19 Viscoelastic Properties of Fiber-Reinforced Plastics HARUO YOSHIDA
Downloaded by RUTGERS UNIV on May 29, 2018 | https://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch019
O s a k a M u n i c i p a l T e c h n i c a l R e s e a r c h Institute, 1-1, Ogimachi-2, K i t a k u , O s a k a 530, J a p a n
The most typical f o r m of t h e c o m p o s i t e materials is t h e fiber reinforced plastics composed of glass or c a r b o n fibers and resins. The r e i n f o r c e m e n t s s u c h a s glass or c a r b o n fibers may be elastic, b u t resins must be r e g a r d e d a s viscoelastic materials(1). When t h e s e c o m p o s i t e materials are subjected to various loads, t h e y show viscoelastic c o m p l i c a t e d b e h a v i o r c a u s e d b y t h e mechanical properties of t h e fiber a n d resin, specially by the internal viscosity o f resin a n d t h e friction a t the interface (2) of fiber and resin. Then t h e strain of t h e s e c o m p o s i t e materials is n o t proportional to the stress, and t h e stress-strain d i a g r a m becomes t h e curved line affected b y t h e t i m e scale. T h i s phenomenon is t h e characteristic property of the reinforced plastics and becomes the special merit in practical uses. U n d e r t h e r e p e a t e d loads, t h e stress-strain diagram draws hysteresis loops. C o r r e s p o n d i n g t o t h e a r e a o f t h e loop, t h e strain e n e r g y is consumed in t h e material a t e a c h alternating stress. T h i s e n e r g y loss affects t h e fatigue of t h e material and t h e other h a n d i s e f f e c t i v e t o d a m p i n g t h e v i b r a t i o n o r s c r e e n i n g the a c o u s t i c emission. I n t h i s r e s e a r c h , t h e dynamic v i s c o e l a s t i c p r o p e r t i e s o f the f i b e r r e i n f o r c e d p l a s t i c s w e r e s t u d i e d by m e a s u r i n g t h e c o m p l e x moduli of e l a s t i c i t y of the m a t e r i a l s w i t h the t e c h n i c s of the v i b r a t i n g r e e d method Experiments
and
Discussions
The m e a s u r i n g a r r a n g e m e n t s c o n s i s t o f t h e c o m p l e x m o d u l u s a p p a r a t u s , t h e o s c i l l a t o r , t h e a m p l i f i e r and t h e l e v e l r e c o r d e r . The t e s t s a m p l e i s c l a m p e d a t one end and t h e o t h e r end i s f r e e . Two l i t t l e i r o n d i s c s a r e bonded on t h e sample b a r o p p o s i t e t o t h e t r a n s d u c e r s t o be r e s p o n s i v e t o t h e m a g n e t i c f o r c e . The f r e e end i s e x c i t e d a t t h e f r e q u e n c y f r o m 20 t o 20000 Hz b y t h e e x c i t e r t r a n s d u c e r , then t h e bending v i b r a t i o n o f t h e sample b a r o c c u r s and t h e p i c k - u p t r a n s d u c e r d e t e c t s t h e d e f l e c t i o n a m p l i t u d e
May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
RESINS FOR
248
AEROSPACE
Downloaded by RUTGERS UNIV on May 29, 2018 | https://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch019
o f t h e sample b a r . The s a m p l e s t e s t e d a r e a s f o l l o w s : Sample(a); P o l y e s t e r r e s i n laminates r e i n f o r c e d w i t h g l a s s f i b e r roving cloths. Table I . Sample(b); Epoxy r e s i n l a m i n a t e s r e i n f o r c e d w i t h carbon f i b e r s . S a m p l e ( c ) ; H y b r i d l a m i n a t e d c o m p o s i t e s . One o f t h e r e i n f o r c e m e n t s i s g l a s s m a t ( M ) , a n o t h e r i s c o m b i n e d woven c l o t h w i t h g l a s s f i b e r s and carbon f i b e r s i n w a r p s ( C ) . R e s i n i s epoxy. The c o m p l e x m o d u l i o f e l a s t i c i t y o f t h e m a t e r i a l s m e n t i o n e d above were measured. T a b l e I . C o n s t i t u t i o n s and d i m e n s i o n s o f p o l y e s t e r r e s i n laminates reinforced with glass f i b e r roving cloths. Sample's Mark
PE
PE8G
PE8GV PE8GH PE12G
Plies
0
8
8 ( * l ) 8(*2)
1.18
1.60
1.14
1.39
1.83
31*5
17.5
16.2
48.6
Specific
gravity
Glass content (volume %)
0
12
( * l ) Warps o n l y , (2*) Woofs o n l y S p e c i m e n : L e n g t h 210, W i d t h 22, T h i c k n e s s 5.5 R e i n f o r c e m e n t : G l a s s r o v i n g c l o t h (EWR55) R e s i n : P o l y e s t e r (EPOLAC N317)
mm
The c o m p l e x m o d u l i o f e l a s t i c i t y o f t h e s a m p l e s ( a ) a t t h e v a r i o u s t e m p e r a t u r e f r o m -10 t o 110 d e g r e e C a r e shown i n F i g u r e 1. The c o m p o s i t e s w h i c h h a v e t h e g r o s s c o n t e n t o f g l a s s f i b e r s s u c h a s t h e s a m p l e PE12G a n d PE8G o b t a i n e d t h e h i g h e r v a l u e s o f t h e d y n a m i c m o d u l u s o f e l a s t i c i t y and k e p t t h e e l a s t i c i t y a t t h e e l e v a t e d t e m p e r a t u r e . The s a m p l e PE h a s n o t t h e f i b e r a n d i s r e s i n o n l y , t h e n t h e dynamic modulus o f e l a s t i c i t y d e c r e a s e d a t t h e t e m p e r a t u r e o f 110 d e g r e e C. The l o s s f a c t o r s o f t h e same s a m p l e s a r e shown i n F i g u r e 2. The l o s s f a c t o r s o f t h e s a m p l e s PE a n d PE8GH i n c r e a s e d r e m a r k a b l y i n a c c o r d a n c e w i t h t h e r i s e o f t e m p e r a t u r e . The s a m p l e PE8GH h a s n o t t h e w a r p s . A s t h e r e s u l t s , i t c o u l d be f o u n d t h a t t h e m a t e r i a l s w h i c h c o n t a i n e d much v o l u m e o f g l a s s f i b e r s were heat r e s i s t a n t . V a r i o u s k i n d s o f c o m p o s i t e m a t e r i a l s w e r e l a m i n a t e d a n d some h y b r i d c o m p o s i t e s w e r e c o n s t r u c t e d a s shown i n F i g u r e 3· The com p l e x modulus o f e l a s t i c i t y o f t h i s h y b r i d composite m a t e r i a l E* i s t h e o r e t i c a l l y expressed i n the e q u a t i o n ( l ) as the f u n c t i o n o f t h e i n d i v i d u a l complex modulus o f e l a s t i c i t y Eg o f each l a y e r .
Ε*Ι=ΣΕΪΙ
Κ
(1)
I a n d I K a r e r e s p e c t i v e l y t h e moment o f i n e r t i a o f t h e c r o s s
May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by RUTGERS UNIV on May 29, 2018 | https://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch019
YOSHiDA
-10
Fiber-Reinforced
0
J
20
L
Temperature
j_J_ -10
0
20
249
Plasties
Figure 1. Complex moduli of elasticity of reinforced polyester resin hminates
80 {*C )
Figure 2. Loss factors of reinforced polyester resin hminates: (Φ) PE12G, (Q) PE8G, ((D) PE8GV, (Q) PE8GH, (Ο) PE
JU
Temperature
(2) jk)
mi
E; I„ En
In
Figure 3. Laminations of composite materials (see text for explanation of variables)
May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by RUTGERS UNIV on May 29, 2018 | https://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch019
250
RESINS F O R A E R O S P A C E
() (α)
t Figure 4. Theoretical relationship be tween the modulus of elasticity and the reinforcement content (see Equations 6, 7, and 8)
Figure 5. Theoretical refotionship between the loss factor and the reinforcement content (see Equations 6, 7, and 8)
LU
uî"
hi (b)
ÊfÏÏT
May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
19.
YOSHiDA
Fiber-Reinforced
251
Plastics
s e c t i o n c o n c e r n i n g t h e n e u t r a l a x i s o f t h e h y b r i d c o m p o s i t e . The s y m b o l s w i t h s u f f i x k mean t h a t t h e y b e l o n g t o t h e k ' t h l a y e r . G e n e r a l l y Ε * * Ε - Κ Ε , ( £= \P1 ), E * i s t h e c o m p l e x m o d u l u s o f e l a s t i c i t y , E i s t h e dynamic modulus o f e l a s t i c i t y , E " i s t h e l o s s m o d u l u s o f e l a s t i c i t y . From t h e e q u a t i o n ( l ) t h e f o l l o w i n g e q u a t i o n s a r e introduced, d i s the l o s s f a c t o r . !
Μ
1
E'=if*E' κ·ιΐ
(2)
K
E»s£!* .t
(3)
Downloaded by RUTGERS UNIV on May 29, 2018 | https://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch019
E
«4
(4)
I f t h e m a t e r i a l o f r e i n f o r c e m e n t i s o n l y one k i n d a n d u n i f o r m l y d i s t r i b u t e d i n t h e composite, t h e f r a c t i o n o f volume con tent β o f the reinforcement i s expressed a s f o l l o w .
β"ϊ*
(5)
Then t h e e q u a t i o n s ( 2 , 3 , 4 ) a r e r e w r o t e a s f o l l o w s . E«=SE^.(l-p)E
(6)
m
(7)
f,
E =i3E|+(l-P)E» βΕ'ά.+(ΐ-β)Ε·(1
The s y m b o l s w i t h s u f f i x f and m mean t h a t t h e y b e l o n g t o t h e r e inforcement ( f i b e r ) and t o the m a t r i x ( r e s i n ) r e s p e c t i v e l y . The t h e o r e t i c a l r e l a t i o n s o f t h e d y n a m i c a n d t h e l o s s modu l u s o f e l a s t i c i t y and t h e l o s s f a c t o r t o t h e content o f t h e r e i n forcement expressed i n t h e equations(6,7,8) a r e d i s p l a y e d i n F i g u r e s 4 , 5 · The d y n a m i c a n d t h e l o s s m o d u l u s o f e l a s t i c i t y a r e r e s p e c t i v e l y p r o p o r t i o n a l t o the content o f f i b e r s but the l o s s f a c t o r has the h y p e r b o l i c r e l a t i o n s h i p t o the content o f f i b e r s . The e x p e r i m e n t a l r e s u l t s c o n c e r n i n g t h e r e l a t i o n b e t w e e n t h e complex modulus o f e l a s t i c i t y o f p o l y e s t e r r e s i n l a m i n a t e s r e i n forced w i t h g l a s s r o v i n g cloths(Sample(a)) and t h e content o f g l a s s f i b e r s a r e shown i n F i g u r e s 6 , 7 . T h e s o l i d b a r s e x p r e s s t h e r a n g e o f t h e v a l u e s f r o m t h e minimum t o t h e maximum a t t h e tem p e r a t u r e f r o m -10 t o 110 d e g r e e 0. I n F i g u r e 6, e x c e p t PE8GH a n d PE8GV, t h e e n d p o i n t s ( i n t h e c a s e o f Ε · , t h e u p p e r e n d p o i n t s a r e t h e v a l u e s a t -10 d e g r e e C, t h e l o w e r e n d p o i n t s a r e t h e v a l u e s a t 110 d e g r e e C, i n t h e c a s e o f E , t h e u p p e r s a r e a t 110, M
May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by RUTGERS UNIV on May 29, 2018 | https://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch019
252
RESINS F O R A E R O S P A C E
Figure 6. Experimental relationship be tween the complex modulus of elasticity of reinforced polyester resin laminates and the glass fiber content
Glass content
X
β
(vol.%)
>
ο ο 00 CD
Figure 7. Experimental relationship be tween the loss factor of reinforced poly ester resin laminates and the glass fiber content
0
10
20
30
Glass content
0
40
50
(vol.%)
May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by RUTGERS UNIV on May 29, 2018 | https://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch019
19.
YOSHiDA
Fiber-Reinforced Plastics
253
the l o w e r s axe a t - 1 0 degree 0) a r e arranged a p p r o x i m a t e l y i n a s t r a i g h t l i n e r e s p e c t i v e l y . This f a c t proves the r e a s o n a b i l i t y of the p r o p o r t i o n a l i t y law expressed i n the equations(6,7). The sample P I 8 G ? h a s n o t w o o f s a n d h a s w a r p s o n l y , t h e n t h e g l a s s c o n t e n t i s s m a l l e r t h a n t h a t o f t h e sample P E 8 G , b u t t h e v a l u e s o f t h e c o m p l e x m o d u l u s o f e l a s t i c i t y i s n e a r l y t h e same a s t h a t o f P E 8 G . I f the c o n s i d e r a t i o n i s r e s t r i c t e d w i t h i n t h e warps o n l y , t h e c o n t e n t o f g l a s s f i b e r s i s t h e same a t P E 8 G a n d PE8GV. T h i s means t h a t o n l y w a r p s w h i c h l i e t o t h e same d i r e c t i o n a s the d i r e c t i o n o f t h e s t r e s s a r e e f f e c t i v e t o improve t h e complex m o d u l u s o f e l a s t i c i t y . The s a m p l e P E 8 G H h a s w o o f s o n l y a n d h a s not warps, then t h e v a l u e o f t h e complex modulus o f e l a s t i c i t y i s t h e same a s t h a t o f t h e r e s i n s a m p l e PE. I n F i g u r e 7» t h e end p o i n t s o f t h e s o l i d b a r s a r e a r r a n g e d on t h e h y p e r b o l i c c u r v e s e x c e p t PE8GV and PE8GH. The v a l u e s o f t h e l o s s f a c t o r o f PE8GV a n d PE8GH a r e r e s p e c t i v e l y t h e same a s t h o s e o f P E 8 G a n d P E b y t h e same t h e o r y c o n c e r n i n g t h e d y n a m i c a n d the l o s s modulus o f e l a s t i c i t y e x p l a i n e d above. The s a m p l e s o f t h e e p o x y r e s i n l a m i n a t e s r e i n f o r c e d w i t h c a r b o n f i b e r s ( S a m p l e ( b ) ) a r e shown i n F i g u r e 8. The l e f t p l a t e i s u n i d i r e c t i o n a l l y r e i n f o r c e d l a m i n a t e (5 p l i e s ) . The r i g h t p l a t e i s c r o s s p l i e d r e i n f o r c e d l a m i n a t e (8 p l i e s ) . The t e s t s a m p l e s were c u t o u t a s shown. The s t r e s s d i r e c t i o n i s t h e l o n g i t u d i n a l d i r e c t i o n o f t h e s a m p l e b a r . Then t h e d i r e c t i o n o f f i b e r s o f t h e s a m p l e CFRP-L a g r e e s w i t h t h e d i r e c t i o n o f t h e s t r e s s , t h e d i r e c t i o n s o f f i b e r s a n d s t r e s s o f t h e s a m p l e CFRP-T a r e p e r p e n d i c u l a r t o e a c h o t h e r . The e x p e r i m e n t a l r e s u l t s a r e shown i n F i g u r e s 9,1Q> The d y n a m i c m o d u l i o f e l a s t i c i t y o f t h e s a m p l e s CFRP-L and CFRP+L were p r e t t y h i g h and a l m o s t d i d n o t be a f f e c t e d b y t h e temperat u r e , b u t t h a t o f t h e s a m p l e CFRP-T e v e n l y d e c r e a s e d i n a c c o r d a n c e w i t h t h e r i s e o f t h e t e m p e r a t u r e . The l o s s f a c t o r s a r e shown i n F i g u r e 9. The v a l u e o f t h e l o s s f a c t o r o f t h e s a m p l e CFRP-T i s h i g h e r t h a n t h a t o f t h e s a m p l e CFRP-L. When t h e d i r e c t i o n o f f i b e r s i s 45 d e g r e e t o t h e d i r e c t i o n o f t h e s t r e s s , f o r example t h e s a m p l e CFBP-45 h a s a p r e t t y h i g h v a l u e o f t h e l o s s f a c t o r . I t i s deduced t h a t t h i s i s caused by t h e s h e a r i n g s t r a i n i n t h e r e s i n among f i b e r s a n d b y t h e f r i c t i o n a t t h e i n t e r f a c e o f r e s i n a n d f i b e r . The m e c h a n i c a l p r o p e r t i e s o f t h e c r o s s p l y l a m i n a t e s s u c h a s t h e s a m p l e s C F R P t L a n d CFRP+T a r e i n f l u e n c e d b y t h e d i r e c t i o n o f t h e f i b e r s e x i s t i n g i n t h e s u r f a c e l a y e r s o f the samples, because o f the bending s t r e s s . To i m p r o v e t h e m e c h a n i c a l p r o p e r t i e s o f t h e c o m p o s i t e mater i a l s , two o r more k i n d s o f r e i n f o r c e m e n t s a r e c o m b i n e d a n d t h e h y b r i d c o m p o s i t e s a r e made. I n t h i s r e s e a r c h , two k i n d s o f r e i n f o r c i n g m a t e r i a l s (M) a n d ( C ) w e r e u s e d , t h e r e s i n i s epoxy(Sample(c)). The s e q u e n c e o f l a m i n a t i n g w i t h t h e s e two k i n d s o f m a t e r i a l s was changed and f i v e k i n d s o f h y b r i d c o m p o s i t e s w e r e s e t a s shown i n F i g u r e 1 1 . The t h e o r e t i c a l v a l u e s o f t h e c o m p l e x m o d u l u s o f e l a s t i c i t y c a l c u l a t e d by t h e e q u a t i o n ( l ) w e l l a g r e e d w i t h t h e experimental r e s u l t s ( 6 ) .
May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
RESINS F O R A E R O S P A C E
254
Downloaded by RUTGERS UNIV on May 29, 2018 | https://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch019
(0,0,0,0,0 )
(0,0,90,90*90,90,0,0)
Fiber
direction
Figure 8. Epoxy resin laminates reinforced with carbon fibers: the left plate is 5-ply, unidirectionally reinforced; the right plate is 7-ply, cross-plied reinforced
-
CFRP+T
. CFRP-45
Figure 9. Dynamic moduli of ehsticity of reinforced epoxy resin laminates
Frequency
( s"
1
May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
YOSHiDA
Fiber-Reinforced
255
Plastics
Downloaded by RUTGERS UNIV on May 29, 2018 | https://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch019
0.100 0.050
0.005|
J
10 Frequency
Figure 10.
Exp. Theor. Exp. Theor.
10
10
(s" ) 1
Loss factors of reinforced epoxy resin hminates
L L Τ Τ
Journal of the Society of Materials Science
Figure 11. Dynamic modulus of elas ticity and loss factor for several hybrid composite laminates (6): (Φ) experi mental L; (O) theoretical L; (fj^) experi mental T; ( Q ) theoretical Τ
May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
RESINS FOR A E R O S P A C E
256
Downloaded by RUTGERS UNIV on May 29, 2018 | https://pubs.acs.org Publication Date: August 28, 1980 | doi: 10.1021/bk-1980-0132.ch019
Conclusions A s t h e k e y t o f i n d i n g t h e v i s c o e l a s t i c p r o p e r t i e s o f t h e com p o s i t e m a t e r i a l s , t h e c o m p l e x modulus o f e l a s t i c i t y o f t h e mate r i a l s were measured. The f o l l o w i n g r e s u l t s w e r e o b t a i n e d . The v a l u e s o f t h e c o m p l e x modulus o f e l a s t i c i t y w e r e n o t a f f e c t e d by t h e v i b r a t i o n mode a t t h e r e s o n a n c e w i t h i n t h e f r e q u e n cy range o f t h i s s t u d y . The d y n a m i c modulus a n d t h e l o s s modulus o f e l a s t i c i t y w e r e r e s p e c t i v e l y p r o p o r t i o n a l to the content o f the reinforcement. The r e l a t i o n b e t w e e n t h e l o s s f a c t o r a n d t h e c o n t e n t o f t h e r e i n f o r c e m e n t was h y p e r b o l i c . W i t h a n i n c r e a s e i n t e m p e r a t u r e i t was g e n e r a l l y o b s e r v e d t h a t t h e e l a s t i c r e s p o n s e d e c r e a s e d , whereas t h e v i s c o u s response increased. The r e i n f o r c e d p l a s t i c s w i t h t h e g r e a t e s t c o n t e n t o f t h e r e i n f o r c e m e n t s w e r e more r e s i s t i b l e a g a i n s t t h e h i g h t e m p e r a t u r e . The d i r e c t i o n o f t h e f i b e r s w e r e i n f l u e n t i a l i n t h e v i s c o e l a s t i c p r o p e r t i e s o f the composite m a t e r i a l s . The t h e o r y t o c a l c u l a t e t h e c o m p l e x modulus o f e l a s t i c i t y o f the h y b r i d composites from the v i s c o e l a s t i c p r o p e r t i e s o f each c o n s t i t u e n t l a y e r was i n t r o d u c e d , t h e n t h e m e c h a n i c a l p r o p e r t i e s o f t h e h y b r i d c o m p o s i t e s a r e a b l e t o be c o n t r o l l e d a t t h e d e s i g n ing process.
Literature Cited 1. 2. 3. 4. 5. 6.
Flugge,W., "Viscoelasticity",Blaisdell Pub.,London, 1967,p.3. Endo,Κ.;Watanabe,M.,Proc.J.C.M.R.,1971,14,120. O n o g i , S . , " K o b u n s h i k a g a k u " , M a r u z e n , T o k y o , 1957,p.308. Nolle,A.W.,J.Appl.Phys.,1948,19,753. Horio,M.;Onogi,S.,J.Appl.Phys.,1951,22,977. Yoshida,H.,J.Soc.Mat.Sci.Japan,1976,25,442.
RECEIVED January 30, 1980.
May; Resins for Aerospace ACS Symposium Series; American Chemical Society: Washington, DC, 1980.