hofstead, S.J.; Matson, J. A.; Lam, K. S.; Forenza, S.; Bush, J. A.; Tomita, K. US.Patent 5,001,112, March 19, 1991. f

t

The initial fermentation yields of