Three-Dimensional Architectures of [MnIICrIII

Three-Dimensional Architectures of [MnIICrIII...
2 downloads 0 Views 3MB Size
Article pubs.acs.org/crystal

Three-Dimensional Architectures of [MnIICrIII(oxalate)3]− Complexes with Cage-Type Networks Surrounding Supramolecular Cations Toru Endo,† Kazuya Kubo,*,†,‡ Masashi Yoshitake,‡ Shin-ichiro Noro,†,‡ Norihisa Hoshino,§ Tomoyuki Akutagawa,§ and Takayoshi Nakamura*,†,‡ †

Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo, 060-0810, Japan Research Institute for Electronic Science, Hokkaido University, N20W10, Kita-ku, Sapporo, 001-0020, Japan § Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan ‡

S Supporting Information *

ABSTRACT: Metal−organic network structure based on oxalate bridges {[MnIICrIII(oxalate)3]−}∞ and supramolecular cations (H2PPD2+)(benzo[18]crown-6)2[MnCr(oxalate)3](CH3OH)(CH3CN)2 (1) and (o-FAni+)2(DCH[18]crown6)2[Mn(CH3OH)Cr(oxalate)3][MnCr(oxalate)3](CH3OH) (2), where H2PPD2+, o-FAni+, and DCH[18]crown-6 denote p-phenylenediammonium2+, o-fluoroanilinium+, and cis-syn-cisdicyclohexano[18]crown-6, respectively, were synthesized. The crystal structure of 1 was the combination of [Mn(Λ)Cr(Λ)(oxalate)3]− and [Mn(Λ)Cr(Δ)(oxalate)3]−, whereas that of crystal 2 was the combination of [Mn(Λ)(CH3OH)Cr(Δ)(oxalate)3] and [Mn(Λ)Cr(Δ)(oxalate)3]. Large flexible supramolecular cations provide the three-dimensional structure of {[MnIICrIII(oxalate)3]−}∞, which is different from the twodimensional honeycomb structure often observed for {[MnIICrIII(oxalate)3]−}∞ complexes. Temperature-dependent magnetic susceptibilities of the complexes 1 and 2 exhibited ferromagnetic behaviors following the Curie−Weiss law (C = 11.5 cm3 K mol−1, θ = 13.0 K for 1; C = 4.14 cm3 K mol−1, θ = 12.3 K for 2).



thylferrocenium. For (BEDT-TTF)2[MnIICrIII(oxalate)3], ferromagnetic properties and metallic conduction arising from the magnetic layer of {[MnIICrIII(oxalate)3]−}∞ and partially oxidized (BEDT-TTF)2+ assembly, respectively, have been observed.54 Recently, we reported 2D honeycomb {[MnIICrIII(oxalate)3]−}∞ layers in (m-FAni+)(DB[18]crown6)[MnCr(oxalate)3](CH3OH)(CH3CN) (m-FAni+ = m-fluoroanilinium; DB[18]crown-6 = dibenzo[18]crown-6) and (3methoxy-4-fluoroanilinium+)([18]crown-6)[MnCr(oxalate)3](CH3OH)2 having ferromagnetic transitions at 5.5 K.90 The supramolecular cations composed of organic ammonium cations and crown ethers are advantageous in designing charge, shape, and flexibility, and are combined with {[MnIICrIII(oxalate)3]−}∞ anion layers.91 In the present study, we adopted a supramolecular cation based on the pphenylenediammonium2+ dication (H2PPD2+) and benzo[18]crown-6. Because of the divalent state of H2PPD2+, the size of the cation per charge is half that in the case of a monovalent state. Benzo[18]crown-6 with lower symmetry may generate a variety of conformations in the crystals. Choosing a large crown

INTRODUCTION Multimetallic complexes are of current interest because of their importance in the development of functional materials such as nonlinear optical materials,1−6 molecular magnets,7−17 and molecular conductors.18−27 Among these multimetallic complexes, those bridged by oxalate ligands have been thoroughly studied and continuously developed for applications such as lithium-ion batteries,28 single-molecule magnets,29−31 luminescence and sensing materials,32−35 catalysts for organic synthesis,36,37 models of biological systems,38,39 and multiferroic materials.40−53 In particular, metal−organic network structures based on {[MIIMIII(oxalate)3]−}∞ (where M = V, Mn, Fe, Co, Ni, Cu, Zn, Ru, and Rh) have been extensively studied. The oxalate ligand typically provides the bimetallic network structures with two-dimensional (2D) sheet structures such as a honeycomb structure.54−69 In contrast, one-dimensional (1D) chains70−82 and three-dimensional (3D) structures83−89 are rare. The 2D honeycomb {[MII M III(oxalate)3 ]− }∞ has ferromagnetic, ferrimagnetic, and antiferromagnetic properties, depending on the spin states of the transition metals.54−69 The {[MnIICrIII(oxalate)3]−}∞ formed by the alternating arrangement of MnII (high spin, S = 5/2) and CrIII (high spin, S = 3/2) bridged by oxalate anions has ferromagnetic transition around 5 K with a variety of functional cations such as bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and decame© XXXX American Chemical Society

Received: October 21, 2014 Revised: January 15, 2015

A

DOI: 10.1021/cg501560z Cryst. Growth Des. XXXX, XXX, XXX−XXX

Article

Crystal Growth & Design ether of cis-syn-cis-dicyclohexano[18]crown-6 (DCH[18]crown6) combined with anilinium derivatives results in a supramolecular cation with quite different conformations from (mfluoroanilinium)(dibenzo[18]crown-6)91 because of a flexible cyclohexane ring and the steric hindrance caused by the osubstituted fluorine atom. The large change in the countercation induces a drastic change in the framework of {[MnIICrIII(oxalate)3]−}∞ to give (H2PPD2+)(benzo[18]crown-6)2[MnIICrIII(oxalate)3](CH3OH)(CH3CN)2 (1) and (o-FAni+)2(DCH[18]crown-6)2[MnII(CH3OH)CrIII(oxalate)3][MnCr(oxalate)3](CH3OH) (2) with novel 3D architectures of {[MnIICrIII(oxalate)3]−}∞. Details of the structures and magnetic properties of crystals 1 and 2 are discussed in this Article.

Determination of Crystal Structure. Crystallographic data of single crystals of 1 and 2 were collected using a Rigaku-AFC7R diffractometer with a charge-coupled device detector employing Mo Kα radiation (λ = 0.71075 Å) from a graphite monochromator at 100 K. Structural refinements were carried out using the full-matrix leastsquares method on F2. The calculations were performed using the Crystal Structure software package and Yadokari-XG.95−98 The parameters were refined using anisotropic temperature factors, except for the hydrogen atoms, whose parameters were refined using the riding model with a fixed C−H bond distance of 0.95 Å. The hydrogen atoms of the hydroxyl group of CH3OH in salts 1 and 2 were included but not refined. Crystallographic data of 1 and 2 are summarized in Table 1.

Scheme 1. Components of Crystals

chemical formula formula weight temperature (K) crystal dimensions (mm) crystal system space group a (Å) b (Å) c (Å) β (deg) V (Å3) Z Dcalcd (g·cm−1) F(000) μ (cm−1) measured 2θ range (deg) no. of reflns collected independent reflns observed reflns with I >2.00s(I) Rint R (I > 2σ(I))a wR (all data)b GOF



Table 1. Crystallographic Data of 1 and 2

EXPERIMENTAL SECTION

Preparation of (H 2 PPD 2+ )(benzo[18]crown-6) 2 [MnCr(oxalate) 3] 2(CH3OH)(CH3CN) 2 (1) and (o-FAni+ )2(DCH[18]crown-6)2[Mn(CH3OH)Cr(oxalate) 3][MnCr(oxalate)3](CH3OH) (2). The precursor K0.08Ag2.92[Cr(C2O4)3]3·3H2O was prepared according to the literature.92 The ammonium salts (H2PPD2+)(BF4−)2 and (o-FAni+)(BF4−) were prepared following a similar procedure reported previously.93,94 Single crystals of salt 1 were obtained using the standard diffusion method and an H-shaped cell (50 mL). A suspension of K0.08Ag2.92[Cr(C2O4)3]3·H2O (1.4 g, 1.1 mmol) and MnCl2·4H2O (0.96 g, 4.9 mmol) in CH3OH (20 mL) was stirred for 15 min and the precipitate of AgCl was then removed by filtration. The dark-violet-colored solution was carefully poured into one side of the H-shaped cell, and the (H2PPD2+)(BF4−)2 (0.21 g, 0.74 mmol) and benzo[18]crown-6 (0.62 g, 1.93 mmol) in CH3CN (20 mL) were added to the other side of the H-shaped cell. After a period of 1 week, blue-black crystals with typical dimensions of 0.1 mm × 0.25 mm × 0.05 mm were obtained. Elemental analysis of 1 without CH3CN molecules: Calcd for C50H64Cr2Mn2N2O36 (FW = 1497.8) C, 40.73%; H, 3.82%; N, 1.86%. Found: C, 40.84%; H, 3.90%; N, 1.88%. Blueblack single crystals of 2 with typical dimensions of 0.1 mm × 0.25 mm × 0.05 mm were prepared following a procedure similar to that followed for 1. A mixture of cis-syn-cis and cis-anti-cis isomers of dicyclohexano[18]crown-6 (Wako Pure Chemical Industries, Ltd.) was used without further purification. Exact elemental analysis for 2 was disturbed by decomposition of the crystals due to removing solvent molecules. The numbers of solvent molecules (CH3OH and CH3 CN) in the crystals of 1 and 2 were determined by thermogravimetric analysis (see Supporting Information Figure S1).

1

2

C53H65Cr2Mn2N3O37 1549.96 100 0.20 × 0.15 × 0.05 monoclinic P2/c 24.8834(5) 22.8378(5) 24.3802(6) 105.497(7) 13,351.1(7) 8 1.542 6384 7.85 6.0−50.0 102 064 23 471 16 119

C33H43.5CrFMnNO19 884.13 123 0.10 × 0.25 × 0.05 monoclinic P21/c 16.8907(6) 14.2315(4) 32.9968(10) 91.3408(11) 7929.6(4) 4 1.481 3668 6.75 6.08−54.92 76 723 18 089 10 884

0.044 0.0907 0.2762 1.023

0.0988 0.0588 0.1332 1.050

R = Σ(|F0| − |Fc|)/Σ|F0|. bwR2 = Σw(F02 − Fc2)2/Σw(F02)2; w−1 = σ2(F02) − (0.1451P)2 − 40.6113P for 1 at −173 °C, w−1 = σ2(F02) − (0.0680P)2 − 3.8382P for 2 at −150 °C, where P = (F02 − 2Fc2)/3. a

Magnetic Susceptibility. The temperature-dependent magnetic susceptibility was measured using a Quantum Design MPMS-XL SQUID magnetometer for polycrystalline samples. The direct-current magnetic susceptibility was measured at temperatures ranging from 2 to 300 K in an applied field of 100 Oe. The magnetization (M)− magnetic field (H) data were collected in an applied field, H, ranging from −50 000 to +50 000 Oe at 2 K. Thermogravimetric Analysis. Thermogravimetric analysis was carried out using a Rigaku Thermoplus TG8120 thermal analysis station employing an Al2O3 reference in the temperature range of 298 to 773 K at a heating rate of 10 K min−1 under flowing nitrogen gas.



RESULTS AND DISCUSSION Crystal Structure of 1. Figure 1 shows the crystal structure of 1. The benzo[18]crown-6 moieties and solvent molecules are omitted for clarity. The existence of one CH3OH and two CH3CN molecules in the crystal of 1 was confirmed by the weight loss of 6.0% at 140 °C in the thermogravimetric measurements (Supporting Information Figure S1a), which was in good agreement with the X-ray crystallographic analysis. The weight loss of the salt had already begun at room temperature, B

DOI: 10.1021/cg501560z Cryst. Growth Des. XXXX, XXX, XXX−XXX

Article

Crystal Growth & Design

determined according to the bond lengths. Distances between Mn and Cr ions were 5.35−5.41 Å, which is consistent with results for other {[MnCr(oxalate)3]−}∞ complexes. The solvent molecules of CH3OH and CH3CN were not coordinated to Mn and Cr ions, and were inserted into the crystalline void spaces of the 3D network structure. The supramolecular cation units were surrounded by anionic Mn−Cr cages bridged by oxalate ligands. The structure of the {[MnCr(oxalate)3]−}∞ in 1 has not previously been reported. There were five crystallographically independent Cr and Mn ions in the asymmetric unit (Supporting Information Table S1). The framework was built from combinations of four minimum units, rings A, B, C, and D. Each ring comprised four Mn and Cr ions bridged by oxalate ligands (Figure 1d). The metal ions in one group of the minimum units were Mn(3)*−Cr(2)*−Mn(4)*− Cr(3)*−Mn(3)†−Cr(2)†−Mn(4)†−Cr(3)† (Figure 2a, ring

Figure 2. Flat chains formed by the combination of (a) rings A and B, (b) ring C, and (c) ring D. (d) Stacking direction of rings C and D. (e) Arrangement of the four rings A, B, C, and D.

A), Mn(1)−Cr(2)−Mn(3)−Cr(4)−Mn(1)*−Cr(2)*− Mn(3)*−Cr(4)* (Figure 2a, ring B), Mn(4)*−Cr(3)*− Mn(5)*−Cr(1)*−Mn(4)‡−Cr(3)‡−Mn(5)‡−Cr(1)‡ (Figure 2b, ring C), and Mn(1)−Cr(4)*−Mn(2)*−Cr(5)*− Mn(1)§−Cr(4)#−Mn(2)#−Cr(5)# (Figure 2c, ring D) (transition operation: *(1 − x, 1 − y, 1 − z), †(x, y, 1 + z), ‡(x, 1 + y, 1 − z), §(1 − x, −y, 1 − z), #(x, −1 + y, z)). Although all coordinations around Mn ions were Λ conformations, both Λ and Δ conformations were observed around Cr ions. Cr(1), Cr(2), and Cr(5) ions had Λ conformation and Cr(3) and Cr(4) ions had Δ conformation. The four rings were linked to each other through the sharing of {[MnCr(oxalate)3]−}∞ units, thus providing two types of chains, flat and twisted (Figure 2).

Figure 1. Crystal structure of salt 1 viewed along (a) a, (b) b, and (c) c axes and (d) minimum unit rings A, B, C, and D in the salt. Hydrogen atoms, benzo[18]crown-6 and solvent molecules in panels a−c are omitted for clarity.

and both the CH3OH and CH3CN molecules gradually evaporated from the salt. Decomposition of salt 1 was observed around 300 °C. From the crystal formula and the magnetic susceptibility measurements (see the following section), the valence states of the Mn and Cr ions were assigned to divalent MnII and trivalent CrIII with 3d5 and 3d3 spin configurations, respectively. Because the electron densities of Mn and Cr are similar, the positions of the metals in the anionic moiety were C

DOI: 10.1021/cg501560z Cryst. Growth Des. XXXX, XXX, XXX−XXX

Article

Crystal Growth & Design There were three kinds of flat chains: a chain with an alternating arrangement of rings A and B sharing a Mn(3)− Cr(2) unit along the c axis (Figure 2a), and chains of rings C or D sharing Mn(5)−Cr(1) or Mn(1)−Cr(5) units, respectively, along the a axis (Figure 2b and c). These three chains were connected to each other through Mn(4)−Cr(3) and Mn(1)− Cr(4) units. Linkages of ring C or D alternate along the c axis (Figure 2e). As a result, twisted chains, ···ACAC··· and ··· BDBD···, formed along the b axis. The Δ conformation around Cr(3) and Cr(4) ions realizes the three-dimensional structure of the crystal of 1. In previous reports, the combination of [M1(Λ)M2(Λ)(oxalate)3]− or [M1(Δ)M2(Δ)(oxalate)3]− units provided 3D structures.99−104 2D honeycomb structures have been formed with [M1(Λ)M2(Δ)(oxalate)3]− units.104−121 In the crystal of 1, two units, [Mn(Λ)Cr(Λ)(oxalate)3]− and [Mn(Λ)Cr(Δ)(oxalate)3]−, coexist. To the best of our knowledge, this is the first example of a 3D structure composed of homo (Λ−Λ) and hetero (Λ−Δ) structures of a [M1M2(oxalate)3]− complex (Supporting Information Figure S2). Figure 3 shows the supramolecular cations of (H2PPD2+)(benzo[18]crown-6)2 in salt 1. Three crystallographically

Figure 3. Three crystallographically independent supramolecular cations of (H2PPD2+)(benzo[18]crown-6)2 in salt 1.

independent supramolecular cations A−C were observed. All ammonium moieties were included in the cavity of benzo[18]crown-6 through N−H+···O hydrogen bonds with the six oxygen atoms of the benzo[18]crown-6. The N···O distances of 2.62−3.51 Å are comparable to the N−H+···O hydrogen bond distance.122−124 Two benzo[18]crown-6 molecules included one H2PPD2+ through hydrogen bonding with large voids around the H2PPD2+ cations. These supramolecular cations formed an open-mouth conformation with a head-to-head arrangement of crown ethers. A similar conformation of benzo[18]crown-6 has been observed for Cs+2(benzo[18]crown-6)3[Ni(dmit)2]−2 and (CHDA2+)(benzo[18]crown6)2[Ni(dmit)2]−2.125,126 Small thermal ellipsoids of benzo[18]crown-6 in supramolecular cation A were observed in the X-ray crystallographic analysis at 100 K. In contrast, notable disorders were observed at the phenyl ring in supramolecules B and C. The crystalline void spaces around the H2PPD2+ cations may allow molecular rotation in each supramolecule. The potential energy calculated for the supramolecular cations indicates a double minimum potential with energy barriers for the flip-flop motions of the aryl rings, which were 20, 60, and 100 kJ/mol. The results imply molecular rotations in the supramolecular cations (see Supporting Information Figures S3 and S4). The supramolecular cations were fixed in the pores formed by the four unit rings of the anion moiety (Supporting Information Figure S5). Arrangement of the cations in the crystal is described in Figure 4. The supramolecular cations A and B formed a 1D chain arrangement along the c axis. These chains alternated along the a axis, forming a 2D cationic sheet (Figure

Figure 4. Arrangement of supramolecular cations viewed along the b axis in the crystal. Hydrogen atoms are omitted for clarity.

4a). The supramolecular cation C provided another 2D sheet parallel to the a−c plane (Figure 4b). Alternate stacking of the two cationic layers was observed along the b axis. No significant interaction between different types of supramolecular cation sheets was observed because of the anionic cages surrounding the cations. Crystal Structure of 2. The crystal structure of 2 is shown in Figure 5. As in the case of crystal 1, the supramolecular cation units and solvent molecules were surrounded by anionic Mn−Cr cages. The anionic moiety of 2, like that of 1, had a novel 3D structure of {[MnCr(oxalate)3]−}∞, but the structural feature was completely different from that of 1. There were two crystallographically independent Cr and Mn ion pairs in the asymmetric unit of the anionic moiety (Supporting Information Table S2). X-ray crystallographic and elemental analyses and thermogravimetric analysis supported the idea of there being one crystallographically independent CH3OH molecule in the asymmetric unit (Supporting Information Figure S1b). The Mn(2) ion was coordinated by one CH3OH molecule in addition to two bidentate and one monodentate oxalates. As a result, two types of minimum units [Mn(Λ)Cr(Λ)(oxalate)3]− and [Mn(Λ)(CH3OH)Cr(Λ)(oxalate)3]− formed in 2 (Supporting Information Figure S6). These minimum units linked to each other, forming four types of rings with different pore D

DOI: 10.1021/cg501560z Cryst. Growth Des. XXXX, XXX, XXX−XXX

Article

Crystal Growth & Design

Figure 5. (a) Structural feature of the anion moiety of 2 viewed along the (b − a) axis. (b) Structure of 2D sheet of the anion moiety in crystal of 2. Red characters indicate the minimum ring units A−D.

sizes. The framework of the anion moiety comprised combinations of three rings, A, B, and C. Ring A included two Mn and two Cr ions. Rings B and C had larger pore sizes than ring A, and included 12 and 10 metal ions, respectively. One group of the nearest-neighboring units was Mn(2)− Cr(2)−Mn(2)*−Cr(2)* (Figure 5b, ring A), Mn(2)*− Cr(2)*−Mn(1) † −Cr(1) † −Mn(2) † −Cr(1) † −Mn(2) † −Cr(1)†−Mn(1)†−Cr(1)§−Mn(1)§−Cr(1)* (Figure 5b, ring B), and Mn(1)†−Cr(1)†−Mn(1)‡−Cr(2)⊥−Mn(2)⊥−Cr(1)⊥− Mn(1)⊥−Cr(1)⊥ (Figure 5b, ring C), (translation operation: *(1 − x, 1 − y, 1 − z), †(x, 1/2 − y, 1/2 + z), ‡(2 − x, −y, 1 − z), §(1 − x, 1/2 − y, 1/2 + z), ⊥(1 + x, 1/2 − y, 1/2 + z)). The largest ring D (Figure 5(b)) was subsequently determined from the geometries of the other three rings. The four rings provided 2D layers along the c(b − a) plane (Figure 5). The layers were linked to each other through [MnCr(oxalate)3]− units along the (a + b) direction (Figure 5(a)). Although 3D frameworks of the oxalate complexes with a solvent coordination such as [Mn(CH3OH)Cr(oxalate)3]− have been reported,127 the structure of 2 was different from that of other 3D frameworks so far reported. Figure 6 shows two crystallographically independent supramolecular cations A and B existing in crystal 2. The crown ether molecule of supramolecular B was partly disordered at 123 K. The ammonium moieties interacted with the six oxygen atoms of the DCH[18]crown-6 through N−H+···O hydrogen bonds in both supramolecular cations with a shortest N···O distance of 2.801 and 2.838 Å for supramolecules A and B, respectively, which is comparable to the standard N−H+···O hydrogen bond distance.122−124 The cyclohexane rings had a cis-syn-cis configuration for all DCH[18]crown-6 in the crystal, although a mixture of cis-syn-cis and cis-anti-cis configurations was used as a starting material. Since the o-FAni+ cations were tightly included in the pocket of DCH[18]crown-6, the flip-flop motion of the o-FAni+ cation may be suppressed in crystal 2. Indeed, no disorder of fluorine atoms was observed in the X-ray structural analysis at 123 K.91 The oxalate rings included supramolecular cations and solvent molecules at their pores, except in the case of the smallest ring A (Supporting Information Figure S7). Magnetic Properties of Crystals 1 and 2. The χmolT versus T plot for 1 (Supporting Information Figure S8a) reveals

Figure 6. Two cationic layers based on crystallographically independent supramolecular cations (a) A and (b) B in salt 2.

ferromagnetic behavior. The room-temperature χmolT value of 11.5 cm3 K mol−1 was almost consistent with the spin-only value (12.6 cm3 K mol−1). Upon lowering the temperature below 15 K, χmolT rapidly increased to 240 cm3 K mol−1 at 5.3 K, suggesting ferromagnetic ordering (C = 11.5 cm3 K mol−1, θ = 13 K). The magnetization (M)−magnetic field (H) dependence of salt 1 at 2 K is shown in Supporting Information Figure S8b. The magnetization saturated at ±1 T, reaching ±7.5 μB, which corresponds to a ferromagnetic spin arrangement for high spin of S = 5/2 and S = 3/2 at the MnII and CrIII sites, respectively (8.95 μB). The ferromagnetic ordering of the MnII and CrIII spins through the bridging ligand was achieved in the 3D structure. Because there was no clear hysteresis behavior in the M−H curve, salt 1 would be a soft ferromagnet. The χT vs T plot for the crystal of 2 revealed similar ferromagnetic behavior with C = 4.14 cm3 K mol−1 and θ = 12.3 K, indicating a soft ferromagnet with saturated magnetization of ±6.7 μB at ±1 T (Supporting Information Figure S9). Ferromagnetic transition temperatures for crystals 1 and 2 were confirmed by AC susceptibility measurements as 5.5 K (Supporting Information Figures S10 and S11). E

DOI: 10.1021/cg501560z Cryst. Growth Des. XXXX, XXX, XXX−XXX

Article

Crystal Growth & Design



(6) Cariati, E.; Ugo, R.; Santoro, G.; Tordin, E.; Sorace, L.; Caneschi, A.; Sironi, A.; Macchi, P.; Casati§, N. Inorg. Chem. 2010, 49, 10894− 10901. (7) Okawa, H.; Ohba, M. Bull. Chem. Soc. Jpn. 2002, 75, 1191−1203. (8) Alliger, G. E.; Müller, P.; Do, L. H.; Cummins, C. C.; Nocera, D. G. Inorg. Chem. 2011, 50, 4107−4115. (9) Magnetic Molecular Materials; Gatteschi, D., Kahn, O., Miller, J. S., Palacio, F., Eds.; NATO ASI Series E198; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. (10) Magnetism: A Supramolecular Function; Kahn, O., Ed.; NATO ASI Series C484; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. (11) Molecular Magnetism: From the Molecular Assemblies to the Devices; Coronado, E., Delhaes, P., Gatteschi, D., Miller, J. S., Eds.; NATO ASI Series E321; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. (12) Research Frontiers in Magnetochemistry; O’Connor, C. J., Ed.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1993. (13) Kahn, O. Adv. Inorg. Chem. 1995, 43, 179−259. (14) Pierre, J. L.; Chautemps, P.; Refaif, S.; Beguin, C.; El Marzouki, A.; Serratrice, G.; Saint-Aman, E.; Rey, P. J. Am. Chem. Soc. 1995, 117, 1965−1973. (15) Kahn, O. Molecular Magnetism; VCH Publishers; Weinheim, Germany, 1993. (16) Martens, M.; van Tol, J.; Dalal, N. S.; Bertaina, S.; Barbara, B.; Tsukerblat, B.; Müller, A.; Garai, S.; Miyashita, S.; Chiorescu, I. Phys. Rev. B 2014, 89, No. 195439. (17) Kaszub, W.; Marino, A.; Lorenc, M.; Collet, E.; Bagryanskaya, E. G.; Tretyakov, E. V.; Ovcharenko, V. I.; Fedin, M. V. Angew. Chem., Int. Ed. 2014, 53, 10636−10640. (18) Alvarez, S.; Vicente, R.; Hoffmann, R. J. Am. Chem. Soc. 1985, 107, 6253−6277. (19) Vogt, T.; Faulmann, C.; Soules, R.; Lecante, P.; Mosset, A.; Castan, P.; Cassoux, P.; Galy, J. J. Am. Chem. Soc. 1988, 110, 1833− 1840. (20) Kawabata, K.; Nakano, M.; Tamura, H.; Matsubayashi, G. Inorg. Chim. Acta 2004, 357, 4373−4387. (21) Pullen, A. E.; Zeltner, S.; Olk, R. M.; Hoyer, E.; Abboud, K. A.; Reynolds, J. R. Inorg. Chem. 1996, 35, 4420−4426. (22) Nalwa, H. S. Appl. Organomet. Chem. 1990, 4, 91−102. (23) Piotraschke, J.; Pullen, A. E.; Abboud, K. A.; Reynolds, J. R. Inorg. Chem. 1995, 34, 4011−4012. (24) Pullen, A. E.; Abboud, K. A.; Reynolds, J. R.; Piotraschke, J.; Zeltner, S.; Olk, R. M.; Hoyer, E.; Liu, H. L.; Tanner, D. B. Synth. Met. 1997, 86, 1791−1793. (25) Pullen, A. E.; Olk, R. M.; Zeltner, S.; Hoyer, E.; Abboud, K. A.; Reynolds, J. R. Inorg. Chem. 1997, 36, 958−959. (26) Reynolds, J. R.; Lillya, C. P.; Chien, J. C. W. Macromolecules 1987, 20, 1184−1191. (27) Kubo, K.; Nakao, A.; Yamamoto, H. M.; Kato, R. J. Am. Chem. Soc. 2006, 128, 12358−12359. (28) Shaffer, A. R.; Deligonul, N.; Scherson, D. A.; Protasiewicz, J. D. Inorg. Chem. 2010, 49, 10756−10758. (29) Martínez-Lillo, J.; Armentano, D.; De Munno, G.; Wernsdorfer, W.; Julve, M.; Lloret, F.; Faus, J. J. Am. Chem. Soc. 2006, 128, 14218− 14219. (30) Martínez-Lillo, J.; Mastropietro, T. F.; De Munno, G.; Lloret, F.; Julve, M.; Faus, J. Inorg. Chem. 2011, 50, 5731−5739. (31) Martínez-Lillo, J.; Armentano, D.; De Munno, G.; Wernsdorfer, W.; Clemente-Juan, J. M.; Krzystek, J.; Lloret, F.; Julve, M.; Faus, J. Inorg. Chem. 2009, 48, 3027−3038. (32) Liu, T.; Zhang, W.; Sun, W.; Cao, R. Inorg. Chem. 2011, 50, 5242−5248. (33) Wang, M.; Vajpayee, V.; Shanmugaraju, S.; Zheng, Y.; Zhao, Z.; Kim, H.; Mukherjee, P. S.; Chi, K.; Stang, P. J. Inorg. Chem. 2011, 50, 1506−1512. (34) Soares-Santos, P. C. R.; Cunha-Silva, L.; Paz, F. A. A.; Ferreira, R. A. S.; Rocha, J.; Carlos, L. D.; Nogueira, H. I. S. Inorg. Chem. 2010, 49, 3428−3440.

CONCLUSIONS The supramolecular cations of (H2PPD+)(benzo[18]crown-6)2 and (o-FAni+)(DCH[18]crown-6) were introduced as counter cations to the [MnCr(oxalate)3]− anion. Both crystals had 3D structures with the alternate arrangement of MnII and CrIII ions bridged by oxalate anions. Different coordination conformations around the metal ions, [MnII(Λ)CrIII(Λ)(oxalate)3]− and [MnII(Λ)CrIII(Δ)(oxalate)3]−, were observed in crystal 1, forming a novel 3D structure. The framework showed ferromagnetic ordering of the high-spin S = 5/2 and S = 3/2 states of the MnII and CrIII sites. The supramolecular cations existed in the crystalline void spaces formed by the anion. Small rotational potential energies calculated for the cations in the supramolecule suggested the flip-flop motion of the aryl ring. Another new 3D structure constructed from [MnII(Λ)CrIII(Λ)(oxalate)3]− and solvent-coordinated [MnII(Λ)(CH3OH)CrIII(Λ)(oxalate)3]− moieties was observed in the crystal of (o-FAni+)2(DCH[18]crown-6)2[MnII(CH3OH)CrIII(oxalate)3][MnIICrIII(oxalate)3](CH3OH). The supramolecules existed in vacant spaces of the anionic moiety and formed 2D sheets parallel to the ab plane. In the cationic layers, the o-FAni+ cation was tightly included by the crown ether, preventing flip-flop motion of the cation. Our results suggest that the large and flexible supramolecular cations can induce new 3D frameworks of ferromagnetic [MnIICrIII(oxalate)3]− complexes surrounding the supramolecular cations sufficient for molecular rotations. This synthetic strategy allows the development of multifunctional materials on the basis of supramolecular cations having ferroelectricity and a ferromagnetic [MnIICrIII(oxalate)3]− unit.



ASSOCIATED CONTENT

S Supporting Information *

CIFs and thermogravimetric data of salts 1 and 2, and calculation of potential energy curves of the supramolecular cations and their arrangement in the crystal of 1. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. Author Contributions

The manuscript includes contributions from all authors. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS We thank Dr. Takashi Matsumoto and Dr. Takashi Takasaki at RIGAKU Co., Ltd. for the crystallographic analysis of 1 and 2. This work was supported partly by MEXT Japan and JSPS Core-to-Core Program, A. Advanced Research Networks.



REFERENCES

(1) Grimes, R. N. Coord. Chem. Rev. 2000, 200−202, 773−811. (2) Pal, S. K.; Krishnan, A.; Das, P. K.; Samuelson, A. G. J. Organomet. Chem. 2000, 604, 248−259. (3) Barlow, S. Inorg. Chem. 2001, 40, 7047−7053. (4) Barlow, S.; Marder, S. R. Chem. Commun. 2000, 1555−1562. (5) Meyer-Friedrichsen, T.; Mecker, C.; Prosenc, M. H.; Heck, J. Eur. J. Inorg. Chem. 2002, 239−248. F

DOI: 10.1021/cg501560z Cryst. Growth Des. XXXX, XXX, XXX−XXX

Article

Crystal Growth & Design (35) Tang, L.; Park, J.; Kim, H.; Kim, Y.; Kim, S. J.; Chin, J.; Kim, K. M. J. Am. Chem. Soc. 2008, 130, 12606−12607. (36) Cotton, F. A.; Murillo, C. A.; Wang, X.; Yu, R. Inorg. Chem. 2004, 43, 8394−8403. (37) Cotton, F. A.; Murillo, C. A.; Stiriba, S.-E.; Wang, X.; Yu, R. Inorg. Chem. 2005, 44, 8223−8233. (38) Kizewski, F. R.; Boyle, P.; Hesterberg, D.; Martin, J. D. J. Am. Chem. Soc. 2010, 132, 2301−2308. (39) Lu, C. C.; Saouma, C. T.; Day, M. W.; Peters, J. C. J. Am. Chem. Soc. 2007, 129, 4−5. (40) Tian, Y.; Stroppa, A.; Chai, Y.; Yan, L.; Wang, S.; Barone, P.; Picozzi, S.; Sun, Y. Sci. Rep. 2014, 4, No. 6062. (41) Tian, Y.; Wang, W.; Chai, Y.; Cong, J.; Shen, S.; Yan, L.; Wang, S.; Han, X.; Sun, Y. Phys. Rev. Lett. 2014, 112, No. 017202. (42) Wang, Z.; Jain, P.; Choi, K.-Y.; van Tol, J.; Cheetham, A. K.; Kroto, H. W.; Koo, H.-J.; Zhou, H.; Hwang, J.; Choi, E. S.; Whangbo, M.-H.; Dalal1, N. S. Phys. Rev. B 2013, 87, No. 224406. (43) Baker, P. J.; Lancaster, T.; Franke, I.; Hayes, W.; Blundell, S. J.; Pratt, F. L.; Jain, P.; Wang, Z.-M.; Kurmoo, M. Phys. Rev. B 2010, 82, No. 012407. (44) Kundys, B.; Lappas, A.; Viret, M.; Kapustianyk, V.; Rudyk, V.; Semak, S.; Simon, C.; Bakaimi, I. Phys. Rev. B 2010, 81, No. 224434. (45) Cañadillas-Delgado, L.; Fabelo, O.; Rodríguez-Velamazán, J. A.; Lemée-Cailleau, M.-H.; Mason, S. A.; Pardo, E.; Lloret, F.; Zhao, J.-P.; Bu, X.-H.; Simonet, V.; Colin, C. V.; Rodríguez-Carvajal, J. J. Am. Chem. Soc. 2012, 134, 19772−19781. (46) Jain, P.; Ramachandran, V.; Clark, R. J.; Zhou, H. D.; Toby, B. H.; Dalal, N. S.; Kroto, H. W.; Cheetham, A. K. J. Am. Chem. Soc. 2009, 131, 13625−13627. (47) Sante, D. D.; Stroppa, A.; Jain, P.; Picozzi, S. J. Am. Chem. Soc. 2013, 135, 18126−18130. (48) Xu, G.-C.; Zhang, W.; Ma, X.-M.; Chen, Y.-H.; Zhang, L.; Cai, H.-L.; Wang, Z.-M.; Xiong, R.-G.; Gao, S. J. Am. Chem. Soc. 2011, 133, 14948−14951. (49) Polyakov, A. O.; Arkenbout, A. H.; Baas, J.; Blake, G. R.; Meetsma, A.; Caretta, A.; van Loosdrecht, P. H. M.; Palstra, T. T. M. Chem. Mater. 2012, 24, 133−139. (50) Fu, D.-W.; Zhang, W.; Cai, H.-L.; Zhang, Y.; Ge, J.-Z.; Xiong, R.-G.; Huang, S. D.; Nakamura, T. Angew. Chem., Int. Ed. 2011, 50, 11947−11951. (51) Stroppa, A.; Jain, P.; Barone, P.; Marsman, M.; Perez-Mato, J. M.; Cheetham, A. K.; Kroto, H. W.; Picozzi, S. Angew. Chem., Int. Ed. 2011, 50, 5847−5850. (52) Stroppa, A.; Barone, P.; Jain, P.; Perez-Mato, J. M.; Picozzi, S. Adv. Mater. 2013, 25, 2284−2290. (53) Mączka, M.; Ptak, M.; Kojima, S. Appl. Phys. Lett. 2014, 104, No. 222903. (54) Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J.; Laukhin, V. Nature 2000, 408, 447−449. (55) Tamaki, H.; Zhong, Z. J.; Matsumoto, N.; Kida, S.; Koikawa, M.; Achiwa, N.; Hashimoto, Y.; Okawa, H. J. Am. Chem. Soc. 1992, 114, 6974−6979. (56) Okawa, H.; Matsumoto, N.; Tamaki, H.; Ohba, M. Mol. Cryst. Liq. Cryst. 1993, 233, 257−262. (57) Tamaki, H.; Mitsumi, K.; Nakamura, M.; Matsumoto, N.; Kida, S.; Okawa, H.; Iijima, S. Chem. Lett. 1992, 1975−1978. (58) Mathonière, C.; Carling, S. G.; Dou, Y. S.; Day, P. J. Chem. Soc., Chem. Commun. 1994, 1551−1552. (59) Mathonière, C.; Nuttall, C. J.; Carling, S. G.; Day, P. Inorg. Chem. 1996, 35, 1201−1206. (60) Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J.; Martínez-Agudo, J. M.; Martínez-Ferrero, E.; Waerenborgh, J. C.; Almeida, M. J. Solid State Chem. 2001, 159, 391−402. (61) Min, K. S.; Miller, J. S. Dalton Trans. 2006, 2463−2467. (62) Coronado, E.; Galán-Mascarós, J. R.; Martí-Gastaldo, C. J. Mater. Chem. 2006, 16, 2685−2689. (63) Okawa, H.; Shigematsu, A.; Sadakiyo, M.; Miyagawa, T.; Yoneda, K.; Ohba, M.; Kitagawa, H. J. Am. Chem. Soc. 2009, 131, 13516−13522.

(64) Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J.; Ensling, J.; Gütlich, P. Chem.Eur. J. 2000, 6, 552−563. (65) Clemente-León, M.; Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J. Chem. Commun. 1997, 1727−1728. (66) Alberola, A.; Coronado, E.; Galán-Mascarós, J. R.; GiménezSaiz, C.; Gómez-García, C. J. J. Am. Chem. Soc. 2003, 125, 10774− 10775. (67) Rabu, P.; Drillon, M. Adv. Eng. Mater. 2003, 5, 189−210. (68) Decurtins, S.; Schmalle, H. W.; Oswald, H. R.; Linden, A.; Ensling, J.; Gütlich, P.; Hauser, A. Inorg. Chim. Acta 1994, 216, 65−73. (69) Atovmyan, L. O.; Shilov, G. V.; Lyubovskaya, R. N.; Zhilyaeva, E. I.; Ovanesyan, N. S.; Pirumova, S. I.; Gusakovskaya, I. G. JETP Lett. 1993, 58, 766−769. (70) Duan, Z.; Zhang, Y.; Zhang, B.; Zhu, D. Inorg. Chem. 2008, 47, 9152−9154. (71) García-Couceiro, U.; Olea, D.; Castillo, O.; Luque, A.; Román, P.; de Pablo, P. J.; Gómez-Herrero, J.; Zamora, F. Inorg. Chem. 2005, 4, 8343−8348. (72) Castillo, O.; Luque, A.; Román, P.; Lloret, F.; Julve, M. Inorg. Chem. 2001, 40, 5526−5535. (73) Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J.; Martí-Gastaldo, C. Inorg. Chem. 2005, 44, 6197−6202. (74) Yamada, T.; Sadakiyo, M.; Kitagawa, H. J. Am. Chem. Soc. 2009, 131, 3144−3145. (75) Coronado, E.; Galán-Mascarós, J. R.; Martí-Gastaldo, C. J. Am. Chem. Soc. 2008, 130, 14987−14989. (76) Oshio, H.; Nagashima, U. Inorg. Chem. 1992, 31, 3295−3301. (77) Castillo, O.; Luque, A.; Sertucha, J.; Román, P.; Lloret, F. Inorg. Chem. 2000, 39, 6142−6144. (78) Song, X.; Li, L.; Liao, D.; Jiang, Z.; Yan, S. Cryst. Growth Des. 2007, 7, 1220−1222. (79) García-Terán, J. P.; Castillo, O.; Luque, A.; García-Couceiro, U.; Beobide, G.; Román, P. Cryst. Growth Des. 2007, 7, 2594−2600. (80) Ghosh, S. K.; Savitha, G.; Bharadwaj, P. K. Inorg. Chem. 2004, 43, 5495−5497. (81) Zhang, B.; Wang, Z.; Zhang, Y.; Takahashi, K.; Okano, Y.; Cui, H.; Kobayashi, H.; Inoue, K.; Kurmoo, M.; Pratt, F. L.; Zhu, D. Inorg. Chem. 2006, 45, 3275−3280. (82) Yamamoto, C.; Nishikawa, H.; Nihei, M.; Shiga, T.; Hedo, M.; Uwatoko, Y.; Sawa, H.; Kitagawa, H.; Taguchi, Y.; Iwasa, Y.; Oshio, H. Inorg. Chem. 2006, 45, 10270−10276. (83) Clemente-León, M.; Coronado, E.; Gómez-García, C. J.; Soriano-Portillo, A. Inorg. Chem. 2006, 45, 5653−5660. (84) Rao, C. N. R.; Natarajan, S.; Vaidhyanathan, R. Angew. Chem., Int. Ed. 2004, 43, 1466−1496. (85) Pointillart, F.; Train, C.; Gruselle, M.; Villain, F.; Schmalle, H. W.; Talbot, D.; Gredin, P.; Decurtins, S.; Verdaguer, M. Chem. Mater. 2004, 16, 832−841. (86) Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J.; Martínez-Agudo, J. M. Inorg. Chem. 2001, 40, 113−120. (87) Andrés, R.; Brissard, M.; Gruselle, M.; Train, C.; Vaissermann, J.; Malézieux, B.; Jamet, J.-P.; Verdaguer, M. Inorg. Chem. 2001, 40, 4633−4640. (88) Andrés, R.; Gruselle, M.; Malézieux, B.; Verdaguer, M.; Vaissermann, J. Inorg. Chem. 1999, 38, 4637−4646. (89) Decurtins, S.; Schmalle, H. W.; Schneuwly, P.; Ensling, J.; Gutlicht, P. J. Am. Chem. Soc. 1994, 116, 9521−9528. (90) Endo, T.; Akutagawa, T.; Noro, S.; Nakamura, T. Dalton Trans. 2011, 40, 1491−1496. (91) Akutagawa, T.; Koshinaka, H.; Sato, D.; Takeda, S.; Noro, S.; Takahashi, H.; Kumai, R.; Tokura, Y.; Nakamura, T. Nat. Mater. 2009, 8, 342−347. (92) Dean, P. A. W.; Craig, D.; Dance, I.; Russell, V.; Scudder, M. Inorg. Chem. 2004, 43, 443−449. (93) Akutagawa, T.; Koshinaka, H.; Ye, Q.; Noro, S.; Kawamata, J.; Yamaki, H.; Nakamura, T. Chem.Asian J. 2010, 5, 520−529. (94) Nishihara, S.; Akutagawa, T.; Sato, D.; Takeda, S.; Noro, S.; Nakamura, T. Chem.Asian J. 2007, 2, 1083−1090. G

DOI: 10.1021/cg501560z Cryst. Growth Des. XXXX, XXX, XXX−XXX

Article

Crystal Growth & Design (95) Crystal Structure: Single Crystal Structure Analysis Software, version 3.6; Rigaku Corporation and Molecular Structure Corporation: The Woodlands, TX, 2004. (96) Kabuto, C.; Akine, S.; Nemoto, T.; Kwon, E. J. Cryst. Soc. Jpn. 2009, 51, 218−224. (97) Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38, 381−388. (98) Sheldrick, G. M. SHELX-97 Programs for Crystal Structure Analysis; Universitat Göttingen: Göttingen, Germany, 1998. (99) Clemente-León, M.; Coronado, E.; Gómez-García, C. J.; Soriano-Portillo, A. Inorg. Chem. 2006, 45, 5653−5660. (100) Rao, C. N. R.; Natarajan, S.; Vaidhyanathan, R. Angew. Chem., Int. Ed. 2004, 43, 1466−1496. (101) Pointillart, F.; Train, C.; Gruselle, M.; Villain, F.; Schmalle, H. W.; Talbot, D.; Gredin, P.; Decurtins, S.; Verdaguer, M. Chem. Mater. 2004, 16, 832−841. (102) Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J.; Martínez-Agudo, J. M. Inorg. Chem. 2001, 40, 113−120. (103) Andrés, R.; Brissard, M.; Gruselle, M.; Train, C.; Vaissermann, J.; Malézieux, B.; Jamet, J.-P.; Verdaguer, M. Inorg. Chem. 2001, 40, 4633−4640. (104) Andrés, R.; Gruselle, M.; Malézieux, B.; Verdaguer, M.; Vaissermann, J. Inorg. Chem. 1999, 38, 4637−4646. (105) Decurtins, S.; Schmalle, H. W.; Schneuwly, P.; Ensling, J.; Gutlicht, P. J. Am. Chem. Soc. 1994, 116, 9521−9528. (106) Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J.; Laukhin, V. Nature 2000, 408, 447−449. (107) Tamaki, H.; Zhong, Z. J.; Matsumoto, N.; Kida, S.; Koikawa, M.; Achiwa, N.; Hashimoto, Y.; Okawa, H. J. Am. Chem. Soc. 1992, 114, 6974−6979. (108) Okawa, H.; Matsumoto, N.; Tamaki, H.; Ohba, M. Mol. Cryst. Liq. Cryst. 1993, 233, 257−262. (109) Tamaki, H.; Mitsumi, K.; Nakamura, M.; Matsumoto, N.; Kida, S.; Okawa, H.; Iijima, S. Chem. Lett. 1992, 1975−1978. (110) Mathonière, C.; Carling, S. G.; Dou, Y. S.; Day, P. J. Chem. Soc., Chem. Commun. 1994, 1551−1552. (111) Mathonière, C.; Nuttall, C. J.; Carling, S. G.; Day, P. Inorg. Chem. 1996, 35, 1201−1206. (112) Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J.; Martínez-Agudo, J. M.; Martínez-Ferrero, E.; Waerenborgh, J. C.; Almeida, M. J. Solid State Chem. 2001, 159, 391−402. (113) Min, K. S.; Miller, J. S. Dalton Trans. 2006, 2463−2467. (114) Coronado, E.; Galán-Mascarós, J. R.; Martí-Gastaldo, C. J. Mater. Chem. 2006, 16, 2685−2689. (115) Okawa, H.; Shigematsu, A.; Sadakiyo, M.; Miyagawa, T.; Yoneda, K.; Ohba, M.; Kitagawa, H. J. Am. Chem. Soc. 2009, 131, 13516−13522. (116) Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J.; Ensling, J.; Gütlich, P. Chem.Eur. J. 2000, 6, 552−563. (117) Clemente-León, M.; Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J. Chem. Commun. 1997, 1727−1728. (118) Alberola, A.; Coronado, E.; Galán-Mascarós, J. R.; GiménezSaiz, C.; Gómez-García, C. J. J. Am. Chem. Soc. 2003, 125, 10774− 10775. (119) Rabu, P.; Drillon, M. Adv. Eng. Mater. 2003, 5, 189−210. (120) Decurtins, S.; Schmalle, H. W.; Oswald, H. R.; Linden, A.; Ensling, J.; Gütlich, P.; Hauser, A. Inorg. Chim. Acta 1994, 216, 65−73. (121) Atovmyan, L. O.; Shilov, G. V.; Lyubovskaya, R. N.; Zhilyaeva, E. I.; Ovanesyan, N. S.; Pirumova, S. I.; Gusakovskaya, I. G. JETP Lett. 1993, 58, 766−769. (122) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Truhlar, D. G., Ed.; Oxford University Press: New York, 1997. (123) Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond; Freemann: San Francisco, 1960. (124) Hamilton, W. C.; Ibers, J. A. Hydrogen Bonding in Solids; Breslow, R., Karplus, M., Ed.; Benjamin Inc.: New York, 1968. (125) Akutagawa, T.; Shitagami, K.; Aonuma, M.; Noro, S.; Nakamura, T. Inorg. Chem. 2009, 48, 4454−4461.

(126) Ye, Q.; Akutagawa, T.; Endo, T.; Noro, S.; Nakamura, T.; Xiong, R. Inorg. Chem. 2010, 49, 8591−8600. (127) Coronado, E.; Galán-Mascarós, J. R.; Martí-Gastaldo, C. Inorg. Chim. Acta 2008, 361, 4017−4023.

H

DOI: 10.1021/cg501560z Cryst. Growth Des. XXXX, XXX, XXX−XXX