Thermodynamic Interactions Study of Some ... - ACS Publications

Highly Efficient Chalcogel-Based Molecular Filters. Journal of Chemical & Engineering Data. Raju, and Kota. 2018 63 (9), pp 3449–3458. Abstract: Cha...
0 downloads 0 Views 2MB Size
Article pubs.acs.org/jced

Cite This: J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Thermodynamic Interactions Study of Some Ethylene Glycols in Aqueous Aniline Solutions at Different Temperatures: An Acoustical and Volumetric Approach Kirandeep Kaur,† Kailash C. Juglan,*,† Harsh Kumar,‡ and Isha Behal‡ †

Department of Physics, Lovely Professional University, Jalandhar, Punjab 144011, India Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab 144011, India



Downloaded via UNIV OF TOLEDO on August 15, 2018 at 02:27:19 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

S Supporting Information *

ABSTRACT: With densities and ultrasonic speeds, interactions of aniline with ethylene glycol, diethylene glycol, and triethylene glycol are measured at T = (293.15−308.15) K. From the densities, the (apparent molar and partial molar) volumes, Vϕ and V0ϕ are computed. The apparent specific volume υϕ and partial specific volume υ0ϕ are also evaluated from density data. The (apparent molar and partial molar) isentropic compressions, Kϕ,s and Koϕ,s have been evaluated from measured ultrasonic speeds. The transfer properties such as partial molar isentropic compression and partial molar volumes of transfer (ΔKoϕ,s and ΔV0ϕ) are also determined utilizing density and ultrasonic speed data. The pair and the triplet interaction coefficients are computed from partial molar isentropic compression and partial molar volumes of transfer. The partial molar expansibility (∂V0ϕ/∂T)p and second order derivative (∂2V0ϕ/∂T2)p are also calculated. The parameters hence obtained are conferred in terms of solute−solute or solute−solvent interactions succeeding in the present ternary system. hygroscopic behavior.36−38 The mixtures comprising glycols are broadly availed in pharmaceutical, cosmetic, food, and biotechnology industry.39−44 The hydrogen bonding between the molecules of glycols gets interrupted during the mixing of EGs in water, as a result of which these are utilized as an additive to lower the freezing point of liquids with a water base.45 Here, in this study we have reported the ultrasonic speeds and densities of ethylene glycol (EG), diethylene glycol (DEG), and triethylene glycol (TEG) in (0.0, 0.1, 0.2, 0.3, 0.4) mol·kg−1 aqueous aniline solutions at different temperatures (293.15, 298.15, 303.15 and 308.15) K and an experimental pressure of 0.1 MPa. From the obtained experimental data of ultrasonic velocity and density several thermodynamic parameters, for instance, partial molar properties and apparent molar properties, are estimated which provides deep insight into the solute−solvent interactions in molecules of aniline and EGs.

1. INTRODUCTION With a small size and quadrupole moment, liquid water is an exclusive solvent having the capability to support wide hydrogen-bonding networks.1−5 Numerous studies are done on characteristics of molecular interactions of polar organic liquids and water.6−22 As compared to pure liquids, mixed solvents have more practical significance in various chemical, pharmaceutical, and industrialized processes as they offer a large variety of mixture compositions of two or more components in different proportions such that incessant modification of the estimated properties can be permitted.23 The mixture of aniline and water has been undertaken as a solvent in the present work. Aniline is an organic compound containing a phenyl group attached to an amino group, used extensively in various manufacturing industries.24,25 It is utilized in the preparation of polymers, synthetic dyes, vulcanization of rubber, fungicides, and herbicides.26 In addition to these, aniline is used to prepare polyurethane which further helps in building thermal foam insulation for refrigerators and buildings.27,28 Some work has already been done on this prototypical aromatic amine (aniline) with different organic components29−34 but still no data is available on thermodynamic studies of aniline with ethylene glycols (EGs). The creation of inter- and intramolecular hydrogen bonds among −O− and −OH groups of EGs is observed as the molecules of EGs own hydroxyl and oxy groups.35 EGs are the solvents which are entirely soluble in water and are extremely miscible in polar solvents owning H-bonding because of their © XXXX American Chemical Society

2. EXPERIMENTAL PROCEDURE 2.1. Materials Used. The chemicals used are of highest purity grade. The chemicals (aniline, EG, and TEG) were attained from Loba Chemie Private Limited Mumbai, India, and TEG was obtained from SD Fine Chemical Limited, India. Aniline was utilized to make combination solvents with degassed and triple distilled water. Before performing an Received: January 18, 2018 Accepted: August 1, 2018

A

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 1. Specifications of Chemical Samples

the figures, it is observed that the obtained density values track the same inclination as the literature values. 3.1.2. Apparent Molar Volume (Vϕ). The experimental densities values are utilized to estimate the values of Vϕ from the succeeding equation:

experiment, all solutions were kept in dark bottles above the molecular sieves to decrease the water content and were partly degassed. The complete description of chemicals used is listed in Table 1. 2.2. Apparatus and Methods Used. Triple distilled water which was freshly degassed, with specific conductance < 10−6 S·cm−1 was utilized for making aqueous mixtures. The mixtures of aniline with all three EGs were made by assessing on a Sartorious CPA 225D balance with an accuracy of ±0.00001 g. The uncertainty of the molarity of the liquid mixtures is within ±2 × 10−5 mol·kg−1. Ultrasonic speeds and densities of solutions were estimated at the same time with the help of an Anton Paar DSA 5000 M densimeter. The calibrations and procedures are given in our previous paper.46 The ultrasonic speed measurements were taken at a frequency of 3 MHz. The densities and ultrasonic speeds are highly sensitive to temperature; therefore, it was stabilized to ±0.05 K via a built-in Peltier device. The delicacy of device corresponds to precision in ultrasonic speed and density measurements of 1 × 10−2 m·s−1 and 1 × 10−3 kg·m−3. The standard uncertainty of ultrasonic speed and density are ±1.0 m·s−1 and ±0.5 kg·m−3.

Vϕ = (M /ρ) − {(ρ − ρ0 )/(mA ρρ0 )}

(1) −1

where mA, M, ρ, and ρ0 are the molality (mol·kg ) of the glycols, the molar mass (kg·mol−1) of the solute, and densities (kg·m−3) of the solution and solvent, respectively. The computed Vϕ values are given in Table 2. As scrutinized from Table 2, the densities of the solutions are rising with rise in concentration of aniline and glycols resulting in strong solute−solvent interactions. Also, from Table 2, it is deduced that the apparent molar volumes are escalating with escalation in concentration of aniline which can occur because aniline molecules correlate positively with water molecules so as to reinforce the H-bond network in solvents.61 Furthermore, with a surge in molecular weight of EGs at the entire concentrations of aniline and at the whole range of temperatures, the apparent molar volumes also surge, and the extent of interaction is given in Scheme 1. This surge in apparent molar volumes can be accredited to the various physical forces such as hydrophilic effect, dipole−dipole, dipole−induced dipole interactions, and hydrophobic hydration in water-substantial regions.59 3.1.3. Partial Molar Volume. From the given equation values of partial molar volume, V0ϕ was calculated by leastsquares fitting of Vϕ

3. RESULTS AND DISCUSSION 3.1. Volumetric Properties. 3.1.1. Density. The solution densities for EGs in (0.0, 0.1, 0.2, 0.3, 0.4) mol·kg−1 in solutions of aqueous aniline were measured at different temperatures T = 293.15−308.15 K and are indexed in Table 2. The values of densities for EGs in 0.0 mol·kg−1 aqueous solutions of aniline at temperatures 298.15 and 308.15 K are taken from our previous paper.47 From Table 2, it is detected that densities are surging with surge in concentration of EGs and are falling with surge in temperature at a certain concentration of the aniline solution. The comparison of experimental values and literature values48−59 of densities of (EG, DEG, TEG) + water is represented in Figures 1 to 3 and comparison60 for aniline + water is shown in Figure 4. From

Vϕ = V ϕ0 + SV*mA

(2)

where mA is the molality of EGs in aqueous solutions of aniline and SV* is the semiempirical solute−solute interaction coefficient. The values of V0ϕ and SV* are listed in Table 3 with errors limits. The presence of solute−solvent interactions in the liquid mixture is predicted by the positive values of V0ϕ. The IR spectra studied by Zhang et al.65 indicate the possibility of H-bonding interactions in H atoms of water and the OHgroup of EGs by interlinking in the form of −H−O−H−. B

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. Values of Densities, ρ, and Apparent Molar Volumes, Vϕ of Glycols in Aqueous Solutions of Aniline at Different Temperatures and Experimental Pressure, p = 0.1 MPa ρ × 10−3/(kg·m−3) a

−1

mA /(mol·kg )

T/K = 293.15

Vϕ × 106/(m3·mol−1)

T/K = 298.15

T/K = 303.15

T/K = 308.15

T/K = 293.15

T/K = 298.15

T/K = 303.15

T/K = 308.15

0.997047b 0.997877 0.998688 0.999473 1.000184 1.000961

0.995656 0.996471 0.997262 0.998033 0.998733 0.999480

0.994039b 0.994840 0.995613 0.996362 0.997038 0.997764

53.53 53.65 53.77 53.89 53.99

53.77 53.87 53.98 54.09 54.19

53.98 54.11 54.21 54.31 54.44

54.20 54.35 54.47 54.59 54.72

0.997421 0.998226 0.999060 0.999836 1.000627 1.001408

0.995983 0.996771 0.997580 0.998330 0.999086 0.999832

0.994351 0.995130 0.995924 0.996656 0.997390 0.998130

53.75 53.76 53.81 53.83 53.85

53.94 53.97 53.99 54.03 54.05

54.19 54.25 54.29 54.36 54.40

54.35 54.45 54.51 54.60 54.62

0.997813 0.998661 0.999474 1.000296 1.001075 1.001848

0.996326 0.997157 0.997957 0.998760 0.999519 1.000271

0.994684 0.995499 0.996282 0.997062 0.997800 0.998539

53.79 53.81 53.82 53.84 53.85

53.95 53.99 54.02 54.04 54.05

54.19 54.21 54.25 54.28 54.30

54.41 54.45 54.51 54.55 54.56

0.998208 0.998987 0.999823 1.000588 1.001281 1.002159

0.996705 0.997483 0.998267 0.999030 0.999701 1.000523

0.995035 0.995774 0.996532 0.997286 0.997957 0.998785

53.81 53.82 53.83 53.85 53.86

54.21 53.97 54.09 54.10 54.04

54.29 54.31 54.35 54.37 54.38

54.76 54.72 54.68 54.64 54.60

0.998592 0.999410 1.000213 1.001010 1.001788 1.002566

0.997079 0.997866 0.998638 0.999402 1.000142 1.000889

0.995385 0.996155 0.996909 0.997652 0.998381 0.999111

53.85 53.86 53.89 53.90 53.92

53.92 53.94 53.96 53.97 53.99

54.30 54.32 54.35 54.38 54.40

54.56 54.58 54.62 54.63 54.65

0.997047b 0.998458 0.999780 1.001026 1.002490 1.003585

0.995656 0.997071 0.998395 0.999643 1.001051 1.002146

0.994039b 0.995440 0.996778 0.998046 0.999471 1.000531

91.55 91.85 92.11 92.24 92.43

91.89 92.25 92.50 92.58 92.69

91.96 92.33 92.58 92.81 92.90

92.23 92.46 92.64 92.85 93.02

0.99742 0.99878 1.00024 1.00160 1.00291 1.00413

0.99598 0.99733 0.99878 1.00012 1.00138 1.00260

0.99435 0.99567 0.99709 0.99836 0.99964 1.00085

91.78 91.81 91.82 91.84 91.87

91.95 91.98 91.99 92.14 92.23

92.19 92.21 92.24 92.52 92.53

92.65 92.67 92.80 92.91 92.93

0.99781 0.99920 1.00060 1.00192 1.00326 1.00458

0.99633 0.99771 0.99909 1.00039 1.00172 1.00303

0.99468 0.99604 0.99739 0.99868 0.99997 1.00126

91.85 91.86 91.89 91.90 91.92

92.05 92.06 92.09 92.13 92.17

92.28 92.31 92.35 92.37 92.42

92.69 92.71 92.72 92.79 92.82

−1

EG + 0.0 mol·kg Aniline 0.00000 0.998211 0.09889 0.999059 0.19894 0.999884 0.29967 1.000683 0.39481 1.001405 0.50155 1.002197 EG + 0.1 mol·kg−1 Aniline 0.00000 0.998568 0.09818 0.999387 0.20167 1.000239 0.29937 1.001021 0.40149 1.001832 0.50322 1.002627 EG + 0.2 mol·kg−1 Aniline 0.00000 0.998972 0.10369 0.999831 0.20535 1.000659 0.30972 1.001500 0.41005 1.002293 0.51061 1.003080 EG + 0.3 mol·kg−1 Aniline 0.00000 0.999363 0.09856 1.000176 0.19958 1.000998 0.30015 1.001806 0.38959 1.002511 0.49995 1.003374 EG + 0.4 mol·kg−1 Aniline 0.00000 0.999783 0.10015 1.000603 0.19986 1.001408 0.30054 1.002205 0.39985 1.002985 0.50125 1.003766 DEG + 0.0 mol·kg−1 Aniline 0.00000 0.998211 0.09849 0.999647 0.19736 1.001031 0.29505 1.002356 0.41013 1.003859 0.50063 1.004993 DEG + 0.1 mol·kg−1 Aniline 0.00000 0.99857 0.09555 0.99994 0.20045 1.00141 0.29954 1.00277 0.40180 1.00414 0.49777 1.00540 DEG + 0.2 mol·kg−1 Aniline 0.00000 0.99897 0.09854 1.00037 0.19939 1.00178 0.29736 1.00311 0.39857 1.00447 0.50117 1.00581

C

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued ρ × 10−3/(kg·m−3) mAa/(mol·kg−1)

T/K = 293.15

DEG + 0.3 mol·kg−1 Aniline 0.00000 0.99936 0.09899 1.00075 0.19995 1.00214 0.28986 1.00335 0.39954 1.00485 0.49776 1.00612 DEG + 0.4 mol·kg−1 Aniline 0.00000 0.99978 0.10021 1.00119 0.19984 1.00256 0.28956 1.00376 0.40028 1.00523 0.49768 1.00649 TEG + 0.0 mol·kg−1 Aniline 0.00000 0.998211 0.09650 1.000308 0.20020 1.002462 0.29205 1.004291 0.39856 1.006356 0.49879 1.008223 TEG + 0.1 mol·kg−1 Aniline 0.00000 0.99857 0.09952 1.00069 0.19868 1.00275 0.29971 1.00479 0.39761 1.00671 0.49866 1.00864 TEG + 0.2 mol·kg−1 Aniline 0.00000 0.99897 0.09981 1.00110 0.19966 1.00316 0.30015 1.00519 0.39605 1.00707 0.49317 1.00893 TEG + 0.3 mol·kg−1 Aniline 0.00000 0.99936 0.10132 1.00151 0.19928 1.00353 0.30015 1.00556 0.39854 1.00748 0.48965 1.00922 TEG + 0.4 mol·kg−1 Aniline 0.00000 0.99978 0.09984 1.00189 0.20045 1.00396 0.29956 1.00594 0.40124 1.00792 0.49985 1.00978

T/K = 298.15

T/K = 303.15

Vϕ × 106/(m3·mol−1) T/K = 308.15

T/K = 293.15

T/K = 298.15

T/K = 303.15

T/K = 308.15

0.99821 0.99959 1.00097 1.00218 1.00363 1.00489

0.99671 0.99808 0.99945 1.00064 1.00206 1.00332

0.99504 0.99638 0.99773 0.99891 1.00031 1.00157

91.98 92.01 92.05 91.93 91.96

92.16 92.17 92.19 92.20 92.23

92.35 92.41 92.43 92.47 92.49

92.76 92.79 92.78 92.81 92.78

0.99859 0.99999 1.00135 1.00255 1.00400 1.00524

0.99708 0.99846 0.99981 1.00100 1.00243 1.00366

0.99539 0.99674 0.99806 0.99922 1.00064 1.00190

91.99 92.01 92.02 92.04 92.05

92.17 92.18 92.20 92.23 92.26

92.41 92.42 92.46 92.49 92.51

92.79 92.85 92.87 92.88 92.80

0.997047b 0.999126 1.001272 1.003106 1.005140 1.006991

0.995656 0.997728 0.999858 1.001668 1.003693 1.005540

0.994039b 0.996095 0.998216 1.000013 1.002025 1.003851

128.37 128.59 128.77 128.89 129.01

128.69 128.85 128.97 129.15 129.28

128.91 129.12 129.29 129.45 129.56

129.25 129.42 129.60 129.76 129.89

0.99742 0.99955 1.00161 1.00366 1.00560 1.00754

0.99598 0.99813 1.00020 1.00226 1.00420 1.00615

0.99435 0.99649 0.99854 1.00057 1.00249 1.00443

128.71 128.73 128.79 128.82 128.83

128.78 128.81 128.83 128.84 128.86

128.81 128.82 128.86 128.89 128.92

129.05 129.18 129.23 129.27 129.29

0.99781 0.99994 1.00201 1.00403 1.00591 1.00776

0.99633 0.99846 1.00055 1.00258 1.00447 1.00634

0.99468 0.99683 0.99890 1.00093 1.00282 1.00470

128.74 128.76 128.77 128.79 128.82

128.85 128.87 128.91 128.93 128.96

128.89 128.90 128.92 128.96 128.98

128.95 129.09 129.13 129.15 129.16

0.99821 1.00033 1.00236 1.00439 1.00627 1.00805

0.99671 0.99884 1.00086 1.00289 1.00482 1.00658

0.99504 0.99718 0.99919 1.00122 1.00314 1.00493

128.79 128.80 128.82 128.84 128.85

129.16 128.99 128.97 129.09 129.00

129.21 129.14 129.12 129.13 129.11

129.28 129.31 129.33 129.34 129.24

0.99859 1.00070 1.00277 1.00476 1.00670 1.00866

0.99708 0.99919 1.00125 1.00326 1.00524 1.00712

0.99539 0.99750 0.99956 1.00154 1.00354 1.00550

128.82 128.85 128.87 128.88 128.91

128.97 128.93 128.94 129.08 128.90

129.12 129.14 129.06 129.10 129.10

129.25 129.31 129.35 129.29 129.15

mA is the molality of glycols in aqueous aniline solutions. Standard uncertainties u are u(m) = 2 × 10−5 mol·kg−1, u(T) = 0.05 K, u(ρ) = 0.5 kg· m−3, and u(p) = 0.01 MPa. bValues of densities for (EG + 0.00 mol·kg−1 Aniline, DEG + 0.00 mol·kg−1 Aniline and TEG + 0.00 mol·kg−1 Aniline) at temperature 298.15 and 308.15 K have been taken from our previous paper.47 a

increase in the values of V0ϕ occurs with an increase in molecular weight of glycol at each temperature. As TEG contains 2 extra −CH2−CH2−O− groups in comparison with EG and 1 additional −CH2−CH2−O− group in comparison with DEG, consequently resulting in maximum values of V0ϕ for TEG. This large difference in values of V0ϕ from EG to TEG

From loose solvation layers of the solute in solution, release of solvation molecules occurs which results in continuous escalation of V0ϕ values. The augmentation of solution occurs at high temperature, because, from secondary solvation layers of the solute, the solvent is released into bulk of the solvent, as inferred from higher V0ϕ values at high temperatures. Also, an D

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 1. Plots of experimental (filled circle) and literature values (empty square;48 empty triangle;49 star;50 cross;51 empty circle;52 filled diamond;53 empty diamond54) of densities for (ethylene glycol + water) mixtures at different temperatures: red, 293.15 K; blue, 298.15 K; green, 303.15 K; brown, 308.15 K.

Figure 2. Plots of experimental (filled circle) and literature values (empty triangle;49 star;50 cross;55 empty circle;56 empty square57) of densities for (diethylene glycol + water) mixtures at different temperatures: red, 293.15 K; blue, 298.15 K; green, 303.15 K; brown, 308.15 K.

E

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 3. Plots of experimental (filled circle) and literature values (empty triangle;49 star;50 empty square;58 empty diamond59) of densities for (triethylene glycol + water) mixtures at different temperatures: red, 293.15 K; blue, 298.15 K; green, 303.15 K; brown, 308.15 K.

indicates that interaction among dissimilar molecules is highly influenced by the hydrocarbon chain size.66 The factors for changing V0ϕ can be accredited to thermal expansion, H-bond weakening, the discharge of molecules from solvation layer, etc. From Table 3, it is clear that at entire concentrations of aniline and at the whole temperature range, the values of SV* are positive except for that for EG at 0.3 mol·kg−1 aqueous solutions of aniline at 298.15 and 308.15 K, DEG at 0.3 mol· kg−1 aqueous solutions of aniline at 293.15 K, and TEG at 0.3 mol·kg−1 aqueous solutions of aniline and 0.4 mol·kg−1 aqueous solutions of aniline at 303.15 and 308.15 K. The presence of solute−solute interactions is predicted by the positive values of S*V , but as S*V values are smaller than V0ϕ values, it shows that solute−solvent interactions are stronger than solute−solute interactions. 3.1.4. Apparent Specific Volume. An apparent specific volume υϕ has been calculated from experimentally determined density values by utilizing eq 1 of the Supporting Information, and the values thus obtained are listed in Table S1. From scrutiny of the computed data, it can be found that the overall apparent specific volumes for all the mixtures are escalating with respect to temperature as well as with the surge in the concentration of aniline. Also, with an upsurge in molality of EGs at a specific concentration of aniline, the values of υϕ are observed to be increasing. The same trend has been found in the apparent specific volume studies of some polyoxides62 and some poly(oxyethylene) glycols in 1,4-dioxane and benzene solutions.63 Further, with intensification in molar mass of glycols, the apparent specific volumes are detected to be decreasing as examined by Rudan-Tasic and Klofutar.63 This dependence of specific volumes on molecular weight of solute can be attributed to the presence of end groups linked to an alkyl chain.64

Figure 4. Plots of experimental (filled circle) and literature values (empty circle60) of densities for (aniline + water) mixtures at 298.15 K.

Scheme 1. Aniline and Glycols Interactions

F

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Limiting Apparent Molar Volumes, Voϕ, and Experimental Slopes, SV* of Glycols in Aqueous Solutions of Aniline at Different Temperatures Voϕ × 106/(m3·mol−1)

S*V × 106/(m3·kg·mol−2)

a

mB / (mol·kg−1) EG 0.0 0.1 0.2 0.3 0.4 DEG 0.0 0.1 0.2 0.3 0.4 TEG 0.0 0.1 0.2 0.3 0.4

T/K = 293.15

T/K = 298.15

T/K = 303.15

T/K = 308.15

T/K = 293.15

T/K = 298.15

T/K = 303.15

T/K = 308.15

53.42(±0.011) 53.72(±0.011) 53.78(±0.003) 53.80(±0.004) 53.83(±0.005)

53.66(±0.006) 53.91(±0.005) 53.93(±0.011) 53.15(±0.096) 53.30(±0.004)

53.88(±0.009) 54.14(±0.008) 54.16(±0.006) 54.27(±0.010) 54.27(±0.004)

54.08(±0.010) 54.30(±0.025) 54.37(±0.016) 54.80(±0.001) 54.54(±0.008)

1.16(±0.032) 0.27(±0.033) 0.15(±0.010) 0.13(±0.012) 0.18(±0.016)

1.06(±0.019) 0.28(±0.016) 0.25(±0.033) −0.23(±0.291) 0.18(±0.012)

1.12(±0.028) 0.52(±0.024) 0.28(±0.018) 0.24(±0.013) 0.26(±0.012)

1.28(±0.031) 0.68(±0.074) 0.39(±0.047) −0.41(±0.001) 0.23(±0.025)

91.33(±0.072) 91.76(±0.006) 91.83(±0.006) 92.02(±0.050) 91.98(±0.003)

91.57(±0.052) 91.85(±0.050) 92.01(±0.012) 92.14(±0.005) 92.14(±0.008)

91.85(±0.072) 92.04(±0.084) 92.24(±0.007) 92.33(±0.012) 92.38(±0.009)

92.11(±0.111) 92.56(±0.044) 92.64(±0.018) 92.76(±0.019) 92.82(±0.049)

1.29(±0.217) 0.21(±0.019) 0.18(±0.017) −0.11(±0.151) 0.15(±0.009)

1.36(±0.156) 0.71(±0.152) 0.31(±0.035) 0.16(±0.016) 0.23(±0.023)

1.77(±0.215) 0.98(±0.255) 0.34(±0.023) 0.34(±0.038) 0.27(±0.026)

2.11(±0.332) 0.75(±0.133) 0.34(±0.055) 0.07(±0.057) 0.05(±0.148)

128.26(±0.046) 128.68(±0.015) 128.72(±0.007) 128.77(±0.004) 128.80(±0.006)

128.55(±0.011) 128.77(±0.006) 128.82(±0.005) 129.11(±0.091) 128.96(±0.085)

128.78(±0.036) 128.77(±0.008) 128.86(±0.003) 129.21(±0.026) 129.13(±0.034)

129.10(±0.021) 129.03(±0.039) 128.95(±0.049) 129.31(±0.049) 129.34(±0.084)

1.57(±0.138) 0.33(±0.046) 0.19(±0.020) 0.16(±0.011) 0.21(±0.019)

1.48(±0.033) 0.19(±0.019) 0.28(±0.016) −0.21(±0.276) 0.02(±0.256)

1.62(±0.109) 0.29(±0.025) 0.25(±0.027) −0.23(±0.078) −0.07(±0.101)

1.61(±0.065) 0.57(±0.119) 0.49(±0.148) −0.05(±0.149) −0.23(±0.252)

a

mB is the molality of aqueous solutions of aniline.

Table 4. Partial Molar Volume of Transfer, ΔVoϕ of Glycols in Aqueous Solutions of Aniline at Different Temperatures ΔVoϕ × 106/(m3·mol−1) mBa/(mol·kg−1) EG 0.1 0.2 0.3 0.4 DEG 0.1 0.2 0.3 0.4 TEG 0.1 0.2 0.3 0.4

T/K = 293.15

T/K = 298.15

T/K = 303.15

T/K = 308.15

0.30 0.36 0.38 0.41

0.25 0.27 0.49 0.24

0.26 0.28 0.39 0.40

0.22 0.29 0.72 0.45

0.43 0.50 0.69 0.64

0.27 0.43 0.57 0.57

0.19 0.39 0.47 0.52

0.45 0.53 0.65 0.71

0.42 0.46 0.51 0.54

0.22 0.27 0.56 0.41

−0.01 0.07 0.42 0.34

−0.07 −0.15 0.21 0.23

a

mB is the molality of aqueous solutions of aniline.

ΔV ϕ0 = V ϕ0 (in aqueous aniline solutions) − V ϕ0 (in water)

3.1.5. Partial Specific Volume. The partial specific volume υ0ϕ is computed from eq 2 of the Supporting Information and the values attained are attributed in Table S2. As seen from data described in Table S2, the partial specific volumes are in the range of 0.8606 to 0.8787 for EG, 0.8605 to 0.8747 for DEG, and 0.8540 to 0.8612 for TEG. The values are found to be increasing with surge in temperature as well as with surge in molality of EGs. With respect to molecular weight of EGs, the partial specific volumes are obtained to be declining with rising molecular weights as observed for apparent specific volume data. Thus, decrease in partial specific volumes with rising molar masses of EGs suggests the strong hydrogen bonding among the molecules of aniline and glycols.62,63 3.1.6. Partial Molar Volume of Transfer (ΔVϕ0 ). The transfer volume of glycols from water to aqueous aniline solutions at an infinite dilution is enumerated from the given equation

(3)

The enumerated values of ΔV0ϕ are incorporated in Table 4. All the values of ΔV0ϕ are positive except for TEG at 0.1 mol· kg−1 aqueous solutions of aniline (at temperature 303.15 and 308.15 K) and at 0.2 mol·kg−1 aqueous solutions of aniline (at temperature 308.15 K) which infers an enormous desiccation result on EGs. No steady inclination or declination can be detected in the values of ΔV0ϕ with rise in temperature. The positive ΔV0ϕ values thus obtained show that the interactions of water with glycols are stronger than molecular interactions of aniline with glycols. Pertaining to pure water’s structure, the presence of a structural grid of water is supposed via models defined by Pauling,67,68 with comparatively bulky vacant areas which can be breached through different molecules. Perhaps slight quantities of EGs might be located in cages of structures G

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. Values of Ultrasonic Speed, c, and Apparent Molar Isentropic Compression, Kϕ,s of Glycols in Aqueous Solutions of Aniline at Different Temperatures and Experimental Pressure, p = 0.1 MPa c/(m·s−1) mAa/(mol·kg−1)

T/K = 293.15

Kϕ,s × 106/(m3·mol−1·GPa−1)

T/K = 298.15

T/K = 303.15

T/K = 308.15

T/K = 293.15

T/K = 298.15

T/K = 303.15

T/K = 308.15

1495.85b 1498.92 1501.72 1504.29 1506.64 1509.09

1508.84 1511.12 1513.75 1516.15 1518.69 1521.22

1519.14b 1521.84 1524.03 1526.18 1528.28 1530.34

−45.16 −45.43 −45.55 −45.62 −45.68

−44.28 −44.54 −44.65 −44.72 −44.78

−43.52 −43.78 −43.88 −43.95 −44.01

−42.93 −43.18 −43.29 −43.35 −43.41

1497.15 1499.61 1502.20 1504.65 1507.21 1509.76

1509.55 1511.88 1514.35 1516.67 1519.10 1521.52

1520.53 1522.29 1524.58 1526.74 1529.00 1531.25

−45.03 −45.31 −45.41 −45.49 −45.55

−44.20 −44.47 −44.57 −44.65 −44.71

−43.47 −43.74 −43.84 −43.91 −43.97

−42.84 −43.11 −43.21 −43.28 −43.33

1498.68 1501.32 1503.91 1506.56 1509.12 1511.68

1510.83 1513.30 1515.71 1518.19 1520.58 1522.97

1520.53 1522.73 1525.05 1527.24 1529.53 1531.81

−44.95 −45.20 −45.31 −45.39 −45.44

−44.13 −44.38 −44.49 −44.56 −44.62

−43.42 −43.67 −43.78 −43.84 −43.90

−42.83 −43.07 −43.17 −43.24 −43.29

1500.04 1502.54 1505.11 1507.66 1509.93 1512.73

1512.11 1514.45 1516.86 1519.25 1521.37 1524.00

1521.91 1524.30 1526.65 1529.06 1531.38 1533.70

−44.81 −45.08 −45.20 −45.26 −45.33

−44.03 −44.29 −44.40 −44.47 −44.53

−43.32 −43.59 −43.69 −43.76 −43.82

−42.77 −43.02 −43.13 −43.19 −43.25

1501.98 1504.43 1506.88 1509.34 1511.77 1514.26

1513.45 1515.83 1518.20 1520.60 1522.96 1525.37

1523.57 1525.78 1527.99 1530.21 1532.41 1534.65

−44.72 −44.98 −45.09 −45.16 −45.22

−43.92 −44.18 −44.29 −44.36 −44.42

−43.26 −43.51 −43.62 −43.68 −43.74

−42.64 −42.89 −42.99 −43.06 −43.11

1495.85b 1501.24 1506.01 1510.78 1516.15 1520.34

1508.84 1513.09 1517.58 1521.95 1526.88 1530.64

1519.14b 1523.52 1527.52 1531.47 1536.11 1539.59

−45.19 −45.49 −45.62 −45.73 −45.81

−44.30 −44.59 −44.72 −44.83 −44.90

−43.54 −43.83 −43.95 −44.06 −44.13

−42.95 −43.23 −43.36 −43.46 −43.53

1497.15 1501.10 1505.44 1509.53 1513.76 1517.73

1509.55 1513.47 1517.77 1521.83 1526.02 1529.96

1520.53 1524.41 1528.67 1532.70 1536.85 1540.75

−45.04 −45.36 −45.50 −45.60 −45.68

−44.21 −44.52 −44.65 −44.75 −44.83

−43.48 −43.79 −43.92 −44.01 −44.09

−42.86 −43.16 −43.28 −43.38 −43.45

1498.68 1502.73 1506.87 1510.89 1515.04 1519.26

1510.83 1514.87 1519.00 1523.02 1527.17 1531.37

1521.91 1525.90 1529.99 1533.96 1538.06 1542.22

−44.95 −45.25 −45.38 −45.48 −45.57

−44.13 −44.43 −44.56 −44.66 −44.74

−43.43 −43.71 −43.84 −43.94 −44.02

−42.79 −43.08 −43.20 −43.30 −43.38

−1

EG + 0.0 mol·kg Aniline 0.00000 1481.14 0.09889 1485.54 0.19894 1488.34 0.29967 1491.19 0.39481 1493.86 0.50155 1496.84 EG + 0.1 mol·kg−1 Aniline 0.00000 1483.27 0.09818 1485.88 0.20167 1488.62 0.29937 1491.22 0.40149 1493.93 0.50322 1496.63 EG + 0.2 mol·kg−1 Aniline 0.00000 1485.05 0.10369 1487.80 0.20535 1490.50 0.30972 1493.27 0.41005 1495.94 0.51061 1498.61 EG + 0.3 mol·kg−1 Aniline 0.00000 1486.85 0.09856 1489.47 0.19958 1492.15 0.30015 1494.82 0.38959 1497.19 0.49995 1500.12 EG + 0.4 mol·kg−1 Aniline 0.00000 1488.61 0.10015 1491.27 0.19986 1493.92 0.30054 1496.59 0.39985 1499.23 0.50125 1501.92 DEG + 0.0 mol·kg−1 Aniline 0.00000 1481.14 0.09849 1487.65 0.19736 1493.09 0.29505 1498.14 0.41013 1504.13 0.50063 1508.33 DEG + 0.1 mol·kg−1 Aniline 0.00000 1483.27 0.09555 1487.17 0.20045 1491.45 0.29954 1495.50 0.40180 1499.67 0.49777 1503.59 DEG + 0.2 mol·kg−1 Aniline 0.00000 1485.05 0.09854 1489.07 0.19939 1493.19 0.29736 1497.18 0.39857 1501.31 0.50117 1505.50

H

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued c/(m·s−1) mAa/(mol·kg−1)

T/K = 293.15

DEG + 0.3 mol·kg−1 Aniline 0.00000 1486.85 0.09899 1490.93 0.19995 1495.10 0.28986 1498.81 0.39954 1503.33 0.49776 1507.39 DEG + 0.4 mol·kg−1 Aniline 0.00000 1488.61 0.10021 1492.74 0.19984 1496.85 0.28956 1500.55 0.40028 1505.12 0.49768 1509.13 TEG + 0.0 mol·kg−1 Aniline 0.00000 1481.14 0.09650 1489.87 0.20020 1498.03 0.29205 1504.81 0.39856 1513.14 0.49879 1520.51 TEG + 0.1 mol·kg−1 Aniline 0.00000 1483.27 0.09952 1489.29 0.19868 1495.30 0.29971 1501.42 0.39761 1507.34 0.49866 1513.46 TEG + 0.2 mol·kg−1 Aniline 0.00000 1485.05 0.09981 1491.07 0.19966 1497.09 0.30015 1503.14 0.39605 1508.93 0.49317 1514.78 TEG + 0.3 mol·kg−1 Aniline 0.00000 1486.85 0.09981 1492.93 0.19966 1498.80 0.30015 1504.85 0.39605 1510.75 0.49317 1516.22 TEG + 0.4 mol·kg−1 Aniline 0.00000 1488.61 0.09984 1494.61 0.20045 1500.66 0.29956 1506.62 0.40124 1512.74 0.49985 1518.66

Kϕ,s × 106/(m3·mol−1·GPa−1)

T/K = 298.15

T/K = 303.15

T/K = 308.15

T/K = 293.15

T/K = 298.15

T/K = 303.15

T/K = 308.15

1500.04 1504.12 1508.28 1511.98 1516.50 1520.54

1512.11 1516.13 1520.23 1523.88 1528.33 1532.32

1523.30 1527.33 1531.44 1535.10 1539.56 1543.56

−44.84 −45.14 −45.26 −45.37 −45.45

−44.06 −44.35 −44.47 −44.58 −44.65

−43.35 −43.64 −43.76 −43.86 −43.94

−42.72 −43.00 −43.12 −43.22 −43.29

1501.98 1506.12 1510.24 1513.95 1518.53 1522.56

1513.45 1517.55 1521.63 1525.31 1529.84 1533.83

1524.68 1528.81 1532.92 1536.62 1541.19 1545.21

−44.74 −45.03 −45.15 −45.26 −45.34

−43.96 −44.24 −44.36 −44.47 −44.54

−43.28 −43.56 −43.68 −43.79 −43.86

−42.65 −42.92 −43.04 −43.14 −43.21

1495.85b 1503.48 1511.04 1517.62 1525.38 1532.21

1508.84 1514.85 1521.76 1528.02 1535.06 1541.68

1519.14b 1525.09 1531.28 1536.87 1543.31 1549.44

−45.21 −45.56 −45.71 −45.85 −45.96

−44.33 −44.66 −44.82 −44.95 −45.05

−43.56 −43.89 −44.04 −44.17 −44.28

−42.97 −43.30 −43.45 −43.57 −43.68

1497.15 1503.15 1509.13 1515.22 1521.12 1527.21

1509.55 1515.58 1521.60 1527.72 1533.66 1539.79

1520.53 1526.54 1532.54 1538.64 1544.56 1550.66

−45.10 −45.42 −45.59 −45.71 −45.83

−44.26 −44.58 −44.75 −44.87 −44.98

−43.54 −43.85 −44.02 −44.14 −44.25

−42.91 −43.22 −43.38 −43.50 −43.61

1498.68 1504.72 1510.76 1516.85 1522.65 1528.53

1510.83 1516.84 1522.86 1528.91 1534.69 1540.54

1521.91 1527.95 1533.99 1540.08 1545.88 1551.76

−44.99 −45.31 −45.48 −45.60 −45.71

−44.18 −44.49 −44.66 −44.78 −44.88

−43.47 −43.78 −43.94 −44.06 −44.17

−42.84 −43.14 −43.30 −43.42 −43.53

1500.04 1506.22 1512.20 1518.36 1524.37 1529.93

1512.11 1518.28 1524.24 1530.38 1536.38 1541.92

1523.30 1529.45 1535.40 1541.53 1547.50 1553.04

−44.89 −45.20 −45.37 −45.49 −45.59

−44.10 −44.41 −44.57 −44.69 −44.79

−43.40 −43.70 −43.87 −43.99 −44.08

−42.76 −43.06 −43.22 −43.34 −43.44

1501.98 1508.06 1514.19 1520.23 1526.42 1532.43

1513.45 1519.55 1525.70 1531.76 1537.98 1544.01

1524.68 1530.72 1536.81 1542.80 1548.95 1554.92

−44.78 −45.10 −45.26 −45.39 −45.49

−44.07 −44.39 −44.55 −44.67 −44.78

−43.32 −43.63 −43.79 −43.91 −44.02

−42.74 −43.05 −43.21 −43.33 −43.44

mA is the molality of glycols in aqueous aniline solutions; Standard uncertainties u are u(m) = 2 × 10−5 mol·kg−1, u(T) = 0.05 K, u(c) = 1.0 m·s−1 and u(p) = 0.01 MPa. bValues of ultrasonic speed for (EG + 0.00 mol·kg−1 aniline, DEG + 0.00 mol·kg−1 aniline and TEG + 0.00 mol·kg−1 aniline) at temperatures 298.15 and 308.15 K have been taken from our previous paper.47 a

and solvent as structural moiety of glycol and aniline contains a polar group. 3.1.7. Temperature-Dependent Partial Molar Volume. By utilizing general polynomial eq 3 as specified in the Supporting Information, at infinite dilution, the deviation of apparent molar volumes along with temperature may be articulated. In

of water so that the cage structure is not abolished. Rather surpassing content of EGs terminates the cage structure, then new structures are generated due to possibility of formation of hydrogen bonds among organic molecules and water.58 The structure creating capability of a solute in solution is encouraged because of interactions among molecules of solute I

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

a

EG 0.0 0.1 0.2 0.3 0.4 DEG 0.0 0.1 0.2 0.3 0.4 TEG 0.0 0.1 0.2 0.3 0.4

(mol·kg )

−1

−44.23(±0.078) −44.16(±0.080) −44.09(±0.073) −43.99(±0.078) −43.88(±0.076) −44.25(±0.080) −44.15(±0.084) −44.08(±0.079) −44.00(±0.079) −43.90(±0.077) −44.25(±0.085) −44.17(±0.079) −44.08(±0.078) −44.00(±0.076) −43.98(±0.078)

−45.13(±0.081) −44.98(±0.084) −44.89(±0.080) −44.78(±0.079) −44.68(±0.078)

−45.13(±0.086) −45.00(±0.080) −44.89(±0.080) −44.79(±0.077) −44.69(±0.079)

T/K = 298.15

−43.48(±0.083) −43.45(±0.078) −43.37(±0.077) −43.30(±0.075) −43.23(±0.077)

−43.49(±0.079) −43.43(±0.083) −43.37(±0.078) −43.30(±0.078) −43.22(±0.076)

−43.48(±0.077) −43.44(±0.079) −43.38(±0.072) −43.29(±0.077) −43.22(±0.075)

T/K = 303.15

Koϕ,s × 106/(m3·mol−1·GPa−1)

−45.13(±0.081) −44.99(±0.081) −44.90(±0.074) −44.78(±0.080) −44.68(±0.077)

T/K = 293.15

mB is the molality of aqueous solutions of aniline.

mBa/

−42.90(±0.083) −42.82(±0.077) −42.74(±0.076) −42.67(±0.073) −42.65(±0.075)

−42.90(±0.078) −42.80(±0.081) −42.74(±0.078) −42.66(±0.076) −42.59(±0.074)

−42.88(±0.076) −42.81(±0.078) −42.78(±0.072) −42.73(±0.076) −42.60(±0.074)

T/K = 308.15

−1.77(±0.261) −1.76(±0.243) −1.76(±0.242) −1.74(±0.234) −1.73(±0.239)

−1.45(±0.243) −1.50(±0.255) −1.46(±0.243) −1.45(±0.241) −1.43(±0.237)

−1.20(±0.244) −1.22(±0.234) −1.16(±0.211) −1.21(±0.231) −1.19(±0.224)

T/K = 293.15

−1.73(±0.257) −1.73(±0.239) −1.73(±0.238) −1.72(±0.231) −1.71(±0.235)

−1.40(±0.237) −1.46(±0.253) −1.43(±0.240) −1.42(±0.239) −1.40(±0.243)

−1.19(±0.237) −1.19(±0.243) −1.13(±0.219) −1.19(±0.242) −1.17(±0.232)

T/K = 298.15

−1.70(±0.253) −1.71(±0.236) −1.71(±0.235) −1.70(±0.227) −1.68(±0.233)

−1.38(±0.236) −1.43(±0.250) −1.41(±0.237) −1.40(±0.236) −1.38(±0.230)

−1.15(±0.233) −1.16(±0.239) −1.11(±0.215) −1.16(±0.239) −1.14(±0.229)

T/K = 303.15

S*K × 106/(kg·m3·mol−2·GPa−1)

−1.68(±0.251) −1.68(±0.233) −1.69(±0.232) −1.68(±0.223) −1.67(±0.227)

−1.36(±0.235) −1.41(±0.245) −1.38(±0.234) −1.37(±0.232) −1.36(±0.226)

−1.15(±0.230) −1.14(±0.236) −1.09(±0.213) −1.15(±0.235) −1.12(±0.226)

T/K = 308.15

Table 6. Limiting Apparent Molar Isentropic Compression, Koϕ,s and Experimental Slope, S*K for Glycols in Aqueous Solutions of Aniline at Different Temperatures

Journal of Chemical & Engineering Data Article

J

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 5. Partial molar isentropic compression Koϕ for (a) ethylene glycol, (b) diethylene glycol, and (c) triethylene glycol in (◇) 0.1 mol·kg−1, (○) 0.2 mol·kg−1, (△) 0.3 mol·kg−1, (□) 0.4 mol·kg−1) aqueous aniline solutions at different temperatures.

3.2. Acoustic Properties. 3.2.1. Ultrasonic Speed. The observed ultrasonic speeds, c of EGs in (0.0, 0.1, 0.2, 0.3, 0.4) mol·kg−1 aqueous aniline mixtures are quantified at varying temperatures T = (293.15−308.15) K and are encrypted in Table 5. The ultrasonic speeds for EGs in 0.0 mol·kg−1 aqueous aniline solutions at 298.15 and 308.15 K are taken from our previous paper.47 It has been seen from the Table 5 that ultrasonic speeds vary in order relating to the temperature. Such surge in c values with respect to temperature is a specific feature of water and is perturbed with three-dimensional gird of H-bonds in water structures.58 The rise in ultrasonic speeds in a liquid mixture specifies the higher connection among the molecules of a solution. The higher connection is a result of intramolecular H-bonding among solute molecules and intermolecular H-bonding among the solute and the solvent molecule.56 Further, the ultrasonic speed of glycols in aqueous aniline solutions rises with a rise in aniline’s concentration. Also, the c values escalate with a surge in molality of EGs for a specific concentration of aniline. Possibly, at the time of adding EGs to a solvent, the weakening of hydrogen bonds occurs among the aniline and water molecules, and and the bonds are destroyed. Concurrently, new hydrogen bonds are formed among molecules of solvent and glycols.58 3.2.2. Apparent Molar Isentropic Compression (Kϕ,s). The succeeding equation has been used to estimate the Kϕ,s at different temperatures for EGs in mixed aqueous and aqueous solutions of aniline

aqueous aniline, these constants’ values for EGs are indexed as Table S3. These computed parameters were then used to evaluate V0ϕ, and eccentricities thus obtained from eq 4 of the Supporting Information are listed in Table S3. Very minor deviations are observed that very finely fits into the polynomial equation as evident from R2 values. The temperature dependence of V0ϕ at infinite dilution could be uttered in the form of absolute temperature (T) by eeq 5 of the Supporting Information. The same eq 5 has been utilized to compute partial molar expansibilities. The limiting apparent molar expansibility E0ϕ = (∂V0ϕ/∂T)p is intended to be an advantageous measure69 of solute−solvent interaction prevailing in the solution. The general thermodynamic expression, given by Hepler70 to examine the tendency of solute as a structure promoter or structure breaker in the mixed solvent system can be given as eq 6 of the Supporting Information. The proclivity of liquified solute as the structure promoter or structure breaker in the solvent can be determined70,71 via the sign of (∂E0ϕ/∂T)p which suggests that infinitesimal negative and positive values of (∂E0ϕ/∂T)p are seen for solutes with structure creating capability while negative (∂E0ϕ/∂T)p values are observed for structure breaking solutes. Values of E0ϕ and (∂E0ϕ/∂T)p are indexed in Table S4. Limiting apparent molar expansibilities are found to be positive for entire concentrations of aniline and at all temperatures except for 0.1 mol· kg−1 aqueous solutions of aniline at temperature 293.15 K for DEG and TEG. The positive values of E0ϕ specify existence of solute−solvent interactions in the extant ternary systems, as previously indicated via apparent molar volume statistics. The E0ϕ values demonstrate an asymmetrical trend with a surge in temperature along with the concentration of aniline solutions. The small negative and positive (∂E0ϕ/∂T)p values found for solutions of EGs recommend a structure creating tendency of EGs in entire aqueous aniline solutions.

Kϕ ,s = (Mks/ρ) − {(ks,oρ − ksρo )/mA ρρo }

(4)

where M, ρ, ρo, mA, ks, and ks,o are the solute’s molar mass, solution density, solvent density, molality of glycols, solution and solvent’s isentropic compressibility, respectively. Utilizing the succeeding relation, an isentropic compressibility was assessed K

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 7. Partial Molar Isentropic Compression of Transfer, ΔKoϕ,s of Glycols in Aqueous Solutions of Aniline at Different Temperatures ΔKoϕ,s × 106/(m3·mol−1·GPa−1) mBa/(mol·kg−1) EG 0.1 0.2 0.3 0.4 DEG 0.1 0.2 0.3 0.4 TEG 0.1 0.2 0.3 0.4

T/K = 293.15

T/K = 298.15

T/K = 303.15

T/K = 308.15

0.13 0.22 0.35 0.45

0.07 0.15 0.24 0.35

0.04 0.10 0.19 0.26

0.07 0.10 0.15 0.28

0.15 0.24 0.35 0.45

0.09 0.17 0.25 0.35

0.05 0.12 0.19 0.26

0.09 0.16 0.24 0.31

0.13 0.24 0.34 0.45

0.07 0.16 0.24 0.27

0.04 0.11 0.18 0.26

0.07 0.15 0.23 0.24

a

mB is the molality of aqueous solutions of aniline.

ks = 1/c 2ρ

infinite dilution are measured by means of the following equation:

(5)

where c and ρ have their usual meanings. The evaluated Kϕ,s values are recorded in Table 5 and the negative values are found at each of the concentrations of aniline and at entire temperature range. As the value of Kϕ,sbecome less negative as rise in temperature. Negative value of Kϕ,s imply that molecules of water near the solute are not as compressible as in bulk solution72,73 consequently results in stiffening of water molecules by virtue of hydrophobic interactions of nonpolar group. Thus, ensuing in compressibility of solution due to the pressure on bulk water molecules, which additionally proposes the robust solute−solvent interactions among EGs molecules and aniline molecules as suggested from the findings of density data. 3.2.3. Partial Molar Isentropic Compression (Koϕ,s). Value of o Kϕ,s can be calculated by the following equation: Kϕ ,s = Kϕo ,s + SK*mA

ΔKϕo ,s = Kϕo ,s (in aqueous aniline solutions) − Kϕo ,s (in water)

ΔKoϕ,s

(7)

ΔKoϕ,s

The values are listed in Table 7. All values are positive at the entire temperature range and at all concentrations of aniline. From Table 7, it is concluded that an increase in concentration of aniline results in an increment of ΔKoϕ,s values. The positive values of ΔKoϕ,s deduce the structure creating capability of the solute and predominance of interactions among aniline and EGs. The rising concentration of aniline results in intensification of the interaction among aniline and glycols. With an escalation in aniline’s concentration, the structure creating tendency of the solute rises, due to which, in comparison to pure solvent, the solution is much less compressible. This further leads to a greater reduction in compressibility with growing aniline concentration.76−78 Therefore, the values of ΔKoϕ,s are positive and values of Koϕ,s are negative for all EGs with various concentrations of aniline. 3.3. Pair and Triplet Interaction Coefficients. On the basis of the McMillan−Mayer79 solutions’ model, the interaction coefficients are observed which allows the separation of effects as a consequence of interactions among pairs of solute molecules as well as greater than two molecules. The same theory had been discussed further by Friedman and Krishnan80 and Franks et al.81 such that cosolute−solute interactions could be considered in solvation domains. Therefore, ΔV0ϕ and ΔKoϕ,s may be stated as eqs 7 and 8 of the Supporting Information. Pair and triplet coefficients are represented by parameters KAB, KABB for isentropic compression and VAB, VABB for volume. The ΔV0ϕ and ΔKoϕ,s values are fitted to the same eqs 7 and 8 to calculate the values of constants (VAB, VABB, KAB and KABB) and are detailed in Table S5. The pair interaction coefficients VAB and KAB for all EGs and at all temperatures are positive, except for VAB of TEG at temperature 308.15 K. The triplet interaction coefficients VABB and KABB are found to have both positive and negative values at all temperatures and for all glycols. Therefore, the positive values of pair interaction coefficients for volumetric and

(6)

where SK* is an experimental slope suggestive of the solute− solute interactions and mA is molality of glycols in aqueous aniline mixtures. The values of Koϕ,s and S*K along with standard errors are listed in Table 6 and the trend is depicted in Figure 5. The negligible solute−solute interactions are found; values of SK* are smaller in size which further validates the dominance o of solute−solvent interactions74 in the mixtures. The Kϕ,s values are negative in such a way that with a surge in temperature and the concentration of aniline, the values turn out to be less negative. The greater negative Koϕ,s values for glycols at low temperatures are credited to sturdy attractive interactions among glycols and water.75 With the rise in o temperature, the values of Kϕ,s become less negative which shows some water molecules are released to bulk. Furthermore, an attractive interaction among aniline and molecules of water encourages desiccation of EGs, as a result of which at inflated concentrations of aniline, the molecules of water near EGs are comparatively more compressible than the water molecules at inferior aniline concentrations. 3.2.4. Partial molar isentropic compression of transfer. For all glycols from the water to aqueous aniline solutions, the partial molar isentropic compressions of transfer (ΔKoϕ,s) at L

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

ultrasonic measurements (VAB and KAB) predict82 the predominance of pair wise interactions in mixtures of glycol−aniline−water.

(5) Esteve, X.; Conesa, A.; Coronas, A. Liquid densities, kinematic viscosities, and heat capacities of some alkylene glycol dialkyl ethers. J. Chem. Eng. Data 2003, 48, 392−397. (6) Sakurai, M. Partial molar volumes for 1, 4-dioxane+ water. J. Chem. Eng. Data 1992, 37, 492−496. (7) Page, M.; Huot, J. Y.; Jolicoeur, C. A thermodynamic investigation of aqueous 2-methoxyethanol. J. Chem. Thermodyn. 1993, 25, 139−154. (8) Das, B.; Hazra, D. K. Viscosities and excess molar volumes for 2methoxy-1-ethanol+ water at different temperatures. J. Chem. Eng. Data 1993, 38, 361−363. (9) Syal, V. K.; Chauhan, A.; Chauhan, S. Ultrasonic velocity, viscosity and density studies of poly (ethylene glycols) (PEG-8,000, PEG-20,000) in acetonitrile (AN) and water (H2O) mixtures at 25 °C. J. Pure Appl. Ultrason. 2005, 27, 61−69. (10) Brundrett, M. C.; Kendrick, B.; Peterson, C. A. Efficient lipid staining in plant material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol-glycerol. Biotech. Histochem. 1991, 66, 111−116. (11) Barr, D. B.; Barr, J. R.; Weerasekera, G.; Wamsley, J.; Kalb, S. R.; Sjödin, A.; Needham, L. L.; Schier, J. G.; Rentz, E. D.; Sampson, E. J.; et al. Identification and quantification of diethylene glycol in pharmaceuticals implicated in poisoning epidemics: an historical laboratory perspective. J. Anal. Toxicol. 2007, 31, 295−303. (12) Sarode, A. V.; Kumbharkhane, A. C. Dielectric relaxation study of poly (ethylene glycols) using TDR technique. J. Mol. Liq. 2011, 164, 226−232. (13) Aminabhavi, T. M.; Gopalakrishna, B. Density, Viscosity, Refractive-Index, and Speed of Sound in Aqueous Mixtures of N, NDimethylformamide, Dimethyl-Sulfoxide, N, N-Dimethylacetamide, Acetonitrile, Ethylene-Glycol, Diethylene Glycol, 1, 4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40, 856−861. (14) Dubey, G. P.; Kumar, K. Volumetric and Viscometric Properties of Binary Liquid Mixtures of Ethylene Glycol Monomethyl Ether+ 1-Hexanol, 1-Octanol, and 1-Decanol at Temperatures of T= (293.15, 298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 2010, 55, 1700−1703. (15) Kondaiah, M.; Sreekanth, K.; Kumar, D. S.; Nayeem, S. M.; Rao, D. K. Densities, viscosities, and excess properties for binary mixtures of ethylene glycol with amides at 308.15 K. J. Therm. Anal. Calorim. 2014, 118, 475−483. (16) Morenas, M.; Douheret, G. Thermodynamic behaviour of some glycolwater mixtures. Excess and partial volumes. Thermochim. Acta 1978, 25, 217−224. (17) Ku, H. C.; Tu, C. H. Densities and viscosities of seven glycol ethers from 288.15 to 343.15 K. J. Chem. Eng. Data 2000, 45, 391− 394. (18) Kinart, C. M.; Klimczak, M.; Cwiklinska, A.; Kinart, W. J. Densities and excess molar volumes for binary mixtures of some glycols in 2-methoxyethanol at T= (293.15, 298.15 and 303.15) K. J. Mol. Liq. 2007, 135, 192−195. (19) Alp, A.; Nain, A. K.; Kumar, N.; Ibrahim, M. Density and viscosity of magnesium sulphate in formamide+ ethylene glycol mixed solvents. Proc. - Indian Acad. Sci., Chem. Sci. 2002, 114, 495−500. (20) Kinart, C. M.; Klimczak, M. Thermodynamic and structural properties of binary mixtures of some glycols with 2-butoxyethanol at T= (293.15, 298.15 and 303.15) K. J. Mol. Liq. 2009, 148, 132−139. (21) Tsierkezos, N. G.; Molinou, I. E. Thermodynamic properties of water+ ethylene glycol at 283.15, 293.15, 303.15, and 313.15 K. J. Chem. Eng. Data 1998, 43, 989−993. (22) Pal, A.; Singh, Y. P. Excess molar volumes and viscosities for glycol ether− water solutions at the temperature 308.15 K: Ethylene glycol monomethyl, diethylene glycol monomethyl, and triethylene glycol monomethyl ethers. J. Chem. Eng. Data 1996, 41, 425−427. (23) Vasantharani, P.; Balu, L.; Ezhil Pavai, R.; Shailajha, S. Molecular interaction studies on aniline containing organic liquid mixtures using ultrasonic technique. Global J. Mol. Sci. 2009, 4, 42− 48.

4. CONCLUSIONS Experiment was performed to find ultrasonic and volumetric properties of EGs in aqueous solution of aniline. From the experimental values apparent and partial molar properties have been calculated. The positive apparent molar volumes show vigorous solute−solvent interactions such that the level of interactions rises with rising aniline concentration and with a surge in molecular weight of EGs. As a consequence of hydrophobic interactions of a nonpolar group, the negative values of Kϕ,s are found for the present ternary system which also support the existence of vigorous solute−solvent interactions. Further, the positive values for transfer properties (ΔKoϕ,s and ΔV0ϕ) intimate the structure maker nature of glycols in aqueous aniline solutions. Likewise, from second derivative of temperature (∂2V0ϕ/∂T2)p the structure making ability of glycols has been supported. The interaction coefficients (VAB, KAB, VABB and KABB) predicted the superiority of pairwise interactions in aniline−water−glycols systems.



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.8b00058. Equations and tables for apparent specific volume, partial specific volume, temperature dependent partial molar volumes, partial molar expansibilities, pair and triplet interaction coefficients (PDF)



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. ORCID

Kailash C. Juglan: 0000-0002-8753-4843 Harsh Kumar: 0000-0003-3874-4614 Notes

The authors declare no competing financial interest.



REFERENCES

(1) Aminabhavi, T. M.; Gopalakrishna, B. Density, Viscosity, Refractive-Index, and Speed of Sound in Aqueous Mixtures of N, N-Dimethylformamide, Dimethyl-Sulfoxide, N, N-Dimethylacetamide, Acetonitrile, Ethylene-Glycol, Diethylene Glycol, 1, 4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40, 856−861. (2) Zafarani-Moattar, M. T.; Dehghanian, S. Intermolecular interactions in mixtures of poly (ethylene glycol) with methoxybenzene and ethoxybenzene: Volumetric and viscometric studies. J. Chem. Thermodyn. 2014, 71, 221−230. (3) Pal, A.; Kumar, H.; Maan, R.; Sharma, H. K. Volumetric and acoustic studies of binary liquid mixtures of dipropylene glycol dimethyl ether with methyl acetate, ethyl acetate and n-butyl acetate in the temperature range T = (288.15, 293.15, 298.15, 303.15, and 308.15) K. J. Solution Chem. 2013, 42, 1988−2011. (4) Li, X. X.; Liu, Y. X.; Wei, X. H. Density, viscosity, and surface tension at 293.15 K and liquid− liquid equilibria from 301.15 to 363.15 K under atmospheric pressure for the binary mixture of diethylene glycol diethyl ether+ Water. J. Chem. Eng. Data 2004, 49, 1043−1045. M

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(24) Kahl, T.; Schroder, K. W.; Lawrence, F. R.; Marshall, W. J.; Hoke, H.; Jackh, R.; Aniline. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley, 2007. (25) Hofmann, A. W. Chemische Untersuchung der organischen Basen im Steinkohlen-Theerol. Eur. J. Org. Chem. 1843, 47, 37−87. (26) Eads, C. D. Simple lattice model for solvation of nonpolar molecules in hydrogen-bonded liquids. J. Phys. Chem. B 2007, 104, 6653−6661. (27) Talhout, R.; Schulz, T.; Florek, E.; Van Benthem, J.; Wester, P.; Opperhuizen, A. Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Public Health 2011, 8, 613−628. (28) Hugh, C. Aniline. Encyclopedia Britannica; Encyclopedia Britannica: New York, 1911; Vol. 2, pp 47−48. (29) Nain, A. K. Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures. Fluid Phase Equilib. 2007, 259, 218−227. (30) Nikam, P. S.; Kharat, S. J. Excess molar volumes and deviations in viscosity of binary mixtures of N, N-dimethylformamide with aniline and benzonitrile at (298.15, 303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 2003, 48, 972−976. (31) Palepu, R.; Oliver, J.; MacKinnon, B. Viscosities and densities of binary liquid mixtures of m-cresol with substituted anilines. Part 3. Can. J. Chem. 1985, 63, 1024−1030. (32) Tanaka, H.; Wada, Y.; Nakajima, H. Acoustic anomaly in a critical binary mixture of aniline and cyclohexane at low and ultrasonic frequencies. Chem. Phys. 1982, 68, 223−231. (33) Ubagaramary, D.; Neeraja, P. Ultrasonic study of binary liquid mixtures at 308 K. IOSR J. Appl. Chem. 2012, 2, 1−19. (34) Lakshmanan, P.; Govindasamy, M. Molecular interaction studies in binary mixtures containing aniline, toluene and n-butanol. Turk. J. Phys. 2011, 35, 303−310. (35) Kinart, C. M.; Klimczak, M.; Kinart, W. J. Volumetric and dielectric characterization and analysis of internal structure of binary mixtures of 2-ethoxyethanol with ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol at T= (293.15, 298.15 and 303.15) K. J. Mol. Liq. 2009, 145, 8−13. (36) Srilalitha, S.; Subha, M. C. S.; Chowdoji Rao, K. Ultrasonic studies of PEG in H2O, aqueous DMSO and DMSO solutions. J. Pure Appl. Ultrason. 1996, 18, 59−73. (37) Jha, N.; Ramaprabhu, S. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids. J. Appl. Phys. 2009, 106, 084317−084318. (38) Jalali, F.; Shamsipur, M.; Alizadeh, N. Conductance study of the thermodynamics of micellization of 1-hexadecylpyridinium bromide in (water+ cosolvent). J. Chem. Thermodyn. 2000, 32, 755−765. (39) Syal, V. K.; Chauhan, A.; Chauhan, S. Ultrasonic velocity, viscosity and density studies of poly (ethylene glycols) (PEG-8,000, PEG-20,000) in acetonitrile (AN) and water (H2O) mixtures at 25 °C. J. Pure Appl. Ultrason. 2005, 27, 61−69. (40) Fuller, H. C. Ethylene glycolits properties and uses. Ind. Eng. Chem. 1924, 16, 624−626. (41) Brundrett, M. C.; Kendrick, B.; Peterson, C. A. Efficient lipid staining in plant material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol-glycerol. Biotech. Histochem. 1991, 66, 111−116. (42) Barr, D. B.; Barr, J. R.; Weerasekera, G.; Wamsley, J.; Kalb, S. R.; Sjödin, A.; Needham, L. L.; Schier, J. G.; REntz, E. D.; Sampson, E. J.; et al. Identification and quantification of diethylene glycol in pharmaceuticals implicated in poisoning epidemics: an historical laboratory perspective. J. Anal. Toxicol. 2007, 31, 295−303. (43) Sarode, A. V.; Kumbharkhane, A. C. Dielectric relaxation study of poly (ethylene glycols) using TDR technique. J. Mol. Liq. 2011, 164, 226−232. (44) Potter, T. S. The possibility of prevention of tuberculosis by non-poisonous chemical air disinfection and by killed vaccines. Science (Washington, DC, U. S.) 1944, 99, 406−407. (45) Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H. Interstellar antifreeze: ethylene glycol. Astrophys. J. 2002, 571, L59− L62.

(46) Kumar, H.; Behal, I. Thermodynamics of (solute + solute) and (solute + solvent) interactions of homologous series of amino acids with thiamine hydrochloride in aqueous medium at T = (305.15, 310.15, 315.15) K: A volumetric and acoustic approach. J. Chem. Thermodyn. 2016, 102, 48−62. (47) Kaur, K.; Juglan, K. C.; Kumar, H. Investigation on Temperature-Dependent Volumetric and Acoustical Properties of Homologous Series of Glycols in Aqueous Sorbitol Solutions. J. Chem. Eng. Data 2017, 62, 3769−3782. (48) Egorov, G. I.; Makarov, D. M.; Kolker, A. M. Volumetric properties of the water-ethylene glycol mixtures in the temperature range 278−333.15 K at atmospheric pressure. Russ. J. Gen. Chem. 2010, 80, 1577−1585. (49) Ahmed Adam, O. E. A.; Al-Dujaili, A. H.; Awwad, A. M. Volumetric Properties of Aqueous Solutions of Ethylene Glycols in the Temperature Range of 293.15−318.15 K. ISRN Phys. Chem. 2014, 2014, 1−10. (50) Morenas, M.; Douheret, G. Thermodynamic behaviour of some glycolwater mixtures. Excess and partial volumes. Thermochim. Acta 1978, 25, 217−224. (51) Geyer, H.; Ulbig, P.; Gornert, M. Measurement of densities and excess molar volumes for (1, 2-ethanediol, or 1, 2-propanediol, or 1, 2-butanediol+ water) at the temperatures (278.15, 288.15, 298.15, 308.15, and 318.15) K and for (2, 3-butanediol+ water) at the temperatures (308.15, 313.15, and 318.15) K. J. Chem. Thermodyn. 2000, 32, 1585−1596. (52) Douheret, G.; Pal, A.; Hoiland, H.; Anowi, O.; Davis, M. I. Thermodynamic properties of (ethan-1, 2-diol+ water) at the temperature 298.15 K I. Molar volumes, isobaric molar heat capacities, ultrasonic speeds, and isentropic functions. J. Chem. Thermodyn. 1991, 23, 569−580. (53) Tsierkezos, N. G.; Molinou, I. E. Thermodynamic properties of water+ ethylene glycol at 283.15, 293.15, 303.15, and 313.15 K. J. Chem. Eng. Data 1998, 43, 989−993. (54) Egorov, G. I.; Makarov, D. M.; Kolker, A. M. Liquid phase PVTx properties of binary mixtures of (water+ ethylene glycol) in the range from 278.15 to 323.15 K and from 0.1 to 100 MPa. I. Experimental results, partial and excess thermodynamics properties. Fluid Phase Equilib. 2013, 344, 125−138. (55) Aminabhavi, T. M.; Gopalakrishna, B. Density, Viscosity, Refractive-Index, and Speed of Sound in Aqueous Mixtures of N, NDimethylformamide, Dimethyl-Sulfoxide, N, N-Dimethylacetamide, Acetonitrile, Ethylene-Glycol, Diethylene Glycol, 1, 4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40, 856−861. (56) Raman, M. S.; Kesavan, M.; Senthilkumar, K.; Ponnuswamy, V. Ultrasonic, DFT and FT-IR studies on hydrogen bonding interactions in aqueous solutions of diethylene glycol. J. Mol. Liq. 2015, 202, 115− 124. (57) Manuel Bernal-Garcia, J.; Guzman-Lopez, A.; Cabrales-Torres, A.; Rico-Ramírez, V.; Iglesias-Silva, G. A. Supplementary densities and viscosities of aqueous solutions of diethylene glycol from (283.15 to 353.15) K. J. Chem. Eng. Data 2008, 53, 1028−1031. (58) Klimaszewski, K.; Stronka-Lewkowska, E.; Abramczyk, K.; Bald, A. Acoustic and volumetric studies on (triethylene glycol+ water) mixtures in a wide temperature range. J. Chem. Thermodyn. 2015, 89, 212−222. (59) Begum, S. K.; Clarke, R. J.; Ahmed, M. S.; Begum, S.; Saleh, M. A. Volumetric, viscosimetric and surface properties of aqueous solutions of triethylene glycol, tetraethylene glycol, and tetraethylene glycol dimethyl ether. J. Mol. Liq. 2013, 177, 11−18. (60) Hnedkovsky, L.; Cibulka, I.; Ruzicka, K. Partial molar volumes of organic solutes in water. III. Aniline at temperatures T = 298 K to T = 573 K and pressures up to 30 MPa. J. Chem. Thermodyn. 2000, 32, 1221−1227. (61) Rao, B. N.; Venkateswarlu, P.; Murthy, A. S. N.; Rao, C. N. R. Hydrogen bonding in phenol, aniline, and thiophenol by nuclear magnetic resonance spectroscopy and cryoscopy. Can. J. Chem. 1962, 40, 963−965. N

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(62) Sommer, C.; Pedersen, J. S.; Stein, P. C. Apparent specific volume measurements of poly (ethylene oxide), poly (butylene oxide), poly (propylene oxide), and octadecyl chains in the micellar state as a function of temperature. J. Phys. Chem. B 2004, 108, 6242− 6249. (63) Rudan-Tasic, D.; Klofutar, C. Apparent specific volume and apparent specific refraction of some poly (oxyethylene) glycols in 1, 4dioxane and benzene solutions at 298.15 K. Monatsh. Chem. 2004, 135, 1209−1224. (64) Nakanishi, K.; Kurata, M. Density measurement in dilute aqueous solution of polyvinyl alcohol. Bull. Chem. Soc. Jpn. 1960, 33, 152−157. (65) Zhang, J.; Zhang, P.; Ma, K.; Han, F.; Chen, G.; Wei, X. Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study. Sci. China, Ser. B: Chem. 2008, 51, 420−426. (66) Pal, A.; Halder, P. N.; Singh, W. Excess molar volumes and apparent molar volumes of water+ polyethylene glycol mixtures at 303.15 and 308.15 K. Indian J. Chem. 1994, 33, 154−158. (67) Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry; Cornell University Press, 1960; Vol 18. (68) Pauling, L.; Marsh, R. E. The structure of chlorine hydrate. Proc. Natl. Acad. Sci. U. S. A. 1952, 38, 112−118. (69) Sinha, B.; Sarkar, A.; Roy, P. K.; Brahman, D. Physicochemical properties of L-Alanine in aqueous silver sulphate solutions at (298.15, 308.15, and 318.15) K. Int. J. Thermophys. 2011, 32, 2062− 2078. (70) Hepler, L. G. Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 1969, 47, 4613−4617. (71) Roy, M. N.; Dakua, V. K.; Sinha, B. Partial molar volumes, viscosity B-coefficients, and adiabatic compressibilities of sodium molybdate in aqueous 1, 3-dioxolane mixtures from 303.15 to 323.15 K. Int. J. Thermophys. 2007, 28, 1275−1284. (72) Rodríguez, H.; Soto, A.; Arce, A.; Khoshkbarchi, M. K. Apparent molar volume, isentropic compressibility, refractive index, and viscosity of DL-alanine in aqueous NaCl solutions. J. Solution Chem. 2003, 32, 53−63. (73) Soto, A.; Arce, A.; Khoshkbarchi, M. K. Thermodynamics of diglycine and triglycine in aqueous NaCl solutions: apparent molar volume, isentropic compressibility, and refractive index. J. Solution Chem. 2004, 33, 11−21. (74) Romero, C. M.; Negrete, F. Effect of temperature on partial molar volumes and viscosities of aqueous solutions of α-dlAminobutyric acid, dl-Norvaline and dl-Norleucine. Phys. Chem. Liq. 2004, 42, 261−267. (75) Zafarani-Moattar, M. T.; Sarmad, S. Effect of tri-potassium phosphate on volumetric, acoustic, and transport behaviour of aqueous solutions of 1-ethyl-3-methylimidazolium bromide at T = (298.15 to 318.15) K. J. Chem. Thermodyn. 2010, 42, 1213−1221. (76) Sadeghi, R.; Ziamajidi, F. Apparent molar volume and isentropic compressibility of trisodium citrate in water and in aqueous solutions of polyvinylpyrrolidone at T= (283.15 to 308.15) K. J. Chem. Eng. Data 2007, 52, 1037−1044. (77) Wadi, R. K.; Ramasami, P. Partial molal volumes and adiabatic compressibilities of transfer of glycine and DL-alanine from water to aqueous sodium sulfate at 288.15, 298.15 and 308.15 K. J. Chem. Soc., Faraday Trans. 1997, 93, 243−247. (78) Salabat, A.; Shamshiri, L.; Sahrakar, F. Thermodynamic and transport properties of aqueous trisodium citrate system at 298.15 K. J. Mol. Liq. 2005, 118, 67−70. (79) McMillan, W. G., Jr; Mayer, J. E. The statistical thermodynamics of multicomponent systems. J. Chem. Phys. 1945, 13, 276− 305. (80) Krishnan, C. V.; Friedman, H. L. Enthalpies of alkyl sulfonates in water, heavy water, and water-alcohol mixtures and the interaction of water with methylene groups. J. Solution Chem. 1973, 2, 37−51.

(81) Franks, F.; Pedley, M.; Reid, D. S. Solute interactions in dilute aqueous solutions. Part 1- Microcalorimetric study of the hydrophobic interaction. J. Chem. Soc., Faraday Trans. 1 1976, 72, 359−367. (82) Kumar, H.; Behal, I. Volumetric, ultrasonic and UV absorption studies on interactions of antibiotic drug chloramphenicol with glycine and its dipeptide in aqueous solutions at T = (288.15− 318.15) K. J. Chem. Thermodyn. 2016, 99, 16−29.

O

DOI: 10.1021/acs.jced.8b00058 J. Chem. Eng. Data XXXX, XXX, XXX−XXX