Corrections
506 Bioconjugate Chem., Vol. 6,No. 4, 1995 LITERATURE CITED
(1) Ferrin, L. J., and Camerini-Otero, R. D. (1994) Long-range mapping of gaps and telomeres with RecA-assisted restriction endonuclease (RARE) cleavage. Nut. Genet. 6, 379-83. (2) Moser, H. E., and Dervan, P. B. (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Science (Washington, DE.) 238, 645-50. (3) Perrouault, L., Asseline, U., Rivalle, C., Thuong, N. T., Bisagni, E., Giovannangeli, C., Le Doan, T., and Helene, C. (1990) Sequence-specific artificial photo-induced endonucleases based on triple helix-forming oligonucleotides. Nature (London) 344,358-60. (4) Birg, F., Praseuth, D., Zerial, A,, Thuong, N. T., Asseline, U., Le Doan, T., and Helene, C. (1990) Inhibition of simian virus 40 DNA replication in CV-1 cells by an oligodeoxynucleotide covalently linked to an intercalating agent. Nucleic Acids Res. 18, 2901-8. (5) Postel, E. H., Flint, S. J., Kessler, D. J., and Hogan, M. E. (1991) Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc. Natl. Acad. Sci. U.S.A. 88,8227-31. (6) Postel, E. H. (1992) Modulation of c-myc transcription by triple helix formation. Ann. N.Y. Acad. Sci. 660, 57-63. (7) Uhlmann, E., and Peyman, A. (1990) Antisense oligonucleotides: A new therapeutic principle. Chem. Rev. 90, 544-84. (8) Roberts, R. W., and Crothers, D. M. (1991) Specificity and stringency in DNA triplex formation. Proc. Natl. Acad. Sci. U.S.A. 88, 9397-401. (9) Xodo, L. E., Alunni-Fabbroni, M., Manzini, G., and Quadrifoglio, F. (1993) Sequence-specific DNA-triplex formation at
imperfect homopurine-homopyrimidine sequences within a DNA plasmid. Eur. J.Biochem. 212, 395-401. (10) Pilch, D. S., Levenson, C., and Shafer, R. H. (1991) Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Biochemistry 30, 6081-8. (11) Praseuth, D., Le Doan, T., Chassignol, M., Decout, J. L., Habhoub, N., Lhomme, J., Thuong, N. T., and Helene, C. (1988) Sequence-targeted photosensitized reactions in nucleic acids by oligo-a-deoxynucleotides and oligo-p-deoxynucleotides covalently linked to proflavin. Biochemistry 27,30318. (12) Geselowitz, D. A., and Neckers, L. M. (1992) Analysis of oligonucleotide binding, internalization, and intracellular trafficking utilizing a novel radiolabeled cross-linker. Antisense Res. Dev. 2, 17-25. (13) Das, M., and Fox, C. F. (1979) Chemical cross-linking in biology. Annu. Rev. Biophys. Bioeng. 8, 165-93. (14) Peters, K., and Richard, F. M. (1977) Chemical crosslinking reagents and problems in studies of membrane structure. Annu. Rev. Biochem. 46, 523-51. (15) Knowles, J. R. (1972) Photogenerated reagents for biological receptor-site labeling. Acc. Chem. Res. 5, 155-60. (16) Durland, R. H., Kessler, D. J., Gunnell, S., Duvic, M., Pettitt, B. M., and Hogan, M. E. (1991) Binding of triple helix forming oligonucleotides to sites in gene promoters. Biochemistry 30, 9246-55. (17) Rasband, W., NIH Image 1.55, National Institutes of Health, Bethesda, MD. BC9500204
CORRECTIONS Volume 6, Number 2, MarcWApril 1995.
Julie B. Stimmel, Marie E. Frederick C. Kull, Jr."
Stockstill, and
YTTRIUM-90 CHELATION PROPERTIES OF TETRAAZATETRAACETIC ACID MACROCYCLES, DIETHYLENETRIAMINEPENTAACETIC ACID ANALOGUES, AND A NOVEL TERPYRIDINE ACYCLIC CHELATOR Page 221. In the Experimental Procedures under Radiolabeling Efficiency and Duration of Yttrium-90 Chelation, the concentrations of chelator stock and yttrium-90 stock should be micromolar. Under Dissociation of Yttrium-90-labeled Chelators a t pH 2.0, the concentration of yttrium-90 stock was 400 pM. Page 222. In Figure 2, the text in the legend should state that the yttrium-90 concentration was 200 pM and the final volume of chelation was 10 pL. Page 223. The legend for Figure 3 should state that the final concentration of chelator was 67 pM. BC950185C