Thermal Conductivity of Methylammonium Lead Halide Perovskite

Dec 1, 2017 - Institute of Polymer Technology, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany ... Thermal management in de...
36 downloads 64 Views 699KB Size
Subscriber access provided by READING UNIV

Article

Thermal Conductivity of Methylammonium Lead Halide Perovskite Single Crystals and Thin Films – A Comparative Study Ralf Heiderhoff, Tobias Haeger, Neda Pourdavoud, Ting Hu, Mine AlKhafaji, Andre Mayer, Yiwang Chen, Hella-Christin Scheer, and Thomas Riedl J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/acs.jpcc.7b11495 • Publication Date (Web): 01 Dec 2017 Downloaded from http://pubs.acs.org on December 2, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Physical Chemistry C is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Thermal Conductivity of Methylammonium Lead Halide Perovskite Single Crystals and Thin Films – A Comparative Study Ralf Heiderhoffa,,c,*, Tobias Haegera,c, Neda Pourdavouda,c, Ting Hua,d Mine Al-Khafajia,c, Andre Mayerb,c, Yiwang Chend, Hella-Christin Scheerb,c, and Thomas Riedla,c a

Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany b Microstructure Engineering, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany c Institute of Polymer Technology, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany d College of Chemistry/Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China ABSTRACT Thermal management in devices like solar cells, light emitting diodes and lasers based on hybrid halide perovskite thin films is expected to be of paramount importance for optimal performance and reliability. As of yet, experimental data of thermal properties of non-Iodine based hybrid halide perovskites is very scarce. Here, the thermal conductivity of methylammonium lead halide perovskite (CH3NH3PbX3 X= I, Br, and Cl) single crystals and thin films is analyzed by Scanning Near-field Thermal Microscopy. The thermal conductivity of CH3NH3PbX3 single crystals with X= I, Br, and Cl is found to be 0.34±0.12W/(mK), 0.44±0.08W/(mK), and 0.50±0.05W/(mK) at room temperature, respectively. Strikingly, similar thermal conductivities are determined for the corresponding thin-film samples. The thermal conductivity of MAPbI3 in the cubic phase (T > 55°C) increases to (1.1±0.1) W/(mK). In addition, the temperature-dependence of the thermal conductivities and of thermal expansion coefficients of MAPbI3 around the phase transition from the tetragonal to cubic phase are presented. INTRODUCTION Power conversion efficiencies of organic–inorganic hybrid perovskite solar cells (PSCs) have rapidly increased to a level of 22.1% 1. Aside from photovoltaics, this family of materials also holds great promise for future applications in light emitting diodes (LEDs)

2

and lasers

3,4

.

Despite their relatively simple processing technology their optoelectronic properties are almost comparable with the most successful inorganic semiconductors 5–7. In a wide range of device applications, thermal management becomes more and more important, because both 1 ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 15

lifetime and performance are influenced by temperature or temperature gradients 8. This is especially true for future perovskite based lasers, whose prospects of electrical or continuous wave operation are intimately linked to a sophisticated thermal management

9,10

. Aside from

intrinsic thermally induced loss mechanisms, thermally activated decomposition of hybrid halide perovskites may become an issue

11–14

. Intrinsic thermal properties should be

investigated to further explore the potential in photovoltaics, as they influence electronic properties (for instance carrier mobility) as well as carrier dynamics 15. Thus, the analysis of thermal transport in these organic–inorganic hybrid perovskites is indispensable. In the past, only a few studies have been devoted to the thermal properties of hybrid 16–21

perovskites

. The heat capacity of methylammonium (MA) lead halide (CH3NH3PbX3;

X= I, Br, and Cl) perovskites has been measured by Onoda-Yamamuro et al. 16. Heating the MAPbI3 samples above room temperature, a tetragonal to pseudocubic polymorph transition (330 K) was observed while the orthorhombic to tetragonal phase change and the transitions of all other CH3NH3PbX3 perovskites occur at substantially lower temperatures (149-236 K). Pisoni et al. performed the first thermal conductivity measurements of MAPbI3 for temperatures below 300K

19

. The analysis was performed by a steady state bar technique

gluing heater and thermocouples to the sample and to the reference. The room temperature thermal conductivity λ was determined to be 0.5 W/(mK) and 0.3 W/(mK) for a single crystal and a polycrystalline sample, respectively. The same thermal conductivity was found for a polycrystalline sample measuring the effect of the methylammonium ion on phonon scattering 22

. The low thermal conductivity of the MAPbI3 single crystal was mainly attributed to

rotational motion of the MA cations thermoelectric (TE) applications

23

and has attracted intense attention for possible

20

. A high Seebeck coefficient of 0.82 mV/K

24

, a high

charge carrier mobility in the range of 5–10 cm2/(Vs) for electrons and within 1–5 cm2/(Vs) for holes

25

, as well as a high carrier diffusion length >1 µm

26

were reported. The thermal

conductivity of a MAPbI3 perovskite single crystal was also evaluated in the temperature range of 299 K to 424 K using a commercial laser flash system

27

. Values of around 0.30–

0.42 W/(mK) were observed. Similar values were found for films using the time-domain thermos-reflectance (TDTR) method in dependent on the modulation frequency 28. In stiking contrast to all other reports, an extremly high thermal conductivity of densely packed MAPbI3 films of 11.2 ± 0.8W/(mK) at room temperature has been claimed by Chen et al. 29. Equilibrium molecular dynamics simulations of the temperature-dependent lattice thermal conductivity of MAPbI3 have been conducted

30,31

. A very low thermal conductivity of

0.59 W/(mK) was found in the tetragonal phase at room temperature attributed to a low group 2 ACS Paragon Plus Environment

Page 3 of 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

velocity of acoustic phonons due to their low elastic stiffness and the strong anharmonicity 30. This value is in good agreement with the experimental results, whereas a much higher thermal conductivity has been predicted for the pseudocubic phase (1.80 W/(mK) at 330 K). It has been argued that the lower thermal conductivity in the tetragonal phase was due to the shorter lifetimes of the optical phonons and the smaller group velocity of acoustic phonons than that in the pseudocubic phase. On the other hand the thermal conductivity of all MAPbI3 polymorphs has been predicted to be below 1 W/(mK), and as low as 0.31 W/(mK) at room temperature

31

. Such ultralow thermal conductivity as a result of enhanced phonon–phonon

scattering from highly-overlapped phonon branches hints to short phonon lifetimes ( 57°C attributed to higher group velocities of acoustic phonons in the pseudocubic structure as predicted earlier 30. In addition the thermal expansion coefficient has been measured simultaneously by AFM within the same range of temperatures (see Figure 5). The resulting linear thermal expansion coefficients are αc-tet = (-5.1±0.4)·10-4 K-1 and αa-cub: (4.6±0.4)·10-4 K-1 for the tetragonal and pseudocubic phase, respectively.

Figure 5: Determination of linear thermal expansion coefficients and the temperature-induced phase transition from a 2mm thick MAPbI3 single crystal. While αc-tet, determined for T60°C, is one order of magnitude higher in our single crystals compared

to numbers determined for thin films. The phase transition occurs at (52±1)°C and agrees well with earlier reports of (54±1)°C 53. A somewhat higher temperature for the phase transition of (57±1)°C has been determined from calorimetric and IR analysis

16

as well as from using

30

equilibrium molecular dynamics simulations . CONCLUSIONS In summary, for the first time a comparative experimental assessment of the thermal conductivity of methylammonium lead halide perovskite (CH3NH3PbX3 X= I, Br, and Cl) single crystals and thin films has been performed. Similar thermal conductivities are measured for crystals and densely packed thin perovskite films. We could experimentally verify, that perovskites with decreasing atomic number of the halide possess a slight higher average thermal conductivity. For the first time, the temperature-dependent thermal conductivity as well as the change of the thermal expansion coefficients of a cleaved MAPbI3 single crystal are detected around the temperature-induced phase transition. The thermal conductivity of MAPbI3 single crystals in 9 ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 15

the cubic structure increases to (1.1±0.1) W/(mK). The absolute value of the negative linear thermal expansion coefficients in the tetragonal structure of (-5.1±0.4)·10-4 K-1 is found be quite similar to the positive linear thermal expansion coefficients in the cubic structure of (4.6±0.4)·10-4 K-1. We believe that our insights will be of great general importance for the thermal design of thin-film devices based on hybrid halide perovskites. ASSOCIATED CONTENT

Supporting Information preparation of single crystals by the inverse temperature crystallization procedure; thin film deposition and PHP; optical and SEM micrographs of single crystal; SEM micrographs of MAPbI3 perovskite thin film surfaces; experimental details on quantitative thermal conductivity measurements using SThM; results after irradiating the sample with varied electron beam doses AUTHOR INFORMATION *

Corresponding Author

Ralf Heiderhoff Institute of Electronic Devices, University of Wuppertal Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany e-mail: [email protected] telephone number: +49-202-439 1966

Author Contributions The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. ACKNOWLEDGMENT This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under the project number HE2698/7-1. We acknowledge the German Federal Ministry for Education and Research (Grant No. 13N13819) for financial support. REFERENCES (1)

(2)

(3)

Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; et al. Iodide Management in Formamidinium-LeadHalide-Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356, 1376– 1379. Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; et al. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687–692. Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; 10 ACS Paragon Plus Environment

Page 11 of 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

(4)

(5) (6)

(7) (8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; et al. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett. 2014, 5, 1421–1426. Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater. 2014, 13, 476–480. Stranks, S. D.; Snaith, H. J. Metal-Halide Perovskites for Photovoltaic and LightEmitting Devices. Nat. Nanotechnol. 2015, 10, 391–402. Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. (Weinheim, Ger.) 2016, 28, 6804–6834. Sutherland, B. R.; Sargent, E. H. Perovskite Photonic Sources. Nat. Photonics 2016, 10, 295–302. Li, X.; Tschumi, M.; Han, H.; Babkair, S. S.; Alzubaydi, R. A.; Ansari, A. A.; Habib, S. S.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Grätzel, M. Outdoor Performance and Stability under Elevated Temperatures and Long-Term Light Soaking of Triple-Layer Mesoporous Perovskite Photovoltaics. Energy Technol. (Weinheim, Ger.) 2015, 3, 551–555. Jia, Y.; Kerner, R. A.; Grede, A. J.; Brigeman, A. N.; Rand, B. P.; Giebink, N. C. Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator. Nano Lett. 2016, 16, 4624–4629. Cadelano, M.; Sarritzu, V.; Sestu, N.; Marongiu, D.; Chen, F.; Piras, R.; Corpino, R.; Carbonaro, C. M.; Quochi, F.; Saba, M.; et al. Can Trihalide Lead Perovskites Support Continuous Wave Lasing? Adv. Opt. Mater. 2015, 3, 1557–1564. Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A. The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angewandte Chemie - International Edition 2015, 54, 8208–8212. Misra, R. K.; Aharon, S.; Li, B.; Mogilyansky, D.; Visoly-Fisher, I.; Etgar, L.; Katz, E. A. Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. J. Phys. Chem. Lett. 2015, 6, 326–330. Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A. Light and Oxygen Induced Degradation Limits the Operational Stability of Methylammonium Lead Triiodide Perovskite Solar Cells. Energy Environ. Sci. 2016, 9, 1655-1660. Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. Thermal Degradation of CH3NH3PbI3 Perovskite into NH3 and CH3I Gases Observed by Coupled Thermogravimetry–mass Spectrometry Analysis. Energy Environ. Sci. 2016, 9, 3406– 3410. Liu, Y.; Yang, Z.; Liu, S. F. Recent Progress in Single-Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications. Adv. Sci. (Weinheim, Ger.) 2017, DOI: 10.1002/advs.201700471. Onoda-Yamamuro, N.; Matsuo, T.; Suga, H. Calorimetric and IR Spectroscopic Studies of Phase Transitions in Methylammonium Trihalogenoplumbates. J. Phys. Chem. Solids 1990, 51, 1383–1395. Dualeh, A.; Gao, P.; Seok, S. Il; Nazeeruddin, M. K.; Grätzel, M. Thermal Behavior of Methylammonium Lead- Thermal Behavior of Methylammonium Lead-Trihalide Perov- Skite Photovoltaic Light Harvesters . Chem. Mater. 2014, 26, 6160–6164. Williams, A. E.; Holliman, P. J.; Carnie, M. J.; Davies, M. L.; Worsley, D. a.; Watson, T. M. Perovskite Processing for Photovoltaics: A Spectro-Thermal Evaluation. J. Mater. Chem. A 2014, 2, 19338–19346. 11 ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(19) (20) (21)

(22)

(23)

(24)

(25) (26)

(27)

(28)

(29)

(30) (31)

(32)

(33)

(34) (35)

Page 12 of 15

Pisoni, A.; Baris, O. S.; Spina, M.; Gaa, R. Ultra-Low Thermal Conductivity in Organic − Inorganic Hybrid. J. Phys. Chem. Lett. 2014, 5, 2488–2492. He, Y.; Galli, G. Perovskites for Solar Thermoelectric Applications: A First Principle Study of CH 3 NH 3 AI 3 (A = Pb and Sn). Chem. Mater. 2014, 26, 5394–5400. Elbaz, G. A.; Ong, W.-L.; Doud, E. A.; Kim, P.; Paley, D. W.; Roy, X.; Malen, J. A. Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites. Nano Lett. 2017, 17, 5734–5739. Kovalsky, A.; Wang, L.; Marek, G. T.; Burda, C.; Dyck, J. S. Thermal Conductivity of CH3NH3PbI3 and CsPbI3: Measuring the Effect of the Methylammonium Ion on Phonon Scattering. J. Phys. Chem. C 2017, 121, 3228–3233. Hata, T.; Giorgi, G.; Yamashita, K. The Effects of the Organic-Inorganic Interactions on the Thermal Transport Properties of CH3NH3PbI3. Nano Lett. 2016, 16, 2749– 2753. Mettan, X.; Pisoni, R.; Matus, P.; Pisoni, A.; Jacimovic, J.; Náfrádi, B.; Spina, M.; Pavuna, D.; Forró, L.; Horváth, E. Tuning of the Thermoelectric Figure of Merit of CH 3 NH 3 MI 3 (M=Pb,Sn) Photovoltaic Perovskites. J. Phys. Chem. C 2015, 119, 11506–11510. Motta, C.; El-Mellouhi, F.; Sanvito, S. Charge Carrier Mobility in Hybrid Halide Perovskites. Sci. Rep. 2015, 5, 1–8. Stranks, S. D.; Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2014, 342, 341–344. Ye, T.; Wang, X.; Li, X.; Yan, A. Q.; Ramakrishna, S.; Xu, J.; Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; et al. Ultra-High Seebeck Coefficient and Low Thermal Conductivity of a Centimeter-Sized Perovskite Single Crystal Acquired by a Modified Fast Growth Method. J. Mater. Chem. C 2017, 5, 1255-1260. Guo, Z.; Yoon, S. J.; Manser, J. S.; Kamat, P. V.; Luo, T. Structural Phase- and Degradation-Dependent Thermal Conductivity of CH3NH3PbI3 Perovskite Thin Films. J. Phys. Chem. C 2016, 120, 6394–6401. Chen, Q.; Zhang, C.; Zhu, M.; Liu, S.; Siemens, M. E.; Gu, S.; Zhu, J.; Shen, J.; Wu, X.; Liao, C.; et al. Efficient Thermal Conductance in Organometallic Perovskite CH3NH3PbI3 Films. Appl. Phys. Lett. 2016, 108, 81902. Qian, X.; Gu, X.; Yang, R. Lattice Thermal Conductivity of Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. Appl. Phys. Lett. 2016, 108, 63902. Wang, M.; Lin, S. Anisotropic and Ultralow Phonon Thermal Transport in Organic– Inorganic Hybrid Perovskites: Atomistic Insights into Solar Cell Thermal Management and Thermoelectric Energy Conversion Efficiency. Adv. Funct. Mater. 2016, 26, 5297– 5306. Pourdavoud, N.; Wang, S.; Mayer, A.; Hu, T.; Chen, Y.; Marianovich, A.; Kowalsky, W.; Heiderhoff, R.; Scheer, H.-C.; Riedl, T. Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organo-Metal Halide Perovskites. Adv. Mater. (Weinheim, Ger.) 2017, 29, 1605003. Mayer, A.; Buchmüller, M.; Wang, S.; Steinberg, C.; Papenheim, M.; Scheer, H.-C.; Pourdavoud, N.; Haeger, T.; Riedl, T. Thermal Nanoimprint to Improve the Morphology of MAPbX 3 (MA = Methylammonium, X = I or Br). J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.2017, 35, 06G803. Sutherland, B. R.; Sargent, E. H. Perovskite Photonic Sources. Nat. Photonics 2016, 10, 295–302. Lee, W.; Li, H.; Wong, A. B.; Zhang, D.; Lai, M.; Yu, Y.; Kong, Q.; Lin, E.; Urban, J. J.; Grossman, J. C.; et al. Ultralow Thermal Conductivity in All-Inorganic Halide 12 ACS Paragon Plus Environment

Page 13 of 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

(36)

(37)

(38) (39)

(40)

(41)

(42) (43)

(44) (45)

(46)

(47) (48)

(49)

(50)

(51)

Perovskites. Proc. Natl. Acad. Sci. U. S. A 2017, 114, 201711744. Sobhan, C. B.; Peterson, G. P. Microscale and Nanoscale Heat Transfer— Fundamentals and Engineering Applications; CRS Press, Taylor & Francis Group: Boca Raton, U.S.A., 2008. Cahill, D. G.; Braun, P. V.; Chen, G.; Clarke, D. R.; Fan, S.; Goodson, K. E.; Keblinski, P.; King, W. P.; Mahan, G. D.; Majumdar, A.; et al. Nanoscale Thermal Transport. II. 2003-2012. Appl. Phys. Rev. 2014, 1, 011305. Luo, T.; Chen, G. Nanoscale Heat Transfer--from Computation to Experiment. Phys. Chem. Chem. Phys. 2013, 15, 3389–3412. Merdasa, A.; Bag, M.; Tian, Y.; Källman, E.; Dobrovolsky, A.; Scheblykin, I. G. Super-Resolution Luminescence Microspectroscopy Reveals the Mechanism of Photoinduced Degradation in CH3NH3PbI3 Perovskite Nanocrystals. J. Phys. Chem. C 2016, 120, 10711–10719. Quarti, C.; Mosconi, E.; Ball, J. M.; D’Innocenzo, V.; Tao, C.; Pathak, S.; Snaith, H. J.; Petrozza, A.; De Angelis, F. Structural and Optical Properties of Methylammonium Lead Iodide across the Tetragonal to Cubic Phase Transition: Implications for Perovskite Solar Cells. Energy Environ. Sci. 2016, 9, 155–163. Yi, N.; Wang, S.; Duan, Z.; Wang, K.; Song, Q.; Xiao, S. Tailoring the Performances of Lead Halide Perovskite Devices with Electron-Beam Irradiation. Adv. Mater. (Weinheim, Ger.) 2017, 29, 1701636. Heiderhoff, R.; Makris, A.; Riedl, T. Thermal Microscopy of Electronic Materials. Mater. Sci. Semicond. Process. 2016, 43, 163-176. Fiege, G. B. M.; Altes, A.; Heiderhoff, R.; Balk, L. J. Quantitative Thermal Conductivity Measurements with Nanometre Resolution. J. Phys. D: Appl. Phys 1999, 32, L13–L17. Altes, A.; Heiderhoff, R.; Balk, L. J. Quantitative Dynamic near-Field Microscopy of Thermal Conductivity. J. Phys. D: Appl. Phys 2004, 37, 952–963. Tovee, P.; Pumarol, M.; Zeze, D.; Kjoller, K.; Kolosov, O. Nanoscale Spatial Resolution Probes for Scanning Thermal Microscopy of Solid State Materials. J. Appl. Phys. (Melville, NY, U. S.) 2012, 112, 114317. Wilson, A. A.; Muñoz Rojo, M.; Abad, B.; Perez, J. A.; Maiz, J.; Schomacker, J.; Martín-Gonzalez, M.; Borca-Tasciuc, D.-A.; Borca-Tasciuc, T. Thermal Conductivity Measurements of High and Low Thermal Conductivity Films Using a Scanning Hot Probe Method in the 3ω Mode and Novel Calibration Strategies. Nanoscale 2015, 7, 15404–15412. Makris, A.; Haeger, T.; Heiderhoff, R.; Riedl, T. From Diffusive to Ballistic Dynamic Heat Transport in Thin Films. RSC Adv. 2016, 6, 94193–94199. Heiderhoff, R.; Haeger, T.; Dawada, K.; Riedl, T. From Diffusive in-Plane to Ballistic out-of-Plane Heat Transport in Thin Non-Crystalline Films. Microelectron. Reliab. 2017, 6, 94193–94199. Saidaminov, M. I.; Abdelhady, A. L.; Murali, B.; Alarousu, E.; Burlakov, V. M.; Peng, W.; Dursun, I.; Wang, L.; He, Y.; Maculan, G.; et al. High-Quality Bulk Hybrid Perovskite Single Crystals within Minutes by Inverse Temperature Crystallization. Nat. Commun. 2015, 6, 7586. Xiao, C.; Li, Z.; Guthrey, H.; Moseley, J.; Yang, Y.; Wozny, S.; Moutinho, H.; To, B.; Berry, J. J.; Gorman, B.; et al. Mechanisms of Electron-Beam-Induced Damage in Perovskite Thin Films Revealed by Cathodoluminescence Spectroscopy. J. Phys. Chem. C 2015, 119, 26904–26911. Dar, M. I.; Jacopin, G.; Hezam, M.; Arora, N.; Zakeeruddin, S. M.; Deveaud, B.; Nazeeruddin, M. K.; Gr??tzel, M. Asymmetric Cathodoluminescence Emission in CH3NH3PbI3-xBrx Perovskite Single Crystals. ACS Photonics 2016, 3, 947–952. 13 ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(52) (53)

Page 14 of 15

Hentz, O.; Zhao, Z.; Gradečak, S. Impacts of Ion Segregation on Local Optical Properties in Mixed Halide Perovskite Films. Nano Lett. 2016, 16, 1485–1490. Jacobsson, T. J.; Schwan, L. J.; Ottosson, M.; Hagfeldt, A.; Edvinsson, T. Determination of Thermal Expansion Coefficients and Locating the TemperatureInduced Phase Transition in Methylammonium Lead Perovskites Using X-Ray Diffraction. Inorg. Chem. 2015, 54, 10678–10685.

14 ACS Paragon Plus Environment

Page 15 of 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

TOC Graphic

15 ACS Paragon Plus Environment