20 Two- and Three-Phase Equilibrium Calculations for Coal Gasification and Related Processes
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
D.-Y.
PENG and D. B. ROBINSON
Department of Chemical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G6
The gasificiation of coal, shale-oil, or other lower grade hydrocarbon base stocks inevitably leads to the production of process streams which contain a very wide range of paraffinie, naphthenic, aromatic and olefinic hydrocarbons in the presence of associated non-hydrocarbons such as hydrogen, nitrogen, carbon dioxide, hydrogen sulfide and ammonia. These streams are often contacted with water at process conditions which normally lead to either gas - water - rich liquid equilibrium or gas water - rich liquid - hydrocarbon rich liquid equilibrium. The processing conditions and stream compositions which may lead to the formation of these different phases and the distribution of the components between phases are of great importance to the design engineer. For this reason the establishment of reliable procedures for predicting the behavior of these mixtures in the one-, two-, and three-phase regions is a matter of considerable importance. In an earlier paper (1), the authors presented an efficient procedure for predicting the phase behavior of systems exhibiting a water - rich liquid phase, a hydrocarbon - rich liquid phase, and a v a p o r p h a s e . The P e n g - R o b i n s o n e q u a t i o n o f s t a t e (2) was used t o r e p r e s e n t t h e b e h a v i o r o f a l l t h r e e phases. I t has t h e following form: . a(T) v-b " v ( v + b j + b ( v - b )
= KL v
(1)
where a ( T ) = a α a
c
= 0.45724
- j ±
= 1 + K(1-T ^ ) R
2
(2)
0-8412-0569-8/80/47-133-393$05.50/0 © 1980 American Chemical Society
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
394
THERMODYNAMICS
OF AQUEOUS SYSTEMS
W I T H INDUSTRIAL
κ = 0 . 3 7 4 6 4 + 1.54226ω - 0.26992ω R T
b = 0.07780 For m i x t u r e s
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
b =
I
x.
APPLICATIONS
2
(3)
c
ψ-± c
b.
(5)
A l t h o u g h t h e c a l c u l a t e d phase c o m p o s i t i o n s f o r t h e h y d r o c a r b o n - r i c h l i q u i d phase and t h e v a p o r phase showed e x c e l l e n t agreement w i t h the e x p e r i m e n t a l d a t a , the c a l c u l a t e d hydrocarbon c o n t e n t s o f t h e aqueous l i q u i d phase was c o n s i s t e n t l y s e v e r a l o r d e r s o f magnitude lower than the r e p o r t e d e x p e r i m e n t a l v a l u e s . I t was s p e c u l a t e d t h a t a d d i t i o n a l t e m p e r a t u r e - d e p e n d e n t i n t e r a c t i o n p a r a m e t e r s w o u l d be r e q u i r e d t o b r i n g t h e p r e d i c t e d v a l u e s and t h e e x p e r i m e n t a l r e s u l t s i n t o q u a n t i t a t i v e a g r e e m e n t ; n e v e r t h e l e s s , no a t t e m p t was made a t t h a t t i m e t o t r y t o a c c o m p l i s h this. In t h i s s t u d y , i t has been p o s s i b l e t o d e v i s e a p r o c e d u r e w h i c h c a n be used t o g e n e r a t e r e l i a b l e phase c o m p o s i t i o n s f o r b o t h t h e h y d r o c a r b o n - r i c h phase and t h e aqueous phase o v e r a w i d e r a n g e o f t e m p e r a t u r e and p r e s s u r e . Moreover, the c a l c u l a t i o n p r o c e d u r e has been s u c c e s s f u l l y a p p l i e d t o n o n - h y d r o c a r b o n water systems w i t h q u a n t i t a t i v e r e s u l t s . C a l c u l a t i o n Procedure. W i t h t h e e x c e p t i o n o f two s i g n i f i c a n t m o d i f i c a t i o n s , t h e c a l c u l a t i o n p r o c e d u r e used i n t h i s s t u d y was b a s i c a l l y t h e same as t h a t used p r e v i o u s l y . The f i r s t m o d i f i c a t i o n c o n c e r n s t h e use o f E q n . ( 2 ) f o r water. When d e v e l o p i n g t h e o r i g i n a l c o r r e l a t i o n f o r oh and κ as e x p r e s s e d by E q n . ( 2 ) and ( 3 ) , w a t e r was n o t i n c l u d e d as one o f t h e c o m p o n e n t s , and c o n s e q u e n t l y t h e p r e d i c t e d v a p o r p r e s s u r e s f o r w a t e r w e r e n o t as good as e x p e c t e d . Thus i n o r d e r t o c o r r e l a t e t h e v a p o r p r e s s u r e o f w a t e r more a c c u r a t e l y o v e r t h e e n t i r e t e m p e r a t u r e range^ E q n . ( 2 ) was m o d i f i e d f o r t h i s compound a t t e m p e r a t u r e s where T R ^ < 0 . 8 5 as f o l l o w s : h
a
= 1.0085677
+ 0.82154
(I-TJ*)
ν
(6)
K
A t t e m p e r a t u r e s where T >_ 0 . 8 5 , E q n . ( 2 ) s t i l l a p p l i e s . The s e c o n d m o d i f i c a t i o n c o n c e r n s t h e c o r r e l a t i o n o f t h e c o m p o s i t i o n o f t h e aqueous l i q u i d p h a s e . In o r d e r t o a c c o m p l i s h t h i s , a t e m p e r a t u r e - d e p e n d e n t i n t e r a c t i o n p a r a m e t e r was used f o r t h e aqueous l i q u i d phase and t h e p r e v i o u s t e m p e r a t u r e i n d e p e n d e n t p a r a m e t e r was u s e d f o r t h e non-aqueous l i q u i d phase and t h e v a p o r p h a s e . Thus f o r t h e aqueous - l i q u i d phase E q n . ( 4 ) becomes R
2
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
20.
PENG AND ROBINSON
Coal Gasification and Related Processes
395
where τ-jj i s a t e m p e r a t u r e - d e p e n d e n t i n t e r a c t i o n p a r a m e t e r . The i n t r o d u c t i o n o f t h i s p a r a m e t e r f o r each aqueous b i n a r y p a i r means t h a t t h e i n t e r a c t i o n between t h e w a t e r m o l e c u l e and t h e g a s m o l e c u l e i n t h e aqueous l i q u i d phase i s much d i f f e r e n t f r o m t h a t i n t h e nonaqueous p h a s e s . F o r a l l t h e aqueous b i n a r i e s w h i c h have been e x a m i n e d i n t h i s s t u d y , t h e t e m p e r a t u r e d e p e n d e n t i n t e r a c t i o n p a r a m e t e r s t a k e on n e g a t i v e v a l u e s a t a m b i e n t t e m p e r a t u r e and m o n o t o n i c a l l y i n c r e a s e a s t e m p e r a t u r e increases. T h i s i n d i c a t e s t h a t t h e a t t r a c t i o n e n e r g y between t h e w a t e r m o l e c u l a r and t h e o t h e r m o l e c u l e s d e c r e a s e s as t h e temperature i n c r e a s e s . Non-Hydrocarbon - Water
Binaries
Of t h e many p o s s i b l e n o n - h y d r o c a r b o n - w a t e r b i n a r y s y s t e m s w h i c h a r e r e l a t e d t o s u b s t i t u t e gas p r o c e s s e s , t h e d a t a on o n l y t h e w a t e r b i n a r i e s c o n t a i n i n g H S , C 0 , N , and N H were u s e d i n this study. The t r e a t m e n t o f h y d r o g e n , a quantum g a s , i s d i f f e r e n t from t h a t o f t h e o t h e r g a s e s . A separate paper w i l l deal w i t h t h e c o r r e l a t i o n o f t h e d a t a on hydrogen m i x t u r e s . 2
2
2
3
Hydrogen S u l f i d e - Water S y s t e m . The d a t a o f S e l l e c k e t a l . (J3) were used t o e v a l u a t e t h e i n t e r a c t i o n p a r a m e t e r s f o r t h e hydrogen s u l f i d e - water s y s t e m . The d a t a i n c l u d e t h e c o m p o s i t i o n o f b o t h p h a s e s a t t e m p e r a t u r e s f r o m 100°F t o 340°F a n d p r e s s u r e s f r o m 100 t o 5000 p s i a i n t h e c o e x i s t i n g v a p o r and aqueous l i q u i d hydrogen s u l f i d e - r i c h l i q u i d - vapor e q u i l i b r i u m l o c u s . A s i n g l e , c o n s t a n t i n t e r a c t i o n p a r a m e t e r has been d e t e r m i n e d f o r the hydrogen s u l f i d e - r i c h p h a s e s . T h i s d e t e r m i n a t i o n was b a s e d on t h e t h r e e - p h a s e p r e s s u r e - t e m p e r a t u r e l o c u s . While i n v e s t i g a t i n g t h e t h r e e - p h a s e r e g i o n , i t was n o t e d t h a t t h e t h r e e phase l o c u s a n d t h e c o m p o s i t i o n o f t h e h y d r o g e n s u l f i d e - r i c h phase w e r e r a t h e r i n s e n s i t i v e t o t h e t e m p e r a t u r e - d e p e n d e n t aqueous phase i n t e r a c t i o n p a r a m e t e r . Furthermore, the composition o f t h e aqueous phase was r e l a t i v e l y i n d e p e n d e n t o f t h e c o n s t a n t i n t e r a c t i o n parameter. For these reasons, the s o l u b i l i t y o f h y d r o g e n s u l f i d e i n t h e aqueous l i q u i d was c o r r e l a t e d a t t h e same t i m e as t h e p a r a m e t e r was b e i n g d e t e r m i n e d f o r t h e h y d r o g e n s u l f i d e - r i c h phases. The c a l c u l a t e d and e x p e r i m e n t a l g a s e o u s and l i q u i d phase c o m p o s i t i o n s a r e shown i n F i g u r e s 1 a n d 2 r e s p e c t i v e l y . C a r b o n D i o x i d e - Water S y s t e m . The d a t a o f Wiebe and Gaddy (1? §) e x c l u s i v e l y i n t h i s study to determine the i n t e r a c t i o n parameters f o r the carbon d i o x i d e - water b i n a r y system. These d a t a c o v e r t h e t e m p e r a t u r e a n d p r e s s u r e r a n g e f r o m 12°C t o 100°C a n d f r o m 25 atm t o 700 atm r e s p e c t i v e l y . As w i t h t h e H2S - H2O s y s t e m , a c o n s t a n t i n t e r a c t i o n p a r a m e t e r has been o b t a i n e d f o r t h e g a s e o u s phase and t h e c a r b o n d i o x i d e - r i c h w
e
r
e
u
s
e
d
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
396
THERMODYNAMICS
OF AQUEOUS SYSTEMS
W I T H INDUSTRIAL
APPLICATIONS
4000
0
I 0.80
1 0.85
L 0.90
0.95
1.00
M O L E FRACTION H Y D R O G E N S U L F I D E
Figure 1. Experimental and predicted vapor phase compositions for the hydrogen sulfide-water system (( ) P-R prediction; data from Ref. 3: (Φ) 340°F; (O) 280°F;(0) 220° F; (A) 160°F)
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
PENG AND ROBINSON
Coal Gasification and Related Processes
397
M O L E FRACTION H Y D R O G E N S U L F I D E Figure 2. Experimental and predicted aqueous liquid phase compositions for the hydrogen sulfide-water system (( ) P-R prediction; data from Ref. 3: (Φ) 160°F; (A) 220°F; (U> 280 T; Cf) 340°F)
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
398
T H E R M O D Y N A M I C S OF AQUEOUS SYSTEMS W I T H INDUSTRIAL
APPLICATIONS
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
l i q u i d phase. A t each t e m p e r a t u r e , t h e s o l u b i l i t y o f carbon d i o x i d e i n w a t e r c a n be c o r r e l a t e d a c c u r a t e l y t h r o u g h t h e w h o l e p r e s s u r e r a n g e u s i n g one i n t e r a c t i o n p a r a m e t e r f o r t h e aqueous phase. The e q u i l i b r i u m aqueous l i q u i d and v a p o r c o m p o s i t i o n s f o r t h i s b i n a r y a t two t e m p e r a t u r e s a r e shown i n F i g . 3 . M a l i n i n ( 7 ) , T o d h e i d e and F r a n c k ( 8 ) a n d T a k e n o u c h i and Kennedy ( 9 ) r e p o r t e d e q u i l i b r i u m d a t a f o r t h i s s y s t e m a t t e m p e r a t u r e s up t o 350°C a n d p r e s s u r e s t o 3500 b a r s . However, t h e v a p o r phase d a t a o f t h e s e a u t h o r s do n o t a l w a y s a g r e e w i t h each o t h e r . The aqueous phase d a t a have been used t o e x t e n d t h e t e m p e r a t u r e - d e p e n d e n t i n t e r a c t i o n p a r a m e t e r t o 300°C. N i t r o g e n - Water System. The i n t e r a c t i o n p a r a m e t e r s f o r t h e n i t r o g e n - w a t e r s y s t e m have been e v a l u a t e d u s i n g t h e d a t a o f Wiebe and Gaddy ( 1 0 ) , P a r a t e l l a a n d S a g r a m o r a (21), Rigby and P r a u s n i t z ( 1 2 ) a n d 0 ' S u l l i v a n and S m i t h ( 1 3 ) . As w i t h t h e two p r e v i o u s s y s t e m s , o n l y one c o n s t a n t i n t e r a c t i o n p a r a m e t e r was n e c e s s a r y t o c o r r e l a t e t h e v a p o r phase c o m p o s i t i o n w h i l e t h e i n t e r a c t i o n p a r a m e t e r f o r t h e aqueous l i q u i d phase i n c r e a s e d monotonically with temperature. A comparison o f the c a l c u l a t e d and e x p e r i m e n t a l v a p o r phase and aqueous l i q u i d phase c o m p o s i t i o n s i s g i v e n i n T a b l e I. Ammonia - W a t e r S y s t e m . I n t e r a c t i o n parameter f o r the ammonia - w a t e r s y s t e m was o b t a i n e d u s i n g t h e d a t a o f C l i f f o r d and H u n t e r ( 1 4 ) and o f M a c r i s s e t a l . ( 1 5 ) . A s i n g l e - v a l u e d p a r a m e t e r was c a p a b l e o f r e p r e s e n t i n g t h e c o m p o s i t i o n o f t h e l i q u i d phase r e a s o n a b l y w e l l a t a l l t e m p e r a t u r e s , h o w e v e r , t h e c a l c u l a t e d amount o f w a t e r i n t h e v a p o r phase i n t h e v e r y h i g h ammonia c o n c e n t r a t i o n r e g i o n was somewhat l o w e r t h a n t h e d a t a o f C l i f f o r d and H u n t e r and M a c r i s s e t a l . Edwards e t a l . ( 1 6 ) have a p p l i e d a new t h e r m o d y n a m i c c o n s i s t e n c y t e s t t o t h e d a t a o f M a c r i s s e t a l and have c o n c l u d e d t h a t t h e d a t a a p p e a r t o be i n c o n s i s t e n t and t h a t t h e r e p o r t e d w a t e r c o n t e n t o f t h e v a p o r phase i s t o o h i g h . The e x p e r i m e n t a l d a t a and t h e c a l c u l a t e d r e s u l t s a r e g i v e n i n Fig. 4. Hydrocarbon - Water B i n a r i e s The i n t e r a c t i o n p a r a m e t e r s f o r b i n a r y s y s t e m s c o n t a i n i n g w a t e r w i t h m e t h a n e , e t h a n e , p r o p a n e , η-butane, n - p e n t a n e , n - h e x a n e , η - o c t a n e , and benzene have been d e t e r m i n e d u s i n g d a t a from t h e l i t e r a t u r e . The phase b e h a v i o r o f t h e p a r a f f i n - w a t e r s y s t e m s c a n be r e p r e s e n t e d v e r y w e l l u s i n g t h e m o d i f i e d p r o c e d u r e . H o w e v e r , t h e a r o m a t i c - w a t e r s y s t e m c a n n o t be c o r r e l a t e d satisfactorily. P o s s i b l y a d i f f e r e t n type o f m i x i n g r u l e w i l l be r e q u i r e d f o r t h e a r o m a t i c - w a t e r s y s t e m s , a l t h o u g h t h i s has n o t as y e t been e x p l o r e d . Methane - W a t e r S y s t e m . I n t e r a c t i o n p a r a m e t e r s were g e n e r a t e d f o r t h e v a p o r phase and t h e aqueous l i q u i d phase f o r t h e methane -
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Coal Gasification and Related Processes
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
PENG AND ROBINSON
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
399
T H E R M O D Y N A M I C S OF AQUEOUS SYSTEMS W I T H INDUSTRIAL
400
TABLE I.
Experimental
APPLICATIONS
and C a l c u l a t e d Aqueous L i q u i d and V a p o r
Phase C o m p o s i t i o n s f o r t h e N i t r o g e n - W a t e r S y s t e m . Pressure, atm.
* 3 x χ 10
y
N
Expt.
Calc.
*
Expt.
Χ 10
3
Calc.
Τ = 25°C
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
22.20
1.529
1.502
30.50
1.149
1.123
38.19
0.941
0.919
6.260
6.190
3.680
3.640
59.04
2.420
2.410
75.99
1.956
1.952
25
50
0.280
0.278
0.542
0.537
100
1.015
1.004
200
1.812
1.795
300
2.455
2.458
500
3.558
3.555
800
4.909
4.869
1000
5.720
5.604 Τ = 50°C
20.81 25
0.219
0.220
36.93 50
0.436
0.428
100
0.812
0.810
200
1.470
1.470
300
2.034
2.032
500
2.982
2.968
800
4.181
4.084
1000
4.900
4.701
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
20.
PENG AND ROBINSON
Table
401
Coal Gasification and Related Processes
I - continued.
Pressure,
atm.
* χ
N
Expt.
3 χ 10 Calc.
y
*
Expt.
Χ 10
3
Calc.
Τ = 75°C 25
0.204
0.203
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
41.66
10.09
50
0.397
10.12
0.398
60.35
7.21
7.25
88.55
5.23
5.23
100
0.760
0.760
200
1.390
1.395
300
1.936
1.942
500
2.872
2.859
800
4.052
3.948
1000
4.747
4.544 Τ = 100°C
25
0.214
0.206
50
0.415
0.410
56.42
19.94
19.94
78.44
15.03
14.89
12.19
12.09
100
0.792
0.792
100.o9 200
1.462
1.470
300
2.042
500
3.044
3.052
800
4.294
4.223
1000
5.003
4.857
2.060
* Mole
Fraction
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
402
THERMODYNAMICS
0
OF
0.2
AQUEOUS
0.4
SYSTEMS W I T H INDUSTRIAL
0.6
0.8
APPLICATIONS
10
M O L E FRACTION AMMONIA
Figure 4. Experimental and predicted vapor and liquid phase compositions for the ammonia-water system (( ) P-R prediction; data from Ref. 15: liquid— (A) 300°F; (f) 200°F; (*) 100°F; vapor—(A) 300°F; (V) 200°F; (O) 100°F)
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
20.
PENG AND ROBINSON
Coal Gasification and Related Processes
403
w a t e r b i n a r y s y s t e m u s i n g e x p e r i m e n t a l d a t a r e p o r t e d by S u l t a n o v e t a l . (17_, 1 8 ) , O l d s e t a l . ( 1 9 ) , a n d C u l b e r s o n and McKetta ( 2 0 ) . The v a p o r - p h a s e mole f r a c t i o n s o f w a t e r o f O l d s e t a l . ( 1 9 ) can be r e p r e s e n t e d v e r y w e l l u s i n g t h e P e n g - R o b i n s o n e q u a t i o n o f s t a t e i n c o n j u n c t i o n w i t h a constant i n t e r a c t i o n parameter over t h e t e m p e r a t u r e r a n g e f r o m 100°F t o 4 6 0 ° F . The same i n t e r a c t i o n p a r a m e t e r c a n be u s e d t o r e p r o d u c e t h e d a t a o f S u l t a n o v e t a l . (18) up t o 300°C w i t h good r e s u l t s . However, a t h i g h e r t e m p e r a t u r e s t h e c a l c u l a t e d w a t e r c o n t e n t i n t h e v a p o r phase d e v i a t e d somewhat f r o m t h e i r d a t a . The t e m p e r a t u r e - d e p e n d e n t i n t e r a c t i o n p a r a m e t e r s were d e t e r m i n e d f r o m 7 7 ° F t o 680°F u s i n g t h e d a t a o f C u l b e r s o n a n d McKetta ( 2 0 ) a n d o f S u l t a n o v e t a l . (1_8). This parameter i n c r e a s e s w i t h temperature and appears t o converge t o t h e v a l u e o f t h e c o n s t a n t p a r a m e t e r u s e d f o r t h e v a p o r phase a s t h e c r i t i c a l temperature o f water i s approached. The e x p e r i m e n t a l a n d c a l c u l a t e d r e s u l t s f o r t h i s b i n a r y s y s t e m a t 250°C a r e p r e s e n t e d i n F i g u r e 5 . Ethane - Water System. The d a t a u s e d f o r t h e d e t e r m i n a t i o n o f the i n t e r a c t i o n parameters f o r the ethane - water b i n a r y a r e t h o s e o f C u l b e r s o n and M c K e t t a ( 2 1 ) , C u l b e r s o n e t a l . ( 2 2 ) and Reamer e t a l . (230 · A c o n s t a n t i n t e r a c t i o n p a r a m e t e r was c a p a b l e o f r e p r e s e n t i n g t h e mole f r a c t i o n o f w a t e r i n t h e v a p o r phase w i t h i n e x p e r i m e n t a l u n c e r t a i n t y o v e r t h e t e m p e r a t u r e r a n g e f r o m 100°F t o 4 6 0 ° F . As w i t h t h e methane - w a t e r s y s t e m , t h e t e m p e r a t u r e - d e p e n d e n t i n t e r a c t i o n parameter i s a l s o a m o n o t o n i c a l l y i n c r e a s i n g f u n c t i o n of temperature. However, a t each s p e c i f i e d t e m p e r a t u r e , t h e i n t e r a c t i o n parameter f o r t h i s system i s n u m e r i c a l l y g r e a t e r than t h a t f o r t h e methane - w a t e r s y s t e m . Although i t i s p o s s i b l e f o r t h i s b i n a r y t o f o r m a t h r e e - p h a s e e q u i l i b r i u m l o c u s , no e x p e r i m e n t a l d a t a on t h i s e f f e c t have been r e p o r t e d . F i g u r e 6 i l l u s t r a t e s t h e c a l c u l a t e d and e x p e r i m e n t a l e q u i l i b r i u m phase c o m p o s i t i o n s a t 220°F f o r t h i s b i n a r y s y s t e m . Propane - Water System. The i n t e r a c t i o n p a r a m e t e r s f o r t h e p r o p a n e - w a t e r s y s t e m were o b t a i n e d o v e r a t e m p e r a t u r e r a n g e f r o m 4 2 ° F t o 310°F u s i n g e x c l u s i v e l y t h e d a t a o f K o b a y a s h i a n d Katz (2^). T h i s i s b e c a u s e among t h e a v a i l a b l e l i t e r a t u r e on t h e phase b e h a v i o r o f t h i s b i n a r y s y s t e m , t h e i r d a t a a p p e a r t o g i v e t h e most e x t e n s i v e i n f o r m a t i o n . A c o n s t a n t i n t e r a c t i o n p a r a m e t e r was o b t a i n e d f o r t h e p r o p a n e - r i c h p h a s e s a t a l l temperatures. The m a g n i t u d e o f t h e t e m p e r a t u r e - d e p e n d e n t i n t e r a c t i o n p a r a m e t e r f o r t h i s b i n a r y was l e s s t h a n t h a t f o r t h e e t h a n e - w a t e r b i n a r y a t t h e same t e m p e r a t u r e . Azarnoosh and McKetta (25) a l s o presented experimental data f o r the s o l u b i l i t y o f p r o p a n e i n w a t e r o v e r a b o u t t h e same t e m p e r a t u r e r a n g e a s t h a t o f K o b a y a s h i and K a t z b u t a t p r e s s u r e s up t o 500 p s i a o n l y . However, a d i f f e r e n t s e t o f t e m p e r a t u r e - dependent parameters
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
T H E R M O D Y N A M I C S OF AQUEOUS SYSTEMS W I T H INDUSTRIAL
APPLICATIONS
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
404
Figure 5. Experimental and predicted vapor and liquid phase compositions for methane-water system at 250°C (( ) P-R prediction; (A) (17); (A) (IS))
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
20.
PENG AND ROBINSON
Coal Gasification and
Related Processes
405
M O L E FRACTION Figure 6. Experimental and predicted vapor and liquid phase compositions for the ethane-water system at 220°F (( ; P-R prediction; (A) (21); (O) (23))
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
406
THERMODYNAMICS
OF
AQUEOUS SYSTEMS W I T H INDUSTRIAL
APPLICATIONS
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
w o u l d be r e q u i r e d t o a c c u r a t e l y c o r r e l a t e t h e i r r e s u l t s . The w a t e r c o n t e n t o f t h e p r o p a n e - r i c h p h a s e s i n t h e aqueous l i q u i d - p r o p a n e l i q u i d - v a p o r r e g i o n a r e i l l u s t r a t e d i n F i g u r e 7. η-Butane - W a t e r S y s t e m . Reamer e t a l . (26) have d e t e r m i n e d t h e c o n c e n t r a t i o n o f w a t e r i n t h e n-butane - w a t e r s y s t e m i n t h e v a p o r and t h e η-butane l i q u i d phases i n t h e t h r e e - p h a s e r e g i o n . Reamer e t a l . (27) have p u b l i s h e d e x p e r i m e n t a l d a t a f o r t h e s o l u b i l i t y o f η-butane i n w a t e r and o f w a t e r i n η-butane i n t h e two-phase r e g i o n c o v e r i n g a t e m p e r a t u r e r a n g e f r o m 100°F t o 460°F and a t p r e s s u r e s up t o 1 0 , 0 0 0 p s i a . L e B r e t o n and M c K e t t a (28) have p r e s e n t e d t h e r e s u l t s o f an e x p e r i m e n t a l s t u d y on t h e s o l u b i l i t y o f η-butane i n w a t e r a t f o u r t e m p e r a t u r e s b u t a t p r e s s u r e s up t o o n l y 1000 p s i a . W h i l e the r e p o r t e d three-phase p r e s s u r e s f r o m t h e s e two s o u r c e s a g r e e v e r y w e l l , t h e d a t a on t h e s o l u b i l i t y o f η-butane i n w a t e r show marked d i f f e r e n c e s . The s o l u b i l i t y v a l u e s p r e s e n t e d by L e B r e t o n and M c K e t t a a r e c o n s i s t e n t l y l o w e r t h a n t h o s e r e p o r t e d by Reamer e t a l . In v i e w o f t h e f a c t t h a t t h e d a t a o f Reamer e t a l . c o v e r e d a much b r o a d e r r a n g e o f b o t h t e m p e r a t u r e and p r e s s u r e , t h e i r d a t a w e r e used f o r d e t e r m i n i n g the i n t e r a c t i o n parameters f o r t h i s system. As w i t h t h e f i r s t t h r e e p a r a f f i n - w a t e r s y s t e m s , o n l y a c o n s t a n t p a r a m e t e r was r e q u i r e d t o c o r r e l a t e t h e h y d r o c a r b o n r i c h phases a l t h o u g h a t e m p e r a t u r e - d e p e n d e n t p a r a m e t e r was n e c e s s a r y t o f i t t h e aqueous - l i q u i d phase d a t a . The e q u i l i b r i u m c o m p o s i t i o n o f t h e n-butane - w a t e r b i n a r y i n the three-phase r e g i o n a r e i l l u s t r a t e d i n F i g u r e 8. n-Pentane - W a t e r S y s t e m . S c h e f f e r (29) has p r e s e n t e d t h e t h r e e - p h a s e l o c u s f o r a m i x t u r e o f i - p e n t a n e and n-pentane o v e r a t e m p e r a t u r e r a n g e f r o m 150°C t o 1 8 7 . 1 ° C . H o w e v e r , no c o m p o s i t i o n a l measurements were r e p o r t e d . N a m i o t and B e i d e r (30) r e p o r t e d t h e s o l u b i l i t y o f n-pentane i n w a t e r a t t h r e e temperatures a l o n g the three-phase l o c u s . I n t e r a c t i o n parameters f o r t h e n-pentane - w a t e r s y s t e m w e r e d e t e r m i n e d u s i n g t h e s e d a t a . n-Hexane - W a t e r S y s t e m . The n-hexane - w a t e r s y s t e m i s t h e l i g h t e s t p a r a f f i n - w a t e r b i n a r y where t h e v a p o r p r e s s u r e l o c u s o f the hydrocarbon i n t e r s e c t s t h a t f o r pure w a t e r . The e x p e r i m e n t a l phase b e h a v i o r d a t a a v a i l a b l e i n t h e l i t e r a t u r e f o r t h i s s y s t e m c o v e r a w i d e r a n g e o f t e m p e r a t u r e and p r e s s u r e . Unfort u n a t e l y t h e s e d a t a do n o t c o r r o b o r a t e each o t h e r and n o t i c e a b l e discrepancies e x i s t . The d a t a o f S c h e f f e r ( 3 1 ) , R e b e r t and Hayworth ( 3 2 ) , and S u l t a n o v and S k r i p k a ( 3 3 j were employed i n d e t e r m i n i n g the i n t e r a c t i o n parameter f o r the hydrocarbon - r i c h phases. A unique value f o r t h i s i n t e r a c t i o n parameter c o u l d not be o b t a i n e d b e c a u s e o f t h e d i s c r e p a n c i e s among t h e d a t a . However, a t e n t a t i v e v a l u e , b a s e d on t h e e x t r a p o l a t i o n o f t h e v a l u e s f o r o t h e r p a r a f f i n - w a t e r i n t e r a c t i o n p a r a m e t e r s , has been a s s i g n e d to the c o n s t a n t i n t e r a c t i o n parameter. The i n t e r a c t i o n p a r a m e t e r s f o r t h e aqueous l i q u i d phase were d e t e r m i n e d u s i n g t h e d a t a o f
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
20.
P E N G A N D ROBINSON
0
2
407
Coal Gasification and Related Processes
4
6
8
10
12
14
M O L E FRACTION WATER χ 103 Figure 7. Experimental and predicted water content of propane liquid and vapor phases for the propane-water system along the three-phase locus (( ) P-R prediction; data from Ref. 24: (O) vapor; (Φ) liquid)
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
408
T H E R M O D Y N A M I C S OF AQUEOUS SYSTEMS W I T H INDUSTRIAL
50
100
150
200
250
300
APPLICATIONS
350
T E M P E R A T U R E °F
Figure 8. Experimental and predicted water content of n-butane and vapor phases for the n-butane-water system along the three-phase locus (( ) P-R prediction; (·) (2D)
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
20.
PENG AND ROBINSON
Coal Gasification and Related Processes
409
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
K u d c h a d k e r and M c K e t t a (34). Their s o l u b i l i t y data i n the v a p o r - l i q u i d r e g i o n a r e b e l i e v e d t o be i n e r r o r p r o b a b l y due t o t h e i r i n c o r r e c t p r o c e d u r e o f s m o o t h i n g t h e raw d a t a . However, t h e i r d a t a i n t h e l i q u i d - l i q u i d r e g i o n seem t o be a c c e p t a b l e . The d a t a o f R e b e r t and H a y w o r t h ( 3 2 ) were used t o e x t e n d t h e temperature - dependent i n t e r a c t i o n parameters t o temperatures above t h e c r i t i c a l p o i n t o f n - h e x a n e . Other Hydrocarbon - Water Systems. I n t e r a c t i o n parameters w e r e g e n e r a t e d f o r t h e benzene - w a t e r s y s t e m . The d a t a u s e d were t h o s e o f S c h e f f e r (3]_), R e b e r t a n d Kay (35)> and C o n n o l l y (36). As w i t h t h e a l k a n e - w a t e r s y s t e m s , t h e i n t e r a c t i o n p a r a m e t e r s f o r t h e aqueous l i q u i d phase were f o u n d t o be temperature - dependent. However, t h e c o m p o s i t i o n s f o r t h e b e n z e n e - r i c h p h a s e s c o u l d n o t be a c c u r a t e l y r e p r e s e n t e d u s i n g any s i n g l e v a l u e f o r t h e c o n s t a n t i n t e r a c t i o n p a r a m e t e r . The c a l c u l a t e d w a t e r mole f r a c t i o n s i n t h e h y d r o c a r b o n - r i c h p h a s e s were a l w a y s g r e a t e r t h a n t h e e x p e r i m e n t a l v a l u e s as r e p o r t e d by R e b e r t and Kay ( 3 5 ) . The f i n a l v a l u e f o r t h e c o n s t a n t i n t e r a c t i o n p a r a m e t e r was c h o s e n t o f i t t h e t h r e e phase l o c u s o f t h i s system. N e v e r t h e l e s s , the c a l c u l a t e d three-phase c r i t i c a l p o i n t was a b o u t 9°C l o w e r t h a n t h e e x p e r i m e n t a l v a l u e . I n t e r a c t i o n p a r a m e t e r was a l s o g e n e r a t e d f o r t h e h y d r o c a r b o n r i c h phases o f t h e n-octane - water s y s t e m . The d a t a o f K a l a f a t i and P i i r ( 3 7 ) were u s e d . T h e r e were no d a t a a v a i l a b l e f o r t h e w a t e r - r i c h l i q u i d phase f o r t h i s b i n a r y . E x p e r i m e n t a l s o l u b i l i t y d a t a a r e a v a i l a b l e f o r some h i g h e r alkane - water systems ( s e e , f o r example, S k r i p k a e t a l . , (38)). However, these d a t a e i t h e r c o v e r o n l y a v e r y l i m i t e d temperature r a n g e o r c o n t a i n r e s u l t s f o r one phase o n l y . No a t t e m p t h a s been made t o d e t e r m i n e t h e i n t e r a c t i o n p a r a m e t e r s f o r w a t e r - h y d r o c a r b o n s y s t e m s where t h e h y d r o c a r b o n i s l a r g e r t h a n n - o c t a n e . The t e m p e r a t u r e - d e p e n d e n t i n t e r a c t i o n p a r a m e t e r s d e t e r m i n e d f o r s e v e r a l a l k a n e - w a t e r s y s t e m s a r e p l o t t e d i n F i g u r e 9 . The v a l u e s f o r t h e hydrogen s u l f i d e - carbon d i o x i d e - , and n i t r o g e n w a t e r b i n a r i e s a r e g i v e n i n F i g u r e 1 0 . I t c a n be s e e n t h a t a systematic trend e x i s t s f o r these parameters. The i n t e r a c t i o n p a r a m e t e r i n c r e a s e s w i t h t h e s i z e o f t h e m o l e c u l e and f u r t h e r m o r e i t a p p e a r s t o c o n v e r g e r a p i d l y a s t h e c a r b o n number i n c r e a s e s . A t a g i v e n temperature and p r e s s u r e , t h e s o l u b i l i t y o f a l k a n e s i n w a t e r g e n e r a l l y d e c r e a s e s as t h e m o l e c u l a r w e i g h t o f t h e h y d r o carbon i n c r e a s e s . The amount o f n - o c t a n e a n d h e a v i e r h y d r o c a r b o n s d i s s o l v e d i n water streams r e s u l t i n g from s y n t h e t i c gas p r o c e s s e s i s b e l i e v e d t o be i n s i g n i f i c a n t . The c a l c u l a t i o n o f t h e s o l u b i l i t y o f t h e s e compounds i n w a t e r u n d e r t h e s e c o n d i t i o n s by u s i n g e x t r a p o l a t e d values from i n t e r a c t i o n parameters o f l i g h t e r p a r a f f i n - water b i n a r i e s p r o b a b l y w i l l n o t cause l a r g e e r r o r s . Three-Phase L o c i . F i g u r e 11 shows t h e t h r e e - p h a s e l o c i f o r the a l k a n e - water systems. No e x p e r i m e n t a l t h r e e - p h a s e d a t a w e r e a v a i l a b l e i n t h e l i t e r a t u r e f o r the ethane - water b i n a r y .
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
410
T H E R M O D Y N A M I C S OF AQUEOUS SYSTEMS W I T H INDUSTRIAL
APPLICATIONS
-0.4 \-
0
I 0
1
0.2
T
Figure 9.
R(
P C
ι
ι
I
0.4
0.6
0.8
HC
/ P C
H O) 2
Temperature-dependent interaction parameters for selected paraffinwater binary systems
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
PENG AND ROBINSON
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
20.
Coal Gasification and Related Processes
411
Reduced Temperature Figure 10.
Temperature-dependent interaction parameters for nitrogen, carbon dioxide, and hydrogen sulfide with water
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
412
T H E R M O D Y N A M I C S OF AQUEOUS SYSTEMS W I T H INDUSTRIAL
0
100
200 300 400 TEMPERATURE, °F
500
APPLICATIONS
600
Figure 11. Experimental and predicted three-phase loci for selected paraffin-water binary systems (( ) P-R prediction; (V) (24); (·) (21); ( 0 ) (39); (O) (29); (k) (3l);(A)PV;W(3V)
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
20.
PENG AND ROBINSON
Coal Gasification and Related Processes
413
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
N e v e r t h e l e s s , a c a l c u l a t e d locus i s i n c l u d e d f o r completeness and t o i n d i c a t e t h e p o s s i b l e r e g i o n o f t h r e e - p h a s e e q u i l i b r i u m . As was m e n t i o n e d e a r l i e r , t h e t h r e e - p h a s e d a t a r e p o r t e d by S c h e f f e r (29) f o r p e n t a n e - w a t e r were f o r a " b i n a r y " composed o f w a t e r ancf a m i x t u r e o f i - p e n t a n e a n d n - p e n t a n e . As shown i n t h e f i g u r e , t h e s e d a t a a r e bounded b y t h e c a l c u l a t e d l o c i o f t h e i - p e n t a n e - w a t e r and n-pentane - w a t e r s y s t e m s . Conclusion. The m i x i n g r u l e f o r u s e w i t h t h e P e n g - R o b i n s o n e q u a t i o n o f s t a t e has been m o d i f i e d t o i n c l u d e t e m p e r a t u r e dependent i n t e r a c t i o n parameters. Both t h e c o n s t a n t and t h e temperature - dependent i n t e r a c t i o n parameters c o v e r i n g a wide r a n g e o f t e m p e r a t u r e s have been d e t e r m i n e d f o r h y d r o c a r b o n w a t e r s y s t e m s i n c l u d i n g methane - w a t e r , e t h a n e - w a t e r , p r o p a n e w a t e r , n-butane - w a t e r , a n d n-hexane - w a t e r a n d n o n - h y d r o c a r b o n water systems i n c l u d i n g hydrogen s u l f i d e - w a t e r , carbon d i o x i d e w a t e r , n i t r o g e n - w a t e r , a n d ammonia - w a t e r . The i n c l u s i o n o f t h e s e t e m p e r a t u r e - d e p e n d e n t p a r a m e t e r s has g r e a t l y i m p r o v e d t h e a c c u r a c y o f p r e d i c t i o n s o f t h r e e - p h a s e a n d two-phase e q u i l i brium f o r systems i n v o l v i n g w a t e r . Acknowledgement. The f i n a n c i a l s u p p o r t r e c e i v e d f r o m t h e N a t i o n a l S c i e n c e a n d E n g i n e e r i n g R e s e a r c h C o u n c i l o f Canada i s sincerely appreciated. Abstract
Two-constant equation of state phase behavior calculations for aqueous mixtures often require the use of temperature dependent binary interaction parameters. The methods used for evaluating these parameters for some of the typical aqueous binary pairs found in coal gasification and related process streams are described. Experimental and predicted phase compositions based on these methods are illustrated for aqueous pairs containing CO , H S, NH , and other gases. 2
2
3
Literature Cited
1. Peng, D.-Y., Robinson, D.B., Can. J. Chem. Eng., 1976, 54, 595. 2. Peng, D.-Y., Robinson, D.B., Ind. Eng. Chem. Fundam., 1976, 15, 59. 3. Selleck, F.T., Carmichael, L.T., Sage, B.H., Ind. Eng. Chem., 1952, 44, 2219. 4. Wiebe, R., Gaddy, V.L., J. Am. Chem. Soc., 1939, 61, 315. 5. Wiebe, R., Gaddy, V.L., J. Am. Chem. Soc., 1940, 62, 815. 6. Wiebe, R., Gaddy, V.L., J. Am. Chem. Soc., 1941, 63, 475. 7. Malinin, S.D., Geokhimiya, 1959,3,235. 8. Todheide, K., Franck, E.U., Ζ. Physik. Chem. (Frankfurt), 1963, 37, 387. 9. Takenouchi, S., Kennedy, G.C., Am. J. Sci., 1964, 262, 1055. 10. Wiebe, R., Gaddy, V.L., Heins, C., J. Am. Chem. Soc., 1933, 55, 947.
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
414 THERMODYNAMICS OF AQUEOUS SYSTEMS WITH INDUSTRIAL APPLICATIONS
Downloaded by STANFORD UNIV GREEN LIBR on October 19, 2012 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch020
11. 12. 13. 14. 15.
Paratella, Α., Sagramora, G., Ricerca Sci., 1959, 29, 2605. Rigby, Μ., Prausnitz, J.M., J. Phys. Chem. 1968, 72, 330. O'Sullivan, T.D., Smith, N.O., J. Phys. Chem. 1970, 74, 1460. Clifford, I.L., Hunter, E., J. Phys. Chem. 1933, 37, 101. Macriss, R.A., Eakin, B.E., Ellington, R.T., Huebler, J., Research Bulletin, No. 34, American Gas Association, 1964. 16. Edwards, T.J., Newman, J., Prausnitz, J.M., Ind. Eng. Chem. Fundam., 1978, 17, 264. 17. Sultanov, R.G., Skripka, V.G., Namiot, A. Yu., Gazovaya Promyshlennost, 1971, 16 (4), 6. 18. Sultanov, R.G., Skripka, V.G., Namiot, A. Yu., Gazovaya Promyshlennost, 1972, 17 (5), 6. 19. Olds, R.H., Sage, B.H., Lacey, W.N., Ind. Eng. Chem., 1942, 34, 1226. 20. Culberson, O.L., McKetta, J.J., Petrol. Trans. AIME, 1951, 192, 223. 21. Culberson, O.L., McKetta, J.J., Petrol. Trans. AIME, 1950, 189, 319. 22. Culberson, O.L., Horn, A.B., McKetta, J.J., Petrol. Trans. AIME, 1950, 189, 1. 23. Reamer, H.H., Olds, R.H., Sage, B.H., Lacey, W.N., Ind. Eng. Chem. 1943, 35, 790. 24. Kobayashi, R., Katz, D.L., Ind. Eng. Chem., 1953, 45, 440. 25. Azarnoosh, Α., McKetta, J.J., Petroleum Refiner. 1958, 37, (11), 275. 26. Reamer, H.H., Olds, R.H., Sage, B.H., Lacey, W.N., Ind. Eng. Chem., 1944, 36, 381. 27. Reamer, H.H., Sage, B.H., Lacey, W.N., Ind. Eng. Chem., 1952, 44, 609. 28. LeBreton, J.G., McKetta, J.J., Hydrocarbon Processing & Petrol. Refiner. 1964, 43, (6), 136. 29. Scheffer, F.E.C., Proc. Kon. Akad. Wet. Amsterdam, 1914, 17, 834. 30. Namiot, A. Yu., Beider, S. Ya., Khim. Tekhnol. Topliv. Masel 1960, 5, (7), 52. 31. Scheffer, F.E.C., Proc. Kon. Akad. Wet. Amsterdam, 1913, 16, 404. 32. Rebert, C.J., Hayworth, K.E., Α.I.Ch.E.J., 1967, 13, 118. 33. Sultanov, R.G., Skripka, V.G., Zh. Fiz. Khim., 1972, 46, (8), 2170. 34. Kudchadker, A.P., McKetta, J.J., Hydrocarbon Processing & Petrol. Refiner. 1961, 40, (9), 231. 35. Rebert, C.J., Kay, W.B., A.I.Ch.E.J., 1959, 5, 285. 36. Connolly, J.F., J. Chem. Eng. Data, 1966, 11, 13. 37. Kalafati, D.D., Piir, A.E., Zh. Fiz. Khim., 1972, 46, (2), 325. 38. Skripka, V.G., Hubkina, G.F., Boksha, O.A., Zh. Fiz. Khim., 1974, 48, (3), 781. 39. Roof, J.G., J. Chem. Eng. Data, 1970, 15, 301. RECEIVED January 31, 1980.
In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.