13
Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on July 20, 2018 at 00:26:36 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Advanced Digestion Process Development for Methane Production from Biomass-Waste Blends SAMBHUNATH GHOSH and DONALD L. KLASS Institute of Gas Technology, 3424 South State Street, Chicago, IL 60616
Biomass and organic wastes (discarded biomass or biomass-derived material) may supply up to 15% of the U.S. energy needs by the end of this century via gasification or other conversion schemes (1). One conversion process that is expected to play a role in producing methane from biomass and wastes is anaerobic digestion. Commercial production of substitute natural gas (SNG) and medium-Btu fuel gas by anaerobic digestion of waste materials has already started in the U.S. and other countries (2). Increased usage of the anaerobic digestion process for methane production is, however, hindered because of the low reaction rate and conversion efficiency of the conventional digestion process. New digestion techniques are needed to improve conversion rates and efficiencies so that the full potential of anaerobic digestion as a methane-producing process can be realized. Starting with the crude septic tank, a number of improved process configurations, including "standard-rate" digestion, stage digestion, "high-rate" digestion, and the anaerobic contact process, have evolved during the nearly 100 years of application of the anaerobic digestion process to sewage sludge stabilization. However, the design requirements of even one of the best anaerobic sludge stabilization modes, high-rate digestion, result in large expensive plants that are difficult to justify for commercial SNG production. An additional problem with the conventional digestion process is
0097-6156/81/0144-0251 $07.00/0 © 1981 American Chemical Society
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
252
BIOMASS AS A NONFOSSIL F U E L
SOURCE
t h a t 4 0 t o 7 0 % of t h e feed o r g a n i c s r e m a i n u n c o n v e r t e d a n d m u s t be d i s p o s e d of at s u b s t a n t i a l cost. Considerable research, s u c h as t h a t r e p o r t e d by Pohland a n d Ghosh (3). Gavett (4), Ort (5,6). S w i t z g a b l e (7). Klass et al. (8). G h o s h et al. (9). G h o s h a n d Klass ( 1 0 , ] \ ) H a u g (12). a n d o t h e r s (13) has t h e r e f o r e been d i r e c t e d t o t h e d e v e l o p m e n t of better d i g e s t i o n m e t h o d s . t
Considerable w o r k has been d o n e at t h e I n s t i t u t e of Gas T e c h n o l o g y since 1971 t o d e v e l o p a d v a n c e d d i g e s t i o n m e t h o d s a n d process c o n f i g u r a t i o n s for t h e c o n v e r s i o n of various o r g a n i c feeds t o h i g h - B t u fuel gas (8-11). In t h i s paper, w e w i l l d e s c r i b e a f e w selected a d v a n c e d d i g e s t i o n c o n c e p t s a n d t h e results of t h e i r a p p l i c a t i o n t o b i o m e t h a n a t i o n of a m i x e d b i o m a s s - w a s t e b l e n d . T h e t e r m " a d v a n c e d d i g e s t i o n " as used in t h i s paper includes u n c o n v e n t i o n a l f e r m e n t a t i o n m o d e s a n d process c o n f i g u r a t i o n s for i m p r o v e d m e t h a n e p r o d u c t i o n rate a n d y i e l d . T h e research r e p o r t e d here c o n s i s t e d of a laboratory e v a l u a t i o n of several a d v a n c e d d i g e s t i o n m e t h o d s a n d a selected b i o m a s s - w a s t e b l e n d . T h e o b j e c t i v e of t h i s w o r k w a s t o search for an o p t i m u m b i o c o n v e r s i o n s y s t e m c o n f i g u r a t i o n , a n d t h e u l t i m a t e goal is t o a p p l y t h i s c o n f i g u r a t i o n t o t h e p r o d u c t i o n of SNG. Specifically, t h e a d v a n c e d d i g e s t i o n t e c h n i q u e s s t u d i e d w e r e d i g e s t i o n of p r e t r e a t e d f e e d , r e c y c l i n g of d i g e s t e r e f f l u e n t a n d p r o d u c t gas. aerobic p o s t t r e a t m e n t a n d r e c y c l i n g of d i g e s t e r e f f l u e n t , a n d t w o - p h a s e digestion. T h e e x p e r i m e n t a l p l a n c o n s i s t e d of: •
C o n v e n t i o n a l h i g h - r a t e d i g e s t i o n u n d e r baseline o p e r a t i n g c o n d i t i o n s of 3 5 ° C d i g e s t i o n t e m p e r a t u r e . 0.1 lb V S / f t - d a y l o a d i n g a n d a 12-day detention time. 3
•
M e s o p h i l i c (35°C) a n d t h e r m o p h i l i c (55°C) d i g e s t i o n of feed s u b j e c t e d t o m i l d alkaline (sodium hydroxide) p r e t r e a t m e n t w i t h r e c y c l i n g of spent c a u s t i c for fresh feed t r e a t m e n t a n d neutralization of t r e a t e d feed w i t h digester gas t o m i n i m i z e a c i d neutralizer r e q u i r e m e n t .
•
M e s o p h i l i c (35°C) d i g e s t i o n w i t h p r o d u c t gas r e c y c l i n g .
•
M e s o p h i l i c (35°C) d i g e s t i o n w i t h r e c y c l i n g of aerobically
posttreated
digester effluent. •
Two-phase digestion.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
13.
GHOSH AND KLASS
253
Methane from Biomass-Waste
MATERIALS AND METHODS Digester Feeds Four f e e d s t o c k s , w a t e r h y a c i n t h (Eichhornia grass (8) (Cynodon
dactylon)
crassipes)
a n d Coastal B e r m u d a
i n d i g e n o u s t o t h e Gulf Coast, a n d s e w a g e
s l u d g e a n d m u n i c i p a l solid w a s t e ( M S W ) w e r e c o n s i d e r e d f o r b i o c o n v e r s i o n t o m e t h a n e . C o n v e n t i o n a l m e s o p h i l i c (35°C) h i g h - r a t e d i g e s t i o n of a b i o m a s s s l u d g e b l e n d p r e p a r e d w i t h t h e s e m a t e r i a l s s h o w e d t h a t t h e m i x e d feed w a s superior t o t h e single feeds in t e r m s o f n u t r i t i o n a l b a l a n c e a n d m e t h a n e y i e l d a n d p r o d u c t i o n rate (14-16). U t i l i z a t i o n o f a b i o m a s s - w a s t e b l e n d has several a d v a n t a g e s . Use of a b l e n d f a c i l i t a t e s f e e d s t o c k s u p p l y o n a y e a r - r o u n d basis, a n d a m i x e d feed m a y be s u p e r i o r t o b i o m a s s alone in t e r m s o f process economics.
In a d d i t i o n ,
use of a b i o m a s s - w a s t e
blend
provides t h e
o p p o r t u n i t y f o r s i m u l t a n e o u s e n e r g y recovery a n d w a s t e s t a b i l i z a t i o n in an o p t i m i z e d i n t e g r a t e d s y s t e m . T h e feed used f o r t h e w o r k d e s c r i b e d in t h i s paper is a m i x t u r e of s e w a g e l a g o o n e f f l u e n t - g r o w n w a t e r h y a c i n t h , Coastal B e r m u d a grass, t h e c o m b u s t i b l e f r a c t i o n o f m u n i c i p a l solid w a s t e , a n d m i x e d a c t i v a t e d - p r i m a r y s l u d g e b l e n d e d in t h e mass ratio of 3 2 . 3 : 3 2 . 3 : 3 2 . 3 : 3 . 1 o n a volatile solids (VS) basis. T h i s p a r t i c u l a r ratio w a s selected based o n t h e p r o j e c t e d availability of these feed c o m p o n e n t s f o r a c o m m e r c i a l p l a n t in t h e Gulf States area. T h e b i o m a s s a n d M S W c o m p o n e n t s w e r e finely g r o u n d before b l e n d i n g . The m i x e d feed had a m e d i a n p a r t i c l e size of 0.25 m m . It had m o i s t u r e , VS, c a r b o n , n i t r o g e n , p h o s p h o r u s , sulfur, h y d r o g e n , c a l c i u m , s o d i u m , p o t a s s i u m , m a g n e s i u m , cellulose, h e m i c e l l u l o s e . l i g n i n . a n d c r u d e p r o t e i n c o n t e n t s a n d a h i g h h e a t i n g v a l u e o f 8 8 . 9 7 . 8 2 . 7 8 (of t o t a l solids). 4 3 . 1 4 , 1.64, 0.43. 0 . 3 1 , 5.60, 1.23. 0.78, 1.05, 0.22. 37.5. 31.8. 4.6. a n d 10.1 w t %. a n d 7.445 B t u / l b (dry), respectively. T h e m i x e d feed h a d t h e e m p i r i c a l f o r m u l a C3595 H5545 Ο1.979
N
0.117
p
o.oi4
S0.010 A s h
1 7 2
2
at a m o l e c u l a r w e i g h t of 100, a n d a
t h e o r e t i c a l m e t h a n e y i e l d o n a n a e r o b i c d i g e s t i o n o f a b o u t 6.4 SCF/lb V S a d d e d (14).* A l s o , it w a s d e t e r m i n e d b y l o n g - t e r m b a t c h d i g e s t i o n tests t h a t this m i x e d feed had a n u l t i m a t e a n a e r o b i c b i o d e g r a d a b i l i t y or v o l a t i l e solids d e s t r u c t i o n e f f i c i e n c y of 6 6 % (14). Digester feed slurries w e r e p r e p a r e d b y d i l u t i n g a w e i g h e d mass o f t h e feed a c c o r d i n g t o t h e l o a d i n g rate w i t h d i s t i l l e d d e m i n e r a l i z e d w a t e r t o a v o l u m e d e t e r m i n e d b y t h e h y d r a u l i c d e t e n t i o n t i m e o f t h e run. •
Assumes 30% of volatile solids converted to cells on one pass through the digester.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
254
BIOMASS AS A N O N F O S S I L F U E L
SOURCE
Digesters T h e d i g e s t i o n runs w e r e c o n d u c t e d in c u s t o m - m a d e , f l a t - b o t t o m e d , c y l i n d r i c a l Plexiglas digesters h a v i n g f o u r vertical baffles m o u n t e d 9 0 ° apart o n t h e inside w a l l s t o p r e v e n t v o r t e x i n g of t h e c u l t u r e d u r i n g m e c h a n i c a l a g i t a t i o n by t w o stainless steel impellers at 1 3 0 r p m . T h e digesters w e r e h e a t e d by p l a c i n g t h e m in a c o n s t a n t - t e m p e r a t u r e c h a m b e r or by t h e r m i s t o r c o n t r o l l e d h e a t i n g tapes. A l l digesters w e r e g e o m e t r i c a l l y similar in c o n s t r u c t i o n . T h e c u l t u r e v o l u m e s of t h e v a r i o u s digesters are i n d i c a t e d in t h e t a b u l a t i o n s of t h e e x p e r i m e n t a l results. Except for t h e t w o - p h a s e s y s t e m , all digesters w e r e m a n u a l l y f e d o n c e per d a y after w i t h d r a w i n g an equal v o l u m e of digester e f f l u e n t . A s d e s c r i b e d later, t h e t w o - p h a s e s y s t e m w a s e q u i p p e d w i t h an a u t o m a t e d f e e d i n g s y s t e m . A D V A N C E D S Y S T E M CONFIGURATION A N D OPERATION Digestion of Pretreated Feed T h e m i x e d h y a c i n t h - g r a s s - M S W - s l u d g e feed w a s p r e t r e a t e d w i t h c a u s t i c soda s o l u t i o n at m i l d t e m p e r a t u r e s a n d pressures in an a t t e m p t t o i m p r o v e feed b i o d e g r a d a b i l i t y a n d m e t h a n e y i e l d . T r e a t m e n t t e m p e r a t u r e s (5°. 2 5 ° , 5 5 ° . 1 0 0 ° . 121°C) a n d pressures ( a t m o s p h e r i c a n d 3 0 psig) a n d d i l u t e c a u s t i c c o n c e n t r a t i o n s w e r e selected for t h e p r e t r e a t m e n t s t u d i e s for reasons of l o w e r reaction vessel costs, r e d u c e d e n e r g y a n d c h e m i c a l i n p u t s , a n d t o keep t h e salt c o n c e n t r a t i o n in t h e d i g e s t e r l o w . A l k a l i n e t r e a t m e n t u n d e r these c o n d i t i o n s is e x p e c t e d t o be a c o s t - e f f e c t i v e m e t h o d for increasing m e t h a n e p r o d u c t i o n f r o m cellulosic feeds (14.17). D i g e s t i o n of t h e c a u s t i c - t r e a t e d feed w a s c o n d u c t e d at selected m e s o p h i l i c (35°C) a n d t h e r m o p h i l i c (55°C) t e m p e r a t u r e s . Flow d i a g r a m s d e p i c t i n g t h e e x p e r i m e n t a l s e q u e n c e are p r e s e n t e d in Figures I a n d II. T h e p r o c e s s i n g steps i n c l u d e d m i x i n g of t h e u n d i l u t e d feed w i t h c a u s t i c s o l u t i o n , p r e t r e a t m e n t at t h e c h o s e n t e m p e r a t u r e , pressure, a n d t i m e ; d i l u t i n g t h e t r e a t e d feed w i t h d i s t i l l e d d e m i n e r a l i z e d w a t e r a n d neutralization of t h e digester feed slurry w i t h h y d r o c h l o r i c a c i d or digester g a s ; a n d d i g e s t i o n of t h e p r e t r e a t e d neutralized f e e d . In s o m e runs, t h e d i g e s t e r feed slurry w a s neutralized w i t h t h e d i g e s t e r gas t o r e d u c e neutralizer a c i d r e q u i r e m e n t a n d d i g e s t e r salinity, a n d t o increase t h e b i c a r b o n a t e alkalinity (buffer c a p a c i t y ) . In still o t h e r runs, t h e c a u s t i c - t r e a t e d feed w a s v a c u u m f i l t e r e d , a n d a p o r t i o n of t h e filtrate c o n t a i n i n g t h e spent c a u s t i c s o l u t i o n w a s r e c y c l e d for fresh feed pretreatm e n t . Filtrate r e c y c l i n g r e d u c e d t h e c a u s t i c r e q u i r e m e n t for feed pretreatm e n t . t h e acid r e q u i r e m e n t t o neutralize t h e pretreated feed, a n d t h e salt c o n c e n t r a t i o n in t h e feed slurry a n d digester.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
13.
255
Methane from Bio mass-Waste
GHOSH AND KLASS
II-/
DIGESTER GAS
CAUSTIC NoOH
ι
SOLUTION /
PRETREATMENT j j ^ "
MIXING
1
H 0 2
^
1
FEED S L U R R Y PREPARATION
NEUTRALIZATION EFFLUENT
Figure 1.
QAS COLLECTION
Experimental sequence for mesophilic digestion of caustic-treated feed
MIXING
PRETREATMENT IN 55"C/KX)*C INCUBATOR - ALTERNATE PATH
Figure 2 .
Experimental sequence for thermophilic digestion of caustic-treated feed
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
256
BIOMASS AS A NONFOSSIL F U E L SOURCE
Digestion W i t h Product Gas Recycling T h e s y s t e m used t o c o n d u c t t h e gas r e c y c l i n g studies is s h o w n in Figure III. Digester gas w a s c l e a n e d a n d d r i e d by passing it t h r o u g h a g l a s s - w o o l p a r t i c u l a t e t r a p , a w a t e r - c o o l e d c o n d e n s a t e t r a p , a n d a C a S 0 -filled gasd r y i n g c o l u m n . T h e c l e a n , d r y gas w a s r e c y c l e d at a selected recycle ratio (defined as t h e ratio of r e c y c l e d gas f l o w rate in d r y s t a n d a r d c u b i c feet at 6 0 ° F a n d 3 0 in. Hg t o t h e d i g e s t e r gas p r o d u c t i o n rate in d r y s t a n d a r d c u b i c feet) i n t o t h e d i g e s t i n g c u l t u r e t h r o u g h a glass diffuser. E x p e r i m e n t s w e r e c o n d u c t e d at gas recycle ratios r a n g i n g f r o m a b o u t 2 t o 125. T h e pressure d i f f e r e n c e across t h e gas p u m p c o r r e s p o n d i n g t o t h e s e recycle ratios r a n g e d f r o m a b o u t 1 t o 9 psi. 4
Digestion W i t h Recycling of Aerobically Posttreated Digester Effluent T h e p u r p o s e of t h i s s t u d y w a s t o e x a m i n e t h e effect of aerobic biological p o s t t r e a t m e n t of d i g e s t e r e f f l u e n t o n t h e b i o d e g r a d a b i l i t y of r e c a l c i t r a n t feed c o m p o n e n t s passing u n c o n v e r t e d or partially c o n v e r t e d t h r o u g h t h e digester. P r e s u m i n g t h a t aerobic t r e a t m e n t of t h e d i g e s t e r e f f l u e n t i m p r o v e d b i o d e g r a d a b i l i t y . r e c y c l i n g of t h e t r e a t e d solids w a s e x p e c t e d t o increase m e t h a n e p r o d u c t i o n rate a n d yield w i t h s i m u l t a n e o u s a n d e n h a n c e d r e d u c t i o n of t h e e f f l u e n t solids a n d soluble o r g a n i c s load d i s c h a r g e d f r o m t h e overall a n a e r o b i c - a e r o b i c s y s t e m . In t h e e x p e r i m e n t a l process c o n f i g u r a t i o n (Figure IV). d i g e s t e r e f f l u e n t w a s aerobically t r e a t e d in a 1 4 / c u l t u r e v o l u m e s e m i c o n t i n u o u s l y . or in a 2 / c u l t u r e v o l u m e b a t c h a c t i v a t e d s l u d g e unit. A e r a t i o n a n d m i x i n g w e r e a c c o m p l i s h e d by d i f f u s e d a e r a t i o n . Dissolved o x y g e n w a s m o n i t o r e d by a lead-silver g a l v a n i c p r o b e inserted in t h e c u l t u r e . T h e 1 4 / a c t i v a t e d s l u d g e u n i t w a s a t w o - c o m p a r t m e n t t a n k , t h e aeration c h a m b e r of w h i c h w a s separated f r o m t h e a d j a c e n t s e t t l i n g zone by a v e r t i c a l plate. This u n i t w a s used for s e m i c o n t i n u o u s o p e r a t i o n at aerator d e t e n t i o n t i m e s greater t h a n 2 days. Settled s l u d g e w i t h d r a w n f r o m t h e b o t t o m of t h e settler w a s r e c y c l e d t o t h e digester. T h e 1 4 / unit w a s o p e r a t e d at 3 5 ° C w i t h an air f l o w rate of 1 / / m i n . V a r i o u s runs w e r e c o n d u c t e d at selected aerator d e t e n t i o n t i m e s a n d s l u d g e recycle ratios (defined as t h e v o l u m e of recycle s l u d g e d i v i d e d by t h e v o l u m e of t h e d i g e s t e r feed). T h e 2 / b a t c h u n i t w a s o p e r a t e d u n d e r c o n d i t i o n s of l i m i t e d aeration (0.12 / / m i n ) at an a m b i e n t t e m p e r a t u r e of a b o u t 25°C). T h e f i l l - a n d - d r a w a c t i v a t e d s l u d g e u n i t w a s f e d d a i l y w i t h 1.667 m l of fresh digester e f f l u e n t after w i t h d r a w i n g an equal v o l u m e of m i x e d liquor aerated for 2 4 hours. Selected v o l u m e s of t h e aerator m i x e d liquor w e r e r e c y c l e d t o t h e d i g e s t e r t o
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
13.
GHOSH AND KLASS
Figure 4.
Methane from Biomass-Waste
257
Recycling system for aerobically-posttreated digester effluent
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
258
BIOMASS AS A NONFOSSIL F U E L SOURCE
o b t a i n t h e desired recycle ratio (defined as t h e ratio of t h e v o l u m e of m i x e d liquor t o t h e v o l u m e of fresh feed). In s o m e e x p e r i m e n t s , t h e aerator feed (fresh digester effluent) w a s pretreated w i t h d i l u t e s o d i u m h y d r o x i d e s o l u t i o n for 2 4 hours at 100°C. T h e recycle s l u d g e w a s d e o x y g e n a t e d w i t h a h e l i u m p u r g e in s o m e runs before c h a r g i n g it t o t h e digester. Two-Phase Digester T w o - p h a s e d i g e s t i o n has c o n s i d e r a b l e p o t e n t i a l f o r increasing m e t h a n e p r o d u c t i o n rate a n d yield (3.10,18,^9). It is a m u l t i - s t a g e , h i g h - r a t e d i g e s t i o n process in w h i c h a c i d o g e n i c a n d m e t h a n o g e n i c f e r m e n t a t i o n s are o p t i m i z e d in separate digesters. T h e t w o - p h a s e s y s t e m used in o u r w o r k c o n s i s t e d of a c o m p l e t e l y m i x e d a c i d - p h a s e digester a n d a c o m p l e t e l y m i x e d m e t h a n e phase digester or a m e t h a n e - p h a s e a n a e r o b i c filter p a c k e d w i t h Raschig rings (Figure V). T h e a c i d digester w a s g r a v i t y fed f r o m a sealed o v e r h e a d feed reservoir h a v i n g a h e l i u m or a r g o n b l a n k e t a b o v e t h e feed slurry. Caustict r e a t e d feed w a s delivered t o t h i s d i g e s t e r in small slugs u p t o 7 0 t i m e s per d a y by a t i m e r - o p e r a t e d v a l v e t o o b t a i n o p e r a t i n g c o n d i t i o n s closely a p p r o a c h i n g t h o s e of c o n t i n u o u s f e e d i n g . Effluent f r o m t h e acid digester o v e r f l o w e d d i r e c t l y t o t h e c o m p l e t e l y m i x e d m e t h a n e - p h a s e digester. A l t e r n a t i v e l y , part of t h i s e f f l u e n t w a s v a c u u m f i l t e r e d , a n d t h e f i l t r a t e w a s f e d c o n t i n u o u s l y t o t h e a n a e r o b i c filter f r o m a c o n s t a n t - h e a d M a r i o t t e b o t t l e s u p p l i e d w i t h h e l i u m t o fill t h e reservoir gas phase. T h e p a c k e d - b e d anaerobic filter had a gross v o l u m e of 1 8 . 5 / a n d a v o i d ratio of 0.63. Filter e f f l u e n t w a s r e c i r c u l a t e d c o n t i n u o u s l y t o t h e inlet e n d at a r e c i r c u l a t i o n ratio of 5.1 (defined as t h e ratio fo t h e recycle f l o w rate t o t h e daily feed f l o w rate) t o d i l u t e t h e i n c o m i n g feed a n d accelerate t h e t r a n s p o r t of d i g e s t i o n p r o d u c t s o u t of t h e c u l t u r e . T h e filter h a d a h y d r a u l i c d e t e n t i o n t i m e of a b o u t 2 . 3 3 . d a y s (defined as t h e gross v o l u m e d i v i d e d by t h e daily feed f l o w rates). The t w o - p h a s e s y s t e m feed w a s s u p p l e m e n t e d w i t h external n i t r o g e n , p h o s p h o r u s , a n d m a g n e s i u m t o ensure t h a t feed hydrolysis, a c i d i f i c a t i o n , a n d gasification were not nutrient limited. RESULTS A N D DISCUSSION Conventional High-Rate Digestion Steady-state p e r f o r m a n c e of c o n v e n t i o n a l h i g h - r a t e m e s o p h i l i c d i g e s t i o n of t h e b i o m a s s - w a s t e b l e n d at t h e baseline loading a n d d e t e n t i o n t i m e is presented in Table I. The m e t h a n e yields f r o m replicate baseline runs ranged
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
to vo
Figure 5. Two-phase system for biomass-waste blend
Τ CAKES EFFLUENT
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
3
* ΐ
20 0.18 9 0.868 58.7 2.88 6 29.9 32.4
0.570 60.7 3.45 27 34.5 38.8
0.550 63.9 3.53 35 33.6 39.7
0.550 62.0 3.40 42 33.3 38.3
Run 3MA/7
20 0.1 12
3MA/2
5 0.1 12
5
Baseline Runs* 6M
0.1 12
Runs 5M and 6M were replicates. Calculated by formula suggested by Klass and Ghosh (21).
Operating Conditions Culture Volume, t Loading. l b V S / f t - d a y Detention Time, days Gas Production Rate, std vol/vol culture-day Methane Content, m o l % Methane Yield. SCF/lb VS added Effluent Quality Volatile Acids, m g / f as acetic Efficiency VS Reduction. %* Energy Recovery in Collected Methane. %
6M
Table I. C O N V E N T I O N A L MESOPHILIC (3B°C) DIGESTION OF HYACINTH-GRASS-MSW-8LUDGE BLEND UNDER BASELINE A N D N O N - B A S E L I N E CONDITIONS
to
H
ι
I
>
δ
ο
OS
13.
GHOSH AND KLASS
Methane from Biomass-Waste
261
b e t w e e n 3.4 a n d 3.5 SCF/lb V S a d d e d . These yields w e r e b e t w e e n 53.1 a n d 5 4 . 7 % o f t h e t h e o r e t i c a l m e t h a n e y i e l d . A s e x p e c t e d f o r digesters o f similar g e o m e t r y a n d m i x i n g c o n f i g u r a t i o n , c u l t u r e v o l u m e had n o d i s c e r n i b l e effect o n m e t h a n e p r o d u c t i o n (compare Runs 5 M , 6 M , a n d 3 M A ) . N u t r i t i o n a l studies, t h e details o f w h i c h w e r e p r e s e n t e d in a n earlier paper (14), s h o w e d t h a t c o n v e n t i o n a l d i g e s t i o n o f t h e b i o m a s s - w a s t e feed w a s n o t n u t r i e n t or growth-factor limited. The performance of subsequent advanced digestion runs w a s e v a l u a t e d w i t h reference t o t h e baseline p e r f o r m a n c e d a t a reported in Table I. M e t h a n e yield decreased t o 2.4 SCF/lb V S a d d e d (43.8% o f t h e o r e t i c a l yield) w h e n t h e l o a d i n g rate w a s increased t o 0.18 lb V S / f t - d a y a n d t h e d e t e n t i o n t i m e decreased t o 9 days (Table I). These d a t a i n d i c a t e t h a t c o n v e n t i o n a l d i g e s t i o n process e f f i c i e n c y w o u l d decrease s u b s t a n t i a l l y as t h e l o a d i n g rate is increased a n d t h e d e t e n t i o n t i m e is decreased b e y o n d t h e baseline values of these parameters. U n c o n v e n t i o n a l or a d v a n c e d d i g e s t i o n m e t h o d s are t h u s needed t o o v e r c o m e t h e l i m i t a t i o n s o f t h e c o n v e n t i o n a l h i g h - r a t e process. 3
Digestion o f Pretreated Feed A s p o i n t e d o u t previously, o n l y a b o u t 6 6 % of t h e h y a c i n t h - g r a s s - M S W s l u d g e feed V S w a s d e t e r m i n e d t o be b i o d e g r a d a b l e u n d e r l o n g - t e r m b a t c h d i g e s t i o n c o n d i t i o n s . A b o u t 5 2 % o f t h e b i o d e g r a d a b l e o r g a n i c s a n d 3 2 % of t h e cellulose c o m p o n e n t o f t h e feed w e r e gasified at t h e baseline o p e r a t i n g c o n d i t i o n s of 0.1 lb V S / f t -day l o a d i n g a n d a 12-day d e t e n t i o n t i m e (14). These data s u g g e s t t h a t 3 4 % o f t h e feed o r g a n i c s resisted anaerobic d e g r a d a t i o n , a n d t h a t o n l y a b o u t one-half or less o f t h e b i o d é g r a d a b l e s c o u l d be gasified by c o n v e n t i o n a l h i g h - r a t e d i g e s t i o n . One p r o b a b l e e x p l a n a t i o n for t h e l o w b i o c o n v e r s i o n e f f i c i e n c y w a s t h a t hydrolysis a n d a c i d i f i c a t i o n l i m i t e d t h e d i g e s t i o n of t h e h i g h l y f i b r o u s l i g n o c e l l u l o s i c feed (14). If this is t h e case, t h e n considerable i m p r o v e m e n t w o u l d be e x p e c t e d w h e n t h e feed is p r e t r e a t e d c h e m i c a l l y t o hydrolyze t h e c o m p l e x p o l y m e r i c s u b s t a n c e s or t o c o n v e r t t h e m t o a f o r m s u i t a b l e f o r s u b s e q u e n t e n z y m a t i c hydrolysis. 3
A c i d or alkaline t r e a t m e n t s o f p a r t i c u l a t e feeds have been s h o w n t o i m p r o v e digester gas yields (17,22-25). A c i d hydrolysis w a s n o t used in o u r w o r k because severe reaction c o n d i t i o n s are r e q u i r e d , a n d there is considerable d e c o m p o s i t i o n o f t h e h y d r o l y t i c p r o d u c t s u n d e r these c o n d i t i o n s (26). Dilute alkaline p r e t r e a t m e n t w a s e v a l u a t e d because alkali w a s s h o w n t o be more e f f e c t i v e in p r o m o t i n g hydrolysis of cellulosic biomass t h a n acid (j_7,26). It is p o s t u l a t e d , for e x a m p l e , t h a t s o d i u m h y d r o x i d e breaks d o w n t h e cross-linked l i g n i n m a c r o - m o l e c u l e s s u r r o u n d i n g t h e cellulose fibers into alkali-soluble l o w e r - m o l e c u l a r - w e i g h t units. In t h i s w a y . t h e cellulose fibers are e x p o s e d f o r
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
262
BIOMASS AS A NONFOSSIL F U E L SOURCE
e n z y m a t i c hydrolysis d u r i n g anaerobic d i g e s t i o n . A l s o , it has been s u g g e s t e d t h a t alkali t r e a t m e n t hydrolyzes ester b o n d s b e t w e e n t h e uronic acids of h e m i c e l l u l o s e a n d l i g n i n (27), t h e r e b y e n h a n c i n g t h e b i o d e g r a d a b i l i t y of hemicellulose. A s already
mentioned, digestion
runs w i t h
caustic
t r e a t e d feed
were
c o n d u c t e d u n d e r a v a r i e t y of o p e r a t i n g c o n d i t i o n s . T h e results of a f e w selected runs w i t h p r e t r e a t e d feed are p r e s e n t e d in Table II. T h e d a t a in t h i s table s h o w t h a t t h e h i g h e s t m e s o p h i l i c (35°C) m e t h a n e y i e l d . 4.10 SCF/lb VS a d d e d , f r o m d i g e s t i o n of t h e p r e t r e a t e d feed at a l o a d i n g of 0.1 lb V S / f t - d a y a n d a 12-day d e t e n t i o n t i m e w a s o b t a i n e d w i t h w e t feed p r e t r e a t e d w i t h 3 w t % c a u s t i c s o l u t i o n . H o w e v e r , t h e m e s o p h i l i c m e t h a n e y i e l d (3.92 SCF/lb VS added) f r o m feed t r e a t e d w i t h 1 w t % NaOH s o l u t i o n w a s n o t s i g n i f i c a n t l y different. A l s o , neutralization of t h e p r e t r e a t e d feed or a d d i t i o n of e x t e r n a l n i t r o g e n t o t h e d i g e s t e r d i d n o t affect t h e m e s o p h i l i c m e t h a n e yield. These o b s e r v a t i o n s i n d i c a t e t h a t an increase in m e s o p h i l i c m e t h a n e y i e l d u p t o 2 0 % m a y be e x p e c t e d at a l o a d i n g of 0.1 lb V S / f t - d a y a n d a d e t e n t i o n t i m e of 12 days w i t h alkaline p r e t r e a t m e n t . 3
3
T h e r m o p h i l i c (55°C) d i g e s t i o n of t h e c a u s t i c - t r e a t e d feed at 0.4 lb V S / f t - d a y loading a n d a 6-day d e t e n t i o n t i m e s h o w e d t h e s a m e m e t h a n e yield of a b o u t 4 SCF/lb V S a d d e d as o b s e r v e d d u r i n g m e s o p h i l i c d i g e s t i o n of t h e p r e t r e a t e d feed at a 0.1 lb V S / f t - d a y l o a d i n g a n d a 1 2 - d a y d e t e n t i o n t i m e (Run 5 T / 2 4 . Table II). H o w e v e r , t h e t h e r m o p h i l i c gas p r o d u c t i o n rate w a s 4 - 5 t i m e s t h e m e s o p h i l i c rate. A l s o , t h e c a u s t i c r e q u i r e m e n t for feed p r e t r e a t m e n t w a s l o w e r for t h e t h e r m o p h i l i c r u n o w i n g t o t h e r e c y c l i n g of t h e spent c a u s t i c solution. 3
3
A t h e r m o p h i l i c m e t h a n e yield of a b o u t 3.7 SCF/lb V S a d d e d , w h i c h w a s still larger t h a n t h e baseline y i e l d , w a s o b s e r v e d at a l o a d i n g rate of 0.43 lb V S / f t -day a n d a d e t e n t i o n t i m e of 5.5 days w h e n t h e c a u s t i c - t r e a t e d feed w a s neutralized t o p H 10 w i t h digester gas instead of t o p H 9 w i t h h y d r o c h l o r i c acid(Run 5 T / 2 6 . Table III). This r e d u c e d yield resulted f r o m increased l o a d i n g a n d decreased d e t e n t i o n t i m e . A s e x p e c t e d , a h i g h e r b i c a r b o n a t e alkalinity c o u l d be m a i n t a i n e d w h e n t h e d i g e s t e r w a s c h a r g e d w i t h p r e t r e a t e d feed neutralized w i t h d i g e s t e r gas. In a d d i t i o n , neutralization of t h e alkaline feed w i t h p r o d u c t gas e l i m i n a t e d t h e need for neutralizing acid a n d p r o v i d e d a m e t h o d of c a r b o n d i o x i d e r e m o v a l f r o m t h e digester gas. This t e c h n i q u e s h o u l d p r o v i d e a r e d u c t i o n in t h e cost of feed t r e a t m e n t a n d digester gas cleanup. 3
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
13.
263
Methane from Biomass-Waste
GHOSH AND KLASS
Table II. MESOPHILIC (3B C) AND THERMOPHILIC (55°C) DIGESTION OF HYACINTH-QRAS8-M8W-SLUDGE BLEND PRETREATED WITH CAUSTIC SODA 80LUTION a
Neutralization Method Operating Conditions Culture Volume. I Loading, lb VS/ft -day Detention Time, days Qas Production Rate, std vol/vol culture day Methane Content, mol % Methane Yield. SCF/lb VS added Effluent Quality PH Volatile Acids. mg/f as acetic Total Alkalinity. mg/f asCaC03 Bicarbonate Alkalinity. mg/f asCaC03 3
VS Reduction. % Energy Recovery in Collected Methane. %
Mesophilic Run 6M A/13* No neutralization of caustictreated feed
Run •MA/22 Whole feed to pH 8-8.4 with acid. b
Thermophilic Digester Feed Run 5T/24 Run 5T/26 Mixed vacuum filter Mixed vacuum filter cakes plus filtrate to cakes plus filtrate pH 9 with acid. to pH 10 with acid. C
d
10 0.1 12
10 0.1 12
5 0.4 6.0
5 0.43 5.5
0.606 59.5
0.670 58 1
2.851 56.4
2.911 56.0
4.10
392
4.00
3.68
684
6.71
7.35
743
20
21
99
140
2618
2433
6075
6298
2592
2412
5993
6240
41 9
41.0
43.1
40.0
46 1
44.1
45.0
41.4
The fresh feed was treated with 140 ml of 3 wt % NaOH solution at 55°C for 24 hr The treated feed was not neutralized, and no N H 4 C I was added Feed pretreatment same as Run 6MA/13 except that 140 ml of 1 wt % NaOH solution was used at 25°C for 24 hr. The treated feed was neutralized with HCI to the indicated pH and supplemented with 10 ml of 120-g/l NH CI solution. Fresh feed was treated with 160 ml of 3 wt NaOH solution at 100°C for 24 hr. The treated feed was vacuum filtered, and about 158 g of filter cake and 200 ml of filtrate were fed to the digester after dilution to the proper volume and neutralization with HCI to pH 9. Fresh feed was treated in the same way as in Run 5T/24. except that the alkaline feed slurry was neutralized by bubbling a portion of the digester gas (Ave 9.2 f . range 7.19-11.55 f ) through it. The average pH of the digester feed after gas neutralization was 9.98 (range 9.31 -11.55). 4
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981. d e o x y g e n a t i o n ; 2 5 7 vol % recycle.
VS added
recycled gas/std f
digester gas produced-day.
43.7
55.0
41.6
4645
4667
20
6.80
culture volume, batch, activated sludge unit operated
43.1
—
37.9
2819
2826
9
6.69
3.88
56.7
3.83
0.687
61.5
t h r o u g h it.
S a m e o p e r a t i n g c o n d i t i o n s as i n R u n 1 M A / 1 3 . e x c e p t t h a t t h e r e c y c l e a e r a t o r s l u d g e w a s d e o x y g e n a t e d b y b u b b l i n g h e l i u m
at a m b i e n t t e m p e r a t u r e . A v o l u m e o f 1 2 0 0 m l o f a e r a t e r c o n t e n t w a s r e c y c l e d w i t h 4 6 7 m l o f f r e s h f e e d d a i l y .
D a i l y d i g e s t e r e f f l u e n t w a s a e r a t e d (air f l o w r a t e 0 . 1 2 f / m i n ) i n a 2.0- f
R e c y c l e r a t i o is s t d f
Methane. %
44.4
39.7
Energy Recovery in Collected
39.7
Overall V S Reduction. %
3
VS Reduction. %
Efficiency
Bicarbonate Alkalinity, as C a C 0 3997
3997
mg/f
Total Alkalinity, as C a C 0
3
8
Volatile Acids, m g / f as a c e t i c
mg/f
7.06
PH
Effluent Quality
3.95
60.5
Methane Content, m o l %
Methane Yield. SCF/lb
0.596
Rate, s t d v o l / v o l c u l t u r e - d a y
0.630
12
12
12
Production
Detention Time, days
Gas
20 0.1
20 0.1
20
3
0.1
6
56 v o l % r e c y c l e .
8
recycle ratio.
Culture volume, f Loading, lb V S / f t - d a y
Operating Conditions
Run I M A / 1 8 A e r a t e d digester effluent after
Run 1 M A / 1 3 Aerated effluent;
MESOPHILIC
Run 2 M A / 1 1
BLEND
Digester Gas: 3 9 gas
(3B°C) DIGESTION OF H Y A C I N T H - G R A S S - M S W - 8 L U D G E
EFFECT OF PRODUCT QA8 A N D P08TTREATED EFFLUENT RECYCLING ON
Recycled Material and Amount
T a b l e III.
ON
13.
GHOSH AND KLASS
Methane from Biomass-Waste
265
T h e e x p e r i m e n t a l d a t a s u g g e s t t h e f o l l o w i n g s e q u e n c e of o p e r a t i o n s f o r improved digestion of the hyacinth-grass-MSW-sludge feed: 1.
Caustic t r e a t m e n t of u n d i l u t e d feed for 2 4 hr at 100°C w i t h 3 w t % NaOH a n d r e c y c l i n g of spent c a u s t i c s o l u t i o n . Fresh caustic is a d d e d at t h e rate of a b o u t 3 m e q per g r a m of VS. Spent c a u s t i c recycle f l o w rate is 7 5 v o l % o f t h e feed slurry f l o w rate.
2.
D e w a t e r i n g of t h e pretreated feed. D e w a t e r e d cakes a n d t h e balance of t h e filtrate after r e c y c l i n g are fed t o t h e digester.
3.
Neutralization o f alkaline feed slurry w i t h digester gases.
4.
T h e r m o p h i l i c d i g e s t i o n o f t h e feed at a l o a d i n g rate of 0.4 lb V S / f t - d a y 3
a n d a d e t e n t i o n t i m e of 6 days. Digestion W i t h Product Gas and P o s t t r e a t e d Effluent Recycling T h e s e c o n d major a d v a n c e d s y s t e m w a s c o n c e r n e d w i t h t h e r e c y c l i n g of p r o d u c t gas a n d l i q u i d e f f l u e n t t o t h e digester. T h e effluent w a s p o s t t r e a t e d before r e c y c l i n g . The p r o d u c t gas w a s d e h y d r a t e d before r e c i r c u l a t i o n t o t h e d i g e s t i n g c u l t u r e . T h e a q u e o u s e f f l u e n t w a s s u b j e c t e d t o various f o r m s o f p o s t t r e a t m e n t i n c l u d i n g s o n i c a t i o n , s i m p l e heat t r e a t m e n t f o r 3 0 m i n at 2 7 0 ° F a n d 2 5 psig. a n d a c t i v a t e d s l u d g e t r e a t m e n t t o i m p r o v e t h e b i o d e g r a d a b i l i t y o f t h e u n d i g e s t e d solids. Recycling of s o n i c a t e d a n d heatt r e a t e d s l u d g e t o t h e digester d i d n o t increase m e t h a n e yield a b o v e t h e baseline yield. Gas r e c y c l i n g a n d a c t i v a t e d s l u d g e p o s t t r e a t m e n t w h i c h e f f e c t e d a higher s y s t e m V S r e d u c t i o n , w i l l be discussed here. Gas Recycling Recycling of p r o d u c t gases t h r o u g h t h e d i g e s t i n g c u l t u r e w a s e x p e c t e d t o increase m e t h a n e p r o d u c t i o n because of a d d i t i o n a l m e t h a n e f e r m e n t a t i o n f r o m increased r e d u c t i o n of c a r b o n d i o x i d e a n d because t h e s w e e p i n g a c t i o n of t h e recycled gas m i g h t be e x p e c t e d t o accelerate r e m o v a l o f t h e gaseous products surrounding the microorganisms thereby minimizing end-product repression. Digester gases w e r e r e c y c l e d at various recycle ratios f r o m 2 t o 125. T h e best m e t h a n e yield o f 3.95 SCF/lb V S a d d e d , w h i c h w a s a b o u t 1 5 % h i g h e r t h a n t h e baseline y i e l d , w a s o b s e r v e d a t a g a s recycle ratio o f 3 9 (Table III). T h e gas-phase d i l u t i o n rate at t h i s recycle ratio w a s a b o u t 0.2 hr"'. The e x i s t e n c e of an o p t i m u m gas recycle ratio is rationalized as f o l l o w s : A s t h e gas recycle
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
266
BIOMASS AS A NONFOSSIL F U E L SOURCE
ratio is increased, t h e o p p o r t u n i t y for c a r b o n d i o x i d e r e d u c t i o n a n d s w e e p i n g of t h e gaseous d i g e s t i o n p r o d u c t s o u t of t h e d i g e s t e r increases t h e r e b y s t i m u l a t i n g m e t h a n e p r o d u c t i o n . H o w e v e r as t h e gas r e c y c l i n g ratio is increased f u r t h e r , t h e c u l t u r e is increasingly s a t u r a t e d w i t h gaseous e n d p r o d u c t s ; t h i s w o u l d t e n d t o repress or i n h i b i t a d d i t i o n a l m e t h a n e p r o d u c t i o n . T h e o p p o s i n g effects of increasing gas recycle o n m e t h a n e p r o d u c t i o n e q u a l each o t h e r at t h e o p t i m u m gas recycle ratio w h i c h maximizes methane yield. It s h o u l d be n o t e d t h a t d u r i n g gas r e c y c l i n g , t h e test d i g e s t e r w a s m e c h a n i c a l l y m i x e d as in t h e baseline c o n t r o l runs so t h a t t h e effect of t h e r e c y c l e d gas o n test digester m e t h a n e p r o d u c t i o n c o u l d be e v a l u a t e d . Since m e c h a n i c a l m i x i n g alone w a s d e s i g n e d t o p r o v i d e c o m p l e t e m i x i n g of t h e d i g e s t e r c o n t e n t s , t h e beneficial effect of gas r e c y c l i n g m a y n o t be a t t r i b u t e d t o effects s u c h as s u b s t r a t e t r a n s p o r t a n d s u b s t r a t e - m i c r o o r g a n i s m c o n t a c t . M i l d m e c h a n i c a l m i x i n g also p r o v e d t o be beneficial d u r i n g gas r e c y c l i n g because s c u m f o r m a t i o n , w h i c h arises d u e t o gas f l o t a t i o n of d i g e s t e r solids, w a s s u r p r i s i n g l y n o t a p r o b l e m even at very h i g h gas recycle ratios. The reason for t h i s w a s t h a t m e c h a n i c a l a g i t a t i o n at a m i x i n g Reynolds n u m b e r of a b o u t 9,000 dispersed t h e surface solids a n d m o v e d t h e m d o w n i n t o t h e c u l t u r e by t h e f o l d i n g a c t i o n of t h e t w o propeller m i x e r s p l a c e d at h e i g h t s of one a n d t w o i m p e l l e r d i a m e t e r s a b o v e t h e digester b o t t o m . The results of t h e gas r e c y c l i n g e x p e r i m e n t s s h o w e d t h a t m o d e s t increases in m e t h a n e yield c a n be o b t a i n e d by r e c y c l i n g p r o d u c t gas at an o p t i m u m gas recycle ratio. Dual m e c h a n i c a l a n d gas m i x i n g e l i m i n a t e d t h e s c u m p r o b l e m associated w i t h gas m i x i n g alone. Aerobic Sludge Posttreatment of Digester Effluent T h e o b j e c t i v e of aerobic p o s t t r e a t m e n t is t o treat t h e " r e f r a c t o r y " e f f l u e n t o r g a n i c s t o render t h e m b i o d e g r a d a b l e , a n d t o increase m e t h a n e p r o d u c t i o n by r e c y c l i n g t h e p o s t t r e a t e d m a t e r i a l for f u r t h e r d i g e s t i o n . P o s t t r e a t m e n t m a y be preferred t o p r e t r e a t m e n t because it o n l y treats t h e recalcitrant residue r e m a i n i n g after t h e b i o d e g r a d a b l e material is gasified a n d not t h e t o t a l solids in t h e feed. T h u s , t h e o r g a n i c loading rate on t h e p o s t t r e a t m e n t process is s u b s t a n t i a l l y l o w e r t h a n t h a t for a similar p r e t r e a t m e n t process. A l s o , w h i l e i m p r o v i n g t h e b i o d e g r a d a b i l i t y of t h e r e c a l c i t r a n t f e e d f r a c t i o n , p r e t r e a t m e n t m a y adversely affect t h e d i g e s t i b i l i t y of feed c o m p o n e n t s t h a t are easily gasified in t h e i r o r i g i n a l f o r m s . P o s t t r e a t m e n t o b v i a t e s t h i s p r o b l e m . A e r o b i c b i o c h e m i c a l a n d c h e m i c a l - b i o c h e m i c a l p o s t t r e a t m e n t s w e r e invest i g a t e d because several species of f u n g i a n d aerobic o r g a n i s m s are k n o w n t o hydrolyze a n d d e g r a d e c o m p l e x lignocellulosic s u b s t a n c e s t o s i m p l e r
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
13.
GHOSH A N D KLASS
Methane from Biomass-Waste
267
s u b s t a n c e s (26). Trichoderma viride. Cellulomonas, and Cytophaga hutchinsonii. Cytophaga vulgaris are e x a m p l e s o f aerobic m i c r o o r g a n i s m s t h a t m e d i a t e these reactions (28.29). Because s o m e aerobes c a n n o t e f f i c i e n t l y a t t a c k lignocellulosic cellulosic c o m p l e x e s (30,31). o n e r u n w a s also c o n d u c t e d in w h i c h t h e aerator feed (digester effluent) w a s p r e d i g e s t e d w i t h hot c a u s t i c t o m a k e t h e fibers available f o r aerobic d e c o m p o s i t i o n (28). Finally, a c t i v a t e d s l u d g e p o s t t r e a t m e n t o f t h e d i g e s t e d residue w a s also c o n d u c t e d u n d e r c o n d i t i o n s o f " l i m i t e d " aeration t o arrest cellulose b r e a k d o w n before t h e f o r m a t i o n of m o n o m e r i c p r o d u c t s (hexose, pentose, etc.) w h i c h are readily oxidized aerobically a n d , t h u s , b e c o m e unavailable f o r gasification), so t h a t t h e p r o d u c t s o f partial aerobic d i g e s t i o n c o u l d be gasified anaerobically u p o n r e c y c l i n g t o t h e digester. Evidence o f partial cellulose d e g r a d a t i o n b y l i m i t e d aeration w a s presented b y Kalnins (32), w h o s h o w e d t h a t Bacterium protoziodes d e c o m p o s e d cellulose t o dextrose w i t h an u n l i m i t e d s u p p l y of o x y g e n . H o w e v e r , w h e n t h e s u p p l y o f o x y g e n w a s l i m i t e d , dextrose p r o d u c t i o n w a s s t o p p e d , b u t t h e o r g a n i s m d e c o m p o s e d an increased q u a n t i t y of cellulose t o derive a n a m o u n t of e n e r g y e q u i v a l e n t t o t h a t o b t a i n e d d u r i n g d e g r a d a t i o n of cellulose t o dextrose. T h u s , t h e a d v a n t a g e of l i m i t e d aeration p o s t t r e a t m e n t is t h a t it s h o u l d l i m i t d e g r a d a t i o n of t h e residual solids t o f o r m s t h a t are lost b y o x i d a t i o n before r e c y c l i n g t o t h e digester. P o s t t r e a t m e n t studies o f digester e f f l u e n t c o n d u c t e d in t h e 1 4 - / m e s o p h i l i c (33°-34°C) aerobic s l u d g e u n i t at d e t e n t i o n t i m e s o f 2.4 a n d 5.3 days, a n d an air f l o w rate of 1 / / m i n p r o d u c e d settleable s l u d g e w h i c h , w h e n r e c y c l e d t o t h e d i g e s t e r at recycle ratios o f 5.3 a n d 33.7%, e f f e c t e d digester m e t h a n e yields based o n fresh-feed volatile solids r a n g i n g b e t w e e n 2.81 a n d 3.51 SCF/lb V S a d d e d . These yields w e r e l o w e r t h a n or equal t o t h e baseline m e t h a n e yield o b s e r v e d u n d e r t h e same d i g e s t e r o p e r a t i n g c o n d i t i o n s , w h i c h i n d i c a t e d t h a t aerobic biological p o s t t r e a t m e n t at long d e t e n t i o n t i m e s a n d a h i g h air f l o w rate ( p r o d u c i n g residual aerator dissolved o x y g e n c o n c e n t r a t i o n of 0.7 t o 2.8 m g / / ) d i d n o t e n h a n c e m e t h a n e p r o d u c t i o n . H o w e v e r , residue p o s t t r e a t m e n t in t h e 2 - / b a t c h unit o p e r a t e d u n d e r l i m i t e d aeration c o n d i t i o n s (no residual dissolved o x y g e n in aerator) w a s superior in t h a t r e c y c l i n g o f t h i s s l u d g e at a 5 6 % recycle ratio led t o a m o d e s t increase in t h e d i g e s t e r m e t h a n e yield (Run 1 M A / 1 3 . Table III). T h e m e t h a n e yield d i d n o t increase f u r t h e r w h e n t h e recycle s l u d g e w a s d e o x y g e n a t e d . t h e recycle ratio w a s increased f r o m 5 6 t o 2 5 7 % (Run 1 M A / 1 8 ) , or t h e feed t o t h e aerator w a s pretreated w i t h h o t caustic. It is i n t e r e s t i n g t o note t h a t t h e volatile solids r e d u c t i o n increased w h e n t h e aerobic p o s t t r e a t m e n t m e t h o d w a s used as s h o w n b y t h e overall V S r e d u c t i o n o f Run 1 M A / 1 8 .
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
268
BIOMASS AS A NONFOSSIL F U E L SOURCE
Two-Phase Digestion of Slurry Systems T w o - p h a s e studies w e r e u n d e r t a k e n t o d e v e l o p a m u l t i s t a g e h i g h - r a t e process superior t o c o n v e n t i o n a l d i g e s t i o n . Results of selected t w o - p h a s e runs are presented in Tables IV a n d V. T w o - p h a s e d i g e s t i o n of t h e u n t r e a t e d feed at an overall d e t e n t i o n t i m e of 7.6 days a n d a l o a d i n g rate of 0.26 lb V S / f t - d a y e x h i b i t e d a t o t a l gas p r o d u c t i o n rate of 1.35 s t d v o l / v o l of c u l t u r e d a y a n d an e f f l u e n t volatile a c i d c o n c e n t r a t i o n of a b o u t 19 m g / / (Run A 3 0 / M 1 6 . Table IV). T h u s , t h e t w o - p h a s e s y s t e m h a d a gas p r o d u c t i o n rate t h a t w a s a b o u t 2.5 t i m e s t h a t of c o n v e n t i o n a l baseline d i g e s t i o n , a n d y e t had a b o u t t h e s a m e e f f l u e n t v o l a t i l e acid c o n c e n t r a t i o n as t h a t o b s e r v e d d u r i n g c o n v e n t i o n a l d i g e s t i o n at a 12-day d e t e n t i o n t i m e . T h e m e t h a n e y i e l d for t h i s r u n . h o w e v e r , w a s a b o u t 2 SCF/lb V S a d d e d , a n d t h e volatile a c i d (VA) yield f r o m t h i s s y s t e m w a s e s t i m a t e d t o be 0.31 (mass of V A as a c e t i c d i v i d e d by mass of V S added), w h i c h i n d i c a t e d t h a t h y d r o l y s i s a n d a c i d i f i c a t i o n of t h e feed o r g a n i c s w e r e inefficient. T o i m p r o v e t h i s c o n d i t i o n . Run A 3 C / M 3 C w a s c o n d u c t e d w i t h c a u s t i c - t r e a t e d feed. Gas p r o d u c t i o n rate, m e t h a n e y i e l d , a n d a c i d yield f r o m t h i s run w e r e 1.5 s t d v o l / v o l of c u l t u r e - d a y . 3 SCF/lb VS a d d e d , a n d 0.49, respectively, all of w h i c h w e r e s u b s t a n t i a l l y h i g h e r t h a n t h o s e o b s e r v e d w i t h t h e u n t r e a t e d f e e d . T h e v o l a t i l e acid yield c o e f f i c i e n t of 0.49 for t h e solid b i o m a s s - w a s t e feed w a s l o w e r t h a n t h e acid yield of 0.73 r e p o r t e d by Ghosh a n d Pohland (33) for t w o - p h a s e d i g e s t i o n of t h e s i m p l e soluble sugar, g l u c o s e , s u g g e s t i n g t h a t it m a y still be possible t o i m p r o v e t h e V S - t o - a c i d c o n v e r s i o n e f f i c i e n c y b e y o n d t h a t realized b y c a u s t i c t r e a t m e n t . Further acid y i e l d or b i o d e g r a d a b i l i t y increase is e x p e c t e d t o be d i f f i c u l t t o a c h i e v e a n d m a y require m o r e severe feed p r e t r e a t m e n t . 3
Run A 7 C / M 7 C in Table IV had t h e s a m e o p e r a t i n g c o n d i t i o n s as t h e t w o o t h e r runs d i s c u s s e d above, b u t received o n l y external n i t r o g e n instead of e x t e r n a l n i t r o g e n , p h o s p h o r u s a n d m a g n e s i u m . I n s p e c t i o n of t h e d a t a in Table IV s h o w s t h a t e l i m i n a t i o n of e x t e r n a l p h o s p h o r u s a n d m a g n e s i u m f r o m t h e feed d i d n o t affect t w o - p h a s e process p e r f o r m a n c e . This o b s e r v a t i o n correlated w i t h t h e results of t h e c o n v e n t i o n a l d i g e s t i o n runs w h i c h s h o w e d t h a t t h e b i o m a s s - w a s t e b l e n d used in t h i s w o r k w a s not n u t r i t i o n a l l y deficient. A l l t w o - p h a s e process feeds, h o w e v e r , w e r e f o r t i f i e d w i t h external n i t r o g e n t o g u a r d against a n y d e f i c i e n c y of t h i s e l e m e n t d u e t o loss t h a t c o u l d o c c u r d u r i n g c a u s t i c t r e a t m e n t of t h e f e e d . A d d i t i o n of e x t e r n a l n i t r o g e n w o u l d not be r e q u i r e d in a c o m m e r c i a l process utilizing a p r o p e r l y d e s i g n e d c o n t i n u o u s p r e t r e a t m e n t reactor. To test kinetic p o t e n t i a l of t h e t w o - p h a s e s y s t e m , a d d i t i o n a l runs w e r e c o n d u c t e d at decreased d e t e n t i o n t i m e s of 5 a n d 4 days, a n d increased loading rates (Table V). A t e m p e r a t u r e of 5 5 ° C w a s selected for t h e a c i d -
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
13.
GHOSH AND KLASS
269
Methane from Biomass-Waste
Table IV. EFFECT OF FEED PRETREATMENT ON TWO-PHASE MESOPHILIC (35°C) DIGESTION OF HYACINTH-QRA88-MSW-8LUDGE BLEND Untreated Feed Run AM/MI β Operating Condition*' Acid-Phase Culture Volume, t Methane-Phase Culture Volume. / Acid-Phase Loading. lbVS/ft -day Methane-Phase Loading. lbVS/ft -day Acid-Phase Detention Time, days Methane Phase Detention Time. days Overall Loading, lb VS/ft -day Overall Detention Time, days External Nutrient Additions to Acid-Phase Feed Gas Production Rate, std vol/vol culture-day Acid Phase Methane Phase Total Methane Content, mol % Acid Phase Methane Phase Total Gas Yield. SCF/lb VS added Acid Phase Methane Phase Total Total Methane Yield. SCF/lb VS added Effluant Quality PH Acid Phase Methane Phase Volatile Acids, mg/y as acetic Acid Phase Methane Phase Efficiency VS Reduction. % Energy Recovery in Collected Methane. % 3
3
3
16 45
Caustic Traatad Feed Run A3C/M3C Run A7C/M7C 16 45
16 45
1.0
10
10
0.32 2.0
0.32 2.0
0.32 2.0
5.6 0.26 76
5.6 0.26 76
5.6 0.26 76
N.P.Mg
N.P.Mg
Ν
1.346 0.924 1.035
1484
— 1.443
49 2 59.0 497
528
559
1.34 2.91 3.98
563
5.50
1 98
2.87
3.07
5.86 6.44
6 72 7.03
6 82 7.15
1047 19
2440 287
I860 148
24 2
34 2
33 4
22 3
33 4
34.5
" No alkali was used for digester pH control. The acid-phase feeds for Runs A3C/M3C and A7C/M7C were pretreated for 24 hr with 2.561 of 1 wt % NaOH solution in a total volume of 4 8 f under ambient conditions. The product gases from each phase were collected together for these two runs.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
270
BIOMASS AS A NONFOSSIL F U E L SOURCE
Table V. THERMOPHILIC IBB'C) ACID-PHASE AND MESOPHILIC (3B"C) METHANE-PHASE DIGESTION OF PRETREATED HYACINTH-GRAS8-M8W-8LUDQE BLEND Run A3B/M21 Operating Conditions' Acid-Phase .Culture Volume, f Methane-Phase Culture Volume. I Acid-Phase Loading, lb VS/ft -day Methane-Phase Loading, lb VS/ft -day Acid-Phase Detention Time, days Methane-Phase Detention Time, days Overall Loading, lb VS/ft -day Overall Detention Time, days External Nutrient Additions to Acid-Phase Feed Gas Production Rate, std vol/vol culture-day Acid Phase Methane Phase Total Methane Content, mol % Acid Phase Methane Phase Total Gas Yield. SCF/lb VS added Acid Phase Methane Phase Total Total Methane Yield. SCF/lb VS added Effluent Quality PH Acid Phase Methane Phase Volatile Acids, mg/f as acetic Acid Phase Methane Phase Efficiency VS Reduction. % Energy Recovery m Collected Methane. % 3
3
Run A37/M23
5 20 2.0 044 1.0 4.0 0.40 50
5 20 2.5 0.56 0.80 32 0.50 4.0
Ν
Ν
3.189 1 553 1.880
3.472 1.740 2.086
60.3 59.6 598
58.5 59.1 57.9
1.53 335 4.70 2.81
1.40 3.11 425 2.46
699 7.05
7.05 7.05
1734 347
2255 591
28.6 31.6
25.8 27.7
No alkali was used for digester pH control. The acid-phase digester feed was pretreated for 24 hr with NaOH solution at ambient conditions. The caustic concentration in the slurry was 142 meg/f
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
13.
GHOSH AND KLASS
271
Methane from Biomass-Waste
phase digester because of t h e earlier o b s e r v a t i o n t h a t this t h e r m o p h i l i c t e m p e r a t u r e i m p r o v e d g a s i f i c a t i o n rates at higher loadings a n d shorter d e t e n t i o n t i m e s w i t h o u t s i g n i f i c a n t l y a f f e c t i n g m e t h a n e yield. A s s h o w n in Table V, an overall s y s t e m gas p r o d u c t i o n rate of 1.9 std v o l / v o l c u l t u r e - d a y , a m e t h a n e yield o f 2.8 SCF/lb V S a d d e d , a n d a n e f f l u e n t volatile acid c o n c e n t r a t i o n o f a b o u t 3 5 0 m g / / w e r e observed at a s y s t e m loading a n d d e t e n t i o n t i m e o f 0.4 lb V S / f t - d a y a n d 5 days, respectively. A s e x p e c t e d , gas p r o d u c t i o n rate a n d e f f l u e n t volatile acids c o n c e n t r a t i o n increased t o a b o u t 2.1 s t d v o l / v o l c u l t u r e - d a y a n d 6 0 0 m g / / , a n d m e t h a n e yield decreased t o a b o u t 2.5 SCF/lb V S a d d e d w h e n t h e s y s t e m d e t e n t i o n t i m e w a s decreased t o 4 days a n d t h e s y s t e m l o a d i n g w a s increased t o 0.5 lb V S / f t - d a y . Volatile acid yields at t h e 5- a n d 4 - d a y d e t e n t i o n t i m e s w e r e , h o w e v e r , a b o u t t h e same. 0.46 a n d 0.50, respectively. C o m p a r i s o n of acid p r o d u c t i o n yield c o e f f i c i e n t s f o r t h e runs in Tables IV a n d V i n d i c a t e d t h a t volatile solids c o n v e r s i o n t o volatile acids is s i g n i f i c a n t l y increased b y alkaline feed p r e t r e a t m e n t . F u r t h e r m o r e , it w a s o b s e r v e d t h a t , w h i l e t h e V S - t o - a c i d c o n v e r s i o n e f f i c i e n c y of t h e p r e t r e a t e d feed r e m a i n e d t h e same as t h e s y s t e m d e t e n t i o n t i m e w a s decreased f r o m 7.6 t o 4 days, t h e gas p r o d u c t i o n rate increased b y 5 0 % c o m p a r e d t o a 1 7 % decrease in m e t h a n e yield. These o b s e r v a t i o n s indicate t h a t it is desirable t o o p e r a t e t h e t w o - p h a s e s y s t e m at a d e t e n t i o n t i m e o f 4 days or less, a n d t o c o u p l e this s y s t e m t o a cell mass r e c y c l i n g d e v i c e (e.g.. anaerobic settler) t o p r e v e n t m e t h a n e yield r e d u c t i o n s a n d volatile acids a c c u m u l a t i o n associated w i t h short d e t e n t i o n t i m e s . It s h o u l d be n o t e d , h o w e v e r , t h a t s e t t l i n g of relatively c o n c e n t r a t e d d i g e s t e d b i o m a s s - w a s t e slurry a n d anaerobic settler o p e r a t i o n w e r e p r o b l e m a t i c a n d appeared i m p r a c t i c a l in light o f o u r e x p e r i e n c e w i t h c u s t o m - d e s i g n e d laboratory settlers. A n alternate a p p r o a c h , w h i c h has t h e same effect o f m a i n t a i n i n g higher cell d e n s i t y a n d increasing solids r e t e n t i o n t i m e (SRT) as in a settler, is a p a c k e d bed anaerobic filter. W i t h this reactor, it is be possible t o c o n d u c t d i g e s t i o n at short h y d r a u l i c r e t e n t i o n t i m e (HRT) a n d still o b t a i n h i g h m e t h a n e yield a n d l o w e f f l u e n t volatile acid c o n c e n t r a t i o n because o f t h e h i g h SRT. 3
3
Packed-Bed Anaerobic Digester T h e p a c k e d - b e d anaerobic digester, c o m m o n l y referred t o as an anaerobic " f i l t e r " , w a s o p e r a t e d w i t h filtrates f r o m t h e v a c u u m f i l t r a t i o n of t h e a c i d digester effluent. Filtrate w a s used because u n f i l t e r e d a c i d - d i g e s t e r effluents t e n d e d t o c l o g t h e p a c k e d bed. T h e feed t o t h e p a c k e d - b e d digester h a d volatile acids c o n c e n t r a t i o n s b e t w e e n 1 5 0 0 a n d 2 0 0 0 m g / / as acetic a n d a solids c o n t e n t o f a b o u t 0.5 w t %. T h e d i g e s t e r w a s o p e r a t e d at a n HRT of a b o u t 2.3 days a n d a l o a d i n g rate o f a b o u t 0.15 lb V S / f t - d a y based o n t h e gross filter v o l u m e (1.5 days a n d 0.24 lb V S / f t -day w h e n based o n t h e v o i d 3
3
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
272
BIOMASS AS A NONFOSSIL F U E L SOURCE
or c u l t u r e v o l u m e ) . Effluent r e c i r c u l a t i o n a n d c u l t u r e t e m p e r a t u r e had s i g n i f i c a n t effects on gas p r o d u c t i o n (Table VI). Recirculation of t h e e f f l u e n t f r o m t h e t o p t o t h e b o t t o m of t h e bed increased gas p r o d u c t i o n rate by 7 6 % , w h i l e also increasing t h e m e t h a n e yield by 4 5 % . M e t h a n e c o n t e n t w a s a b o v e 7 0 m o l % w i t h or w i t h o u t r e c i r c u l a t i o n . Increase in m e a n d i g e s t e r t e m p e r a t u r e f r o m 3 3 ° t o 3 8 ° C decreased gas p r o d u c t i o n rate by a b o u t 2 0 % a n d m e t h a n e yield by a b o u t 25%. D e p e n d i n g on t h e o p e r a t i n g c o n d i t i o n , volatile acids c o n c e n t r a t i o n s in t h e filter e f f l u e n t varied b e t w e e n 9 0 a n d 1 9 0 m g / / (Table VI), w h i c h w e r e still l o w e r t h a n t h o s e in t h e slurry m e t h a n e d i g e s t e r o p e r a t e d at a h i g h e r HRT of 5.6 days (Table V). It s h o u l d be p o i n t e d o u t t h a t t h e p e r f o r m a n c e of t h e p a c k e d - b e d m e t h a n e d i g e s t e r is m o r e d e p e n d e n t perhaps o n t h e i n f l u e n t v o l a t i l e acids c o n c e n t r a t i o n t h a n t h e overall VS l o a d i n g rate. T h u s , filter p e r f o r m a n c e w i t h a c i d - d i g e s t e r filtrate m i g h t be e x p e c t e d t o be better t h a n t h a t o b t a i n e d w i t h m e t h a n e - d i g e s t e r e f f l u e n t s h a v i n g c o m p a r a b l e volatile acids c o n t e n t . Hypothetical Multi-Stage Digestion Process T h e u l t i m a t e o b j e c t i v e of t h i s research w a s t o synthesize a h y p o t h e t i c a l b i o m a s s - w a s t e pilot process d e s i g n based o n t h e results of o u r i n v e s t i g a t i o n of p r o m i s i n g a d v a n c e d d i g e s t i o n m o d e s . T h e w o r k p r e s e n t e d here p r o v i d e d i n f o r m a t i o n o n t h e effects of alkaline p r e t r e a t m e n t alkali r e c y c l i n g , d i g e s t i o n t e m p e r a t u r e , a n d d i g e s t e r gas r e c y c l i n g ; h e a t s o n i c a t i o n , a n d aerobic p o s t t r e a t m e n t a n d r e c y c l i n g of d i g e s t e d s l u d g e u n d e r different a e r a t i o n , s l u d g e recycle, a n d aerator d e t e n t i o n t i m e c o n d i t i o n s ; slurry a n d p a c k e d - b e d d i g e s t i o n ; a n d t w o - p h a s e d i g e s t i o n . T h e results of t h i s w o r k are s u g g e s t i v e of an a d v a n c e d b i o m a s s - w a s t e d i g e s t i o n s y s t e m as d e p i c t e d in Figure VI. A d d i t i o n a l w o r k t o refine t h e pre- a n d p o s t t r e a t m e n t t e c h n i q u e s a n d t w o phase process o p t i m i z a t i o n is better c o n d u c t e d in a pilot s y s t e m similar t o t h a t of Figure V I . T h e h y p o t h e t i c a l s y s t e m is necessarily a m u l t i - s t a g e s y s t e m t o a c c o m o d a t e p r e t r e a t m e n t m u l t i - s t a g e phasic d i g e s t i o n , a n d d i g e s t e d residue p o s t t r e a t m e n t . T h e h y d r a u l i c residence t i m e in t h e t o t a l s y s t e m is a b o u t 6 days a l l o w i n g for 12 hr of d i l u t e c a u s t i c p r e t r e a t m e n t 1 2 - 2 4 hr of t h e r m o p h i l i c acid d i g e s t i o n . 2-5 days of slurry-phase m e s o p h i l i c m e t h a n e d i g e s t i o n . 2 days of m e s o p h i l i c p a c k e d - b e d m e t h a n e d i g e s t i o n , a n d 12 hr of l i m i t e d - a e r a t i o n b i o l o g i c a l t r e a t m e n t of t h e d i g e s t e d s l u d g e . Based o n t h e d a t a c o m p i l e d in t h i s w o r k , m e t h a n e yields u p t o 5.5 SCF/lb V S a d d e d are e x p e c t e d for t h i s t y p e of c o n f i g u r a t i o n .
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981. 27.0 34.3 45.9
31.7
6.86 68
6.86 131
6.73 186 34.3
0.698 68.7 3.05
0.872 72.3 4.08
0.495 73.5 2.82
23.3
38 0.16 2.34 510
Run 8MA/6
33 0.15 2.33 510
Run 8 M A / 5
35 0.13 2.30 0
Run 8MA/4
FED MESOPHILIC
The packed-bed digester had a gross v o l u m e of 18.5 f The bed had a void ratio of 0.63. Filtrate from a slurry-phase acid digester effluent having a volatile acid content of 1550-2000 m g / J as acetic acid and a solids content of about 0.5 w t % was used as feed. No pH control w a s used.
Efficiency VS Reduction, % Energy Recovery in Collected Methane, %
3
Operating Conditions* Temperature. °C Loading, lb V S / f t - d a y Detention Time, days Effluent Recycle Ratio, % Qas Production Rate, std v o l / v o l culture-day Methane Content, mol % Methane Yield. SCF/lb VS added Effluent Quality PH Volatile Acids, m g / j f as acetic
Table VI. S T E A D Y - S T A T E P E R F O R M A N C E OF C O N T I N U O U S L Y P A C K E D - B E D M E T H A N E DIGESTER
274
BIOMASS AS A NONFOSSIL F U E L SOURCE
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
13.
GHOSH AND KLASS
Methane from Biomass-Waste
275
SUMMARY A series o f e x p l o r a t o r y anaerobic d i g e s t i o n e x p e r i m e n t s w a s p e r f o r m e d w i t h a m i x e d b i o m a s s - w a s t e feed t o search f o r d i g e s t i o n c o n f i g u r a t i o n s t h a t p r o v i d e i m p r o v e d p e r f o r m a n c e over t h a t o f c o n v e n t i o n a l h i g h - r a t e d i g e s t i o n . T h e t e c h n i q u e s s t u d i e d w e r e p r e t r e a t m e n t o f t h e feed w i t h caustic soda, p r o d u c t gas r e c y c l i n g t o t h e digester, r e c y c l i n g of aerobically t r e a t e d digester e f f l u e n t t o t h e digester, t w o - p h a s e d i g e s t i o n w i t h c o m p l e t e m i x a c i d - a n d m e t h a n e - p h a s e reactors, a n d p a c k e d - b e d . m e t h a n e - p h a s e d i g e s t i o n o f t h e e f f l u e n t f r o m an a c i d - p h a s e reactor. A m b i e n t - t e m p e r a t u r e p r e t r e a t m e n t of t h e feed b l e n d w i t h d i l u t e caustic a n d r e c y c l i n g of t h e p r o d u c t gas each a f f o r d e d higher m e t h a n e yields a n d volatile solids r e d u c t i o n efficiencies t h a n h i g h - r a t e d i g e s t i o n alone. It w a s f o u n d t h a t spent c a u s t i c c o u l d be r e c y c l e d for fresh feed p r e t r e a t m e n t a n d t h a t neutralization w a s n o t necessary before f e e d i n g t o t h e digester. T w o - p h a s e d i g e s t i o n in t h e c o m p l e t e - m i x reactors gave m e t h a n e yields a n d r e d u c t i o n efficiencies a b o u t t h e same as t h o s e of h i g h - r a t e d i g e s t i o n b u t at m u c h h i g h e r loadings a n d r e d u c e d d e t e n t i o n t i m e s t h e r e b y o f f e r i n g s i g n i f i c a n t r e d u c t i o n s in e q u i p m e n t size f o r t h e same t h r o u g h p u t s . The use o f a p a c k e d - b e d a n a e r o b i c filter as a m e t h a n e - p h a s e reactor also s h o w e d c o n s i d e r a b l e p r o m i s e f o r o p e r a t i o n at r e d u c e d d e t e n t i o n t i m e s w h e n t h e filter e f f f u e n t w a s r e c y c l e d t o t h e filter inlet. A n a l y s i s of t h e data f r o m t h e e x p e r i m e n t s c o n d u c t e d t o s t u d y each a d v a n c e d d i g e s t i o n t e c h n i q u e indicates t h a t a n i n t e g r a t e d series o f unit processes c o n s i s t i n g of dilute caustic pretreatment, thermophilic acid-phase digestion, mesophilic complete-mix and packed-bed methane-phase digestion, and limitedaeration aerobic t r e a t m e n t of t h e m e t h a n e - p h a s e effluents c o u p l e d w i t h r e c y c l i n g s h o u l d e x h i b i t d i g e s t i o n efficiencies a n d m e t h a n e yields near t h e u p p e r practical limits. ACKNOWLEDGEMENT This research w a s s u p p o r t e d b y U n i t e d Gas Pipe Line C o m p a n y (UGPL). H o u s t o n , Texas. T h e project w a s d o n e u n d e r t h e m a n a g e m e n t o f UGPL a n d is c u r r e n t l y m a n a g e d b y t h e Gas Research Institute. The g u i d a n c e a n d help of Mr. Robert C h r i s t o p h e r a n d Dr. V i c t o r E d w a r d s , b o t h o f UGPL, w e r e invaluable. The assistance of Dr. B. C. W o l v e r t o n of N A S A , M r . D a w s o n M. J o h n s of LSU. Mr. Robert Power o f W a s t e M a n a g e m e n t , Inc., a n d t h e staff of t h e M e t r o p o l i t a n Sanitary District o f Greater Chicago in p r o v i d i n g t h e feed samples is a p p r e c i a t e d . T h e a u t h o r s also a c k n o w l e d g e t h e efforts of Janet Vorres, M i c h a e l Henry, A l v i n Iverson, M o n a S i n g h , Frank Sedzielarz, Phek H w e e Y e n , a n d R a m a n u r t i Ravichandran in c o l l e c t i n g t h e e x p e r i m e n t a l data.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
276
BIOMASS AS A NONFOSSIL FUEL SOURCE
REFERENCES
1. Bylinsky, G., Fortune 1979, 100, 78-79, 81 Sept. 24. 2.
Klass, D.L. "Abstracts", Biomass for Energy, sponsored by the U.K. Sec. Int. Solar Energy Soc., London, England, July 3, 1979.
3.
Pohland, F.G.; Ghosh, S. Biotechnol. Bioeng. Symp. No. 2, 1971, 85106.
4.
Gavett, W. U.S. Patent 1 420 250, 1922.
5.
Ort, J.E. U.S. Patent 3 981 800, 1976.
6.
Ort, J.E. U.S. Patent 4 040 953, 1977.
7.
Switzgable, H. U.S. Patent 4 053 395, 1977.
8. Klass, D.L.; Ghosh, S.; Conrad, J.R. U.S. Patent 3 994 780, 1976. 9.
10.
Ghosh, S.; Conrad, J.R.; Klass, D.L. Research Symposium of the 47th Annual Conference, Water Pollution Control Federation, Denver, Colo., Oct. 6-11, 1974. Ghosh, S.; Klass, D.L. U.S. Patent 4 022 665, 1977.
11. Ghosh, S.; Klass, D.L. "Symposium Papers", Clean Fuels From Biomass, Sewage Urban Refuse, and Agricultural Wastes, Symposium sponsored by Institute of Gas Technology, Orlando, Fla., Jan. 27-30, 1976; Institute of Gas Technology: Chicago, 1976. 12.
Haug, R.T. J. Water Pollut. Control Fed. 1977, 49 (7), 1713.
13.
Klass, D.L. "Proceedings", Bio-Energy World Congress and Exposition, Atlanta, Ga., April 21-24, 1980; Bio-Energy Council: Washington, D.C., 1980.
14.
Ghosh, S.; Henry, M.P.; Klass, D.L. Second Symposium on Biotechnology in Energy Production and Conservation, Gatlinburg, Tenn., Oct. 3-5, 1979.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
13. GHOSH AND KLASS
Methane from Biomass-Waste
277
15.
Klass, D.L.; Ghosh, S. Biomass as a Nonfossil Fuel Source, American Chemical Society and the Chemical Society of Japan Joint Chemical Congress, Preprints, Div. Pet. Chem., Am. Chem. Soc. 1979, 24, (2), 41428.
16.
Klass, D.L.; Ghosh, S. Fuels From Biomass, American Chemical Society National Meeting, Aug. 27-29, 1980, San Francisco, Calif., Preprints, Div. Fuel Chem., Am. Chem. Soc. 1980.
17.
Klass, D.L.; Ghosh, S.; Conrad, J.R. "Symposium Papers", Clean Fuels From Biomass, Sewage, Urban Refuse and Agricultural Wastes, Symposium sponsored by the Institute of Gas Technology, Orlando, Fla., Jan. 27-30, 1976; Institute of Gas Technology: Chicago, 1976.
18.
Ghosh, S.; Klass, D.L. Process Biochem. 1978,
19.
Heertjes, P.M.; Van der Meer, R.R. Purdue University Industrial Waste Conference, West Lafayette, Ind. May 8-10, 1979; Ann Arbor Science Publishers, Inc.: Ann Arbor, Mich., 1979.
20.
Norrman, J.; Frostell B. ibid.
21.
Klass, D.L.; Ghosh S. "Symposium Papers", Clean Fuels from Biomass and Waste, Symposium sponsored by the Institute of Gas Technology, Orlando, Fla., Jan. 25-28, 1977; Institute of Gas Technology: Chicago, 1977.
22.
Buswell, A.M., et al. U.S. Patent 1 880 773, 1929.
23.
Compere, A.L.; Griffith, W.L. Report under contract No. W-7405-eng 26, Oak Ridge National Laboratory, Oak Ridge, Tenn., June 1975.
24.
McCarty, P.L. et al."Proceedings", Microbial Energy Conversion, H.G. Schlegel; J. Barnea, Eds.; Erich Goltze KG: Gottingen, FRG, 1976.
25.
Ghose, T.K.; Bisaria, U.S. Biotechnol. Bioeng. 1979, 21, 131-46.
26.
Bellamy, W.D. Biotechnol. Bioeng. 1974,
27.
Kirk, K. Annu. Rev. Phytopathol. 1971, 9, 185.
28.
Bellamy, W.D. "Proceedings", International conference on Single Cell Protein; MIT Press: Cambridge, Mass., 1973.
13, 15-24.
16, 869-80.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
278
BIOMASS AS A NONFOSSIL FUEL SOURCE
29.
Imshenetskii, A.A.; Solntzeva, L. Bull. Acad Sci. U.S.S.R. 1936, Ser. Biol. 6, 1115.
30.
Dunlap, E.E. 2nd International Conference on Single Cell Protein; M.I.T. Press: Cambridge, Mass., 1973.
31.
Callihan, C.D.; Dunlap, E.E. Report No. SW-24c, U.S. Environmental Protection Agency, Washington, D.C., 1971.
32.
Kalnins, A. Acta Univ. Latvieness Lauksaimmiecibas Fakultat. Ser. I 1930, 11, 221.
RECEIVED JUNE 24, 1980.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.