Letter pubs.acs.org/OrgLett
Visible Light Photoredox-Catalyzed Arylative Ring Expansion of 1‑(1Arylvinyl)cyclobutanol Derivatives Su Jin Kwon and Dae Young Kim* Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, Korea S Supporting Information *
ABSTRACT: A visible light mediated photocatalytic arylation/ring expansion of alkenylcyclobutanols has been developed. This approach provides a mild and operationally simple access to the synthesis of functionalized cyclic ketones from the coupling reaction of alkenylcyclobutanols with aryldiazonium salts.
T
cyclic ketones by visible light mediated photocatalytic arylation/ring expansion without gold catalyst (Scheme 1b).9 As part of a research program related to the redox reaction and cyclization sequences, we recently reported internal redox reactions via C−H bond functionalization10 and photoredoxcatalytic fluoroalkylation/ring expansion.11 In this paper, we describe a visible light mediated photocatalytic arylation/ring expansion via 1,2-carbon migration of 1-(1-arylvinyl)cyclobutanol derivatives. To determine suitable reaction conditions for the visible light mediated photocatalytic arylation/ring expansion of 1-(1arylvinyl)cyclobutanols, we examined the visible light mediated photocatalytic reaction of 1-(1-phenylvinyl)cyclobutanol (1a) with phenyldiazonium tetrafluoroborate (2a) in the presence of 3 mol % of photocatalyst under visible light irradiation with blue LEDs (5 W, λmax = 455 nm) in CH3CN at room temperature (Table 1). By screening photocatalysts (Table 1, entries 1−6), we found that Ru(bpy)3(PF6)2 was the best photocatalyst for this arylation/ring expansion, affording the corresponding product 3a in 52% yield (Table 1, entry 3). Among the solvents evaluated (Table 1, entries 3 and 7−13), the best result was achieved when the reaction was conducted in DMSO (Table 1, entry 13). Reducing the photocatalyst loading to 1 mol % slightly reduced the product yield (Table 1, entry 14). The control experiment showed that the reaction could not proceed in the absence of a photocatalyst and visible light (Table 1, entries 15 and 16). With the optimal reaction conditions in hand, we investigated the scope of this visible light mediated photocatalytic arylation/ring expansion via the 1,2-carbon migration sequence of 1-(1-arylvinyl)cyclobutanols 1 with aryldiazonium tetrafluoroborates 2 in the presence of 3 mol % of Ru(bpy)3(PF6)2 under light irradiation with blue LEDs in DMSO at room temperature. As shown in Scheme 2, various 1(1-arylvinyl)cyclobutanols 1 with electron-withdrawing or electron-donating aryl groups furnished the corresponding migration products with moderate to good yields (Scheme 2,
he difunctionalization of alkenes, which involves the introduction of two functional groups across a double bond, has developed into a powerful strategy for synthesizing useful building blocks for natural products and biologically active compounds.1 Numerous studies have been conducted on the difunctionalization of alkenes with the aim of developing novel and efficient methods.2 Recently, a novel application of visible light mediated photoredox catalysis was described for chemical transformations in synthetic organic chemistry and proven to be a powerful tool with a host of attractive features such as mild and environmentally benign reaction conditions, excellent functional group tolerance, and high reactivity.3 With the use of appropriate radical sources, the photocatalytic difunctionalization of alkenes mediated by visible light offers a viable option for obtaining functionalized molecules.4 Several groups reported the radical addition and 1,2-carbon migration sequences of α,α-disubstituted allylic alcohol derivatives with various radicals including phosphoryl, sulfonyl, trifluoromethyl, and alkyl radicals using metal-free oxidation and metal- or photomediated oxidation.5 Toste and co-workers recently reported a ring expansion and oxidative arylation reaction of alkenylcycloalkanols with aryldiazonium salts promoted by dual gold and photoredox catalysis (Scheme 1a).6 This reaction involves generation of an electrophilic gold(III)−aryl intermediate through the combination of aryl radicals and a gold(I) catalyst.7,8 We envisioned the transformation of the alkenylcyclobutanols to the functionalized Scheme 1. Arylative Ring Expansion of Alkenyl Alcohols
Received: July 26, 2016
© XXXX American Chemical Society
A
DOI: 10.1021/acs.orglett.6b02201 Org. Lett. XXXX, XXX, XXX−XXX
Letter
Organic Letters Table 1. Optimization of Reaction Conditionsa
Scheme 2. Variation of Substrates 1a,b
entry
photocatalyst
solvent
time (h)
yield (%)b
c
Ru(phen)3Cl2·H2O Ru(bpy)3Cl2·6H2O Ru(bpy)3(PF6)2 fac-Ir(ppy)3 fluorecein eosin Y Ru(bpy)3(PF6)2 Ru(bpy)3(PF6)2 Ru(bpy)3(PF6)2 Ru(bpy)3(PF6)2 Ru(bpy)3(PF6)2 Ru(bpy)3(PF6)2 Ru(bpy)3(PF6)2 Ru(bpy)3(PF6)2 Ru(bpy)3(PF6)2
CH3CN CH3CN CH3CN CH3CN CH3CN CH3CN DMF CH3CN CH2Cl2 DMF,CH2Cl2 (1:1) acetone DMF DMSO DMSO DMSO DMSO
2 2 6 6 6 6 6 5 6 6 6 6 5 6 5 5
43 50 52 trace trace trace trace 37 0 0 0 0 75 52 0 0
1 2c 3c 4c 5c 6c 7 8 9 10 11c 12c 13 14d 15e 16 a
Reaction conditions: 1-(1-phenylvinyl)cyclobutanol (1a, 0.3 mmol), PhN2BF4 (2a, 0.6 mmol), photocatalyst (0.009 mmol), solvent (2.0 mL) at room temperature under visible light irradiation. bIsolated yield. cH2O (10 equiv) was added. d1 mol % of photocatalyst loading. e The reaction was performed in the dark.
3a−g). Additionally, various aryldiazonium tetrafluoroborates 2 with electron-withdrawing or electron-donating aryl groups furnished the corresponding migration products with moderate to good yields (Scheme 2, 3h−u). 1-(3-Phenylprop-1-en-2-yl)cyclobutanol (1h) as an aliphatic alkene substrate provided the desired product 3v with 38% yield under slightly harsh reaction conditions (Scheme 3). In addition, 3-(1-phenylvinyl)oxetan-3-ol (4) could undergo photoredox-catalytic arylation/ring expansion under the optimum reaction conditions. Furthermore, 1-(1H-inden-3yl)cyclobutanol derivatives (6 and 8) were also used as substrates in this visible light mediated photoredox reaction. It was found that the corresponding products 7 and 9 were obtained in 45 and 39% yield with 3.7:1 dr (Scheme 3). To illustrate the synthetic utility, we further conducted some functional group transformations. Condensation of cyclopentanone 3u with H2NOH in methanol delivered oxime derivative 10 in 72% yield. The cyclopentanone 3u was reduced to the corresponding cyclopentanol 11 with 95% yield and 4:1 diastereoselectivity (Scheme 4). To gain mechanistic insights into this transformation, some preliminary experiments were performed. The absence of either the photocatalyst Ru(bpy)3(PF6)2 or visible light shut down the reactivity completely, thus suggesting a crucial role for both of these elements for this transformation (Table 1, entries 15 and 16). A trace of the product was detected in the presence of a radical scavenger, 2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO). We propose the reaction mechanism shown in Figure 1 based on the results. Irradiation with visible light induces a metal-to-ligand charge transfer in the photocatalyst Ru 2 + ( b p y ) 3 (PF 6 ) 2 , re s u l t i n g i n t he ex c i t ed-s t at e Ru2+(bpy)3(PF6)2*. Afterward, a single-electron transfer to aryldiazonium tetrafluoroborate 2 generates Ru3+(bpy)3(PF6)2 and aryl radical I. Radical I then reacts with 1-(1-arylvinyl)-
a
Reaction conditions: 1-(1-arylvinyl)cyclobutanol 1 (0.3 mmol), ArN2BF4 2 (0.6 mmol), Ru(bpy)3(PF6)2 (0.009 mmol), DMSO (2.0 mL) at room temperature under visible light irradiation. bIsolated yield.
cyclobutanol 1, yielding intermediate II, which is oxidized by the Ru3+(bpy)3(PF6)2 to afford the cation III, and by the aryl diazonium salt 2 in a radical-chain transfer mechanism. 1,2Carbon migration of cation III leads to a ring expansion that yields the product 3. In conclusion, we have developed a novel and environmentally benign process for the visible light mediated B
DOI: 10.1021/acs.orglett.6b02201 Org. Lett. XXXX, XXX, XXX−XXX
Letter
Organic Letters
of Ru(bpy)3(PF6)2. The reaction was completed after a short period without any other metal catalysts. The proposed technique is an efficient option for synthesizing functionalized cyclic ketone derivatives.
Scheme 3. Visible Light-Mediated Photocatalytic Arylation/ Ring Expansion of 1-(3-Phenylprop-1-en-2-yl)cyclobutanol (1h), 3-(1-Phenylvinyl)oxetan-3-ol (4), and 1-(1H-Inden-3yl)cyclobutanol Derivatives 6 and 8
■
ASSOCIATED CONTENT
S Supporting Information *
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b02201. Detailed experimental procedure and spectral data for all new compounds (PDF)
■
AUTHOR INFORMATION
Corresponding Author
*E-mail:
[email protected]. Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS This research was supported by the Soonchunhyang University Research Fund and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014006224).
■
Scheme 4. Transformation of Cyclopentanone Derivative 3
REFERENCES
(1) For selected reviews on the alkene difunctionalization, see: (a) Yudin, A. K. In Catalyzed Carbon−Heteroatom Bond Formation; Wiley−VCH: Weinheim, 2010; pp 119−135;. (b) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. (c) Wolfe, J. P. Angew. Chem., Int. Ed. 2012, 51, 10224. (d) Liu, G. Org. Biomol. Chem. 2012, 10, 6243. (e) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076. (f) Shimizu, Y.; Kanai, M. Tetrahedron Lett. 2014, 55, 3727. (2) For recent alkene difunctionalization examples, see: (a) Thomoson, C. S.; Tang, X.-J.; Dolbier, W. R. J. Org. Chem. 2015, 80, 1264. (b) Zhang, Z.; Tang, X.; Thomoson, C. S.; Dolbier, W. R. Org. Lett. 2015, 17, 3528. (c) Lan, X.−W.; Wang, N.−X.; Zhang, W.; Wen, J.-L.; Bai, C.−B.; Xing, Y.; Li, Y.-H. Org. Lett. 2015, 17, 4460. (d) Zheng, Y.; He, Y.; Rong, G.; Zhang, X.; Weng, Y.; Dong, K.; Xu, X.; Mao, J. Org. Lett. 2015, 17, 5444. (e) Zhou, S.-F.; Pan, X.; Zhou, Z.−H.; Shoberu, A.; Zou, J.−P. J. Org. Chem. 2015, 80, 3682. (f) Egami, H.; Yoneda, T.; Uku, M.; Ide, T.; Kawato, Y.; Hamashima, Y. J. Org. Chem. 2016, 81, 4020. (g) Hemric, B. N.; Shen, K.; Wang, Q. J. Am. Chem. Soc. 2016, 138, 5813. (h) Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 6059. (i) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 8069. (j) Yang, Y.; Liu, Y.; Jiang, Y.; Zhang, Y.; Vicic, D. A. J. Org. Chem. 2015, 80, 6639. (k) Fu, M.; Chen, L.; Jiang, Y.; Jiang, Z.-X.; Yang, Z. Org. Lett. 2016, 18, 348. (l) Banik, S. M.; Medley, J. W.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000. (m) Huo, C.; Wang, Y.; Yuan, Y.; Chen, F.; Tang, J. Chem. Commun. 2016, 52, 7233. (3) For selected reviews of visible-light photoredox catalysis, see: (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. (b) Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617. (c) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828. (d) Maity, S.; Zheng, N. Synlett 2012, 23, 1851. (e) Xi, Y.-M.; Yi, H.; Lei, A.-W. Org. Biomol. Chem. 2013, 11, 2387. (f) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322. (g) Koike, T.; Akita, M. Top. Catal. 2014, 57, 967. (h) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176. (i) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem. - Eur. J. 2014, 20, 3874. (j) Koike, T.; Akita, M. Inorg. Chem. Front. 2014, 1, 562. (k) Meggers, E. Chem. Commun. 2015, 51, 3290. (l) Majek, M.; Filace, F.; Wangelin, A. J. Beilstein J.
Figure 1. Proposed reaction mechanism.
photoredox-catalyzed arylation/ring expansion via 1,2-carbon migration sequences of 1-(1-arylvinyl)cyclobutanols 1 with aryldiazonium tetrafluoroborates 2 in the presence of 3 mol % C
DOI: 10.1021/acs.orglett.6b02201 Org. Lett. XXXX, XXX, XXX−XXX
Letter
Organic Letters Org. Chem. 2014, 10, 981. (m) Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426. (n) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, DOI: 10.1021/acs.chemrev.5b00662. (4) For recent alkene difunctionalization examples with photoredox catalysis, see: (a) Oh, S. H.; Malpani, Y. R.; Ha, N.; Jung, Y. S.; Han, S. B. Org. Lett. 2014, 16, 1310. (b) Dagousset, G.; Carboni, A.; Magnier, E.; Masson, G. Org. Lett. 2014, 16, 4340. (c) Keshari, T.; Yadav, V. K.; Srivastava, V. P.; Yadav, L. D. S. Green Chem. 2014, 16, 3986. (d) Guo, W.; Cheng, H.-G.; Chen, L.-Y.; Xuan, J.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Adv. Synth. Catal. 2014, 356, 2787. (e) Yasu, Y.; Arai, Y.; Tomita, R.; Koike, T.; Akita, M. Org. Lett. 2014, 16, 780. (f) Musacchio, A. J.; Nguyen, L. Q.; Beard, G. H.; Knowles, R. R. J. Am. Chem. Soc. 2014, 136, 12217. (g) Tomita, R.; Yasu, Y.; Koike, T.; Akita, M. Angew. Chem., Int. Ed. 2014, 53, 7144. (h) Li, L.; Chen, Q.Y.; Guo, Y. J. Fluorine Chem. 2014, 167, 79. (i) Carboni, A.; Dagousset, G.; Magnier, E.; Masson, G. Synthesis 2015, 47, 2439. (j) Noto, N.; Miyazawa, K.; Koike, T.; Akita, M. Org. Lett. 2015, 17, 3710. (k) Tang, X.-J.; Zhang, Z.; Dolbier, W. R., Jr. Chem. - Eur. J. 2015, 21, 18961. (l) Tang, X.-J.; Dolbier, W. R. Angew. Chem., Int. Ed. 2015, 54, 4246. (m) Li, L.; Huang, M.; Liu, C.; Xiao, J.-C.; Chen, Q.-Y.; Guo, Y.; Zhao, Z.-G. Org. Lett. 2015, 17, 4714. (n) Wei, Q.; Chen, J.−R.; Hu, X.−Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org. Lett. 2015, 17, 4464. (o) Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem. - Eur. J. 2016, 22, 1262. (p) Zhang, Q.; Zhang, Z.-Q.; Fu, Y.; Yu, H.−Z. ACS Catal. 2016, 6, 798. (q) Zhang, M.; Duan, Y.; Li, W.; Cheng, Y.; Zhu, C. Chem. Commun. 2016, 52, 4761. (r) Honeker, R.; Garza-Sanchez, A.; Hopkinson, M. N.; Glorius, F. Chem. - Eur. J. 2016, 22, 4395. (5) (a) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962. (b) Chen, Z. M.; Bai, W.; Wang, S. H.; Yang, B. M.; Tu, Y. Q.; Zhang, F. M. Angew. Chem., Int. Ed. 2013, 52, 9781. (c) Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346. (d) Chen, Z.-M.; Bai, W.; Wang, S.-H.; Yang, B.-M.; Zhang, F.-M.; Tu, Y.-Q. Angew. Chem., Int. Ed. 2013, 52, 9781. (e) Ji, S.-J.; Xu, X.-P.; Zi, Y.; Meng, H.; Chu, X.-Q. Chem. - Eur. J. 2014, 20, 17198. (f) Chen, Z.-M.; Zhang, Z.; Tu, Y.-Q.; Xu, M.-H.; Zhang, F.-M.; Li, C.-C.; Wang, S.-H. Chem. Commun. 2014, 50, 10805. (g) Ma, G.; Wan, W.; Li, J.; Hu, Q.; Jiang, H.; Zhu, S.; Wang, J.; Hao, J. Chem. Commun. 2014, 50, 9749. (h) Li, Y.; Liu, B.; Ouyang, X.−H.; Song, R.−J.; Li, J.−H. Org. Chem. Front. 2015, 2, 1457. (i) Bunescu, A.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2015, 54, 3132. (j) Li, Y.; Liu, B.; Li, H.-B.; Wang, Q.; Li, J.-H. Chem. Commun. 2015, 51, 1024. (k) Song, R. J.; Tu, Y.−Q.; Zhu, D.−Y.; Zhang, F.−M.; Wang, S.−H. Chem. Commun. 2015, 51, 749. (l) Huang, H. − L.; Yan, H.; Yang, C.; Xia, W. Chem. Commun. 2015, 51, 4910. (m) Huang, H.-L.; Yan, H.; Gao, G.-L.; Yang, C.; Xia, W. Asian J. Org. Chem. 2015, 4, 674. (n) Xu, P.; Hu, K.; Gu, Z.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51, 7222. (o) Sahoo, B.; Li, J.-L.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 11577. (p) Chu, X.-Q.; Meng, H.; Xu, X.-P.; Ji, S.-J. Chem. - Eur. J. 2015, 21, 11359. (q) Peng, H.; Yu, J. − T.; Jiang, Y.; Cheng, J. Org. Biomol. Chem. 2015, 13, 10299. (r) Huang, H.-H.; Yan, H.; Yang, C.; Xia, W. Chem. Commun. 2015, 51, 4910. (s) Bergonzini, G.; Cassani, C.; Lorimer-Olsson, H.; Hörberg, J.; Wallentin, C.-J. Chem. - Eur. J. 2016, 22, 3292. (t) Hu, W.; Sun, S.; Cheng, J. J. Org. Chem. 2016, 81, 4399. (6) Shu, X. Z.; Zhang, M.; He, Y.; Frei, H.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 5844. (7) For selected examples for gold and photoredox dual catalysis, see: (a) Sahoo, M.; Hopkinson, M. N.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 5505. (b) Hopkinson, M. N.; Sahoo, B.; Glorius, F. Adv. Synth. Catal. 2014, 356, 2794. (c) He, Y.; Wu, H.; Toste, F. D. Chem. Sci. 2015, 6, 1194. (d) He, Y.; Wu, H.; Toste, F. D. Chem. Sci. 2015, 6, 1194. (e) Cai, R.; Lu, M.; Aguilera, E. Y.; Xi, Y.; Akhmedov, N. G.; Petersen, J. L.; Chen, H.; Shi, X. Angew. Chem., Int. Ed. 2015, 54, 8772. (f) Tlahuext-Aca, A.; Hopkinson, M. N.; Sahoo, B.; Glorius, F. Chem. Sci. 2016, 7, 89. (g) Kim, S.; Rojas-Martin, J.; Toste, F. D. Chem. Sci. 2016, 7, 85. (h) Tlahuext-Aca, A.; Hopkinson, M. N.; Daniliuc, C. G.; Glorius, F. Chem. - Eur. J. 2016, 22, 11587.
(8) Reviews on the photoredox activation of diazonium salts: (a) Hari, D. P.; König, B. Angew. Chem., Int. Ed. 2013, 52, 4734. (b) Kindt, S.; Heinrich, M. R. Synthesis 2016, 48, 1597. (9) Selected recent examples of aryldiazonium salts in photoredox catalysis: (a) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566. (b) Hari, D. P.; Schroll, P.; König, B. J. Am. Chem. Soc. 2012, 134, 2958. (c) Schroll, P.; Hari, D. P.; König, B. ChemistryOpen 2012, 1, 130. (d) Hari, D. P.; Hering, T.; König, B. Org. Lett. 2012, 14, 5334. (e) Xiao, T.; Dong, X.; Tang, Y.; Zhou, L. Adv. Synth. Catal. 2012, 354, 3195. (f) Hering, T.; Hari, D. P.; König, B. J. Org. Chem. 2012, 77, 10347. (g) Prasad Hari, D. P.; Hering, B.; König. Angew. Chem., Int. Ed. 2014, 53, 725. (h) Guo, W.; Cheng, H.-G.; Chen, L. Y.; Xuan, J.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Adv. Synth. Catal. 2014, 356, 2787. (10) For selected examples of our work on internal redox reaction and cyclization sequences, see: (a) Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847. (b) Kwon, Y. K.; Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 1773. (c) Kim, D. Y. Bull. Korean Chem. Soc. 2013, 34, 3463. (d) Kim, M. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2013, 34, 3891. (e) Kang, Y. K.; Kim, D. Y. Adv. Synth. Catal. 2013, 355, 3131. (f) Suh, C. W.; Kim, D. Y. Bull. Korean Chem. Soc. 2014, 35, 98. (g) Kang, Y. K.; Kim, D. Y. Chem. Commun. 2014, 50, 222. (h) Suh, C. W.; Woo, S. B.; Kim, D. Y. Asian J. Org. Chem. 2014, 3, 399. (i) Suh, C. W.; Kim, D. Y. Org. Lett. 2014, 16, 5374. (j) Suh, C. W.; Jeong, H. J.; Kim, D. Y. Bull. Korean Chem. Soc. 2015, 36, 406. (k) Kim, M. H.; Jeong, H. J.; Kim, D. Y. Bull. Korean Chem. Soc. 2015, 36, 1155. (l) Kwon, S. J.; Kim, D. Y. Chem. Rec. 2016, 16, 1191. (11) (a) Woo, S. B.; Kim, D. Y. J. Fluorine Chem. 2015, 178, 214. (b) Suh, C. W.; Kim, D. Y. Tetrahedron Lett. 2015, 56, 5661.
D
DOI: 10.1021/acs.orglett.6b02201 Org. Lett. XXXX, XXX, XXX−XXX