The Effect of Aniline Concentration in the Ligand Exchange Reaction

Jun 19, 2009 - Sodium citrate reduction of hydrogen tetrachloroaurate is one of the most efficient routes in the synthesis of gold nanoparticles (AuNP...
0 downloads 0 Views 4MB Size
pubs.acs.org/Langmuir © 2009 American Chemical Society

The Effect of Aniline Concentration in the Ligand Exchange Reaction with Citrate-Stabilized Gold Nanoparticles Janelle D. S. Newman* and William A. MacCrehan Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 Received February 25, 2009. Revised Manuscript Received May 4, 2009 Sodium citrate reduction of hydrogen tetrachloroaurate is one of the most efficient routes in the synthesis of gold nanoparticles (AuNPs). However, a major limitation of this method is that it results only in citrate-stabilized AuNPs, and exchange reactions of the citrate for another stabilizer must be undertaken in cases where other surface functionalities are desired. These exchange reactions can be studied using a variety of techniques. Two techniques we have used for analysis are ultraviolet-visible spectroscopy, which takes advantage of the plasmon resonance (PR) of AuNPs, and liquid chromatography (LC) to examine residual exchanger in the supernatant at equilibrium. The exchange of the citrate on the surface of AuNPs with aniline was studied where different concentrations of aniline are added. While the equilibrium PR band spectra were similar for high and low concentrations of added aniline, the spectra as a function of time differed markedly. Surprisingly, increasing the concentration of added aniline slowed the evolution of a second red-shifted band. Transmission electron microscopy (TEM) imaging showed that addition of neither high nor low concentrations of aniline caused a significant difference in particle size, and the appearance of the large second band was most likely due to the presence of an oligomeric aniline species surrounding the particles. As aniline is known to undergo polymerization under a variety of conditions, it is postulated that aniline polymerization is a competitive event to the ligand exchange process, and increasing the aniline concentration increases the likelihood of polymerization kinetically competing with association of the aniline species interacting with the AuNP surface. This was further supported by LC data, which demonstrated that the aniline exchanged at approximately 4% of the initial amount of citrate present in the synthetic mixture.

Introduction Gold nanoparticles (AuNPs) have been a widely studied in the past several decades. These nanometer-sized particles have attracted interest due to their novel optical and electronic properties, which may be harnessed in a variety of applications including surface-enhanced Raman scattering,1 chemical and *Corresponding author. E-mail: [email protected]. (1) Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S. L. MRS Bull. 2005, 30(5), 368–375. (2) Newman, J. D. S.; Roberts, J. M.; Blanchard, G. J. Anal. Chem. 2007, 79(9), 3448. (3) Newman, J. D. S.; Roberts, J. M.; Blanchard, G. J. Anal. Chim. Acta 2007, 602(1), 101–107. (4) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293–346. (5) Haes, A. J.; Zou, S. L.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2004, 108(1), 109–116. (6) He, X. R.; Liu, H. B.; Li, Y. L.; Wang, S.; Li, Y. J.; Wang, N.; Xiao, J. C.; Xu, X. H.; Zhu, D. B. Adv. Mater. 2005, 17(23), 2811. (7) Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16(19), 1685–1706. (8) Kouassi, G. K.; Irudayaraj, J. Anal. Chem. 2006, 78(10), 3234–3241. (9) Kurniawan, F.; Tsakova, V.; Mirsky, V. M. Electroanalysis 2006, 18(19-20), 1937–1942. (10) Matsui, J.; Akamatsu, K.; Hara, N.; Miyoshi, D.; Nawafune, H.; Tamaki, K.; Sugimoto, N. Anal. Chem. 2005, 77(13), 4282–4285. (11) Nath, N.; Chilkoti, A. Anal. Chem. 2002, 74(3), 504–509. (12) Nath, N.; Chilkoti, A. Anal. Chem. 2004, 76(18), 5370–5378. (13) Qi, Z. M.; Honma, I.; Zhou, H. S. Opt. Lett. 2006, 31(12), 1854–1856. (14) Wu, Z. S.; Zhang, S. B.; Guo, M. M.; Chen, C. R.; Shen, G. L.; Yu, R. Q. Anal. Chim. Acta 2007, 584(1), 122–128. (15) Santra, S.; Dutta, D.; Walter, G. A.; Moudgil, B. M. Technol. Cancer Res. Treat. 2005, 4(6), 593–602. (16) He, H.; Xie, C.; Ren, J. Anal. Chem. 2008, 80, 5951–5957. (17) Medley, C. D.; Smith, J. E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W. Anal. Chem 2008, 80, 1067–1072. (18) Choi, M. R.; StantonMaxey, K. J.; Stanley, J. K.; Levin, C. S.; Bardhan, R.; Akin, D.; Badve, S.; Sturgis, J.; Robinson, J. P.; Bashir, R.; Halas, N. J.; Clare, S. E. Nano Lett. 2007, 7(12), 3759–3765. (19) Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Proc. Natl. Acad. Sci. U.S.A. 2003, 100(23), 13549–13554.

Langmuir 2009, 25(16), 8993–8998

biological sensors,2-17 and biomedical applications.18-24 These properties, differing from both atomic and bulk properties, are size and shape dependent25-28 and are easily tunable through simple changes in the synthetic method.28,29 One of the most widely utilized properties of AuNPs is the presence of a plasmon resonance (PR) band, which manifests itself as a strong, broad absorbance in the visible spectrum.26,28,30 It is dependent on both the size and the local dielectric environment of the AuNPs. The Mie equation31,32 (eq 1) has been shown to demonstrate these influences on the particle’s absorbance:   3=2 9  43 πr3 εm ε00 σ abs ¼ ð1Þ λ ðε0 þ 2εm Þ2 þ ðε00 Þ2 where σabs is the absorbance cross-section, r is the particle radius, λ is the PR wavelength, εm is the dielectric constant of the medium (20) Loo, C.; Lin, A.; Hirsch, L.; Lee, M. H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Technol. Cancer Res. Treat. 2004, 3(1), 33–40. (21) Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Nano Lett. 2005, 5(4), 709–711. (22) O’Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Cancer Lett. 2004, 209(2), 171–176. (23) Sonvico, F.; Dubernet, C.; Colombo, P.; Couvreur, P. Curr. Pharm. Des. 2005, 11(16), 2091–2105. (24) Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Nano Lett. 2007, 7(7), 1929–1934. (25) Charle, K. P.; Schulze, W.; Winter, B. Z. Phys. D: Atoms Mol. Clusters 1989, 12(1-4), 471–475. (26) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107(3), 668–677. (27) Kreibig, U.; Genzel, L. Surf. Sci. 1985, 156, 678–700. (28) Noguez, C. J. Phys. Chem. C 2007, 111(10), 3806–3819. (29) Halas, N. MRS Bull. 2005, 30(5), 362–367. (30) Xia, Y. N.; Halas, N. J. MRS Bull. 2005, 30(5), 338–344. (31) Mie, G. Ann. Phys. 1908, 25, 377–445. (32) Hovel, H.; Fritz, S.; Hilger, A.; Kreibig, U.; Vollmer, M. Phys. Rev. B 1993, 48(24), 18178–18188.

Published on Web 06/19/2009

DOI: 10.1021/la900680e

8993

Article

surrounding the particles, and ε0 and ε00 are the real and imaginary components of the dielectric constant of gold. Typically, particles in the