Vapor Pressure and Its Temperature Dependence of 28 Organic

Dec 8, 2016 - ... 2,5-dimethyltetrahydrofuran, tetrahydropyran, 1,3-dioxolan, 1,4-dioxan), cyclic and open-chain secondary alcohols (cyclopentanol, cy...
3 downloads 14 Views 461KB Size
Article pubs.acs.org/jced

Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols Luciano Lepori, Enrico Matteoli,* and Paolo Gianni CNR-IPCF, Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, UOS di Pisa, Area della Ricerca, via G.Moruzzi 1, 56124 Pisa, Italy ABSTRACT: The vapor pressures p of 28 organic compounds were accurately measured by a static method in the temperatures range (273 to 323) K. These include cyclic amines (CH2)nNH with n = 2−7, N-methylpyrrolidine, N-methylpiperidine, morpholine, N-methylmorpholine, piperazine, N-methylpiperazine, N,N′-dimethylpiperazine), cyclic ethers (tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, tetrahydropyran, 1,3-dioxolan, 1,4-dioxan), cyclic and open-chain secondary alcohols (cyclopentanol, cyclohexanol, cycloheptanol, 2-butanol, 3-pentanol, 3-hexanol, 4-heptanol), as well as 2-methoxyethylamine and 3-methoxypropylamine. For six substances, no p data were already available in the literature at any temperature, and for another eight only one paper each was found. The parameters of the Antoine equation were determined to allow interpolation and extrapolation of the experimental results. The enthalpy of vaporization, ΔvapH, at 298.15 was obtained for each compound from the derivative dp/dT. For nine compounds, ΔvapH values had not been determined before. Either p and ΔvapH at 298.15 K for all substances considered were compared with available literature values. For p, the disagreement is less than 1% for 10 substances and (1 to 3) % for another 8 compounds; for ΔvapH, it is less than 1% with respect to 18 literature data, of which 10 are calorimetric. All these confirm the high precision of p measurements here reported. vaporization, ΔvapH, were not published by us anywhere. The values of the parameters of the Antoine equation1 used to correlate p with temperature were here recalculated using a modified least-squares procedure and expressing temperature in Kelvin instead of Celsius degrees and p values in hPa instead of mmHg. Consequently, some parameter values may be different from those originally published.2−6 The main compilations of p and ΔvapH1,7−9 show that previous p measurements for several of the above substances were carried out in a different T range, typically at higher temperatures, and often they were of lower precision than was attained in the present work. For six of the compounds here investigated, no data on the T-dependence of p can be found in the published literature and for each of eight substances only one paper reported results of p−T measurements. From the parameters of the Antoine equation, ΔvapH values at 298.15 K were evaluated for all examined substances and compared with results of other authors obtained by calorimetric methods or from the slope of p−T plots. For nine of the compounds here studied, no ΔvapH data at 298.15 K were found in the literature.

1. INTRODUCTION We have undertaken a research project on the thermodynamic properties of solvation (ΔG, ΔH, ΔS) of nonelectrolytes in different solvents. The purpose of this paper is to make available the vapor pressure, p, results for 28 organic compounds selected among the data collected during the project implementation. In fact, accurate vapor pressure data are necessary in the calculation of activity coefficients and Gibbs energy of solvation of the mixture components and consequently contribute to the progress in the study of molecular interactions in solution and of mixture modeling. In addition, accurate p data are fundamentally important in phase equilibrium calculations and other engineering applications such as distillation, extraction, absorption, mass action, reaction rates, and air pollution. The compounds considered in this study were cyclic amines ((CH2)nNH with n = 2−7, N-methylpyrrolidine, N-methylpiperidine, morpholine, N-methylmorpholine, piperazine, N-methylpiperazine, N,N′-dimethylpiperazine), cyclic ethers (tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, tetrahydropyran, 1,3-dioxolan, 1,4-dioxan), secondary alcohols both cyclic and open-chain (cyclopentanol, cyclohexanol, cycloheptanol, 2-butanol, 3-pentanol, 3-hexanol, 4-heptanol) as well as 2-methoxyethylamine and 3-methoxypropylamine. Actual experimental values of p at different temperatures in the range (273 to 320) K, though employed to obtain enthalpies of © XXXX American Chemical Society

Received: July 2, 2016 Accepted: November 15, 2016

A

DOI: 10.1021/acs.jced.6b00576 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

2. EXPERIMENTAL SECTION 2.1. Materials. All substances were commercial products of the best grade quality, except azetidine which was prepared following Wadsworth.10 They were fractionally distilled at atmospheric pressure, after refluxing over metallic sodium (amines and ethers) or over calcium hydride (alcohols) to remove traces of water. Piperazine(s) was purified by zone melting. In the case of 2,5-dimethyltetrahydrofuran, the mixture of cis + trans isomers was employed. The purity of each sample was tested by gas−liquid chromatography analysis, and detectable impurities were less than 0.5% mass fraction. The list of compounds here investigated, with indication of the source and purity, is given in Table 1. For the reader convenience, besides the chemical name of the compounds, their molecular formulas and CAS Registry numbers are also reported. 2.2. Apparatus and Procedure. Vapor pressure measurements were carried out with a static-type apparatus described in Cabani et al.2 Here is a description of the operating procedure. The p of the sample was compensated by dry air using a capacity differential manometer as null detector, which allowed a balance precision of 10−4 hPa. The equilibrium pressure of dry air, equal to the sample p, was measured by means of an oil or mercury manometer, using a cathetometer telescope capable of a 0.02 mm precision in the level readings of the manometric liquid in the two arms. This corresponds to a precision better than

0.002 hPa for readings in the oil manometer, which was the most often used. The thermostatic bath, in which the sample was placed, was controlled within ±0.01 K. Special care was exercised in expelling air from the liquid sample by repeatedly freezing and melting the sample under high vacuum. In this operation, removal of vapor allowed reducing impurities with higher p. This was particularly convenient for the least volatile substances like cyclohexanol, cycloheptanol, and 4-heptanol, for which up to 10 freezing−melting−vapor removal cycles were carried out until a constant p value was read. As test of the apparatus, (i) vapor pressures of pure water at temperatures around 298.15 K were obtained in agreement to within 0.01 hPa with literature;7 (ii) the ΔvapH value of pyridine, calculated from our p measurements at different temperatures, amounted to 40.26 kJ mol−1 at 298.15 K, in excellent accordance with the calorimetric value of 40.21 kJ mol−1.11

3. RESULTS AND DISCUSSION 3.1. Vapor Pressures. The measured values of p at different temperatures are collected in Table 2. For each substance, typically 10 p measurements were carried out at 5 K intervals in a temperature range of some tens of degrees around 298.15 K. In the case of cyclohexanol (mp 298.80 K) the range explored was (299 to 319) K. The p values of piperazine (mp 383 K) were obtained for the crystal in the range (279 to 321) K. To give an

Table 1. Source and Purity of Examined Chemicalsa chemical name

molecular formula

CAS registry number

source

initial mass fraction purity

final mass fraction purity

aziridine azetidine pyrrolidine piperidine hexamethylenimine heptamethylenimine N-methylpyrrolidine N-methylpiperidine morpholine N-methylmorpholine piperazine(s) N-methylpiperazine N,N′-dimethylpiperazine 2-methoxyethylamine 3-methoxypropylamine tetrahydrofuran 2-methyltetrahydrofuran 2,5-dimethyltetrahydrofuranb tetrahydropyran 1,3-dioxolan 1,4-dioxane 2-butanol 3-pentanol 3-hexanol 4-heptanol cyclopentanol cyclohexanolc cycloheptanol

C2H5N C3H7N C4H9N C5H11N C6H13N C7H15N C5H11N C6H13N C4H9NO C5H11NO C4H10N2 C5H12N2 C6H14N2 C3H9NO C4H11NO C4H8O C5H10O C6H12O C5H10O C3H6O2 C4H8O2 C4H10O C5H12O C6H14O C7H16O C5H10O C6H12O C7H14O

151-56-4 503-29-7 123-75-1 110-89-4 111-49-9 1121-92-2 120-94-5 62667-5 110-91-8 109-02-4 110-85-0 109-01-3 106-58-1 109-85-3 5332-73-0 109-99-9 96-47-9 1003-38-9 142-68-7 646-06-0 123-91-1 78-92-2 584-02-1 623-37-0 589-55-9 96-41-3 108-93-0 502-41-0

Schuchardt synthesis Schuchardt Schuchardt Schuchardt Schuchardt Schuchardt Schuchardt C. Erba Fluka Fluka Fluka Fluka Fluka Fluka C. Erba Aldrich Aldrich Aldrich Fluka C. Erba Aldrich Aldrich Aldrich Kodak Aldrich Aldrich Aldrich

0.98

0.995 0.995 0.998 0.998 0.997 0.995 0.998 0.998 0.997 0.995 0.999 0.995 0.995 0.995 0.995 0.998 0.998 0.995 0.997 0.997 0.998 0.997 0.995 0.995 0.995 0.995 0.995 0.995

0.99 0.99 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.995 0.99 0.98 0.99 0.99 0.995 0.99 0.98 0.97 0.99 0.99 0.99 0.97

All samples were purified by fractional distillation, and their final purity was determined by gas−liquid chromatography. Solid piperazine (mp 383 K, Fluka) was purified by zone melting. Removal of air and volatile impurities from samples under examination was carried out by repeated freezing and melting under vacuum just before the p measurement (see section 2.2). bMixture of cis and trans isomers; their content was not declared by the factory. cMelting point of 298.8 ± 0.1 K, determined during p measurement while slow cooling of samples was under way. a

B

DOI: 10.1021/acs.jced.6b00576 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. Experimental Values of Vapor Pressure p at Various Temperatures Ta T

p

T

p

T

p

T

p

T

p

K

hPa

K

hPa

K

hPa

K

hPa

K

hPa

284.42 287.12

146.81 168.83

288.29 289.96

179.40 195.19

293.28 295.50

229.87 255.67

298.10 303.28

288.22 364.72

280.44 282.64

96.88 108.93

288.04 288.04

141.77 142.20

293.56 298.08

188.83 233.60

303.53

297.25

288.23 293.10

49.78 64.96

293.25 298.15

65.23 84.60

303.25 307.93

108.70 135.88

313.46

175.40

293.55 293.59 297.05

31.27 31.35 37.92

300.97 302.66

46.78 50.64

305.98 306.01

60.11 60.54

312.85 318.34

83.37 107.31

283.74 289.07 293.28

4.35 6.19 8.07

298.24 302.35

10.92 14.07

307.85 313.17

19.04 25.34

313.17 313.17

25.38 25.15

284.11 287.87

1.62 2.11

293.35 297.82

3.02 4.04

302.95 308.09

5.59 7.51

313.50

10.14

293.36 295.08

108.20 117.98

298.19 300.74

134.68 152.88

302.94 307.88

167.95 208.01

311.12 314.75

236.94 274.61

287.85 292.70

28.97 37.54

293.51 298.15

39.16 49.57

300.35 302.86

54.91 61.63

308.47 313.47

79.52 98.63

288.37 292.61

7.18 9.44

297.58 298.21

12.85 13.32

302.56 307.58

17.25 22.93

312.01 318.26

29.23 40.68

290.13 290.15 290.20 290.90

19.31 19.34 19.35 20.15

291.20 296.45 298.26 298.83

20.51 27.44 30.21 31.21

298.91 302.04 307.40 312.46

31.21 36.91 48.32 62.01

312.48 318.64 318.64

61.85 82.60 82.08

Aziridine 274.52 85.47 281.70 127.86 Azetidine 273.18 65.09 277.55 82.17 Pyrrolidine 273.16 20.37 283.73 38.59 Piperidine 283.64 17.49 288.07 22.92 293.12 30.61 Hexamethylenimine 273.13 2.05 279.54 3.26 283.73 4.33 Heptamethylenimine 273.22 0.74 279.40 1.17 N-Methylpyrrolidine 273.17 38.98 283.23 66.05 288.56 86.19 N-Methylpiperidine 273.18 12.35 282.90 22.27 Morpholine 273.27 2.50 278.81 3.74 283.89 5.33 N-Methylmorpholine 276.28 8.34 280.80 11.10 286.43 15.56 290.03 19.10 Piperazine(s) 279.48 0.065 286.78 0.144 286.85 0.148 N-Methylpiperazine 274.39 1.80 274.99 1.89 276.72 2.15 278.91 2.53 N,N′-Dimethylpiperazine 276.29 4.21 281.23 5.82 286.01 7.86 2-Methoxyethylamine 275.16 18.09 280.47 25.12 286.36 35.50 3-Methoxypropylamine 278.95 5.50 282.42 6.99 287.91 10.08 Tetrahydrofuran 273.60 65.88

292.58 299.16

0.267 0.515

304.27 308.37

0.837 1.225

313.57 318.25

1.96 2.97

318.69 321.12

3.07 3.74

281.27 284.39 287.23 290.75

3.00 3.74 4.56 5.78

293.21 298.15 298.20 299.32

6.78 9.27 9.31 9.97

302.86 304.25 307.75 307.83

12.38 13.38 16.49 16.53

313.21 315.32 317.91 319.47

22.29 25.04 28.79 31.24

292.03 293.52 298.16

11.30 12.33 15.99

300.21 302.54 303.82

17.92 20.23 21.81

304.32 308.08 310.37

22.38 27.04 30.62

313.79 319.53

35.98 47.54

290.46 294.84

44.78 56.78

298.14 298.64

67.55 69.39

302.99 307.98

86.65 110.58

312.65 317.60

137.69 172.51

292.94 295.29 297.33

13.92 16.07 18.18

300.81 298.17 298.13

22.32 19.09 19.07

304.54 307.79

27.66 33.14

314.16 317.57

46.62 55.60

285.02

118.15

289.75

148.92

297.57

212.74

307.83

328.82

C

DOI: 10.1021/acs.jced.6b00576 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued T

p

K

hPa

278.30 83.84 2-Methyltetrahydrofuran 279.00 49.28 279.01 49.28 281.41 56.02 2,5-Dimethyltetrahydrofuran 278.48 30.86 283.05 38.93 Tetrahydropyran 273.74 26.97 278.41 34.89 1,3-Dioxolan 280.46 54.22 282.96 62.01 285.51 71.42 1,4-Dioxane 285.11 23.76 288.66 29.17 292.45 35.97 2-Butanol 280.73 6.62 281.05 6.75 284.48 8.78 3-Pentanol 279.05 2.34 282.62 3.15 3-Hexanol 280.21 0.808 280.41 0.856 283.54 1.104 284.32 1.176 4-Heptanol 282.43 0.309 282.95 0.311 283.15 0.325 288.83 0.555 Cyclopentanol 279.84 0.631 281.97 0.765 284.15 0.928 Cyclohexanol 298.84 1.020 299.15 1.040 300.17 1.139 Cycloheptanol 284.35 0.071 284.67 0.075 288.22 0.107 292.50 0.165 a

T

p

T

p

T

p

T

p

K

hPa

K

hPa

K

hPa

K

hPa

286.97

130.20

292.65

169.95

302.75

266.71

281.44 284.34 287.83

56.31 65.68 78.28

287.84 291.17 295.94

78.51 92.55 116.49

298.94 302.62

133.70 157.62

306.05 310.11

182.80 216.88

288.18 290.08

51.40 56.55

293.18 295.51

66.37 73.79

299.31 302.78

88.68 103.90

307.58 310.70

129.94 149.49

284.90 291.32

49.80 68.97

296.98 301.11

89.93 109.65

305.40 309.21

131.50 156.89

313.73

189.28

287.44 293.48 298.12

79.14 107.76 135.89

301.25 303.00

156.93 170.48

305.57 309.76

191.47 230.76

313.16 316.81

267.26 311.77

296.56 296.57 299.81

44.96 44.95 53.39

302.92 306.93

62.08 75.80

306.94 311.04

75.72 91.92

313.38 313.38

102.85 103.14

287.91 292.16 292.26

11.36 15.42 15.52

294.45 298.09 301.02

18.12 23.47 28.47

303.90 308.15

34.12 44.67

311.60 314.41

55.15 65.51

287.46 293.45

4.67 7.39

293.92 298.17

7.68 10.41

302.31 307.87

14.00 20.49

312.86 318.42

28.31 40.11

288.55 293.36 293.48 297.37

1.71 2.52 2.56 3.47

298.18 299.62 303.49

3.69 4.10 5.51

306.58 307.60 310.61

6.87 7.47 9.17

311.78 313.79 316.48

9.97 11.40 13.64

291.38 292.57 293.13 295.02

0.704 0.799 0.829 0.976

297.63 297.95 298.17 302.40

1.21 1.26 1.28 1.80

302.65 302.91 303.51 307.75

1.80 1.92 1.97 2.79

307.77 313.62 320.38 320.38

2.80 4.32 6.91 7.01

289.03 289.76 293.47

1.393 1.491 1.996

294.55 298.19 298.87

2.18 2.89 3.06

304.53 306.93

4.66 5.54

311.04 314.30

7.36 9.27

301.52 302.18 303.47

1.265 1.349 1.496

306.57 309.45

1.90 2.36

312.80 316.62

3.04 4.00

316.79 319.51

4.06 4.92

293.72 293.73 293.86 298.23

0.187 0.189 0.191 0.287

298.28 298.44 303.37

0.283 0.293 0.447

307.00 308.15 310.11

0.609 0.672 0.785

315.14 319.51 320.88

1.18 1.63 1.79

Standard uncertainties u are u(T) = 0.01 K and ur(p) = 0.005.

of p and dp/dT, the average error of p at 298.15 K is estimated as ±0.06% for a 0.01 K error. The overall uncertainty of p, u(p), caused by both T and manometer readings uncertainties as well as by impurities and incomplete degassing of liquid samples, covered the interval (0.01 to 1) hPa for the examined compounds in the whole T range explored. The overall relative uncertainty on p, ur(p), amounts to (0.1 to 0.8) % (see σ(p) and σr(p) values in Table 3).

idea of the quality of the experimental data and of the least-squares treatment, in Figure 1 is shown the plot of log10p versus T for the series of cyclic amines (CH2)nNH (n = 2−7). The uncertainty of our p data partially comes from the uncertainty in manometer readings (±0.02 hPa with mercury and ±0.002 hPa with oil manometer), but it is mostly determined by temperature control since the temperature dependence of p is directly proportional to the p value itself. By examining the values D

DOI: 10.1021/acs.jced.6b00576 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

piperazine, 2,5-dimethyltetrahydrofuran, 3-pentanol, cyclopentanol, p values have been reported in only one paper. 3.2. Comparison with Literature Values. Many literature values of p298 reported in footnotes of Table 3 were estimated by extrapolation from the original p measurements at higher temperatures. Since p strongly depends on temperature (see preceding section), extrapolation beyond the explored T range may easily affect the obtained value of a large uncertainty. For this reason, we chose to compare our p298 values with those obtained from measurements in a T range around or near 298.15 K. Only for 2,5-dimethyltetrahydrofuran and cyclopentanol were the literature values in the table extrapolated from far away temperatures, being the unique available. For 10 of the examined compounds (azetidine, pyrrolidine, piperidine, N-methylpyrrolidine, morpholine, tetrahydrofuran, 2,5-dimethyltetrahydrofuran, 1,4-dioxane, 2-butanol, cyclohexanol) our p298 values, calculated using the Antoine equation and the parameters listed in Table 3, agree very well with other authors values, see last column of Table 3 (maximum deviation 1%) and Figure 1 for comparison. The p differences are higher for eight subtances (aziridine, N-methylmorpholine, N,N′-dimethylpiperazine, tetrahydropyran, 1,3-dioxolane, 3-hexanol, 4-heptanol, cyclopentanol) falling in the range (1 to 3)%, whereas still larger deviations are found for N-methylpiperidine (5%), piperazine (28%), 2-methyltetrahydrofuran (5%), and 3-pentanol (6%). Values of p at various T for aziridine, azetidine, pyrrolidine, and piperidine can be found in Burg and Good,13 whose work was ignored in the compilations1,7−9 probably because the authors did not specify the instrumentation used nor gave the precision of their measurements. With the exception of aziridine (deviation 2%), the p298 values of the other three cyclic amines are in excellent agreement (deviation < 0.7%) with measurements of the present work (see Table 3 and Figure 1). p−T relationships have been determined by Verevkin17,20,26,53,55,60 for N-methylpyrrolidine, morpholine, Nmethylmorpholine, piperazine(s), N,N′-dimethylpiperazine, 4heptanol, and cyclohexanol, using a transpiration method (flow system). Most of his p results differ significantly (9 to 52%) from our p298 values (and from other literature data) listed in Table 3, probably owing to the low accuracy of the technique employed. Several studies on p of morpholine, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 2-butanol, and cyclohexanol have been reported in the literature. In most cases disagreement was found among data reported by different authors. The values of p298 obtained from these studies are listed in the footnotes of Table 3. Our data sometimes deviate markedly from the results of other authors. This often happens, especially for cyclohexanol, when p298 is obtained by extrapolation from a range of temperatures higher than 298.15 K. Compare for instance the p298 value of literature with our data for 1,4-dioxane (51.6 hPa,39 (329 to 371) K, deviation 8%), 2-butanol (19.8 hPa,42 (314 to 371) K, deviation 15%), and cyclohexanol (0.71 hPa,59 (360 to 431) K, deviation 26%). In The Yaws Handbook of Vapor Pressure,71 a tabulation is made of the Antoine parameters of 25000 chemical compounds. Literature references for single substances are not given and most coefficients are simply estimates or rough approximations. For the compounds here examined, the value of p298 calculated from the coefficients listed in the Yaws compendium usually differs markedly from our data, deviations being in the range (3 to 30) %. In the footnotes of Table 3 we reported the Yaws’ values of

Figure 1. Plot of log10(p) vs T for cyclic secondary amines, (CH2)nNH, n = 2 to 7. From top to bottom: n = 2, 3, 4, 5, 6, 7. (○), this work; (△), Burg and Good;13 (◇), Hildenbrand et al.;15 (□), Belaribi et al.18 (), this work, best fitting curves (eq 1, Table 3); (- - -), Osborn and Douslin.14

The temperature dependence of p was described by the Antoine equation1 log10(p /hPa) = A − B /(T /K + C)

(1)

where p is expressed in hPa, T in Kelvin, and A, B, and C are adjustable parameters characteristic of the substance in the given temperature range. As alternative functions we also checked the Clausius−Clapeyron equation1 with two parameters and the three parameter Kirchhoff equation.12 This latter gave substantially the same fitting as eq 1, while the former was not capable of accurately representing the p−T behavior of substances, since the dependence of log p on 1/T for very precise data does not match a linear trend in the temperature ranges here explored. The coefficients A, B, and C of the Antoine equation were obtained by a nonlinear least-squares procedure using the following objective function (OF) OF = Σn[log10pcalc − log10pexp ]2

(2)

where the sum of residuals is extended over all n experimental points. Table 3 collects the A, B, and C parameters of eq 1 within the explored T range, the standard deviation of p, σ(p), the relative standard deviation of p, σr(p), and the calculated p value at 298.15 K, p298, for each compound. We chose to report p298 values because 298.15 K is the middle of the investigated T ranges, and because they are used in the calculation of ΔvapH at 298.15 K. In the last column of the table we reported for comparison the p298 value of literature, when available, obtained from p−T measurements in a T-range similar to ours. When more values were available, we chose to report the closest to ours. In the table footnotes exhaustive quotations of other authors’ p298 values are given together with the relevant T range. No study of p can be found in the literature for hexamethylenimine, heptamethylenimine, 1-methylpiperazine, 2-methoxyethylamine, 3-methoxypropylamine, cycloheptanol, while for each of aziridine, azetidine, N-methylpyrrolidine, N-methylpiperidine, E

DOI: 10.1021/acs.jced.6b00576 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Temperature Range, Parameters of the Antoine Equation (eq 1), Standard Deviation of Vapor Pressure p, σ(p), Relative Standard Deviation of p, σr(p), Present Work and Literature Values of p at 298.15K, p298 p298/hPa chemical

temp range/K

A

B/K

C/K

σ(p)a/hPa

100 σr(p)b

this work

lit.

aziridine azetidine pyrrolidine piperidine hexamethylenimine heptamethylenimine N-methylpyrrolidine N-methylpiperidine morpholine N-methylmorpholine piperazine(s) N-methylpiperazine N,N′-dimethylpiperazine 2-Methoxyethylamine 3-methoxypropylamine tetrahydrofuran 2-methyltetrahydrofuran 2,5-dimethyltetrahydrofuran tetrahydropyran 1,3-dioxolan 1,4-dioxane 2-butanol 3-pentanol 3-hexanol 4-heptanol cyclopentanol cyclohexanol cycloheptanol

274 to 303 273 to 303 273 to 313 283 to 318 273 to 313 273 to 313 273 to 315 273 to 313 273 to 318 276 to 318 279 to 321 274 to 319 276 to 319 275 to 317 279 to 317 273 to 308 279 to 310 278 to 311 273 to 314 280 to 317 285 to 313 280 to 314 279 to 318 280 to 316 282 to 320 280 to 314 299 to 319 284 to 321

7.1222 8.1942 7.1742 6.3679 7.2981 8.1198 7.5423 5.9601 7.4709 7.1647 11.9160 7.3455 6.9200 7.3515 7.3722 7.2522 6.5013 8.2447 6.9945 7.1070 6.9955 8.4714 8.5493 8.3799 7.7394 8.5727 7.3480 6.3520

1080.6 1672.6 1246.3 980.27 1509.8 2074.6 1486.5 862.59 1539.9 1395.1 3513.6 1509.5 1355.9 1350.6 1434.1 1257.6 967.85 1925.8 1240.6 1185.5 1245.4 1720.9 1813.2 1822.1 1586.6 1974.6 1478.5 1194.5

−66.31 −11.07 −60.67 −92.35 −57.02 −21.74 −23.42 −95.98 −55.56 −52.85 −11.28 −61.48 −60.93 −53.55 −62.73 −42.20 −77.74 6.52 −50.77 −59.84 −63.49 −55.85 −57.38 −64.97 −90.31 −54.72 −85.40 −125.04

0.29 1.08 0.14 0.17 0.08 0.04 0.63 0.12 0.02 0.11 0.01 0.02 0.08 0.05 0.01 0.39 0.10 0.30 0.54 0.21 0.19 0.09 0.02 0.02 0.02 0.01 0.01 0.01

0.19 0.65 0.17 0.30 0.49 0.67 0.40 0.35 0.09 0.21 0.65 0.16 0.28 0.06 0.06 0.28 0.13 0.50 0.49 0.17 0.24 0.37 0.26 0.83 1.27 0.33 0.46 0.88

289.1 233.2 84.35 40.24 10.88 4.11 135.4 49.36 13.28 30.04 0.47 9.28 16.0 67.63 19.09 218.1 128.9 83.9 95.4 135.6 48.8 23.4 10.43 3.68 1.28 2.89 0.96 0.28

282.9c 234.0d 84.4e 39.9f

134.7g 52.1h 13.2i 30.4j 0.34k 16.2l

218.3m 135.2n 84.5o 93.8p 133.8q 49.2r 23.2s 11.0t 3.78u 1.32v 2.83w 0.97x

σ(p) = [Σ(pobs − pcalc)2/(n − 3)]1/2. bσr(p) = {Σ[(pobs − pcalc)/pobs]2/(n − 3)}1/2. cBurg and Good13 (222 to 320) K; 298.4, Yaws71 (245 to 350) K. Burg and Good13 (222 to 292) K. eBurg and Good13 (258 to 310) K; 84.1, Osborne and Douslin14 (316 to 394) K, the same p data as in McCullough et al.,72 selected by Boublik et al.;1 83.5, Hildenbrand et al.15 (294 to 360) K. fBurg and Good13 (288 to 335) K, 40.3, Osborne and Douslin14 (315 to 417) K, selected by Boublik et al.;1 40.4, Belaribi et al.16 (298 to 343) K. gYaws71 (254 to 378) K; 65.0, Verevkin17 (270 to 298) K. h Belaribi et al.18 (298 to 343) K; 44.0, Yaws71 (276 to 406) K. iLee et al.19 (308 to 393) K; 12.1, Verevkin20 (273 to 303) K; 13.5, Belaribi et al.16 (298 to 351) K; 13.2, Wu et al.21 (346 to 401) K; 12.8, Pettenati et al.22 (309 to 391 K); 13.2, Palczewska-Tulinska et al.23 (318 to 402) K. jRazzouk et al.24 (273 to 353) K; 26.7, Verevkin20 (273 to 303) K. kVerevkin20 (288 to 333) K, p of the solid (m.p. = 383 K); 4.3, Steele et al.,90 p of the liquid extrapolated from (417 to 460) K; 4.1, Yaws71 (316 to 444) K. lDahmani et al.25 (273 to 363) K; 15.5, Efimova et al.26 (270 to 311) K; 12.5, Verevkin20 (288 to 333) K. mMoiseev and Antonova27 (224 to 360) K; 215.0, Safarov et al.28 (276 to 323) K; 215.5, Loras et al.29 (290 to 339) K; 216.1, Koizumi and Ouchi30 (273 to 308) K; 216.2, Scott31 (296 to 373) K, selected by Boublik et al.;1 221.6, Bissel and Finger32 (293 to 341) K; 226.8, Cass et al.33 (293 to 333) K. nMoiseev and Antonova27 (215 to 360) K; 128.4, Rodriguez et al.34 (337 to 374) K, Antoine parameters taken from TRC tables;92. oRodriguez et al.34 (348 to 391) K, Antoine parameters taken from TRC tables;92 70.6,Yaws71 (268 to 390) K. pBelaribi et al.16 (298 to 343) K; 98.3, Cass et al.,33 (273 to 288) K; 89.4, Rodriguez et al.34 (286 to 361) K. qWu and Sandler,35 (303 to 348) K; 143.7, NIST,7 (281 to 355) K; 130.8, Fletcher et al.;36 145.9, Francesconi et al.37 (306 to 346) K. rHovorka et al.38 (283 to 353) K; 49.9, Crenshaw et al.40 (293 to 378) K, selected by Boublik et al.;1 51.6, Castellari et al.39 (329 to 371) K; 47.7, Belaribi et al.16 (298 to 343) K; 48.2, Bacarella et al.91 (298 to 308) K. s Garriga et al.41 (278 to 323) K; 23.5, Martinez et al.43 (319 to 379) K; 19.8, Gierycz et al.42 (314 to 371) K; 24.2, Nasirzadeh et al.44 (298 to 363) K; 23.9, Dejoz et al.45 (306 to 373) K; 20.1, Di Cave et al.46 (315 to 372) K; 24.4, Wilhoit and Zwolinski51 (293 to 383) K; 22.9, Brown et al.47 (323 to 373) K; 21.9, Ambrose and Townsend48 (314 to 418) K; 21.9, Biddiscombe et al.49 (345 to 380) K, selected by Boublik et al.;1 21.6, Berman and McKetta50 (340 to 378) K. tWilhoit and Zwolinski51 (294 to 389) K; 11.8, Yaws71 (300 to 410) K. uN’Guimbi et al.52 (244 to 318) K; 3.78, Kulikov et al.53 (278 to 311) K; 6.8, Wilhoit and Zwolinski51 (298 to 411) K; 9.6, Hovorka et al.54 (298 to 408) K. vWilhoit and Zwolinski51 (298 to 411) K; 1.33, Verevkin and Schick55 (275 to 311) K. wAmbrose and Ghiassee56 (346 to 437) K; 2.98, Yaws71 (320 to 434) K. xNitta and Seki57 (299 to 333) K; 0.71, Steyer and Sundmacher58 (322 to 433) K; 0.71, Swiatek and Malanowski59 (360 to 431) K; 1.06, Verevkin60 (288 to 328) K; 0.91, Steele et al.61 (341 to 458) K; 0.76, Burguet et al.62 (343 to 433) K; 0.87, Ambrose and Ghiassee56 (350 to 456) K; 0.70, Gierycz et al.63 (387 to 421) K; 2.1, Castellari et al.64 (322 to 432) K; 1.06, Sipowska and Wieczorek65 (303 to 373) K; 0.80, Goodwin and Newsham66 (318 to 433) K; 1.07, Smith and Thorp67 (298 to 318) K; 0.38, Novak et al.68 (367 to 433) K, selected by Boublik et al.;1 1.8, Stull69 (317 to 434) K; 1.3, Gardner and Brewer70 (307 to 422) K, Antoine constants in ref 12. a

d

p298 for only the seven chemicals (aziridine, N-methylpyrrolidine, N-methylpiperidine, piperazine, 2,5-dimethyltetrahydrofuran, 3-pentanol, cyclopentanol) for which only one literature p value was available. The Antoine constants for azetidine are not reported by Yaws.71

3.3. Enthalpies of Vaporization. The enthalpies of vaporization, ΔvapH, at a given temperature T were calculated from the Clapeyron equation11 in the form Δ vapH = T (RT /p + B22 − VS)dp /dT F

(3)

DOI: 10.1021/acs.jced.6b00576 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. Virial Coefficient of Gases, B22, Molar Volume of Liquids,Vl, Derivative of Pressure with Respect to Temperature dp/dT (eq 4), Calculated Enthalpy of Vaporization, ΔvapH, (eq 3) with Uncertainty, and Literature Values at 298.15 K compound

−B22a 3

aziridine azetidine pyrrolidine piperidine hexamethylenimine heptamethylenimine N-methylpyrrolidine N-Methylpiperidine morpholine N-methylmorpholine piperazine(s) N-methylpiperazine N,N′-dimethylpiperazine 2-methoxyethylamine 3-methoxypropylamine tetrahydrofuran 2-methyltetrahydrofuran 2,5-dimethyltetrahydrofuran tetrahydropyran 1,3-dioxolan 1,4-dioxane 2-butanol 3-pentanol 3-hexanol 4-heptanol cyclopentanol cyclohexanol cycloheptanol

Vlb −1

dp/dT (298.15 K) −1

3

dm mol

cm mol

1.0 1.2 1.6d 1.9d 2.7 3.9 1.8 2.7 2.5 2.7 2.0 2.5 3.0 1.9 2.5 1.20d 1.4e 1.7e 1.7 1.4 1.84d 2.23d 3.2 4.4 6.0 3.4 4.6 6.2

52.1 68.2 83.3 99.39 113.1 126.8 104.5 121.6 87.5f 112.2f 68.37g 110.9f 133.2f 88.0f 102.5f 81.72 101.40 120.5 98.20 70.32 85.75 92.38 108.00 125.47 142.60 91.34 105.95 120.26

hPa K

−1

13.385 10.898 4.2923 2.1443 0.65060 0.25721 6.1386 2.3986 0.80009 1.6035 0.045768 0.57571 0.88749 3.5153 1.1374 9.6403 5.9130 4.0096 4.4524 6.5186 2.5417 1.5792 0.75152 0.28412 0.10784 0.22180 0.080749 0.025973

ΔvapH (298.15 K)/kJ mol−1 this work 33.78 ± 0.05 34.12 ± 0.20 37.38 ± 0.04 39.25 ± 0.04 44.12 ± 0.05 46.17 ± 0.10 33.16 ± 0.05 35.70 ± 0.05 44.45 ± 0.10 39.31 ± 0.15 72.63h ± 1.3 45.80 ± 0.10 40.91 ± 0.20 38.19 ± 0.05 43.93 ± 0.05 32.29 ± 0.07 33.63 ± 0.05 35.08 ± 0.15 34.25 ± 0.07 35.23 ± 0.05 38.33 ± 0.05 49.76 ± 0.15 53.14 ± 0.15 56.97 ± 0.21 62.5 ± 0.6 56.7 ± 0.3 62.0 ± 0.9 67.8 ± 0.7

litc

37.45i 39.23j

34.15k 36.80l 44.97m 39.62n 72.1h,o 41.2p

32.00q 33.7r 34.58s 35.6t 38.30u 49.74v 52.93w 58.6x 62.4y 57.49z 62.01aa

a

Estimated by the authors with a procedure reported in ref 85, unless otherwise indicated. bFrom Cabani et al.,86,87 unless otherwise indicated. Values in italics were determined by calorimetry. dFrom Dymond et al.88 eEstimated value from Cabani et al.3 fEvaluated from liquid density in Lide.89 gSolid molar volume from Steele et al.90 hSublimation enthalpy. iMcCullough et al.72 calorimetric, selected by Majer and Svoboda;11 37.61, Hildebrand et al.15 calorimetric. jHossenlopp and Archer73 calorimetric; 39.79, Berthon et al.75 from p. kVerevkin17 from p. lRibeiro da Silva et al.74 calorimetric; 36.72, Berthon et al.75 from p. mVerevkin20 from p; 45.3, Rojas-Aguilar et al.76 by DSC. nVerevkin20 from p; 39.8, Razzouk et al.24 from p; 38.3, Rojas-Aguilar et al.76 by DSC. oVerevkin20 from p of the solid; 50.1, Steele et al.,90 vaporization enthalpy calculated with extrapolated p of the liquid. pEfimova et al.26 from p; 43.8, Verevkin20 from p. qHossenlopp and Scott77 calorimetric, selected by Majer and Svoboda;11 32.86, Moiseev and Antonova27 from p; 31.8, Cass et al.33 from p, mean value in the range (283 to 333) K. rMoiseev and Antonova27 from p; 34.0, Acree and Chickos8 from p. sMajer and Svoboda11 calorimetric; 32.7, Rojas-Aguilar et al.76 by DSC; 34.9, Cass et al.33 from p, mean value in the range (273 to 288) K. tFletcher et al.36 from p; 34.1 (296 K) Acree and Chickos8 from p. uMajer and Svoboda11 calorimetric; 38.64, Bystrom and Mansson78 calorimetric; 38.58, Bacarella et al.91 from p, mean value in the range (298 to 308) K. vPolak and Benson79 calorimetric; 49.66, Wadsö80 calorimetric; 48.49, McCurdy and Laidler81 calorimetric; 50.4, Berman and McKetta82 calorimetric; 49.8, Wilhoit and Zwolinski51 from p, (298 to 393) K. w McCurdy and Laidler81 calorimetric, selected by Majer and Svoboda;11 53.2, Acree and Chickos8 from p; 53.0, Wilhoit and Zwolinski51 from p, (294 to 389) K. xKulikov et al.53 from p. yVerevkin and Schick55 from p. zWadsö80 calorimetric, selected by Majer and Svoboda;11 57.0, Chickos et al.83 from G.C. aaWadsö80 calorimetric, selected by Majer and Svoboda;11 62.0, Costa et al.84 calorimetric; 61.3 Chickos et al.83 from G.C.; 61.8, Verevkin60 from p; 63.48, Steele et al.61 from p. c

where B22 is the second virial coefficient of pure gas, VS is the molar volume of pure liquid, and dp/dT is the derivative (at T) of vapor pressure with temperature computed from the parameters of the Antoine equation according to eq 4: dp /dT = 2.3026Bp /(T + C)2

value referring to the most volatile substances. The liquid phase volumes, VS , which in eq 3 are almost negligible, were taken from our laboratory or evaluated from densities in the literature. The uncertainty on ΔvapH, estimated from the uncertainty in the Antoine constants as well as in the virial coefficients, is also given in Table 4 and was usually (0.05 to 0.6) kJ mol−1. ΔvapH values from other authors, obtained either by calorimetry or from p measurements, are also given in Table 4 for comparison purposes. The most reliable ΔvapH values, directly measured with calorimeters when available, are reported in the last column (10 compounds). ΔvapH values calculated from p data are also given in the same column for nine substances. When more ΔvapH values were available, the closest to ours was chosen. Other literature ΔvapH values are quoted in the footnotes.

(4)

ΔvapH values at 298.15 K, obtained through eq 3, are given in Table 4 together with B22, VS , and dp/dT values relevant in the calculation. For piperazine, which is a solid at 298.15 K, the reported value is the enthalpy of sublimation. The virial coefficients were taken from Dymond et al.88 or estimated by us with an uncertainty up to 1 dm3 mol−1 for the least volatile compounds. The nonideality of the vapor phase, as measured by B22 in eq 3 affects ΔvapH by (0.02 to 0.5) kJ mol−1, the largest G

DOI: 10.1021/acs.jced.6b00576 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

It is seen that the ΔvapH values obtained in the present study are in good agreement with calorimetric ΔvapH, the difference being in most cases lower than 1%. The same holds for literature ΔvapH obtained from p. It is worth noting the excellent agreement (within 0.3 kJ mol−1) of our results with calorimetric ΔvapH data for pyrrolidine, piperidine, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, 2-butanol, and cyclohexanol. This indicates that our p and dp/dT values are very accurate and that in the p range of the present measurements the reliability of ΔvapH approaches that of calorimetric ΔvapH data. No comparison with other authors can be done for nine of the examined compounds (aziridine, azetidine, hexamethylenimine, heptamethylenimine, N-methylpiperazine, 2-methoxyethylamine, 3-methoxypropylamine, 2,5-dimethyltetrahydrofuran, cycloheptanol) due to lack of ΔvapH results.



(13) Burg, A. B.; Good, C. D. Nitrogen Bond Strain Effects in the Chemistry of Ring-Amino Boron Hydrides. J. Inorg. Nucl. Chem. 1956, 2, 237−245. (14) Osborn, A. G.; Douslin, D. R. Vapor Pressure relations of 13 Nitrogen Compounds Related to Petroleum. J. Chem. Eng. Data 1968, 13, 534−537. (15) Hildenbrand, D. L.; Sinke, G. C.; McDonald, R. A.; Kramer, W. R.; Stull, D. R. Thermodynamic and Spectroscopic Study of Pyrrolidine. I. Thermodynamic Properties in the Solid, Liquid, and Vapor States. J. Chem. Phys. 1959, 31, 650−654. (16) Belaribi, F. B.; Belaribi-Boukais, G.; Ait-Kaci, A.; Jose, J. Equilibres Liquide-Vapeur Isothermes de Melanges Binares Formes de Composes Heterocycliques Tels Que: Morpholine, Tetrahydropyranne, Piperidine et 1,4-Dioxane. J. Therm. Anal. 1995, 44, 911−927. (17) Verevkin, S. P. Thermochemistry of Amines: Experimental Standard Molar Enthalpies of Formation of N-Alkylated Piperidines. Struct. Chem. 1998, 9, 113−119. (18) Belaribi, F. B.; Ait-Kaci, A.; Jose, J. Equilibres Liquide-Vapeur Isothermes de Melanges Binares de la Piperidine et de la N-Methyl Piperidine avec Certains Ethers. J. Therm. Anal. 1996, 44, 245−261. (19) Lee, M. J.; Su, C.-C.; Lin, H. Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K. J. Chem. Eng. Data 2005, 50, 1535−1538. (20) Verevkin, S. P. Thermochemistry of amines: strain in sixmembered rings from experimental standard molar enthalpies of formation of morpholines and piperazines. J. Chem. Thermodyn. 1998, 30, 1069−1079. (21) Wu, H. S.; Locke, W. E., III; Sandler, S. I. Isothermal Vapor-Liquid Equilibrium of Binary Mixtures Containing Morpholine. J. Chem. Eng. Data 1991, 36, 127−130. (22) Pettenati, C.; Alessi, P.; Fermeglia, M.; Kikic, I. Vapor Liquid Equilibrium Data for Systems Containing Morpholine. Fluid Phase Equilib. 1990, 54, 81−91. (23) Palczewska-Tulinska, M.; Cholinski, J.; Szafranski, A.; Wyrzykowska-Stankiewicz, D. Maximum-Likelihood Evaluation of Antoine Equation Constants for Vapor Pressures of Morpholine, nHeptane, Cyclohexane and Methylcyclohexane. Fluid Phase Equilib. 1983, 11, 233−243. (24) Razzouk, A.; Hajjaji, A.; Mokbel, I.; Mougin, P.; Jose, J. Experimental vapor pressures of 1,2-bis(dimethylamino)ethane, 1methylmorpholine, 1,2-bis(2-aminoethoxy)ethane and N-benzylethanolamine between 273.18 and 364.97 K. Fluid Phase Equilib. 2009, 282, 11−13. (25) Dahmani, A.; Ait Kaci, A.; Jose, J. Vapour pressures and excess functions of 1,4-dimethylpiperazine + n-heptane, or cyclohexane measurement and prediction. Fluid Phase Equilib. 1997, 134, 255−265. (26) Efimova, A. A.; Emel’yanenko, V. N.; Verevkin, S. P.; Chernyak, Y. Vapour pressure and enthalpy of vaporization of aliphatic poly-amines. J. Chem. Thermodyn. 2010, 42, 330−336. (27) Moiseev, V. D.; Antonova, N. D. Vapour Pressures and Heats of Evaporation of Certain Furan Derivatives. Russ. J. Phys. Chem. 1970, 44, 1659−1660. (28) Safarov, J.; Geppert-Rybczyńska, M.; Hassel, E.; Heintz, A. Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran. J. Chem. Thermodyn. 2012, 47, 56−61. (29) Loras, S.; Aucejo, A.; Monton, J. B.; Wisniak, J.; Segura, H. Polyazeotropic Behavior in the Binary System 1,1,1,2,3,4,4,5,5,5Decafluoropentane + Oxolane. J. Chem. Eng. Data 2001, 46, 1351− 1356. (30) Koizumi, E.; Ouchi, S. Vapor Pressure and Related Thermodynamic Data of Tetrahydrofuran. Nippon Kagaku Zasshi 1970, 91, 501− 503. (31) Scott, D. W. Tetrahydrofuran: vibrational assignement, chemical thermodynamic properties, and vapour pressure. J. Chem. Thermodyn. 1970, 2, 833−837. (32) Bissell, E. R.; Finger, M. Organic Deuterium Compounds. II. Some Deuterated Tetrahydrofurans. J. Org. Chem. 1959, 24, 1259− 1261.

AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. ORCID

Enrico Matteoli: 0000-0003-3475-038X Funding

The authors thank CNR for granting an associate researcher position at IPCF. Notes

The authors declare no competing financial interest.



REFERENCES

(1) Boublik, T.; Fried, V.; Hala, E. The Vapour Pressures of Pure Substances; Elsevier: Amsterdam, 1973. (2) Cabani, S.; Conti, G.; Lepori, L. Thermodynamic Study on Aqueous Dilute Solutions of Organic Compounds. Part 1. Cyclic Amines. Trans. Faraday Soc. 1971, 67, 1933−1942. (3) Cabani, S.; Conti, G.; Lepori, L. Thermodynamic Study on Aqueous Dilute Solutions of Organic Compounds. Part 2. Cyclic Ethers. Trans. Faraday Soc. 1971, 67, 1943−1950. (4) Cabani, S.; Conti, G.; Giannessi, D.; Lepori, L. Thermodynamic Study on Aqueous Dilute Solutions of Organic Compounds. Part 3. Morpholines and Piperazines. J. Chem. Soc., Faraday Trans. 1 1975, 71, 1154−1160. (5) Cabani, S.; Conti, G.; Mollica, V.; Lepori, L. Thermodynamic Study of Dilute Aqueous Solutions of Organic Compounds. Part 4. Cyclic and Straight Chain Secondary Alcohols. J. Chem. Soc., Faraday Trans. 1 1975, 71, 1943−1952. (6) Cabani, S.; Mollica, V.; Lepori, L. Thermodynamic Study of Dilute Aqueous Solutions of Organic Compounds. Part 5. Open-chain Saturated Bifunctional Compounds. J. Chem. Soc., Faraday Trans. 1 1978, 74, 2667−2671. (7) NIST Chemistry WebBook; Linstrom, P.; Mallard, W. G., Eds. NIST Standard Reference Database Number 69; National Institute of Standards and Technology (NIST): Gaithersburg, MD. 2016. (8) Acree, W., Jr.; Chickos, J. S. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies from 1880 to 2010. J. Phys. Chem. Ref. Data 2010, 39, 1−942. (9) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, Physical Properties and Methods of Purification. Techniques of Chemistry, Wiley: New York, 1986; Vol. II. (10) Wadsworth, D. H. A facile synthesis of azetidines. J. Org. Chem. 1967, 32, 1184−1187. (11) Majer, V.; Svoboda, V. Enthalpies of Vaporization of Organic Compounds; Blackwell: Oxford, 1985. (12) Thompson, G. Wm. The Antoine Equation for Vapor-pressure Data. Chem. Rev. 1946, 38, 1−39. H

DOI: 10.1021/acs.jced.6b00576 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(54) Hovorka, F.; Lankelma, H. P.; Stanford, S. C. Thermodynamic Properties of the Hexyl Alcohols. II. Hexanols-1, −2, −3 and 2Methylpentanol-1 and −4. J. Am. Chem. Soc. 1938, 60, 820−827. (55) Verevkin, S. P.; Schick, C. Vapour pressures and heat capacity measurements on the C7-C9 secondary aliphatic alcohols. J. Chem. Thermodyn. 2007, 39, 758−766. (56) Ambrose, D.; Ghiassee, N. B. Vapor Pressures and Critical Temperatures and Critical Pressures of C5 and C6 Cyclic Alcohols and Ketones. J. Chem. Thermodyn. 1987, 19, 903−909. (57) Nitta, I.; Seki, S. Vapor pressures of Molecular Crystals. VI. Cyclohexanol and Cyclohexanone. Nippon Kagaku Zasshi 1948, 69, 141−143. (58) Steyer, F.; Sundmacher, K. VLE and LLE data for the system Cyclohexane + Cyclohexene + Water + Cyclohexanol. J. Chem. Eng. Data 2004, 49, 1675−1681. (59) Swiatek, B. E.; Malanowski. Vapor-Liquid Equilibrium in mXylene + Cyclohexanol at 19.99 and 94.93 kPa. J. Chem. Eng. Data 2002, 47, 478−481. (60) Verevkin, S. P. Thermochemistry of Alcohols: Experimental Standard Molar Enthalpies of Formation and Strain of Some Alkyl and Phenyl Congested Alcohols. Struct. Chem. 1998, 9, 375−382. (61) Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A. Vapor Pressure, Heat Capacity, and Density along the Saturation Line, Measurements for Cyclohexanol, 2-Cyclohexen-1-one, 1,2-Dichloropropane, 1,4-Di-tert-butylbenzene, (±)-2-Ethylhexanoic Acid, 2(Methylamino)ethanol, Perfluoro-n-heptane, and Sulfolane. J. Chem. Eng. Data 1997, 42, 1021−1036. (62) Cruz Burguet, M. C.; Montòn, J. B.; Sanchotello, M.; Vazquez, M. I. Vapor-liquid equilibria of cyclohexanone + cyclohexanol and cyclohexanone + 2-methylcyclohexanone systems at 4.00 and 26.66 kPa. J. Chem. Eng. Data 1993, 38, 328−331. (63) Gierycz, P.; Rogalski, M.; Malanowski, S. Vapour-liquid equilibria in binary systems formed by N-Methylpyrrolidone with hydrocarbons and hydroxyl derivatives. Fluid Phase Equilib. 1985, 22, 107−122. (64) Castellari, C.; Francesconi, R.; Comelli, F. Vapor-liquid equilibria in binary systems containing 1,3-dioxolane at isobaric conditions. 5. Binary mixtures of 1,3-dioxolane with cyclohexanone and cyclohexanol. J. Chem. Eng. Data 1984, 29, 90−93. (65) Sipowska, J. T.; Wieczorek, S. A. Vapour pressures and excess Gibbs free energies of (cyclohexanol + n-heptane) between 303.147 and 373.278 K. J. Chem. Thermodyn. 1984, 16, 693−699. (66) Goodwin, S. R.; Newsham, D. M. T. Relative volatilities of mixtures of cyclohexanol and cyclohexanone in pressure range 30−750 mm Hg. J. Chem. Eng. Data 1974, 19, 363−366. (67) Smith, B. R.; Thorp, J. M. The Dielectric Behaviour of Cyclohexanol Sorbed on Silica Gel and Alumina. J. Phys. Chem. 1963, 67, 2617−2622. (68) Novak, J.; Matous, J.; Pick, J. Dampfdruck des cyclohexanols und des Cyclohexylamins. Collect. Czech. Chem. Commun. 1960, 25, 583− 585. (69) Stull, D. R. Vapor Pressures of Pure Substances. Organic Compounds. Ind. Eng. Chem. 1947, 39, 517−540. (70) Gardner, G. S.; Brewer, J. E. Vapor Pressures of Commercial High-Boiling Organic Solvents. Ind. Eng. Chem. 1937, 29, 179−181. (71) Yaws, C. Antoine coefficients. The Yaws Handbook of Vapor Pressure, 2nd ed.; Elsevier: Amsterdam, 2015. (72) McCullough, J. P.; Douslin, D. R.; Todd, S. S.; Messerly, J. F.; Hossenlopp, I. A.; Frow, F. R.; Dawson, J. P.; Waddington, G.; Hubbard, W. N. Pyrrolidine: Chemical thermodynamic properties between 0 and 1500 K; effect of pseudorotation; and an unusual thermal anomaly in the liquid state. J. Am. Chem. Soc. 1959, 81, 5884−5890. (73) Hossenlopp, I. A.; Archer, D. G. Enthalpies of vaporization of piperidine and 1,2-dimethylbenzene; gas-phase isobaric heat capacities of piperidine. J. Chem. Thermodyn. 1988, 20, 1061−1068. (74) Ribeiro da Silva, M. A. V.; Cabral, J. I. T. A.; Gomes, P.; Gomes, J. R. B. Combined Experimental and Computational Study of the Thermochemistry of Methylpiperidines. J. Org. Chem. 2006, 71, 3677−3685.

(33) Cass, R. C.; Fletcher, S. E.; Mortimer, C. T.; Springall, H. D.; White, T. R. Heats of Combustion and Molecular Structure. Part V. The Mean Bond Energy Term for the C-O Bond in Ethers, and the Structures of Some Cyclic Ethers. J. Chem. Soc. 1958, 1406−1410. (34) Rodriguez, S.; Giner, B.; Haro, M.; Martin, S.; Artigas, H. Isobaric vapour-liquid equilibrium for the binary systems formed by a cyclic ether and bromocyclohexane at 40.0 and 101.3 kPa. Phys. Chem. Liq. 2006, 44, 275−285. (35) Wu, H. S.; Sandler, S. I. Vapor-Liquid Equilibrium of 1,3Dioxolane Systems. J. Chem. Eng. Data 1989, 34, 209−213. (36) Fletcher, S. E.; Mortimer, C. T.; Springall, H. D. Heats of combustion and Molecular Structure. Part VII. 1:3-Dioxa- and 1:3:5Trioxa-cycloalkanes. J. Chem. Soc. 1959, 580−586. (37) Francesconi, R.; Castellari, C.; Arcelli, A.; Comelli, F. VaporLiquid Equilibrium in Mixtures of 1,3-Dioxolane-Water. Can. J. Chem. Eng. 1980, 58, 113−115. (38) Hovorka, F.; Schaefer, R. A.; Dreisbach, D. The System Dioxane and Water. J. Am. Chem. Soc. 1936, 58, 2264−2267. (39) Castellari, C.; Francesconi, R.; Comelli, F. Vapor-liquid equilibria in binary systems containing 1,3-dioxolane at isobaric conditions. 4. Binary mixtures of 1,3-dioxolane with 1,4-dioxane and 1,1,2,2tetrachloroethane. J. Chem. Eng. Data 1984, 29, 126−128. (40) Crenshaw, J. L.; Cope, A. C.; Finkelstein, N.; Rogan, R. The dioxanates of the mercuric halides. J. Am. Chem. Soc. 1938, 60, 2308− 2311. (41) Garriga, R.; Martinez, S.; Perez, P.; Gracia, M. Thermodynamic excess properties for binary mixtures of 1-chlorobutane with 2-butanol or 2-methyl-1-propanol. Fluid Phase Equilib. 2001, 181, 203−214. (42) Gierycz, P.; Kosowski, A.; Swietlik, R. Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols. J. Chem. Eng. Data 2009, 54, 2996−3001. (43) Martínez, N. F.; Lladosa, E.; Burguet, M.-C.; Montón, J. B.; Yazimon, M. Isobaric vapour-liquid equilibria for the binary systems 4methyl-2-pentanone + 1-butanol and + 2-butanol at 20 and 101.3 kPa. Fluid Phase Equilib. 2009, 277, 49−54. (44) Nasirzadeh, K.; Zimin, D.; Neueder, R.; Kunz, W. Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data. J. Chem. Eng. Data 2004, 49, 607−612. (45) Dejoz, A.; Cruz Burguet, M.; Muñoz, R.; Sanchotello, M. Isobaric Vapor-Liquid Equilibria of Tetrachloroethylene with 1-Butanol and 2Butanol at 6 and 20 kPa. J. Chem. Eng. Data 1995, 40, 290−292. (46) Di Cave, S.; Chianese, A.; Prantera, A. Vapor-Liquid Equilibrium of the system Methyl Ethyl Ketone- sec-Butyl Alcohol. J. Chem. Eng. Data 1978, 23, 279−281. (47) Brown, I.; Fock, W.; Smith, F. The thermodynamic properties of solutions of normal and branched alcohols in benzene and n-hexane. J. Chem. Thermodyn. 1969, 1, 273. (48) Ambrose, D.; Townsend, R. Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures above Five Atmospheres, of Six Aliphatic Alcohols. J. Chem. Soc. 1963, 3614−3625. (49) Biddiscombe, D. P.; Collerson, R. R.; Herington, E. F. G.; Martin, J. F.; Sprake, C. H. S.; Handley, R. Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols. J. Chem. Soc. 1963, 1954−1957. (50) Berman, N. S.; McKetta, J. J. The Thermodynamic Properties of 2 Butanol. J. Phys. Chem. 1962, 66, 1444−1448. (51) Wilhoit, R. C.; Zwolinski, B. J. Physical and Thermodynamic Properties of Aliphatic Alcohols. J. Phys. Chem. Ref. Data; 1973, 2, Suppl.1. (52) N'Guimbi, J.; Berro, C.; Mokbel, I.; Rauzy, E.; Jose, J. Experimental vapour pressures of 13 secondary and tertiary alcohols − correlation and prediction by a group contribution method. Fluid Phase Equilib. 1999, 162, 143−158. (53) Kulikov, D.; Verevkin, S. P.; Heintz, A. Determination of Vapor Pressures and Vaporization Enthalpies of the Aliphatic Branched C5 and C6 Alcohols. J. Chem. Eng. Data 2001, 46, 1593−1600. I

DOI: 10.1021/acs.jced.6b00576 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(75) Berthon, G.; Angot, V.; Beden, V.; Enea, O. Quantitative comparison of substituent effects on solvation and proto-ionization standard enthalpies of methylpiperidines. J. Chem. Thermodyn. 1979, 11, 539−546. (76) Rojas-Aguilar, A.; Ginez-Carbajal, F.; Orozco-Guareno, E.; Flores-Segura, H. Measurement of enthalpies of vaporization of volatile heterocyclic compounds by DSC. J. Therm. Anal. Calorim. 2005, 79, 95− 100. (77) Hossenlopp, I. A.; Scott, D. W. Vapor heat capacities and enthalpies of vaporizaiton of six organic compounds. J. Chem. Thermodyn. 1981, 13, 405−41. (78) Bystrom, K.; Mansson, J. Enthalpies of Formation of Some Cyclic 1,3- and 1,4-Di- and Poly-ethers: Thermochemical Strain in the -O-C-Oand -O-C-C-O- Groups. J. Chem. Soc., Perkin Trans. 2 1982, 565−569. (79) Polak, J.; Benson, G. C. Enthalpies of Vaporization of Some Aliphatic Alcohols. J. Chem. Thermodyn. 1971, 3, 235−242. (80) Wadsö, I.; Murto, M.-L.; Bergson, G.; Ehrenberg, L.; Brunvoll, J.; Bunnenberg, E.; Djerassi, C.; Records, R. Heats of Vaporization for a Number of Organic Compounds at 25°C. Acta Chem. Scand. 1966, 20, 544−552. (81) McCurdy, K. G.; Laidler, K. J. Heats of Vaporization of a Series of Aliphatic Alcohols. Can. J. Chem. 1963, 41, 1867−1871. (82) Berman, N. S.; McKetta, J. J. The Thermodynamic Properties of 2-Butanol. J. Phys. Chem. 1962, 66, 1444−1448. (83) Chickos, J. S.; Hosseini, S.; Hesse, D. G. Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times. Thermochim. Acta 1995, 249, 41−62. (84) Costa, F. S.; Eusebio, M. E.; Redinha, J. S.; Leitao, M. L. P. Enthalpies of solvation of hydroxyl cyclohexane derivatives in different solvents. J. Chem. Thermodyn. 1999, 31, 895−903. (85) Lepori, L.; Matteoli, E.; Spanedda, A.; Bussolino, G. C. In The virial coefficients of pure gases and mixtures. A simply additivity scheme of group interactions; Friend, D. G., Frenkel, M., Muzny, C., Hardin, G. R. Eds.; Abstracts of THERMO International; NIST: Boulder, Colorado, USA, 2006; p 622−623. (86) Cabani, S.; Conti, G.; Lepori, L. Volumetric properties of Aqueous Solutions of Organic Compounds. I. Cyclic Ethers and Cyclic Amines. J. Phys. Chem. 1972, 76, 1338−1343. (87) Cabani, S.; Conti, G.; Lepori, L. Volumetric properties of Aqueous Solutions of Organic Compounds. III. Aliphatic Secondary Alcohols, Cyclic Alcohols, Primary, Secondary, and Tertiary Amines. J. Phys. Chem. 1974, 78, 1030−1034. (88) Dymond, J. H.; Marsh, K. N.; Wilhoit, R. C.; Wong, K. C. Virial coefficients of pure gas and mixtures; Landolt-Börnstein Group IV; Frenkel, M., Marsh, K. N. Eds.; Springer: Berlin, 2002; Vol. 21A. (89) Lide, D. R. Ed. Handbook of Chemistry and Physics, 81st ed.; CRC Press: New York, 2000. (90) Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.; Smith, N. K. Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Dicyclohexyl Sulfide, Diethylenetriamine, Di- n -octyl Sulfide, Dimethyl Carbonate, Piperazine, Hexachloroprop-1-ene, Tetrakis(dimethylamino)ethylene, N,N′-Bis-(2-hydroxyethyl)ethylenediamine, and 1,2,4-Triazolo[1,5-a]pyrimidine. J. Chem. Eng. Data 1997, 42 (6), 1037−1052. (91) Bacarella, A. L.; Finch, A.; Grunwald, E. Vapor Pressures and Activities in the System Dioxane-Water. Second Virial Coefficients in the Gaseous System Nitrogen-Dioxane-Water. J. Phys. Chem. 1956, 60, 573−576. (92) TRC-Tables, Selected Values of Properties of Chemical Compounds, Thermodynamic Research Center Data Project, Texas A&M University: College Station, TX, 1983.

J

DOI: 10.1021/acs.jced.6b00576 J. Chem. Eng. Data XXXX, XXX, XXX−XXX