Vancomycin and ristocetin models: synthesis via the Ullmann

Total Syntheses of Vancomycin-Related Glycopeptide Antibiotics and Key Analogues. Akinori Okano , Nicholas A. Isley , and Dale L. Boger. Chemical Revi...
0 downloads 0 Views 1MB Size
1426

J. Org. C h e m . 1993,58,1425-1433

Vancomycin and Ristocetin Models: Synthesis via the Ullmann Macrocyclization Reaction Dale L. Boger,' Yuji Nomoto,l and Bradley R. Teegarden D e p a r t m e n t of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road,

La Jolla, California 92037

Received September 29, 1992

The preparations of 2 and 3, the parent skeletons of the CD and DE diphenyl ether 16-membered ring systemsof vancomycin and ristocetin, based on the implementationof an intramolecular Ullmann macrocyclization reaction are detailed. Additional studies which define the scope of substrates suitable for use in the Ullmann macrocyclization reaction are described including a limited study of those bearing centers capable of racemization. Within the limited series of agents examined,Ullmann macrocyclization closure of the DE ring system was found to occur at a faster rate and in higher overall yields than those providing the CD ring system. N-Methylation of the amide linking chain decelerates or inhibits Ullmann macrocyclization and a-substitution of the central amino acid of the linking chain significantly increases the cyclization conversions. Racemization of the central amino acid of the linking amide chain was found to be minimal ( 5 % ) under reaction conditions where the secondary amides are deliberately deprotonated prior to exposure of the substrate to the thermal, basic reaction conditions. Vancomycin (112 represents the most widely recognized member of a family of clinically effective glycopeptide antibiotics3 including ristocetin, 0-avoparcin, and teicoplanin that express their properties through inhibition of bacterial cell wall biosynthesis by selectively binding to mucopeptides terminating in the sequence D-Ma-D-Ala? Consequently,the binding affinity and selectivity of such agents with D-Ala-D-Ma and related dipeptides have been the subject of extensive inve~tigation.~?~ However, due to the structural complexity of the agents and the inherent difficulty associated with the preparation of the dipeptide binding pocket composed of the CD and DE 16-membered rings, most studies to date have been constrained to the natural products and their chemical derivative^.^ The exception is the recent study of Hamilton using the model agent 4.6 Deceptively simple efforts to prepare the characteristic 16-membered macrocyclicring through amide bond closure have been u n s u c ~ e s s f u lor ~ ~found ~ to proceed in very (1)On sabbatical leave (1991-1992) from Kyowa Hakko Kogyo Co., Ltd., Japan. (2) Harris, C. M.; Kopecka, H.; Harris, T. M. J . Am. Chem. SOC.1983, 105,6915. Harris,C. M.;Harris,T. M. J.Am. Chem.Soc. 1982,104,4293. Sheldrick, G. M.; Jones, P. G.; Kennard, 0.;Williams, D. H.; Smith, G. A. Nature 1978,271,223. Williams, D. H.; Kalman, J. R. J . Am. Chem. SOC.1977,99,2768. Williamson, M. P.; Williams, D. H. J . Am. Chem.

nu

"

aglycone of Vancomycin 1

H

V

T

aglycone of Ristocetin

SOC.1981,103, 6580. (3) Williams, D. H.; Rajananda, V.; Williamson, M. P.; Bojeeen, G. Top. Antibiot. Chem. 1980,5,119. Barna, J. C. J.; Williams, D. H. Ann. Rev. Microbiol. 1984,38,339. Williams, D. H. Acc. Chem. Res. 1984,17, 364. (4) Nieto, M.; Perkins, H. R. Eiochem. J. 1971,123,789. (5) Williams, D. H.; Butcher, D. W. J . Am. Chem. SOC.1981,103,5697.

Williams, D. H.; Williamson, M. P.; Butcher, D. W.; Hammond, S. J. J . Am. Chem. SOC.1983, 105, 1332. Williamson, M. P.; Williams, D. H.; Hammond, S. J. Tetrahedron 1984,40,569. Williamson, M. P.; Williams, D. H. J. Chem. SOC., Perkin Trans. 1 1985,949. Harris, C. M.; Kannan, R.;Kopecka,H.;Harris,T.M.J.Am. Chem.Soc.1985,107,6652. Kannan, R.; Harris, C. H.; Harris, T. M.; Waltho, J. P.; Skelton, N. J.; Williams, D. H. J.Am. Chem.Soc. 1988,110,2946. Waltho, J. P.; Williams,D. H.; Stone, D. J. M.; Skelton, N. J. J . Am. Chem. SOC.1988, 110, 5638. Nagarajan, R.;Schabel, A. A. J . Chem. SOC.,Chem. Commun. 1988,1306. Mueller, L.; Heald, S. L.; Hempel, J. C.; Jeffs, P. W. J. Am. Chem. SOC. 1989,111,496. Smith, P. W.; Chang, G.; Still, W. C. J . Org. Chem. 1988, 53, 1587. Popieniek, P. H.; Pratt, R. F. J. Am. Chem. Soc. 1988, 110, 1285. (6) Pant, N.;Hamilton,A. D. J.Am. Chem. SOC.1988,110,2002. Mann, M. J.; Pant, N.; Hamilton, A. D. J . Chem. SOC.,Chem. Commun. 1986, 158.

modest conversions6*9(991 L:D (99.9% ee,HPLC): mp 257 "C dec (i-PrOH-EhO); +253" (c 0.1,CH30H); 1H NMR (CD30D, 400 MHz, ppm) 7.47 (bd, 1 H, NH), 7.35 (dd, 1 H, J = 2,8 Hz C17-or C20-H), 7.23 (t, 1 H, J = 8 Hz, C5-H), 7.10 (dd, 1 H, J = 2,8Hz, C17-or C20-H), 6.98 (dd, 1 H, J = 2,8Hz, C18-or C19-H), 6.96 (dd, 1 H, J = 2,7 Hz, C4-H), 6.82 (dd, 1 H, J = 2,8Hz, C18-or C19-H), 6.78 (bd, 1 H,

J. Org. Chem., Vol. 58, No,6, 1993 1433

J = 8 Hz, C6-H), 5.88 (8, 1 H, C21-H), 4.71 (d, 1 H, J = 16 Hz,

ArCHHNH), 4.31 (m, 1 H, CHCHS), 3.81 (d, 1 H, J = 16 Hz, ArCHHNH), 2.91 (m, 2 H, ArCHZ), 2.52 (m, 2 H, COCHz), 1.20 (d, 3 H, J = 7 Hz, CH3); 'H NMR (5% ds-DMSO-CDCl3, 400 MHz, ppm) 7.87 (br, 1 H, NH), 7.22 (m, 1 H, ArH), 7.16 (t, 1 H, J = 8 Hz, ArH), 7.04 (m, 1 H, ArH), 6.94 (m, 2 H, ArH), 6.74 (m, 1 H,ArH), 6.68 (d, 1 H, J = 8 Hz, ArH), 6.45 (bs, 1 H, NH), 5.81 (8, 1 H, C21-H),4.73 (dd, 1 H, J = 9,16 Hz, CHH), 4.29 (m, 1 H,CHCH3),3.70 (dd, 1 H, J = 4,16 Hz, CHH),2.91 (m, 2 H, CH2),2.55 (m, 1 H, CHH), 2.28 (m, 1 H, CHH), 1.18 (d, 3 H, J = 7 Hz, CH3);13CNMR (5% ds-DMS0-CDCl3, 100 MHz, ppm)

172.7,170.1,160.7,153.3,139.5,136.6,130.9,129.1,122.4,121.7, 118.8,114.8,lll.l,A8.0,41.3,38.7,31.1,19.5;IR(KBr) v,,3287, 2928, 2635, 1559, 1540, 1506, 1447, 1236, 1164, 1017 cm-I; FABHRMS (NBA-CsI),m/e 457.0539(Cl9HdzO3+ Cst requires 457.0528). Anal. Calcd for ClgH~N203: C, 70.35; H, 6.20; N, 8.60. Found: C, 70.35; H,6.21;N, 8.64.

Acknowledgment. This work was assisted through the financial support of the National Institutes of Health (CA 41101) and we thank Dr. Michael A. Patane for establishing the optical purity of 24. Supplementary Material Available: lH NMR of 15 and 20-22 (4 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.