Anal. Chem. 1987,59, 308R-337R (579) Uhrberg, R. 1. G.; Bringans, R. D.; Bachrach, R. Z.; Northrup, J. E., J . Vac. Sci. Technol. A (1986) 4, 1259-1264. (580) Vahakangas, J.; Idzerda, Y. U.; Williams, E. D.; Park, R . L., Phys. Rev. 6 (1986) 33, 8716-8723. (581) Valeri, S.;Dei Pennino, U.; Lomellini, P., Thin Solid Films (1985) 130, 315-326. (582) Van der Laan, G.; Zaanen, J.; Sawatzky, G. A,; Karnatak, R.; Esteva, J. M., Phys. Rev. 6 (1986) 33, 4253-4263. (583) Van Der Veen, J. F.; Van Loenen, E. J., Surf. Sci. (1966) 166, 701-712. (584) Van Dover, R. B.;Gyorgy, E. M.; Frankenthal, R. P.; Hong, M.; Siconoifi, D. J., J . Appl. Phys. (1986) 59, 1291-1296. (585) Varga, P.; Hetzendorf, G., Surf. Sci. (1985) 162, 544-549. (586) Vasilev, S.V.; Gerasimenko, N. N.; Altukhov, A. A,; Ivanov, V. V., Phys. Status Solidi (1986) 96, K163-167. (587) Vasquez, R. P.; Madhukar, A.; Grunthaner, F. J.; Naiman, M. L., J. Appl. Phys. (1986) 60, 226-233. (588) Vasquez. R. P.; Madhukar, A.; Grunthaner, F. J.; Naiman, M. L., J . Appl. Phys. (1986) 59, 972-975. (589) Vignes, J. L.; Denjean, P.; Le Hericy, J.; Langeron, J. P., Surf. Sci. (1986) 166 59-67. (590) Vink, T. J.; Der Kinderen, J. M.; Gijzeman, 0. L. J.; Geus, J. W.; Van Zoest, J. M., Appl. Surf. Sci. (1986) 26, 357-366. (591) Vink, T. J.; Der Kinderen, J. M.; Gijzeman, 0. L. J.; Geus, J. W., Appl. Surf. Sci. (1986) 26, 367-374. (592) Vink. T. J.; Spronck, S.F. G. M.: Gijzeman, 0. L. J.; Geus, J. W., Surf. Sci. (1986) 175, 177-184. (593) Vishnu Kamath, P.; Prabhakaran, K.; Rao, C. N. R., Indian J . Phys. 6 (1986) 60B, 84-94. (594) Wachs, A. L.; Miller, T.; Chiang, T.-C., Phys. Rev. 6 (1986) 33, 8870-8873. (595) Wagatsuma, K.; Hirokawa, K., Surf. Interface Anal. (1966) 8.37-42. (596) Wakamatsu, M.; Takeuchi. N.; Ishida, S.,J . Non-Cryst. Solids (1986) 80, 412-421. (597) Wang, P. W.; Cheng, H. S.; Gibson, W. M.; Corbett, J. W., J . Appl. Phys. (1966) 60, 1336-1341. (598) Watanabe, N.; Kobayashi, K. L. I.; Narusawa, T.; Nakashima, H., J. Appl. Phys. (1985) 56, 3766-3774. (599) Watts, J. F.; Castle, J. E.; Ludlam, S. J., J. Mater. Sci. (1986) 21, 2965-2971. (6001 Webber. P. R.: Morris, M. A,: Zhana. 2. G.. J . Phys, F (1986) 16, . 413-41 9. (601) Wei, C. S.; Van der Spiegel, J.; Santiago, J.. J . Appl. Phys. (1985) 58, dmn-dme .__". (602) Weimer, J. J.; Wurth, W.; Hudeczek, E.; Umbach, E., J . Vac. Sci. Technol. A (1986) 4, 1347-1350. (603) Weiss, B. Z.; Tu, K. N.: Smith, D. A., J. Appl. Phys. (1986) 59, 415-423. (604) Weller. D.; Alvarado, S. F., J . Appl. Phys. (1986) 59, 2908-2913. (605) Weller. D.; Alvarado, S.F.; Campagna, M.; Gudat, W.; Sarma, D. D., J. Less-Common Met. (1965) 111, 277-283. (606) Weller, D.; Sarma, D. D., Surf. Sci. (1986) 171, L425-431. (607) Weng Yu-Qing; McMahon, C. J., Jr., Scr. Metall. (1986) 20, 19-23. (608) Wertheim, G. K.; Buchanan, D. N. E., Phys. Rev. 6 (1986) 33, 914-918.
._""
(609) Wesner, D. A.; Coenen, F. P.; Bonzel, H. P., Phys. Rev. B (1986) 33, 0 163-1829. (610) Wesner, D. A.; Linden, G.; Bonzel, H. P., Appl. Surf. Sci. (1986) 28, 335-356. (611) Whetten, T. J.; Ruoff, A. L., J . Vac. Sci. Technol. A (1986) 4, 586-589. (612) White, R. T.; Malherbe, J. B., Appl. Surf. Scl. (1986) 25, 32-40. (613) Williams, M. D.; Chln, K. K.; McCants, C. E.; Mahowald, P. H.; Splcer, W. E., J . Vac. Technol. 6 (1986) 4, 939-942. (614) Williams, M. D.; Nogami, J.; Kendelewicz, T.; List, R. S.; Bertness, K. A.; Lindau, I.;Spicer, W. E., SolM State Commun. (1986) 56, 15-18. (615) Williams, R. H.; McLean, A. B.; Evans, D. A.; Herrenden-Harker, W. G., J . Vac. Sci. Technol. 6 (1986) 4, 966-973. (616) Wirth, T.; Procop, M.; Lange, H., Surf. Interface Anal. (1986) 8, 7-12. (617) Wittmer, M.; Oelhafen, P.; Tu, K. N., Phys. Rev. 6 (1986) 33, 5391-5400. (618) Wong, C. Y.; Klepner, S. P., Appl. Phys. Lett. (1986) 48, 1229-1230. (619) Woods, M. E., Hopkins, B. J., J . Phys. C(1986) 19, 637-642. (620) Wu, C. Y.; Lin. M. S.,J . Appl. fhys. (1986) 60, 2050-2070. (621) Wu, S.C.; Wang, Z. Q.; Li, Y. S.;Jona, F.; Marcu, P. M., Phys. Rev. 6 (1986) 33, 2900-2902. (622) Wurfl, J.; Hartnagel, H. L., 24th Annual Proceedings Reliability Physics, IEEE, New YO& (1986), 138-143. (623) Xie, Y. H.; Wang, K. L.; Kao, Y. C., J. Vac. Sci. Technol. A (1985) 3, 1035-1039. (624) Xing, Y. R.; Ranke, W., Surf. Sci. (1986) 187, L171-174. (625) Yabumoto, N.; Oshima, M., J. Electrochem. SOC. (1985) 132, 2224-2227. (626) Yang, H. T.; Mooney, P. M., J . Appl. Phys. (1985) 58, 1854-1859. (627) Yasunaga, H.; Kubo, Y.; Okuyama. N., Jpn. J . Appl. Phys. (1986) 25, L400-402. (628) Yu. Yu; Pogrebnjak, A. D., Nucl. Instrum. Methods Phys. Res. Sect. B (1986) 2, 162-164. (629) Zaanen, J.; Westra, C.; Sawatzky, G. A,, Phys. Rev. 6 (1966) 33, 8060-8073. (630) Zembutsu, S.;Kobayashi, M., Thin Solid Films (1985) 129, 289-297. (631) Zental, G.; Fostoss-Wegner, M., J . Non-Cryst. Solids (1985) 77, 225-228. (632) Zhang, C.; Gellman, A. J.; Wang. G. J.; Somorjai, G. A,, Surf. Sci. (1985) 164, L835-838. (633) Zhang, Fangquing; He Deyan; Chen, Guanghua. Chin. Phys. Lett, (1986) 3. 245-248. (634) Zheng, L. R.; Hung, L. S.; Feng, S.0.; Revesz, P.; Mayer, J. W.; Miles, G.. Appl. Phys. Lett. (1986) 48, 767-769. (635) Ziebarth, R. P.; Shiou-Jyh Hwu; Corbett, J. D., J . Am. Chem. SOC. (1986) 108, 2594-2602. (636) Zwicknagl, P.; Mukherjee, S. E.; Capani, P. M.; Lee, H.; Griem, H. T.; Rathbun, L.; Beny, J. D.; Jones. W. L.; Eastman, L. F., J . Vac. Sci. Technol. 6 (1986) 4, 476-484. (637) Kane, P. F.; Larrabee, G. B., Anal. Chem. (1977) 49, 221R-230R. (638) Kane, P. F.; Larrabee, G. B., Anal. Chem. (1979) 51, 30813-317R. (639) Larrabee, G. B.; Shaffner, T. J., Anal. Chem. (1981) 53, 163R-174R. (640) Bowling, R. A.; Larrabee, G. B., Anal. Chem. (1983) 55, 133R-156R. (641) Bowling, R. A.; Shaffner, T. J.; Larrabee, G. 8. (1985) 57, 130R-151R. ~~~
Water Analysis Patrick MacCarthy* and Ronald W. Klusman Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401
James A. Rice Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
INTRODUCTION This is the twenty-second biennial review dealing with the inorganic and organic analytical chemistry of water. The format of this review is essentially the same as that of the previous review in this series which was published in Analytical Chemistry in 1985 ( I ) . The references used in preparing this review were compiled by a computer-search of Chemical Abstracts covering the period from the previous 308 R
review (September 1984) through October 1986.
INORGANIC ANALYSIS Alkali and Alkaline-Earth Metals
Barium. Unno ( I A ) determined barium by precipitation as BaCrOI by addition of K2Cr04. The BaCrO, was dissolved in "OB and the barium was determined by atomic absorption spectroscopy. Recoveries of barium are reported to be
0003-2700/87/0359-308R$06.50/00 1987 American Chemical Society
WATER ANALYSIS
PaMsk YacCarthy is Prohrssm- 01 Wlemib try and Geochemistry at the Colorado schwi of Mines. ne received E.%. (hons.) and MSC. degrees in chemistry from Universily College GBiway. Ireland. an M.S. degree in chemistry hom Norlhwestern Universty. and in 1975 a Ph.0. in analyticai chemistry horn the Universiiy of Cincinnati. Dr. MacCarthy has alro *wed on the faculty of the University of Georgia. Athens. His prlnclpai research interests are in soil and water chemistry wilh a particular emphasis on humic SUbStanCeS. He has authored w c o a u m o ~ ~OW d 50 schntnic B R ~ C I ~inS lhe areas 01 BMWCBICIXImiStw. environmentai .*' chemistry. soil science. organic geochemistry, and Chl....ll. ""--tion. and is ccedhor of the book Humic Substances In Soil, Sediment. and Water (Wiiey. 19851. Or. MacCarihy is spending lhe 2s-month period from May 1985 mroUOh AUOUI~ 1987 on sabbatical leave at the Water Resources Divisi~n01 meus. Emmical ~ w v e yin Denver.
-.
Ronald W. KIuman is presently Proleso of Geochemistry at lhe Colorado School o
m
Mines. He received his B.S. degree in 1968 and Ph.D. degree in 1969. blh nom lndi ana Univerrw. He is a member 01 the Am erican Assocktion tor the Advancement o Science. American Association 0 Petroleum Geoiqllsts. American Geophpi cai Union. ASJOelation of Petroleum Geo chemical Expbrationists. Society 01 Mining . Engineers. Society lor Environmental Gep chemistry and Health, The Associati~n01 Exploration Geochemists. and The Geochemical Society. Reseamh interests include environmentai geochemisny. watev ~~s and vapor quali. rampiing design applied to large. h e t e r ~ n e systems. techniques applled to penoleurn. mintKBI. and geothermal prospecting.
$X
J a m A. Rlee is presently a research assockte in me Department 01 Chemisny and Bbchemistry at the Univmw 01 Maryland. He received a B.A. degree in natwai science horn St. John's Unlversw (MNI and M.S. and Ph.D. degrees in geochemistry from the Colorado School 01 Mines. His research interests include lhe applications of organic analyticai chemistry to geochemlsny. lhe geochemirlry 01 humin. and the late 01 arganic materials in sedimentary environmB"tS.
95-102%. Sugiyama et al. (2A) used inductively coupled plasma emission spectrometry for the direct determination of barium in seawater using a simulated seawater for matrix matched standard solutions. Beryllium. Measures and Edmond (3A) describe a gas chromatographic technique for detection of a derivatized beryllium compound. Makhnev et al. (4A) extracted beryllium by diantipyrylmethane into dichloroethane and analyzed the extract by using emission spectroscopy. Samchuk et al. (5A) utilized electrothermal atomic absorption for determination of beryllium after extraction as an acetylacetonato complex. Chai et al. (6A) determined beryllium in water colorimetrically after forminz a metal chelate with Eriochrome Cvanine R in the presenclof tetradecylpyridinium chloride. Recovery of hervlliiim is t n 5 _"of .. 909" .... n -. .. ReI1. ~ . , Calcium. Mu et al. (7A) determined calcium as well as other alkaline-earth metals after separation on a Dionex-14 ion chromatograph, using 0.004 M HNO,-0.0025 M Zn(NO,), eluting solutions. Yan and Schwedt (8A) separated calcium and other divalent ions on cation-exchange columns with ethylenediamine and citric acid. Alonso et al. (9A) determined calcium by using a poly(viny1 chloride) membrane electrode in a flow-injection system. Uchida et al. (loa)used a flow injection system for rapid analysis of calcium using hydroxynaphthol blue as an indicator and spectrophotometric detection. Wei (11A) used flow injection-absorption spectrophotometry to measure the absorbance due to the exchange of calcium with the zinc complex of EGTA. Wada et al. (12A) ~~
examined the use of 0.0'-dihydroxyazo dyes as spectrophotometric reagents for calcium and magnesium. 242Hvdroxy-3,fi-disulfo-l-naphthylarol-5-(N.N-diethylamino)phenol was the best reagent for the analysis of calcium and magnesium by flow injection analysis. Fang et al. (13A) coupled a gradient scanning flow injection technique with the simultaneous flame photometric determination of calcium as well as several alkali metals in natural waters. Basta and Tahatabai (14A) compared ion chromatography with flame photometry and atomic absorption spectroscopy for the analysis of alkali and alkaline-earth metals including calcium. The monovalent and divalent cations are separated on a sulfonated divinylbenzenestyrene copolymer cation exchange resin followed by conversion to hydroxides on an anion-exchange resin in the OH-form. The alkali metals were eluted with 5 mM HC1 and the alkaline earths were eluted with a 2.5 mM HC1+ 2.5 mM m-phenylenediamine:2HCI. Electrical conductivity as the mode of detection allowed determination of the alkali metals and alkaline earths at concentrations 20.1 mg/L. Lithium. Huang e t al. (15A) evaluated electrothermal atomic absorption in the analysis of lithium in water samples. Optimization of parameters resulted in a detection limit of 5 X lo-', g and a relative standard deviation of 2.3%. Yakushina and Petrov ( E A ) describe an ac polarography method for lithium in DMF, Me,NAc, DMSO, and their aqueous solutions using tetraalkylammonium salts as supporting electrolytes. The method was used for determination of lithium in wastewaters. Magnesium. Blanco and Sanchez (17A) used first derivative fluorescence spectroscopy for the determination of magnesium. Magnesium forms a fluorescent chelate with salicylaldehyde-2-pyridylhydrazone.Detection limits are in the Mg/L range. Miyazaki et al. (18A) utilized a conventional high-performance liquid chromatographic system using a photometric detector. Low capacity ion exchangers allowed separation of magnesium and other alkaline-earth metals and alkali metals with detection limits in the range of 3C-300 Mg/L. Potassium. Iwachido et al. (Z9A) determined potassium in freshwaters with dibenzo-18-crown-fi and 4-[[4-(phenylamino)phenyl]azo]-2.5-dichlorohenzenesulfonicacid which forms a colored ion pair which is extracted into benzene for measurement hy visible spectrophotometry. Zhang et al. (2OA) used another crown compound, N,N-bis(4'-acetamidohenzo15-crown-5)-p-toluenesulfonamide, for the spectrophotometric determination of potassium. Radium. See Section on Radionuclides. Sodium. Hirschfield (21A) developed a method using near-infrared spectroscopy for measuring the spectra of a series of reference solutions. Three selected wavelengths are used and a multilinear calibration curve is calculated hy regression. Zhai and Zhang (22A) determined sodium in saline waters by digital thermometric titration with a 30% KF solution and reported a relative error of less than 1%. Interference by magnesium and calcium is eliminated by extraction with 8hydroxyquinoline-chloroform. TransHlon Metals
1st Series. Titanium. Nojiri et al. (1R) preconcentrated trace metals, including titanium, on a Ct8-modifiedsilica gel, followed by analysis with inductively coupled plasma emission spectrometry. Wang and Mahmoud (28)chelated titanium with several dihydroxyazo dyes which are adsorbed on a hanging mercury drop electrode. Cyclic voltammetry is used to measure the reduction process. Preconcentration resulted in a detection limit of 0.035 mg/L and a relative standard deviation of 3.4% a t 5 pph. Titanium could he determined in water spectrophotometrically by forming a Ti(IV)-stilhazo-cetyl-trimethylammonium bromide complex (3R). Beer's law is followed in the range of 0-28 mg/L with a maximum molar absorptivity of 1.1 X lo5 at 520 nm. Vanadium. Fukasawa et al. (4B) developed a microtechnique for separation and determination of vanadium. A 2.5-mL sample of water is passed through an anion exchange column to adsorb vanadium. The vanadium is eluted, separating it from interferences by molybdenum and tungsten. A lOOrL aliquot is injected into the flow of 0.25 M NaBr03-0.03 M gallic acid which is oxidized by vanadium and spectrophotometrically determined at 380 nm. Vanadium can he ANALYTICAL CHEMISTRY. VOL. 59. NO. 12. JUNE 15. 1987
309R
WATER ANALYSIS
detected a t the 0.1-ng level and with a relative standard deviation