1 Applied Chemistry at Protein Interfaces ROBERT E. BAIER Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
Calspan Corp., Environmental Systems Department, Buffalo, Ν. Y. 14221 Some of the areas where interfacial protein layers dominate the boundary chemistry are reviewed, and we introduce some nondestructive analytical methods which can be used simultaneously and/or sequentially to detect and character ize the microscopic amounts of matter at protein or other substrates which spontaneously acquire protein conditioning films. Examples include collagen and gelatin, synthetic polypeptides, nylons, and the biomedically important sur faces of vessel grafts, skin, tissue, and blood. The impor tance of prerequisite adsorbedfilmsof proteins during thrombus formation, cell adhesion, use of intrauterine con traceptives, development of dental adhesives, and preven tion of maritime fouling is discussed. Specifics of protein adsorption at solid/liquid and gas/liquid interfaces are compared.
Numerous ^
surface
physicochemical
analytical techniques, i n c l u d i n g
i n t e r n a l reflection I R s p e c t r o m e t r y , e l l i p s o m e t r y , a n d d e t e r m i n a t i o n
of c r i t i c a l surface t e n s i o n a n d c o n t a c t p o t e n t i a l v a l u e s , r e v e a l a c o m m o n interfacial chemistry among seemingly unrelated phenomena.
T h a t is,
m a n y interfaces are d o m i n a t e d b y proteins, either as the o r i g i n a l s u b strates at or w i t h i n w h i c h the k e y events o c c u r or as the first spontane o u s l y a c q u i r e d c o n d i t i o n i n g layers w h i c h are prerequisites f o r s u b s e q u e n t events. P r o t e i n s as substrates d o m i n a t e the surface c h e m i s t r y of c o l l a g e nous b i o m a t e r i a l s , p h o t o g r a p h i c e m u l s i o n s , s k i n , a n d h a i r . T h e i n t e r f a c i a l c o m p o s i t i o n a n d o r g a n i z a t i o n of proteins d e t e r m i n e the b a r r i e r properties of s k i n a n d its r e c e p t i v i t y to cosmetics a n d m e d i c a t i o n s .
The rapid and
often i r r e v e r s i b l e a d s o r p t i o n of p u r e p r o t e i n or g l y c o p r o t e i n constituents f r o m c o m p l e x m e d i a precedes m i c r o s c o p i c a l l y formed
detectable adhesion
( c e l l u l a r or l a r v a l ) elements i n a l l k n o w n c i r c u m s t a n c e s .
of All
surfaces p r o p o s e d for b l o o d - c o m p a t i b l e i m p l a n t m a t e r i a l s , for e x a m p l e , 1 In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
2
APPLIED CHEMISTRY AT PROTEIN
INTERFACES
a c q u i r e s u c h a c o n d i t i o n i n g film as d o a l l s t r u c t u r a l a n d e n g i n e e r i n g materials i m m e r s e d i n the sea, or p l a c e d i n tissue c u l t u r e or i n t o the o r a l o r u t e r i n e cavities. P r o t e i n films are spontaneously f o r m e d at a n d e l i m i n a t e d f r o m most g a s / l i q u i d interfaces i n n a t u r e , a n d the b u b b l e - s t r i p p i n g of s u c h layers f r o m the sea has b e e n i m p l i c a t e d i n o c é a n o g r a p h i e / m é t é orologie phenomena.
O n c e the c o m m o n features of i n t e r f a c i a l c h e m i s t r y
have been recognized,
significant c r o s s - f e r t i l i z a t i o n of the
fields
men-
tioned should be stimulated. S o m e of the best examples of the d o m i n a n c e of f u n c t i o n a l interfaces Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
b y b i o l o g i c a l m a c r o m o l e c u l e s o c c u r i n the r e s e a r c h area of " b i o a d h e s i o n . " T h i s area i n c l u d e s the use of d e n t a l restoratives; the use of
polymeric
s u r g i c a l adhesives w h i c h r e p l a c e m e c h a n i c a l l i n k s s u c h as staples a n d sutures; the d e v e l o p m e n t of p r o s t h e t i c i m p l a n t s w h i c h r e p l a c e , i m p r o v e , o r s u p p l e m e n t almost e v e r y p a r t of the h u m a n b o d y ; the m u l t i p l i c a t i o n of e x t r a c o r p o r e a l c i r c u i t s for m e d i c a l treatment i n artificial k i d n e y c e n ters, c o r o n a r y care u n i t s , a n d h o m e d i a l y s i s ; the s t u d y of b l o o d c l o t t i n g reactions as they are i n d u c e d b y contact w i t h n o n p h y s i o l o g i c
surfaces
r a n g i n g f r o m the struts of *an i m p l a n t e d heart v a l v e to t h e transected ends of a n o r m a l b l o o d vessel w h i c h i n i t i a t e w o u n d h e a l i n g ; a n d the v a r i o u s m a r i n e f o u l i n g events
w h i c h encrust ships w i t h barnacles
and
tube
w o r m s a n d w h i c h s l o w o i l - c a r r y i n g supertankers b y a l g a l a d h e s i o n at t h e h i g h l y stressed w a t e r l i n e w i t h l a r g e a c c u m u l a t i o n s of seagrass.
The
c o m m o n i n t e r f a c i a l features of these p r o b l e m s are often o v e r l o o k e d researchers
focus l a r g e l y o n the v o l u m e
phase
effects a n d the
as fluid
d y n a m i c a l effects i n v o l v e d . Analytical
Methods and
Materials
F i g u r e 1 shows the p h y s i c o c h e m i c a l surface m e t h o d s u s e d
exten-
s i v e l y i n our l a b o r a t o r y to assess the i n t e r f a c i a l structure a n d p r o p e r t i e s of p r e d o m i n a n t l y p r o t e i n substrates l i k e s k i n , c o l l a g e n , a n d l i v i n g c e l l surfaces a n d also to assess the i n i t i a l sequence of events at c l e a n s o l i d substrates u p o n t h e i r exposure to b l o o d , s a l i v a , a n d sea w a t e r . T h e m o l e c u l a r s t r u c t u r e of the film a d s o r b e d o n a substrate s u c h as g e r m a n i u m , s i l i c o n , or
various
common
I R - t r a n s m i t t i n g salts
[either
b e f o r e or after t h e i r surfaces w e r e m o d i f i e d b y s t a n d a r d t e c h n i q u e s s u c h as m o n o l a y e r f o r m a t i o n ( J , 2 ) ] , is r e a d i l y d e d u c e d b y the i n t e r n a l reflect i o n t e c h n i q u e w h i c h has b e e n d e s c r i b e d ( 3 ) .
W h e n the substrate is a
m a t e r i a l of h i g h r e f l e c t i v i t y a n d h i g h i n t r i n s i c r e f r a c t i v e i n d e x s u c h as g e r m a n i u m ( w h i c h is u s e d i n most of our experiments ), film thickness a n d refractive index m a y be techniques
(4).
determined nondestructively by
ellipsometric
A third nondestructive and noncontacting
technique,
w h i c h is easily a p p l i e d to t h i n film samples o n g e r m a n i u m or a n y c o n -
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
BAIER
3
Applied Chemistry
d u c t i v e substrate, is the d e t e r m i n a t i o n of
the contact p o t e n t i a l f r o m
v i b r a t i n g r e e d electrometer studies u s i n g e x p e r i m e n t a l a p p a r a t u s d e s i g n e d b y B e w i g a n d Z i s m a n (5,
6).
A m a j o r t e c h n i q u e u s e d i n a l l o u r studies is contact a n g l e d a t a t a k e n a c c o r d i n g to the m e t h o d s of Z i s m a n ( 7 )
to d e r i v e the c r i t i c a l surface
tension. A l l of these t e c h n i q u e s c a n be a p p l i e d s i m u l t a n e o u s l y or s e q u e n t i a l l y to the same i n t e r f a c i a l area, w i t h a s e n s i t i v i t y for a l l of the m e t h o d s great e n o u g h to detect layers less t h a n 10 A a n d r e p r e s e n t i n g less t h a n 0.1 μg of m a t e r i a l o n a substrate surface area s i m i l a r to a glass m i c r o s c o p e Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
slide.
F o r a n y i n t e r f a c i a l film, easily a d a p t e d a n d w e l l - c a l i b r a t e d t e c h
n i q u e s c a n d e t e r m i n e first the m o l e c u l a r c o m p o s i t i o n of the m a t e r i a l , t h e n its d e g r e e of o r g a n i z a t i o n ( f r o m e l l i p s o m e t r i c d e d u c t i o n s of its thickness a n d r e f r a c t i v e i n d e x ) , its degree of e l e c t r i c a l a s y m m e t r y ( f r o m
dipole
presence a n d o r i e n t a t i o n d e d u c e d via contact p o t e n t i a l d a t a ) , a n d w h i c h of the m o l e c u l a r clusters present w i t h i n the
film
finally
(identified b y
i n t e r n a l reflection I R ) m u s t b e outermost a n d i n c o n t r o l of interactions w i t h the external e n v i r o n m e n t ( u s i n g the i m p o r t a n t contact
angle-deter
m i n e d c r i t i c a l surface tension v a l u e s ) . Proteins as Substrates C o n t a c t angle m e t h o d o l o g y for p r o b i n g the surface c h e m i c a l f u n c t i o n a n d a r c h i t e c t u r e of p r o t e i n - d o m i n a t e d surfaces has b e e n the most r e v e a l ing technique.
T h e contact a n g l e (Θ) of a l i q u i d o n a s o l i d surface is
defined as that i n t e r n a l angle, g e n e r a l l y b e t w e e n 0 ° a n d 150°, m e a s u r e d t h r o u g h the l i q u i d d r o p to the tangent d r a w n to its p e r i p h e r a l b o u n d a r y . A p l o t of t h e cosine of the contact angle vs. the i n d e p e n d e n t l y d e t e r m i n e d l i q u i d / v a p o r surface tension for e a c h d i a g n o s t i c l i q u i d u s e d forms
a
l i n e a r r e l a t i o n s h i p f r o m w h i c h one c a n i n f e r a c r i t i c a l surface tension v a l u e at the cosine θ = coworkers
(7)
1 axis. T h e d i r e c t c o r r e l a t i o n w h i c h Z i s m a n a n d
have developed
between
intercepts a n d the true outermost
s u c h c r i t i c a l surface
tension
a t o m i c c o n s t i t u t i o n of l o w
energy
o r g a n i c solids is often c a l l e d a w e t t a b i l i t y s p e c t r u m .
F o r selected
low
energy surfaces the a c t u a l a t o m i c c o n s t i t u t i o n of the surface c a n b e c o r r e l a t e d o n a 1:1
basis w i t h the c r i t i c a l surface t e n s i o n e x p e r i m e n t a l l y
determined. Collagen and
Gelatin
C o n t a c t angle t e c h n i q u e s u s e d to evaluate t h i n films of w a t e r - s o l u b l e c o l l a g e n , w i t h care to a v o i d d e n a t u r i n g effects, gave a c r i t i c a l surface tension a p p r o a c h i n g 40 d y n e s / c m ( 8 ) .
A n anomalous nonwettability by
some of the l o w surface-tension, d i s p e r s i o n - f o r c e - o n l y l i q u i d s w a s e v i d e n t , a n d this w a s a t t r i b u t e d to o r g a n i z e d w a t e r a d s o r b e d at the surface
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
of
4
APPLIED CHEMISTRY A T PROTEIN
INTERFACES
these t h i n films. T h e r e w e r e n o s p e c i a l interactions w i t h h y d r o g e n - b o n d ing liquids.
O n t h e other h a n d , i t w a s d i s c o v e r e d that b y c a s t i n g t h i n
films of c o l l a g e n f r o m h o t r a t h e r t h a n c o o l w a t e r , a m a r k e d d e p a r t u r e in the wetting properties was exhibited b y hydrogen-bonding
liquids.
B a s e d o n p r e v i o u s p u b l i s h e d w o r k (9, 10), this b e h a v i o r is e x p l a i n e d as r a n d o m i z a t i o n o f t h e n a t i v e p r o t e i n structure w h i c h a l l o w s access of t h e hydrogen-bonding
wetting
liquids
to t h e
hydrogen-bond-susceptible
a m i d e links at t h e i n t e r f a c e w h i c h serve as a substrate f o r other i n t e r actions
(e.g., p l a t e l e t a d h e s i o n
to c o l l a g e n
fibers
in vivo
initating
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
t h r o m b o s i s ). C o m p l e t e l y w a t e r - s w o l l e n c o l l a g e n differed m a r k e d l y f r o m t h e r e l a t i v e l y d r y [ e q u i l i b r a t e d at 5 0 % r e l a t i v e h u m d i t y ( R H ) ] p r o t e i n ( 8 ) i n its w e t t a b i l i t y b y w a t e r - i m m i s c i b l e l i q u i d s .
I n t h e w a t e r - s w o l l e n case,
the a p p a r e n t c r i t i c a l surface tension d i m i n i s h e d to ca. 30 d y n e s / c m , i n d i c a t i n g that a p r o t e i n i n t e r f a c e i n n a t u r e is n o t c o r r e c t l y m o d e l e d b y d e h y d r a t e d specimens. Protein
Analogs
S y n t h e t i c p o l y p e p t i d e s serve as m o d e l s f o r proteins i n a n u m b e r o f c i r c u m s t a n c e s , p a r t i c u l a r l y i n d e d u c i n g t h e influence of b a c k b o n e c h a i n configurations o n t h e w e t t i n g p r o p e r t i e s o f p r o t e i n - d o m i n a t e d surfaces (9,11). W h e n , f o r e x a m p l e , p o l y ( y - m e t h y l g l u t a m a t e ) w a s cast as a b u l k sheet f r o m solvents w h i c h f a v o r e d t h e e x t e n d e d c h a i n b e t a - s t r u c t u r e o f t h e p o l y m e r (as v e r i f i e d b y I R a n d v a r i o u s d i f f r a c t i o n t e c h n i q u e s ) , t h e interfacial properties
were
dominated
b y the organized
side
chains
( m e t h y l ester g r o u p s i n this c a s e ) . N o e v i d e n c e o f t h e h y d r o g e n - b o n d i n g b a c k b o n e , w h i c h w a s o n l y a f e w a t o m i c diameters f r o m t h e surface, c o u l d b e f o u n d . O n t h e other h a n d , casting t h e p o l y ( y - m e t h y l g l u t a m a t e ) i n t o b u l k films f r o m solvents w h i c h f a v o r e d t h e a l p h a h e l i c a l a r r a n g e m e n t of t h e p o l y m e r b a c k b o n e d e m o n s t r a t e d a m a r k e d increase i n t h e w e t t a b i l i t y of t h e surface b y those d i a g n o s t i c w e t t i n g l i q u i d s c h a r a c t e r i z i n g h y d r o g e n - b o n d i n g i n t e r a c t i o n s . T h e s e films also s h o w e d a n e t increase i n t h e average c r i t i c a l surface t e n s i o n or a p p a r e n t surface free energy of the p o l y m e r as a r e s u l t o f this b a c k b o n e r e o r g a n i z a t i o n .
Similarly, when
p o l y ( y - m e t h y l g l u t a m a t e ) w a s cast f r o m solvents f a v o r i n g t h e r a n d o m t a n g l e s t r u c t u r e of t h e m o l e c u l e a n d a g a i n a l l o w i n g a c c e s s i b i l i t y across t h e interface to p o l y m e r i c b a c k b o n e segments c a p a b l e of e n t e r i n g i n t o h y d r o g e n - b o n d i n g i n t e r a c t i o n s , t h e w e t t i n g results w e r e s i m i l a r to those f o r t h e a l p h a h e l i c a l f o r m a n d c o m p l e t e l y d i s s i m i l a r t o those f o r t h e extended chain intermolecularly hydrogen-bonded
b e t a structure.
A n extreme e x a m p l e o f the different a p p e a r a n c e of a m a c r o m o l e c u l a r s u r f a c e to a n i n t e r a c t i n g e x t e r n a l e n v i r o n m e n t is p r o v i d e d b y p o l y a c r y l -
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
BAIER
a m i d e (12).
5
Applied Chemistry
I n this case, the d a t a of a l l l i q u i d s w h i c h c a n enter i n t o
hydrogen-bonding
interactions f a l l together o n a Z i s m a n - t y p e
contact
angle p l o t at a c r i t i c a l surface tension of about 50 d y n e s / c m ; other l i q u i d s i n c a p a b l e of this s p e c i a l i n t e r a c t i o n f o r m a separate straight l i n e w h i c h extrapolates to a c r i t i c a l t e n s i o n some 10 d y n e s / c m l o w e r (8, 12). p r o t e i n surfaces c a n either ( a )
Thus,
r e s p o n d d i f f e r e n t i a l l y ( w i t h the g r o u p s
present a n d l o c k e d i n t o the surface ) to a v a r i e t y of c h a l l e n g i n g e n v i r o n ments, or ( b ) t h r o u g h m o l e c u l a r r e a r r a n g e m e n t , present those m o l e c u l a r
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
g r o u p i n g s most c o m p a t i b l e w i t h the l i q u i d adjacent to the s o l i d substrate. Nylons A m o n g m o d e l m a t e r i a l s most r e l e v a n t to n a t u r a l proteins, the e n g i n e e r i n g p o l y m e r , n y l o n 2 ( d e s c r i b e d i n b i o c h e m i c a l t e r m i n o l o g y as p o l y g l y c i n e ) is i m p o r t a n t . I n p o l y g l y c i n e (10) t h e difference b e t w e e n w e t t i n g of the surface b y h y d r o g e n - b o n d i n g l i q u i d s a n d b y n o n h y d r o g e n - b o n d i n g l i q u i d s is s t r i k i n g . O t h e r n y l o n p o l y m e r s s h o w e d the same a p p a r e n t effect ( J O ) .
The
f r e q u e n c y d i s t r i b u t i o n of the a m i d e segments i n a surface is a significant d e t e r m i n a n t of the g e n e r a l w e t t a b i l i t y of the surface as w e l l as of a n y specific e n h a n c e d w e t t a b i l i t y b y h y d r o g e n - b o n d i n g l i q u i d s .
F o r nylons,
b e c a u s e of t h e i r l a c k of m a s k i n g side c h a i n s , the m o d i f i c a t i o n s of surface properties r e s u l t i n g f r o m c a s t i n g of b u l k films f r o m v a r i o u s solvents w e r e m u c h less i m p o r t a n t t h a n i n the p o l y p e p t i d e s w i t h l e n g t h y side c h a i n s w h i c h result i n significant steric h i n d r a n c e . T h e w e t t a b i l i t y b a n d for p o l y a m i d e s of the n y l o n series s h i f t e d to s h o w l o w e r slopes a n d h i g h e r c r i t i c a l surface t e n s i o n intercepts w h e n p l o t t e d i n the s t a n d a r d Z i s m a n f o r m a t (7) i n c r e a s e d (10).
as the a m i d e g r o u p d e n s i t y
U n f o r t u n a t e l y no t h e o r e t i c a l w o r k describes t h e i m p o r -
tant factors i n f l u e n c i n g the slope of s u c h plots w h i c h reflect i n a g e n e r a l w a y the s t r e n g t h of s o l i d / l i q u i d interactions. Biome die ally Important
Collagenous
Substrates
O n e of t h e m o s t a c t i v e areas of s u r g i c a l r e s e a r c h a n d p r a c t i c e i n volves
collagen-based
sought is a b l o o d
substitutes for
natural blood
vessels.
W h a t is
c o n d u i t w h i c h is s t r u c t u r a l l y s o u n d a n d t e x t u r a l l y
s u i t e d for a n c h o r i n g a c c u m u l a t i n g b l o o d c o m p o n e n t s w i t h o u t s i g n i f i c a n t l y d i s t o r t i n g t h e m to cause adverse subsequent reactions ( s u c h as t h r o m b u s generation, calcification, atherosclerosis).
W e have presented m u c h sur-
face t e x t u r a l a n d surface c h e m i c a l d a t a c h a r a c t e r i z i n g t h e surfaces
of
m o d i f i e d b o v i n e b l o o d vessels d o m i n a t e d b y a c o l l a g e n m a t r i x a n d of the n a t u r a l b l o o d vessels w h i c h t h e y c a n r e p l a c e
(13).
O n e of o u r m o s t
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
6
APPLIED CHEMISTRY AT PROTEIN
Figure 1.
Simultaneous non-destructive
analytical
INTERFACES
techniques
i m p o r t a n t findings was that, w h e n the t e x t u r a l l y r o u g h collagenous grafts are exposed to fresh flowing b l o o d , t h e y are r a p i d l y o v e r l a i n w i t h a second p r o t e i n film of
fibrin,
d e p o s i t e d spontaneously.
W e also d e m o n s t r a t e d
that i n c e r t a i n c i r c u m s t a n c e s c h o l e s t e r o l stéarate a n d fatty a c i d deposits a c c u m u l a t e a l o n g the l u m e n of c o l l a g e n vessels. T h e deposits a d v e r s e l y i n c r e a s e d t h e i r surface free energy a n d u l t i m a t e l y b e c a m e the site of t h r o m b u s f o r m a t i o n a n d a n e u r y s m i c f a i l u r e of the collagenous i m p l a n t s . Skin G r o w i n g f r o m d e e p e r layers is the s t r a t u m c o r n e u m , a c o l l a p s e d l a y e r of p r o t e i n - d o m i n a t e d , k e r a t i n - f i l l e d m e m b r a n o u s sacks w h i c h p r o v i d e the interface w i t h a l l environments: air, water, and various increasingly hazardous aerosol c h e m i c a l s .
I m p o r t a n t c o n t r i b u t i o n s to the s t u d y of the
surface c h e m i s t r y of this p r o t e i n substrate w e r e m a d e first i n i n d u s t r i a l q u a r t e r s , w h e r e the actions of soaps, creams, a n d other cosmetic a p p l i c a tions w e r e sought (14).
T h e studies of m a n y laboratories c o n f i r m the
surface of s k i n to b e a m o d e r a t e l y l o w energy p o l y m e r s i m i l a r to p o l y e t h y l e n e i n m a n y i n t e r a c t i o n s . M o d i f i c a t i o n s of the m e t h o d d e s c r i b e d i n F i g u r e 1 h a v e b e e n u s e d for five years to s t u d y in situ the surface I R characteristics of l i v i n g s k i n . F i g u r e 2 shows a n i n t e r n a l reflection spect r u m o b t a i n e d s i m p l y b y t o u c h i n g the f o r e a r m to a g e r m a n i u m p r i s m i n a h o r i z o n t a l a t t a c h m e n t to o u r i n t e r n a l reflection I R
spectrophotometer
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
1.
BAIER
Figure 2.
Applied
7
Chemistry
Skin i n situ; spectrum recorded by touching prism in horizontal attachment
forearm to
germanium
( c o n s t r u c t e d to o u r specifications b y H a r r i c k Scientific C o r p . , O s s i n i n g , Ν. Y . ). T h e d e p t h of the s k i n thus s a m p l e d is o n l y a f r a c t i o n of a m i c r o n . T h i s e x t e r n a l surface of the b o d y is o v e r w h e l m i n g l y d o m i n a t e d b y p r o t e i n components.
A s i m i l a r s p e c t r u m c h a r a c t e r i z e d o l d s k i n in situ o n the
t h u m b of a n e x p e r i m e n t a l subject s h o w i n g p r o t e i n d o m i n a t i o n a g a i n w i t h a s m a l l c o n t r i b u t i o n of o r g a n i c ester. C o n t r a s t i n g w i t h this is t h e s i t u a t i o n i l l u s t r a t e d s p e c t r a l l y i n F i g u r e 3, w h e r e the fresh s k i n of the o p p o s i t e t h u m b of the same subject, as generated b e n e a t h a b l i s t e r c a p , shows a n i n t e r m e d i a t e s k i n c h e m i s t r y w h e r e i n the r e l a t i v e a b u n d a n c e of f a t t y esters
Figure 3. MA.I.R. infrared spectrum blister cap (1 cm X 3 cm; right thumb atmosphere; fingerprint ridges not well and ester bands
of fresh skin area beneath peeled away i n situ, 2 days after first exposure to developed). Note ratio of hydrocarbon to amide bands.
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8
APPLIED CHEMISTRY AT PROTEIN
INTERFACES
is greater. F i g u r e s 4 a n d 5 illustrate t h e difference i n s k i n surface c h e m istry r e c o r d e d before a n d just after the a p p l i c a t i o n of a t y p i c a l c o m m e r c i a l m o i s t u r e c r e a m a c c o r d i n g to the supplier's i n s t r u c t i o n s . T h i s e x a m p l e h i g h l i g h t s the p o t e n t i a l d i a g n o s t i c p o w e r of this m e t h o d , w h i l e c o n f i r m i n g d o m i n a n c e of the i n t e r f a c i a l c h e m i s t r y b y p r o t e i n components t i v e to o t h e r m a t e r i a l s . C o n t r o l experiments s h o w e d that the
recep-
observed
changes b e t w e e n F i g u r e s 4 a n d 5 w e r e n o t s i m p l y the result of a s k i n
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
coating.
Figure 4.
M.A.LR. infrared spectrum of virgin skin i n situ (female underside, immediately after soap and water wash, towel dry)
forearm,
T h u s , the outermost l a y e r of l i v i n g h u m a n s k i n is d o m i n a t e d b y p r o teins; n e w s k i n g e n e r a t e d u n d e r the o l d is s i m i l a r l y d o m i n a t e d b y proteins w i t h the a d d i t i o n of a significant f r a c t i o n of l i p i d .
T o u n d e r s t a n d the
b a r r i e r a n d other p r o t e c t i v e p r o p e r t i e s of the s k i n one m u s t l o o k at the i n t e r f a c i a l c h e m i s t r y of p r o t e i n layers.
F i g u r e 6 shows t h a t e v e n
the
e x u d a t e f r o m a s k i n w o u n d is d o m i n a t e d b y p r o t e i n components.
As
d i s c u s s e d later, the p r o t e i n s i n this case are almost e x c l u s i v e l y g l y c o p r o teins, as i n d i c a t e d i n F i g u r e 6 b y the r e l a t i v e l y strong a b s o r p t i o n b a n d at ca. 1050 c m " . I n m o d e r n p r o t e i n i n t e r f a c i a l c h e m i c a l l i t e r a t u r e , g l y c o 1
proteins d o m i n a t e the d i s c u s s i o n . Tissue and Blood O n e of the most s t r i k i n g differences b e t w e e n p r o t e i n - d o m i n a t e d s u b strates ( e.g., s k i n , tissue masses, a n d b l o o d ) a n d other s o l i d , s e m i - s o l i d , or l i q u i d surfaces is i n t h e i r w e t t a b i l i t y a n d adhesiveness w i t h
other
m a t e r i a l s . W o r k o n t h e d e v e l o p m e n t of s u r g i c a l adhesives b a s e d u p o n the p o l y ( a - c y a n o a c r y l a t e s )
u s e d successfully i n hemostasis for m a s s i v e
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
1.
BAIER
Figure 5. underside,
Applied
9
Chemistry
MA.LR. infrared spectrum of modified skin i n situ (female forearm, immediately after application of commercial "moisture cream' according to suppliers instructions)
w o u n d s , c l i n i c a l r e p a i r of s k i n i n c i s i o n s , a n d o r a l s u r g e r y (15, 16)
pro-
v i d e s excellent examples of this d i f f e r e n t i a l w e t t a b i l i t y a n d a d h e s i o n . F o r e x a m p l e , the h o m o l o g o u s series of a l k y l c y a n o a c r y l a t e p o l y m e r s f r o m m e t h y l t h r o u g h h e p t y l shows a n inverse o r d e r of w e t t i n g a n d a d h e s i o n o n b l o o d a n d tissue f r o m the o r d e r s h o w n o n p u r e w a t e r o r p r o t e i n - f r e e fluids.
This and ancillary evidence
(16)
shows t h a t interfaces of
wet
b i o l o g i c a l masses are d o m i n a t e d b y p r o t e i n m o l e c u l e s w h i c h c a n enter
Figure 6.
Proteinaceous
exudate from wounded (by stripping of cornified skin surface
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
layer)
10
APPLIED
CHEMISTRY AT PROTEIN
INTERFACES
i n t o m a n y s p e c i a l i n t e r f a c i a l c h e m i c a l reactions not p o s s i b l e i n the a b sence of p r o t e i n . P r o t e i n i n t e r f a c i a l layers also c o n t r o l t r a d i t i o n a l surface
physico-
c h e m i c a l p r o p e r t i e s of f r i c t i o n , w e a r , a n d l u b r i c a t i o n i n the joints of a r t i c u l a t e d bones—e.g., i n h i p joints. L i t t l e is k n o w n about the r u b b i n g surfaces a n d the
filling
fluids
of the n a t u r a l b a l l a n d socket connections
except that t h e y are p r e d o m i n a t e l y c a r t i l a g i n o u s , g l y c o p r o t e i n , a n d p r o teoglycan materials. A n o t h e r i m p o r t a n t e x a m p l e of the d i f f e r e n t i a l adhesiveness
which
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
p r o t e i n - d o m i n a t e d surfaces c a n d i s p l a y , is i n the d e v e l o p m e n t of a r t i f i c i a l s k i n e s p e c i a l l y for w o u n d dressings a n d for t e m p o r a r y covers of extensive burns. C . W . H a l l and co-workers
(17)
s h o w e d that r e l a t i v e tissue a d -
h e s i o n to m e c h a n i c a l l y i d e n t i c a l v e l o u r f a b r i c s c o n s t r u c t e d of
various
m a t e r i a l s f o l l o w s the o r d e r p r e d i c t e d b y the c r i t i c a l surface tensions o f construction material. M o h a n d a s a n d c o - w o r k e r s (18), c o n f i r m i n g p r e v i o u s findings of W e i s s a n d B l u m e n s o n (19),
have also s h o w n t h a t cells i n a n e n v i r o n m e n t free
of a d s o r b a b l e proteins ( w h i c h r a p i d l y m o d i f y the surface p r o p e r t i e s of p o l y m e r i c or i n o r g a n i c substrates) w i l l e x h i b i t a s i m i l a r d i r e c t r e l a t i o n s h i p b e t w e e n t h e i r a d h e s i o n a n d the c r i t i c a l surface tension of the surface they contacted.
D i f f e r e n t i a l a d h e s i o n of r e d b l o o d cells was m e a s u r e d b y
d e t e r m i n i n g the f r a c t i o n of cells r e t a i n e d o n a surface after t h e a p p l i c a t i o n of w e l l - c a l i b r a t e d shear stresses (18). the r e d cells
(themselves
I n protein-free
experiments,
d o m i n a t e d i n adhesive interactions b y t h e i r
p r o t e i n m e m b r a n e s ) h a d greatest a d h e s i o n to glass, i n t e r m e d i a t e a d h e s i o n to p o l y e t h y l e n e a n d s i l i c o n i z e d glass, a n d least a d h e s i o n to T e f l o n . T h i s a r t i f i c i a l b i o a d h e s i o n does not c h a r a c t e r i z e the n a t u r a l s i t u a t i o n , w h e r e spontaneous p r o t e i n a d s o r p t i o n precedes cell-surface contact. M o h a n d a s a n d co-workers
r e c o g n i z e d this p r o b l e m a n d h a v e
(18)
ex-
t e n d e d t h e i r studies to p r o t e i n - c o a t e d surfaces as w e l l . Proteins at Substrates Thrombus.
I n over 20,000 substitute heart valves i m p l a n t e d d u r i n g
the mid-1960's, t h r o m b o e m b o l i s m
( s h e d d i n g of s m a l l masses of p l a t e l e t
aggregates f r o m t h e i r l o c i o n the a r t i f i c i a l surfaces of t h e i m p l a n t e d prostheses) o c c u r r e d i n about one of five patients despite attempts to m a i n t a i n a n t i c o a g u l a t i o n (20).
T h e events of c e l l a d h e s i o n a n d b r e a k -
d o w n of s u c h a d h e s i o n after i t has p r o p a g a t e d e n o u g h so that l o c a l shear forces c a n o v e r c o m e i t is a significant c o m p l i c a t i o n of heart v a l v e r e p l a c e m e n t a n d s i m i l a r i n s e r t i o n of n o n p h y s i o l o g i c a l m a t e r i a l into the c a r d i o v a s c u l a r system. dominantly
T h e first events i n v o l v e a d s o r p t i o n of p r o t e i n s , p r e -
fibrinogen,
as m o d i f y i n g or c o n d i t i o n i n g films o n the i m p l a n t s
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
BAIER
Applied
11
Chemistry
T h e n platelets, w h i c h h a d b e e n a r r i v i n g b u t not a d h e r i n g
(21, 22, 23).
p r i o r to the b u i l d u p of a c e r t a i n thickness of the p r o t e i n l a y e r , adhere to f o r m a s a t u r a t e d l a y e r (24,
25, 26).
D e p e n d i n g o n the n a t u r e of the
o r i g i n a l substrate as t r a n s d u c e d t h r o u g h the n o n e q u i l i b r i u m l a y e r
of
p r o t e i n present at the t i m e of i n d u c t i o n of platelet a d h e s i o n , either p l a t e let a g g r e g a t i o n into the l u m e n occurs, or the o r i g i n a l platelets are shed. I n the f o r m e r , m o r e c o m m o n
case, the a g g r e g a t i n g mass grows
down-
stream i n a w a k e p a t t e r n , finally i n d u c i n g f o r m a t i o n of a n interaggregate fibrin
and red cell mesh, w i t h complete
flow
block by thrombus
and
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
subsequent e m b o l i . A c t i v a t i o n of the c o a g u l a t i o n factors X I I , X I I I , etc. is a n i m p o r t a n t i n d e p e n d e n t
event w h i c h also c a n b e g i n b y
contact; i t enhances the f o r m a t i o n of flowing
stream.
fibrin
O n l y t w o , s e l d o m seen routes to f a v o r a b l e
outcomes h a v e b e e n o b s e r v e d .
surface
i n the v o l u m e phase of the biomedical
I n the first, the o r i g i n a l l a y e r of adherent
platelets does not b e c o m e s t i c k y to a r r i v i n g s i b l i n g s . T h r o u g h a p o o r l y understood
secondary
a d h e s i o n of w h i t e cells
(predominantly
neutro-
p h i l s ) , the o r i g i n a l platelets are r e m o v e d to leave a r e s i d u a l p r o t e i n
film
i n d y n a m i c e q u i l i b r i u m w i t h the b l o o d stream. N o f u r t h e r c e l l u l a r d e p o sition is n o t e d .
T h e second
favorable
circumstance
occurs
when, in
i m p l a n t s of sufficiently l a r g e d i a m e t e r or i n regions of sufficiently h i g h rates of flow, the o r i g i n a l l a y e r of platelet t h r o m b u s ( w i t h or w i t h o u t fibrin fibrin
strands a n d t r a p p e d e r y t h r o c y t e s )
remodels
to f o r m a
smooth
l a y e r or to s u p p o r t c e l l u l a r i n g r o w t h ( p r o b a b l y of e n d o t h e l i a l cells
s u c h as those o r i g i n a l l y l i n i n g b l o o d vessels ) to p r o v i d e a passive p s e u d o intima. Some g e n e r a l observations o n the a d h e s i o n of b l o o d platelets c a n be m a d e b a s e d o n experiments p e r f o r m e d i n a v a r i e t y of c a r e f u l l y d e signed
flow
deposited,
chambers even
scopically and reflection
(24,
though filmed.
spectroscopy,
27).
arriving
A l a g of 3 0 - 6 0 i n abundance,
sec before platelets was
observed
micro-
A n c i l l a r y studies b y e l e c t r o n m i c r o s c o p y , i n t e r n a l ellipsometry, staining, antibody,
and
contact
angle techniques p r o v i d e d e v i d e n c e that no c e l l a d h e s i o n occurs
from
n a t u r a l b l o o d w i t h o u t the presence of this i n t e r v e n i n g l a y e r of p r o t e i n w h i c h is s e l e c t i v e l y a n d u n i f o r m l y d e p o s i t e d o n a l l n o n p h y s i o l o g i c strates (21, 25, 28, 29).
sub-
It has b e e n p r o p o s e d r e c e n t l y that the i n t e r a c t i o n
of platelets themselves w i t h this d e p o s i t e d p r o t e i n film is m e d i a t e d b y a n e x t r a c e l l u l a r p r o t e i n l a y e r of c o n t r a c t i l e p r o t e i n o n the c e l l surface ( 30, 31 ).
F i g u r e 7 is a h i g h l y m a g n i f i e d , e l e c t r o n m i c r o s c o p i c v i e w of
the e d g e of a single b l o o d p l a t e l e t w h e r e i t contacts (epoxy).
a foreign solid
T h i s v i e w illustrates b o t h the p r e r e q u i s i t e a d s o r b e d
film
and
the p l a t e l e t surface f u z z w h i c h m a y be i n v o l v e d i n this adhesive i n t e r action.
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
12
CHEMISTRY
A T PROTEIN
INTERFACES
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
APPLIED
Figure
7.
The edge of a platelet adhering to an epoxy slab, as coated with a protein conditioning film
N o e x p l a n a t i o n exists f o r t h e o b s e r v a t i o n r o u t i n e l y c o n f i r m e d that, although spontaneously
a d s o r b e d p r o t e i n at n o n p h y s i o l o g i c
interfaces
has a u n i f o r m i n i t i a l a p p e a r a n c e a n d c h e m i s t r y , t h e a r r i v i n g b l o o d p l a t e lets d o n o t a d h e r e u n i f o r m l y t o t h a t l a y e r . T h e a d h e r e n t platelets a l w a y s l e a v e a p p a r e n t l y u n o c c u p i e d space b e t w e e n themselves a n d t h e i r nearest
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
BAIER
Applied
13
Chemistry
n e i g h b o r s , g e n e r a l l y g i v i n g a s a t u r a t i o n p o p u l a t i o n d e n s i t y of 70 a n d 90 platelets p e r 1000 μ
2
between
A c t u a l cell adhesion on preformed
(26).
p r o t e i n films c a n be m e a s u r e d b y m e t h o d s a l r e a d y d e s c r i b e d
(18).
T h e r a p i d i t y of the p r o t e i n a d s o r p t i o n has b e e n d e m o n s t r a t e d else where.
I n as little as 5 sec, for e x a m p l e , the film thickness w a s a l r e a d y
of the o r d e r of 50 A (21).
I t is n o w a c c e p t e d
that a d s o r b e d
protein
accumulates over the same t i m e p e r i o d to a b o u t the same thickness o n a l l f o r e i g n s o l i d surfaces i n b l o o d .
E l e c t r o n m i c r o g r a p h s of the platelets
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
o r i g i n a l l y a d h e r e n t to surfaces h a v i n g different o r i g i n a l characters
(32)
p r o v i d e some i n s i g h t o n the o r i g i n of a c o n t i n u e d d i f f e r e n t i a l e n d p o i n t existing a m o n g t h r o m b o r e s i s t a n t or t h r o m b o g e n i c
materials. O n
those
surfaces w h i c h are t h r o m b o r e s i s t a n t after l o n g t e r m i m p l a n t a t i o n s , t h e o r i g i n a l l y a d h e r e n t platelets r e m a i n m o r e m o r p h o l o g i c a l l y i n t a c t t h a n those w h i c h o r i g i n a l l y a d h e r e d to the ( e m p i r i c a l l y f o u n d ) materials.
thrombogenic
T h o s e o r i g i n a l l y a d h e r e n t platelets w h i c h r e t a i n t h e i r r o u n d
or d i s c - l i k e shape a n d t h r o w out v e r y f e w p s e u d o p o d s across the surface are no l o n g e r o b s e r v e d o n the surface after flow times as short as 2 hrs i n m a n y cases ( 3 3 ) , e v e n t h o u g h t h e y w e r e present f r o m times of a b o u t 1 m i n (24)
to 10 m i n (26).
T h u s , i n some u n k n o w n w a y , differences i n
the a d s o r b e d p r o t e i n , e v e n the same a d s o r b e d p r o t e i n , m u s t b e m a r k e d e n o u g h to p r o v i d e this s t r i k i n g l y different response i n a d h e r i n g b l o o d platelets. C h a n g e s i n the zeta p o t e n t i a l a n d other e l e c t r o k i n e t i c p r o p e r ties across a d s o r b e d p r o t e i n layers are p r o b a b l y not great e n o u g h
to
e x p l a i n the r e l a t i v e c o m p a t i b i l i t y , or l a c k of c o m p a t i b i l i t y , of a v a r i e t y of p r o p o s e d i m p l a n t m a t e r i a l s (35,
36).
L e o V r o m a n a n d c o - w o r k e r s , w h o present a d d i t i o n a l d a t a i n this v o l u m e , h a v e m a d e m a j o r c o n t r i b u t i o n s to o u r u n d e r s t a n d i n g of the f u n d a mentals of this a d s o r p t i o n process.
T h e y h a v e s h o w n that events at the
s u b s t r a t e / b l o o d i n t e r f a c e are not static after the first l a y e r of p r o t e i n is a d s o r b e d , b u t that the p r o t e i n l a y e r is c o n t i n u o u s l y r e m o d e l e d , w i t h , or c o n v e r t e d b y other surface-active c o m p o n e n t s
reacted
i n intact plasma
(37). T h e l a y e r w h i c h continues to exist i n a p p a r e n t e q u i l i b r i u m w i t h t h e b l o o d after l o n g t e r m i m p l a n t a t i o n s of o t h e r w i s e i n e r t s o l i d materials r e m a i n s m y s t e r i o u s ; i t is not r e c o g n i z e d b y a n y of t h e specific component
antibodies t r i e d to date.
blood
Often, it remains thick enough
that w h e n a n a l y z e d b y i n t e r n a l reflection spectroscopy
so
(sensitive to, at
the most, a f e w m i c r o n s of a substrate surface s a m p l e ) , the u n d e r l y i n g p o l y m e r i c substrate cannot be d e t e c t e d at a l l . A n i n t e r e s t i n g e x c e p t i o n to this finding has c o m e f r o m o u r recent r e s e a r c h w i t h i n o r g a n i c s u b strates w h i c h h a d b e e n s c r u p u l o u s l y c l e a n e d b y g l o w d i s c h a r g e treat ment.
W h e n b o r o s i l i c a t e glass t u b i n g was t r e a t e d b y this process a n d
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14
APPLIED
CHEMISTRY AT PROTEIN
INTERFACES
i m p l a n t e d , i t r e m a i n e d t h r o m b u s - f r e e for m o r e t h a n a y e a r i n a v e r y thrombogenic
location
(the
canine
thoracic
inferior vena
cava).
A
p a s s i v a t i n g l a y e r of p r o t e i n , w h i c h w a s r e m a r k a b l y p u r e b y s p e c t r o s c o p i c c r i t e r i a a n d a b u n d a n t after 2 hrs of b l o o d contact, c o u l d b e b a r e l y d e m onstrated b y I R after 480 days
(38).
I m p r o v e d a n a l y t i c a l t e c h n i q u e s are n e e d e d to detect the i m p o r t a n t c o n f i g u r a t i o n a l a n d c h e m i c a l differences spontaneously
from complex
among adsorbed
films
solutions o n v a r i o u s substrates.
formed Internal
reflection I R does not r e v e a l significant differences i n the a d s o r b e d p r o Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
t e i n films w h i c h a c c u m u l a t e o n v a r i o u s l y treated S t e l l i t e 21 devices
(a
c o b a l t - c h r o m i u m a l l o y u s e d to m a k e s y n t h e t i c h e a r t v a l v e struts a n d s e a t s ) ; i n some instances these devices are t h r o m b o g e n i c , a n d i n others they
are
apparently
thromboresistant
(39).
Yet,
scanning
m i c r o s c o p y reveals t h a t a r r i v i n g b l o o d platelets c a n d i s c e r n
electron
differences
i n t h e films i m m e d i a t e l y o n contact w i t h t h e m . T e x t i l e G r a f t s . F l e x i b l e k n i t t e d a n d w o v e n tubes ( u s u a l l y of D a c r o n and Teflon
fibers)
was d e m o n s t r a t e d
are often i m p l a n t e d as s y n t h e t i c b l o o d c o n d u i t s . as e a r l y as 1958 that these p l a s t i c
fiber
It
grafts a l l
b e c o m e coated, o n b o t h outer a n d i n n e r surfaces, w i t h fibrous tissues as s o o n as 30 days after i m p l a n t a t i o n (40). surface-energy
I n a d d i t i o n the n o m i n a l l y h i g h e r
fabrics, constructed from polyamide
m o r e p r o n e to a c c u m u l a t e t h i c k layers of s u c h
a n d polyester,
fibrous
are
tissue t h a n are
the l o w e r surface-energy grafts of T e f l o n . D r a w i n g u p o n s u c h scattered observations,
along w i t h
our o w n
d a t a o n the surface
-apparently thromboresistant i m p l a n t s
(41),
we
properties
proposed
of
a tentative
c o r r e l a t i o n of the r e l a t i v e surface energies of solids w i t h t h e i r b i o l o g i c a l interactions (13, 24, 42).
T h e most significant feature of our hypothesis
is a m i n i m u m i n r e l a t i v e b i o l o g i c a l i n t e r a c t i o n a l o n g the scale f r o m v e r y l o w surface-energy m a t e r i a l s ( t y p i f i e d b y the surface-energy
plastics
(typified by
fluorocarbons
) to the h i g h e r
the v a r i o u s polyesters
and
poly-
a m i d e s ). E v i d e n c e (42, 43) suggests that the z o n e of m a x i m u m b i o c o m p a t i b i l i t y — a s j u d g e d b y m i n i m u m depositions of debris o n i m p l a n t s or m i n i m u m d i s t o r t i o n of cells a d h e r e n t t h r o u g h a n i n t e r m e d i a t e l a y e r of p r o t e i n to the s u r f a c e s — f a l l s i n the c r i t i c a l surface r e g i o n b e t w e e n 20 a n d 30 d y n e s / c m .
O n the basis of w e l l d e v e l o p e d correlations b e t w e e n p o l y -
m e r surface c o n s t i t u t i o n a n d c r i t i c a l surface tension ( 7 ) , s u c h a range m u s t b e essentially d o m i n a t e d b y the - C H t e r m i n a l groups as side chains 3
(as i n p o l y d i m e t h y l s i l o x a n e ) acids, a m i d e s ,
and long
organic backbones.
or t e r m i n a l a t o m i c clusters (as i n fatty
chain aliphatic alcohols)
on more
T h e a p p a r e n t c r i t i c a l surface tension of
complex organized
w a t e r ( d e t e r m i n e d f r o m w e t t i n g experiments i n v o l v i n g s i m p l e l i q u i d s w h i c h c a n i n t e r a c t o n l y b y d i s p e r s i o n forces a n d not b y p o l a r interactions o r h y d r o g e n - b o n d i n g i n t e r a c t i o n s ) falls also i n this z o n e (45, 46);
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
this
1.
BAIER
15
Applied Chemistry
suggests that v e r y h i g h l y h y d r a t e d masses s u c h as h y d r o g e l s m i g h t also f u n c t i o n b y this m o d e r a t e surface-energy m e c h a n i s m w h e n t h e y r e m a i n thromboresistant. Cell Adhesion. E x c e p t for m o d e l experiments w i t h r e d cells i n a r t i ficial
p r o t e i n - f r e e e n v i r o n m e n t s , there is n o c o u n t e r e x a m p l e to the g e n -
e r a l i z a t i o n t h a t c e l l a d h e s i o n does not o c c u r to a n y s o l i d surface w i t h o u t an i n t e r v e n i n g t h i n l a y e r of a d s o r b e d or p r e v i o u s l y d e p o s i t e d p r o t e i n d o m i n a t e d matter.
A n excellent d e m o n s t r a t i o n of t h e r e q u i r e m e n t f o r
s u c h a d s o r b e d layers w a s p r o v i d e d b y A . C . T a y l o r (47)
i n his studies of
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
a d h e s i o n b e t w e e n g i n g i v a l e p i t h e l i a l cells a n d h a r d e n a m e l surfaces at the d e n t a l m a r g i n a n d b e t w e e n a l l l i v i n g cells w h i c h h e s t u d i e d a n d a r t i f i c i a l substrates i n c u l t u r e . M o r e r e c e n t l y , this finding has b e e n c o n firmed
i n examples as m u c h i n contrast as the a d h e s i o n of s t a n d a r d c e l l
lines to u n m o d i f i e d glass surfaces a n d to c o m p l e t e l y s i l i c o n e - m a s k e d glass surfaces (48).
S u c h m a s k i n g w a s d o n e b y a p i n h o l e - f r e e o v e r c o a t i n g of
a s i l i c o n i z i n g m a t e r i a l w h i c h not o n l y c h a n g e d the surface free
energy
of the s o l i d b u t also r e v e r s e d its n o r m a l e l e c t r i c a l c h a r g e ( f r o m n e g a t i v e to p o s i t i v e ) ; yet p r o t e i n a d s o r p t i o n p r e c e d e d c e l l a d h e s i o n b o t h b e f o r e a n d after the glass was o v e r c o a t e d . I n this v o l u m e B a i e r a n d W e i s s demonstrate t h e r e a l i t y of the s p o n taneous a d s o r p t i o n of r e a s o n a b l y p u r e g l y c o p r o t e i n films f r o m
common
c e l l c u l t u r e m e d i a (as g e n e r a l l y s u p p l e m e n t e d w i t h c a l f s e r u m )
prior
to c e l l a t t a c h m e n t a n d g r o w t h o n substrate surfaces. I n a d d i t i o n to s u r face c h e m i c a l a n d charge influences o n c e l l a d h e s i o n at the s o l i d / s o l u t i o n interface, there is a d e p e n d e n c e o n the r e l a t i v e sizes a n d geometries the cells a n d t h e i r p o t e n t i a l substrates (48).
of
I n some cases, w h e r e the
substrates are q u i t e l a r g e w i t h respect to the cells, the cells w i l l s i m p l y g r o w over, a l o n g , or u n d e r s u c h f o r e i g n m a t e r i a l . are v e r y s m a l l a n d a k i n to phagocytosis
fibrous,
or o t h e r w i s e
finely
W h e n t h e substrates
p a r t i c u l a t e d , a process
occurs—i.e., the cells cluster o n a n d a r o u n d the
f o r e i g n s o l i d surfaces. P a u l W e i s s c a t a g o r i z e d these types of reactions as i n d i c a t i v e of a tactile c h e m i c a l response (49). (50, 5 1 ) a n d G o o d ( 5 2 )
V a n Oss a n d c o - w o r k e r s
h a v e r e c e n t l y t a k e n some of these factors i n t o
a c c o u n t i n t h e i r s t u d y of m e c h a n i s m s of phagocytosis
as i t u n d e r l i e s
p a r t i c l e e n g u l f m e n t i n h e a l t h a n d disease. A n i m p o r t a n t feature of the i n c u b a t i o n of f o r e i g n s o l i d surfaces i n natural biological media, especially i n media
containing
adsorbable
m a c r o m o l e c u l a r c o m p o n e n t s s u c h as s e r u m g l y c o p r o t e i n s , is that h i g h e r surface free-energy materials ( s u c h as g l o w - d i s c h a r g e c l e a n e d glass ) a n d m o d e r a t e l y l o w surface free-energy m a t e r i a l s ( s u c h as d i c h l o r o d i m e t h y l s i l a n e - m o d i f i e d glass) c o n t i n u e to e x h i b i t d i f f e r e n t i a l s u r f a c e p r o p e r t i e s t h r o u g h a n a d s o r b e d p r o t e i n b l a n k e t of e q u a l thickness. T h e s e p r o p e r t i e s are e x h i b i t e d i n b o t h contact a n g l e ( w e t t i n g a n d s p r e a d i n g )
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
and cell
16
APPLIED CHEMISTRY
AT PROTEIN
INTERFACES
a d h e s i o n experiments w h i c h are easily d o n e i n the l a b o r a t o r y (47). c h a r a c t e r i z e d a n d w e l l b e h a v e d glass c o a t i n g c o m p o u n d s s u r f a c e free energy are n e e d e d
Well
of v e r y
low
to v e r i f y t h a t p r o t e i n a d s o r p t i o n
will
o c c u r o n that substrate i n the same w a y i t does o n the h i g h a n d m o d e r a t e surface free-energy substrates. C e l l s a d h e r e m o r e t i g h t l y a n d i n greater abundance
to
smooth
smooth moderate
higher
surface
free-energy
( b e t w e e n 20 a n d 30 d y n e s / c m )
t a c h e d to the h i g h surface-free-energy
substrates
than
to
substrates; cells at-
substrates, t h r o u g h a n i n t e r v e n i n g
l a y e r of spontaneously a d s o r b e d p r o t e i n , s h o w m u c h greater f r e q u e n c y of Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
irregular perimeters
(i.e., m a n y p r o t r u s i o n s , p s e u d o p o d s , a n d
projections f r o m the b o r d e r a t t a c h i n g to the s u r f a c e ) .
fibrous
C e l l s o n the b i o -
c o m p a t i b l e surfaces r e m a i n r o u n d e d a n d p o o r l y adherent.
E q u a l l y sig-
n i f i c a n t is that, i n the case of c e l l contact w i t h p r o t e i n - c o a t e d
moderately
l o w - e n e r g y surfaces, t h e cells prefer to aggregate ( o v e r a p e r i o d of t i m e ) w i t h one a n o t h e r i n tissue-like masses r a t h e r t h a n m a i n t a i n i n d e p e n d e n t a n d separate a d h e s i o n w i t h a substrate (47).
W e have previously dis-
c u s s e d a z o n e of m i n i m a l c e l l s p r e a d i n g a n d a t t a c h m e n t o n s u c h surfaces ( 41 ) a n d r e v i e w e d these processes f r o m the p o i n t of v i e w of c e l l m o t i l i t y a n d m i g r a t i o n as necessarily takes p l a c e d u r i n g w o u n d h e a l i n g
(53).
F u t u r e s t u d y m u s t s h o w h o w , at the l e a d i n g e d g e of m i g r a t i n g cells, the a d h e s i o n b e t w e e n c e l l surface structures a n d the u n d e r l y i n g i m m o b i l i z e d substrate surface structures c a n b e so r a p i d l y m a d e a n d b r o k e n as to a l l o w t h e o b s e r v e d r o t a t i n g - t a n k t r e a d - l i k e m o t i o n of the c e l l surface a n d the f o r w a r d progress of the c e l l b o d y to occur. Intrauterine Devices.
L e i n i n g e r (54)
has r e v i e w e d the u t i l i t y of
v a r i o u s p o l y m e r s as i m p l a n t s . O b j e c t s w h i c h are n e i t h e r a tissue i m p l a n t n o r a c a r d i o v a s c u l a r i m p l a n t b u t w h i c h m a y h a v e features of b o t h , are c o n t r a c e p t i v e f o r e i g n bodies.
Since this subject has not b e e n
discussed
often e n o u g h i n the surface c h e m i c a l l i t e r a t u r e , interactions of
devices
p l a c e d i n the uterine c a v i t y r e m a i n p o o r l y u n d e r s t o o d .
devices
These
m i n i m i z e i n some u n k n o w n m a n n e r , chances for c o n c e p t i o n a n d p r e g n a n c y . A b r i e f a r t i c l e w h i c h discusses t h e specifics of spontaneous i n t e r f a c i a l m o d i f i c a t i o n of these contraceptives is i n c l u d e d i n this v o l u m e
(57).
T h e m a j o r finding is that a l l s u c h inserts a c c u m u l a t e a r e m a r k a b l y u n i f o r m c o a t i n g of g l y c o p r o t e i n b y spontaneous a d s o r p t i o n f r o m the c e r v i c a l mucous
fluid.
It has b e e n s p e c u l a t e d t h a t this l a y e r of a d s o r b e d i n t e r -
f a c i a l m a t e r i a l m o d e s t l y activates a n t i b o d y a n d r e j e c t i o n m e c h a n i s m s i n the s u r r o u n d i n g tissue, t h e r e b y p r e v e n t i n g c a p a c i t a t i o n of s p e r m o b l i g e d to s w i m t h r o u g h this s u b t l y c h e m i c a l l y m o d i f i e d z o n e Dental Adhesion.
A
problem
of
(41).
increasing importance
w h i c h is
a t t r a c t i n g i n c r e a s i n g scientific w o r k e r s , is the e s t a b l i s h m e n t i n t h e m o i s t saline, e n z y m a t i c a l l y a c t i v e , heat-and-cold-stressed,
and
mechanically
p e r t u r b e d e n v i r o n m e n t of the m o u t h g o o d a d h e s i v e b o n d s b e t w e e n
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
the
1.
BAIER
Applied
17
Chemistry
n a t u r a l surfaces a n d s y n t h e t i c p r o s t h e t i c m a t e r i a l s (50, 57, 5 8 ) .
This
h a p p e n s spontaneously i n most h e a l t h y a n d m a n y diseased persons w h e n d e n t a l p l a q u e accumulates a n d transforms i n t o d e n t a l c a l c u l u s . A s w e h a v e s h o w n elsewhere
(59),
a n d as Q u i n t a n a r e v i e w s i n this v o l u m e
( 6 0 ) , s o l i d surfaces i n t h e o r a l c a v i t y e v e n w h e n s c r u p u l o u s l y p r e c l e a n e d do not r e m a i n free of a d s o r b e d m a c r o m o l e c u l a r c o m p o n e n t s for m o r e than a few
seconds.
T h e m a t e r i a l w h i c h is s p o n t a n e o u s l y
adsorbed
is a specific g l y c o p r o t e i n c o m p o n e n t of s a l i v a a n d not a heterogeneous r a n d o m selection f r o m a l l surface-active
c o m p o n e n t s present.
In
our
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
laboratories, w e are d e t e r m i n i n g the surface c h e m i s t r y of h u m a n teeth as t h e y n o r m a l l y rest i n a h e a l t h y h u m a n m o u t h , b y m a k i n g contact angle measurements ( 5 9 ) .
O n c e the m a i n features of this i n t e r f a c i a l c h e m i s t r y
a n d the d o m i n a n c e of most interfaces b y a d s o r b e d h y d r a t e d proteinaceous layers b e c o m e s m o r e g e n e r a l l y u n d e r s t o o d , the d e v e l o p m e n t of excellent d e n t a l adhesives w i l l f o l l o w . S u c h adhesives, s u p p o r t e d b y s p e c i a l d e n t a l treatment, w i l l a l l o w greater a d h e s i o n b e t w e e n b i o l o g i c a l materials a n d h a r d substrates, as i n i m p l a n t s at the d e n t a l m a r g i n . i m p r o v e d surface c h e m i c a l k n o w l e d g e
I n other cases,
s h o u l d a l l o w treatments to
be
d e v e l o p e d w h i c h w i l l m i n i m i z e a d h e s i o n b e t w e e n c e l l u l a r elements, s u c h as b a c t e r i a l flora, a n d s o l i d surfaces i n the m o u t h so that d e n t a l p l a q u e , cavity initiation, and calculus formation w i l l be m i n i m i z e d . Biological Fouling.
B a c t e r i a l a d h e s i o n is a p r i m a r y event i n the
e a r l y phases of d e n t a l p l a q u e f o r m a t i o n .
A less p o p u l a r l y u n d e r s t o o d
example
of b a c t e r i a l a d h e s i o n is that w h i c h occurs o n f o r e i g n
surfaces
i n n a t u r a l waters.
K e v i n Marshall i n Australia and
solid
William
C o r p e i n the U n i t e d States h a v e l e d the s t u d y of p r i m a r y b a c t e r i a l f o r m a t i o n o n f o r e i g n s o l i d surfaces (61, 62).
T h e y have
film
demonstrated,
i n d e p e n d e n t l y a n d i n c o l l a b o r a t i o n w i t h this author, the i n t e r f a c i a l m o d i fication
of a l l f o r e i g n substrates, p r i o r to s u c h p r i m a r y b a c t e r i a l a d h e s i o n ,
b y a d s o r b e d g l y c o p r o t e i n layers. It is not yet c e r t a i n that these e x t r a c e l l u l a r layers o r i g i n a t e f r o m d i s s o l v e d c o m p o n e n t s i n n a t u r a l seawater or i n s u s p e n d i n g m e d i a i n l a b o r a t o r y experiments. films
These conditioning
of a d s o r b e d p r o t e i n m a y result f r o m a c t i v e p a r t i c i p a t i o n of
the
b a c t e r i a i n e x t r u d i n g s u c h m a t e r i a l or f r o m the d i s i n t e g r a t i o n of some of the b a c t e r i a to p r o v i d e the a d s o r b a b l e c o m p o n e n t s i n a
nonspecific
m a n n e r . M a r s h a l l has also s h o w n that the p r o p a g a t i o n of these b a c t e r i a i n chains a n d clusters p r o c e e d s f r o m the surface t h r o u g h the i n t e r m i n g l i n g or a d h e s i o n of
fibrillar
e x t r a c e l l u l a r p o l y m e r i c m a t e r i a l s i m i l a r to t h a t
i n v o l v e d i n the o r i g i n a l adhesive event the i n v o l v e m e n t of
fiber-forming
(63).
fibrinogen
T h i s o b s e r v a t i o n recalls
a n d the m u t u a l a g g r e g a t i o n
of b l o o d platelets d u r i n g the i n i t i a l events of t h r o m b u s f o r m a t i o n s c r i b e d e a r l i e r (21,
29).
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
de-
18
APPLIED CHEMISTRY A T PROTEIN
INTERFACES
E v e n i n t h e absence of m i c r o s c o p i c a l l y o b s e r v a b l e b a c t e r i a l a d h e s i v e events, a l l substrates i n n a t u r a l w a t e r , a n d e s p e c i a l l y i n s u b t r o p i c a l areas w h e r e m a r i t i m e f o u l i n g a b o u n d s , are spontaneously c o a t e d w i t h a d s o r b e d p r o t e i n films ( 6 5 ) . I n fact, a l l o w i n g f o r differences i n r e l a t i v e t i m e scales w h i c h reflect differences i n r e l a t i v e concentrations of a d s o r b a b l e
com-
ponents, the sequence of events at s o l i d surfaces i m m e r s e d i n c o m m o n f r e s h or seawater ( c o n t a i n i n g l i v i n g o r g a n i s m s )
is essentially i d e n t i c a l
to t h a t i n t h e n a t u r a l m a r i t i m e e n v i r o n m e n t . T h e sequence b e g i n s w i t h r a p i d , n e a r l y m o n o m o l e c u l a r l a y e r c o v e r a g e of specifically a d s o r b e d g l y Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
coproteins f o l l o w e d b y l a y e r t h i c k e n i n g a n d finally a d h e s i o n a n d g r o w t h of discrete organisms ( 6 5 ) . W i t h samples p r e p a r e d b y M . C o o k i n E n g l a n d , w e h a v e
demon-
strated t h a t s u c h a d s o r b e d films o n s o l i d substrates are also i n v o l v e d i n the a d h e s i o n of mussel byssus discs to s u c h surfaces ( 6 6 ) . A s e c o n d a r y a d h e s i v e p r o d u c t , a n a l y t i c a l l y s i m i l a r to g l y c o p r o t e i n s , is that o n the u n d e r s i d e of the mussel byssus discs ( 6 7 ) . I n the case of the a b i l i t y of b a r n a c l e c y p r i d s to a d h e r e u n d e r adverse circumstances to substrates as d i v e r s e as T e f l o n , steel, a n d h i g h l y toxic p a i n t surfaces, t h e o r i g i n a l m o d i f i c a t i o n of the s o l i d substrate i n t e r f a c e is p r o v i d e d b y
adsorbed
p r o t e i n - d o m i n a t e d layers. C r i s p (68) has s h o w n c o n v i n c i n g l y t h a t b a r n a c l e c y p r i d s i n t h e i r adhèrent stage w i l l choose p r o t e i n - c o a t e d substrates f o r s e t t l i n g rather t h a n f r e s h l y i n s e r t e d or freshly c l e a n e d surfaces. I n this case, as w i t h the mussel byssus d i s c a n d w i t h a d h e r e n t b a c t e r i a , the extruded cement
(itself a g l y c o p r o t e i n )
m u s t b e e s t a b l i s h i n g its great
a d h e s i o n n o t d i r e c t l y w i t h t h e substrate b u t w i t h t h e a l r e a d y - p r e s e n t g l y c o p r o t e i n film f o r m e d p r i o r to c y p r i d settling. W e suggested earlier that a l l b i o l o g i c a l f o u l i n g begins b y a n a d s o r p t i v e event d o m i n a t e d b y a c c u m u l a t i o n of g l y c o p r o t e i n m a t e r i a l a n d that s e c o n d a r y a d h e s i o n of the f o r m e d c e l l u l a r or l a r v a l organisms is t h r o u g h a p r o t e o g l y c a n
type
m a t e r i a l ( 6 7 ) . W e suppose that the s e c o n d a r y c e m e n t interacts, c a r b o hydrate-group-to-carbohydrate-group, chains w i t h s i m i l a r o l i g o s a c c h a r i d e
t h r o u g h its exposed groups
glyco
side
of t h e o r i g i n a l l y a d h e r e n t
l a y e r i n m u c h the same m a n n e r as p o l y s a c c h a r i d e chains m e r g e i n w e t c e l l u l o s i c p u l p s to g i v e p a p e r p r o d u c t s t h e i r strength. B a r n a c l e s a c t u a l l y g r o w n o n t h e faces of i n t e r n a l reflection p r i s m s h a v e a c e m e n t p r e d o m i n a t e l y of t h e g l y c o p r o t e i n class. I n most d e t a c h a b l e b i o l o g i c a l l i n k s , s u c h as f o r m e d b y t h e mussel byssus discs, l i m p i d s , snails, a n d f r e s h - w a t e r r e m o v a b l e b a c t e r i a , the a d h e s i v e is g e n e r a l l y of the p o l y s a c c h a r i d e or p r o t e o g l y c a n class. B a s e d u p o n i m m e r s i o n studies s t i l l i n progress, the z o n e of m i n i m a l b i o l o g i c a l a d h e s i o n s i g n a l e d b y the c r i t i c a l surface t e n s i o n r a n g e b e t w e e n
20 a n d 30 d y n e s / c m
i n tissue
i m p l a n t a t i o n , c e l l c u l t u r e , a n d b l o o d c o m p a t i b i l i t y experiments w i l l also b e t h e p r o p e r f u n c t i o n a l z o n e for m i n i m u m b i o l o g i c a l f o u l i n g ( 6 4 ) .
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
BAIER
Applied
Specifics of Protein
19
Chemistry Adsorption
Substrates of d i f f e r i n g i n i t i a l surface p r o p e r t i e s , w h e n i m m e r s e d i n media containing adsorbable macromolecules
s u c h as proteins, a t t a i n at
e q u i l i b r i u m essentially the same a m o u n t of the same a d s o r b e d m a t e r i a l (69).
A l t h o u g h the e q u i l i b r i u m c o n d i t i o n s
at the surfaces
substrates are, i n the absence of other components l i v i n g cells, s i m i l a r , these surfaces
of
various
and especially
of
differ r e m a r k a b l y w h i l e a t t a c h i n g ,
a d s o r b i n g , or o t h e r w i s e c o n t a c t i n g c e l l u l a r elements before e q u i l i b r i u m Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
thicknesses or constant c h e m i c a l c o n d i t i o n s
have been
obtained.
To
u n d e r s t a n d b i o a d h e s i v e events one m u s t k n o w t h e specific c o n f i g u r a t i o n a n d other details of o r g a n i z a t i o n of the films d u r i n g t h e i r c o n v e r s i o n f r o m i n i t i a l l y a t t a c h e d molecules desorption
e q u i l i b r i u m . Some
especially
the differences
to the establishment of
aspects
adsorption-
of the a d s o r p t i o n process,
w h i c h continue
to
exist even
under
l i b r i u m c o n d i t i o n s , are d e s c r i b e d i n other p u b l i c a t i o n s (69,
Adsorbed
and equi-
70).
Films
U s i n g the p r o t e i n b e t a - l a c t o g l o b u l i n as a m o d e l , G e o r g e L o e b has s h o w n that the r a t i o of essentially n a t i v e to c o n f i g u r a t i o n a l l y m o d i f i e d p r o t e i n i n s p o n t a n e o u s l y a d s o r b e d films varies d i r e c t l y w i t h the a m o u n t of m a t e r i a l a d s o r b e d (71).
A t the lowest a m o u n t a d s o r b e d
(presumably
the first m o n o l a y e r c o v e r a g e ) , the r a t i o of n a t i v e to a l t e r e d m o l e c u l a r c o n f i g u r a t i o n is about 0.5. O n l y as the film achieves a d s o r p t i o n e q u i l i b r i u m at a s i g n i f i c a n t l y greater thickness does this r a t i o b e c o m e about 0.8 ( f o r films a d s o r b e d o n n o m i n a l l y h i g h surface e n e r g y m a t e r i a l s ) .
Loebs
p a r a m e t e r of s t r u c t u r a l a l t e r a t i o n was the I R - d e t e c t a b l e shift i n h y d r o gen-bonding
arrangements w h i c h differentiate the p r e d o m i n a t e l y
beta-
s t r u c t u r e d ( i n t e r m o l e c u l a r l y h y d r o g e n - b o n d e d e x t e n d e d c h a i n ) f r o m the alpha-helical
configuration
bonded amino acid units).
(stabilized by
intramolecularly
hydrogen-
O n l y w h e n the substrate a v a i l a b l e f o r a d -
s o r p t i o n of p r o t e i n m a c r o m o l e c u l e s f r o m s o l u t i o n was i n the m o d e r a t e l y low-surface-free-energy i n the a d s o r b e d
film
class d i d the ratio of n a t i v e to d e n a t u r e d m a t e r i a l a p p r o a c h one.
L o e b also s h o w e d
i n a series of
experiments i n w h i c h the c o n c e n t r a t i o n of p r o t e i n i n the o r i g i n a l s o l u t i o n was s y s t e m a t i c a l l y m o d i f i e d , t h a t the p r o p o r t i o n of n a t i v e m a t e r i a l ( c o n figurationally
u n d i s t o r t e d at the l e v e l of secondary structure d e t e c t e d
by
I R ) w a s l o w e r r e l a t i v e to the l o w e r o r i g i n a l c o n c e n t r a t i o n of p r o t e i n i n solution.
I n s i m i l a r systems s t u d i e d b y e l l i p s o m e t r y , e q u i l i b r i u m
film
thicknesses are n o t a t t a i n e d u n t i l ca. 1500 sec of a d s o r p t i o n ; this i l l u s trates the s u b s t a n t i a l difference
i n t i m e scales b e t w e e n
a t t a i n m e n t of
e q u i l i b r i u m p r o t e i n a d s o r p t i o n a n d the t i m e ( 3 0 - 4 8 0 sec) at w h i c h cells
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
20
APPLIED CHEMISTRY AT PROTEIN
u s u a l l y b e c o m e adhesive to the t h i c k e n i n g the N a t i o n a l B u r e a u of S t a n d a r d s ( 6 9 )
films.
INTERFACES
R e c e n t results f r o m
i l l u s t r a t e the f u r t h e r s e n s i t i v i t y
of p r o t e i n a d s o r p t i o n to the specific surface free e n e r g y of the s o l i d s u b strate. S u c h w o r k has s h o w n that a l t h o u g h the mass of m a t e r i a l a d s o r b e d o n v a r i o u s surfaces m i g h t r e m a i n essentially constant u n d e r e q u i l i b r i u m c o n d i t i o n s , the p r o t e i n extension out i n t o the s o l u t i o n phase c a n b e s u b s t a n t i a l l y different.
O n a v a r i e t y of surfaces, proteins of s p e c i a l interest
i n t h r o m b u s f o r m a t i o n a n d b l o o d c l o t t i n g h a v e t h e i r greatest extension f r o m those surfaces of l o w e r free e n e r g y ( 6 9 ) .
S u c h studies h a v e s u g -
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
gested the i n t e r p r e t a t i o n , d i s c u s s e d i n d e t a i l b y N y i l a s (72),
that l o w
i n t e r a c t i o n energies across s o l i d / p r o t e i n s o l u t i o n b o u n d a r i e s w i l l ensure short residence times of t h e a d s o r b i n g m a c r o m o l e c u l e s .
Proper balance
of the i n t e r f a c i a l c h e m i s t r y w i t h the c h e m i s t r y of the a d s o r b i n g species w h i c h tenacious,
irre-
versible protein adsorption ( a n d configuration modification) induce
c a n p r o b a b l y m i n i m i z e t h e adverse
(73).
Gas/Liquid
influences
Interfaces
A d s o r p t i o n experiments w i t h p r o t e i n m a c r o m o l e c u l e s
at s o l i d / s o l u -
t i o n interfaces are often difficult to p e r f o r m a n d e v e n m o r e difficult to interpret properly.
Fortunately w e have reported a n d reviewed
else-
w h e r e (11, 22) that b o t h a d s o r p t i o n a n d d e l i b e r a t e s p r e a d i n g of proteins and synthetic polypeptides
(as m o d e l p r o t e i n s ) at a i r / l i q u i d interfaces
p r o v i d e films w h o s e structures are u s u a l l y i n d i s t i n g u i s h a b l e f r o m those f o r m e d b y a d s o r p t i o n to solids. r e v i e w e d b y M a l c o l m (74)
It has also b e e n s h o w n , as r e c e n t l y
a n d r e c a p i t u l a t e d b y h i m i n this v o l u m e , that
g a s / l i q u i d i n t e r f a c i a l p o l y m e r i c films c a n b e grossly m a n i p u l a t e d , c r u m pled, a n d collapsed into
fibrous
f u n d a m e n t a l s t r u c t u r e (75, 76).
b u n d l e s w i t h o u t m o d i f i c a t i o n of t h e i r L o e b has s h o w n that for p r e d o m i n a n t l y
a l p h a - h e l i c a l proteins, a d s o r p t i o n at the s o l i d / l i q u i d b o u n d a r y a n d m o r e p a r t i c u l a r l y s p r e a d i n g at the a i r / l i q u i d i n t e r f a c e does not s i g n i f i c a n t l y degrade their original secondary
s t r u c t u r e (77).
O n the other h a n d ,
p r e d o m i n a n t l y b e t a - c h a i n m a t e r i a l s , s u c h as b e t a - l a c t o g l o b u l i n , do d u r i n g a d s o r p t i o n or a i r / w a t e r i n t e r f a c i a l film f o r m a t i o n c h a n g e to a h e l i c a l f o r m (71).
more
T h i s w a s p r e v i o u s l y s h o w n , b y m u l t i p l e attenuated
i n t e r n a l reflection s p e c t r o s c o p y t e c h n i q u e s i d e n t i c a l to those d e s c r i b e d here, to o c c u r w i t h t h e s i m p l e r p o l y p e p t i d e
poly(y-methylglutamate)
s p r e a d f r o m solutions i n w h i c h its p r e d o m i n a n t m o l e c u l a r f o r m
was
beta
film
(extended
chain)
became about 5 0 %
and
in which
c o i l e d (76).
its a i r / w a t e r i n t e r f a c i a l
I n b e t a - l a c t o g l o b u l i n , the f r a c t i o n of
n a t i v e m a t e r i a l r e m a i n i n g i n a m o n o l a y e r d e p e n d e d on the surface p r e s sure u n d e r w h i c h the film w a s t r a n s f e r r e d to i n t e r n a l reflection p r i s m s f o r u l t i m a t e analysis. T h e h i g h e r pressures f a v o r e d m o r e n a t i v e m a t e r i a l
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
BAIER
Applied
i n the t r a n s f e r r e d
21
Chemistry film.
W i t h this exception, i t c a n b e g e n e r a l i z e d t h a t
the strong p r e f e r e n c e is for c o i l e d r a t h e r t h a n e x t e n d e d chains of surfacelocalized macromolecules. U s i n g d i r e c t extensions
of
film
transfer t e c h n i q u e s
originally de-
s c r i b e d b y L a n g m u i r a n d B l o d g e t t ( 1 ), w e h a v e a p p l i e d the surface
film
r e t r i e v a l m e t h o d d e s c r i b e d to films a c c u m u l a t e d at n a t u r a l g a s / l i q u i d i n t e r f a c i a l b o u n d a r i e s s u c h as those b e t w e e n the sea a n d the atmosphere a b o v e lakes a n d oceans ( 78, 79, 80, 81 ). G i v e n p r i s m s w h i c h h a d b e e n
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
s c r u p u l o u s l y c l e a n e d i n the l a b o r a t o r y p r i o r to p a c k a g i n g , so that t h e i r surface properties w e r e p r e d o m i n a n t l y h y d r o p h i l i c at the t i m e of
field
i m m e r s i o n , i t was d e m o n s t r a t e d t h a t even i n a r e a s o n a b l y c h o p p y m a r i time environment where
precise
i m m e r s i o n a n d w i t h d r a w a l was
not
possible, o n l y a single thickness of the a m b i e n t resident film w a s t r a n s f e r r e d for analysis ( b y the c o m b i n a t i o n of t e c h n i q u e s d e s c r i b e d e a r l i e r here).
It w a s also s h o w n that, b y first c o n d i t i o n i n g the p r i s m w i t h a
hydrophobic
c o a t i n g ( s u c h as t h a t p r o v i d e d b y s i l i c o n i z a t i o n or b y a
d r i e d m o n o l a y e r of stearic a c i d or stéarate s a l t ) , m u l t i p l e i m m e r s i o n s a n d w i t h d r a w a l s of a p r i s m t h r o u g h a s u r f a c e - f i l m - c o v e r e d l i q u i d w o u l d r e s u l t i n the easy transfer of p r o p o r t i o n a t e l y t h i c k e r ( m u l t i p l e a m b i e n t layers ) films for easier analysis. T h i s t e c h n i q u e i n v o l v e s r e m o v i n g a p r i s m i n a s p e c i a l s m a l l h o l d e r f r o m its p l a s t i c p a c k a g e , a t t a c h i n g i t to a snap h o o k o n a fishing l i n e a n d l o w e r i n g i t t h r o u g h the n a t u r a l a i r / w a t e r i n t e r f a c e ( or o u t f a l l of i n d u s t r i a l wastes, l a y e r of f o a m , o i l s l i c k ) of interest, s l o w l y w i t h d r a w i n g the p r i s m , g i v i n g it a b r i e f a i r d r y i n g , a n d r e p a c k a g i n g for later analysis. T h e first l a r g e scale a p p l i c a t i o n of the t e c h n i q u e w a s i n C h a u t a u q u a L a k e i n N e w Y o r k state, w h i c h w a s r e p e t i t i v e l y s a m p l e d over the entire 1969 r e c r e a t i o n a l season to establish spectroscopic ters to p e r m i t c h a r a c t e r i z a t i o n of its surface q u a l i t y (78).
parame-
M o r e recently,
the t e c h n i q u e has b e e n e x t e n d e d to the major oceans a n d seas of the earth.
I n g e n e r a l , i n a l l n o n p o l l u t e d locations or i n p o l l u t e d locations
w h i c h w e r e a l l o w e d a f e w days for n a t u r a l c l e a n s i n g to o c c u r at the interface, n a t u r a l a i r / w a t e r b o u n d a r i e s are d o m i n a t e d b y a n d p r o t e o g l y c a n t y p e films (80, W i t h r a r e exceptions,
glycoprotein
81).
s u c h as a l o n g the n o r t h w a l l of the
Gulf
S t r e a m w h e r e i n t e r f a c i a l films are sometimes d o m i n a t e d b y l i p i d
com-
ponents, contact angle d a t a o n the t r a n s f e r r e d d r i e d films h a v e i n d i c a t e d c r i t i c a l surface tensions b e t w e e n 30 a n d 40 d y n e s / c m , t h e r e b y c o n f i r m i n g the presence of o x y g e n a t e d a n d p r e s u m a b l y also n i t r o g e n a t e d as d o m i n a n t c o m p o n e n t s
components
i n s u c h films. T h e s t a b i l i z i n g film at the g a s /
l i q u i d b o u n d a r i e s so p r o l i f i c i n l o n g - l a s t i n g sea foams is p r e d o m i n a n t l y g l y c o p r o t e i n a n d p r o t e o g l y c a n m a t e r i a l h a v i n g its o r i g i n i n sea-surface films c o n t r i b u t e d p r i m a r i l y b y p l a n k t o n b l o o m s (81, 82, 83,
84).
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
22
APPLIED CHEMISTRY AT PROTEIN
INTERFACES
W i t h respect to g a s / l i q u i d interfaces c r e a t e d i n the b u l k of solutions, b u b b l e s r i s i n g t h r o u g h solutions c o n t a i n i n g m a c r o m o l e c u l e s of b i o l o g i c a l o r i g i n , a n d e s p e c i a l l y proteins, w i l l n o t o n l y spontaneously c o l l e c t these p o l y m e r s at the n e w g a s / l i q u i d interfaces of the r i s i n g b u b b l e b u t w i l l concentrate t h e m i n t o i n s o l u b l e fibrous debris w h i c h is s p u n off the d i s a p p e a r i n g t r a i l i n g e d g e of a m o v i n g b u b b l e (85).
B u b b l e s t r a v e l i n g to
the w a t e r surface f r o m the s o l u t i o n also c a r r y , w i t h t h e i r g a s / l i q u i d b o u n d a r i e s , at least a p o r t i o n of t h e i r a d s o r b e d b u r d e n to t h a t surface. D u r i n g b u b b l e b r e a k i n g , this m a t e r i a l is ejected a l o n g w i t h film f r a g Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
ments f r o m the a m b i e n t g a s / l i q u i d i n t e r f a c i a l film a l r e a d y r e s i d i n g there. B l a n c h a r d , i n this v o l u m e , gives a n excellent r e v i e w of the i m p o r t a n c e of s u c h processes o n a w o r l d w i d e scale a n d of t h e i r i m p l i c a t i o n s i n oceanography and meteorology.
I n a more modest but i n d i v i d u a l l y more
l e t h a l e x a m p l e , the p r e f e r r e d m e t h o d of b l o o d o x y g e n a t i o n d u r i n g o p e n heart s u r g e r y is to a l l o w a c o l u m n of gas b u b b l e s to rise t h r o u g h t h e blood.
T h i s creates a v i g o r o u s f o a m i n g w h i c h r e q u i r e s s e c o n d a r y
foam
b r e a k i n g a n d filtering of p a r t i c u l a t e d e b r i s b e f o r e the b l o o d is r e i n j e c t e d into the patient. I n b u b b l e s r i s i n g t h r o u g h the o c e a n , t h e i n s o l u b l e p r o t e i n s h e d m a y b e c o n t r i b u t i n g to the o r g a n i c d e t r i t i s necessary as f o o d f o r l o w e r - d w e l l i n g organisms b e l o w the p h o t i c z o n e ; i n b l o o d oxygenators, the proteins lost i r r e v e r s i b l y f r o m the v o l u m e phase are u s u a l l y c r u c i a l to the h e a l t h of the p a t i e n t .
L o s s of s u c h c r u c i a l m a t e r i a l , e s p e c i a l l y
a n t i b o d i e s , c o u l d b e l a r g e l y r e s p o n s i b l e for the f r e q u e n t deaths
from
s i m p l e i n f e c t i o n , p n e u m o n i a , a n d other diseases of patients w h o
have
h a d successful o p e n h e a r t surgery.
Cell-Cell
Interactions
L i v i n g cells c a n u n d e r g o changes i n t h e i r surface p r o p e r t i e s , a n d these p r o p e r t i e s d i c t a t e t h e r e l a t i v e adhesiveness of cells to t h e i r n e i g h bors (86).
T h i s surface c h e m i c a l interference to a d h e s i o n t h e n correlates
w i t h decreased strength of c e l l - t o - c e l l joints a n d the i n c r e a s e d m o b i l i t y a n d invasiveness c h a r a c t e r i s t i c of m a l i g n a n t cells i n tumors a n d other forms of cancer. I n this r e g a r d , i t is w o r t h w h i l e to consider m e c h a n i s m s w h e r e the a d h e s i o n is b e t w e e n t w o s i m i l a r or d i s s i m i l a r cells; f o r e i g n s o l i d substrates, as d i s c u s s e d earlier, are not i n v o l v e d here.
It is l i k e l y
that c e l l - t o - c e l l adhesions are also m e d i a t e d b y a d s o r b e d m a c r o m o l e c u l a r components,
however.
A l m o s t c e r t a i n l y , g l y c o p r o t e i n or
proteoglycan
materials a c c o u n t for the g a p of a b o u t 100 A s h o w n b y e l e c t r o n m i c r o s c o p y to exist b e t w e e n closely a p p o s e d c e l l surface m e m b r a n e s . task for chemists to d e c i p h e r the specific
It is a serious
constitution, configuration,
structure, a n d f u n c t i o n of s u c h g l y c o p r o t e i n s a n d p r o t e o g l y c a n s at interfaces.
Since the g l y c o p r o t e i n materials c a n c o n t a i n
present
anywhere
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
BAIER
Applied
Chemistry
23
f r o m 1 / 1 0 o f 1 % to a b o u t 1 5 % c a r b o h y d r a t e i n side chains, a n d since the m o l e c u l a r w e i g h t s of these materials are generally a r o u n d 1 m i l l i o n , a n d since p r o t e o g l y c a n s ( u n t i l r e c e n t l y u s u a l l y c a l l e d m u c o p o l y s a c c h a rides i n the b i o c h e m i c a l literature ) c a n have every other a m i n o a c i d a l o n g the p r o t e i n b a c k b o n e s u b s t i t u t e d w i t h short sugar chains a n d also c a n range i n m o l e c u l a r w e i g h t f r o m ca. 20,000 to > 1 m i l l i o n , i t is a f o r m i d a b l e c h a l l e n g e to d e c i p h e r the specifics of i n t e r f a c i a l c h e m i s t r y a n d o r g a n i z a
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
t i o n r e q u i r e d for f u r t h e r progress.
Literature Cited 1. Langmuir, I., Blodgett, Κ. B., Phys. Rev. (1937) 51, 317. 2. Shafrin, E. G., Zisman, W. Α., J. Colloid Sci. (1949) 4, 571. 3. Harrick, N. J., "Internal Reflection Spectroscopy," Interscience, New York, 1967. 4. McCrackin, F. L., Passaglia, E., Stromberg, R. R., Steinberg, H. L., J. Res. Nat. Bur. Stand. Sect. A (1963) 67, 363. 5. Bewig, K., "Improvements in the Vibrating Condenser Method of Measur ing Contact Potential Differences," Naval Res. Lab. Report (1958) 5096. 6. Bewig, K. W., Zisman, W. Α., J. Phys. Chem. (1965) 69, 4238. 7. Zisman, W. Α., ADVAN. CHEM. SER. (1964) 43, 1. 8. Baier, R. E., Zisman, W. Α., ADVAN. CHEM SER. (1975) 145, 155. 9. Baier, R. E., Zisman, W. Α., Macromolecules (1970) 3, 70. 10. Ibid. (1970) 3, 462. 11. Baier, R. E., Loeb, G. I., "Polymer Characterization: Interdisciplinary Approaches," C. D. Craver, Ed., p. 79, Plenum, New York, 1971. 12. Jarvis, N. L., Fox, R. B., Zisman, W. Α., ADVAN. CHEM. SER. (1964) 43, 317. 13. Baier, R. E., DePalma, V. Α., "Management of Arterial Occlusive Disease," W. A. Dale, Ed., Chap. 9, Year Book Medical, Chicago, 1971. 14. Ginn, M. E., Noyes, C. M., Jungermann, E., J. Colloid Interface Sci. (1968) 26, 146. 15. Matsumoto, T., "Adhesion in Biological Systems," R. S. Manly, Ed., Chap. 13, Academic, New York, 1970. 16. Leonard, F., Hodge, J., Houston, S., Ousterhout, D., J. Biomed. Mater. Res. (1968) 2, 173. 17. Hall, C. W., Spira, M., Gerow, F., Adams, L., Martin, E., Hardy, B., Trans. Amer. Soc. Artif. Intern. Organs (1970) 16, 12. 18. Mohandas, N., Hochmuth, R. M., Spaeth, Ε. E., J. Biomed. Mater. Res. (1974) 8, 119. 19. Weiss, L., Blumenson, L. E., J. Cell. Physiol. (1967) 70, 23. 20. Mulder, P., Rosenthal, J., J. Cardiovasc. Surg. (1968) 9, 440. 21. Baier, R. E., Dutton, R. C., J. Biomed. Mater. Res. (1969) 3, 191. 22. Baier, R. E., Loeb, G. I., Wallace, G. T., Fed. Proc. Fed. Amer. Soc. Exp. Biol. (1971) 30, 1523. 23. Baier, R. E., Bull. N.Y. Acad. Med. (1972) 48, 257. 24. Dutton, R. C., Baier, R. E., Dedrick, R. L., Bowman, R. L., Trans. Amer. Soc. Artif. Intern. Organs (1968) 14, 57. 25. Dutton, R. C., Webber, T. J., Johnson, S. Α., Baier, R. E., J. Biomed. Mater. Res. (1969) 3, 13. 26. Friedman, L. I., Liem, H., Grabowski, E. F., Leonard, E. F., McCord, C. W., Trans. Amer. Soc. Artif. Intern. Organs (1970) 16, 63.
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
24
APPLIED CHEMISTRY AT PROTEIN INTERFACES
27. Petschek, H., Adamis, D., Kantrowitz, A. R., Trans. Amer. Soc. Artif. Intern Organs (1968) 14, 256. 28. Vroman, L., Thromb. Diath. Haemorrh. (1964) 10, 455. 29. Vroman, L., Adams, A. L., J. Biomed. Mater. Res. (1969) 3, 43. 30. Booyse, F. M., Rafelson, Jr., M. E., Ser. Haematol. (1971) 4, 152. 31. Booyse, F. M., Sternberger, L. Α., Zschocke, D., Rafelson, Jr., M. E., J. Histochem. Cytochem. (1971) 19, 540. 32. Schoen, F. J., Fed. Proc. Fed. Amer. Soc. Exp. Biol. (1971) 30, 1647. 33. Gott, V. L., Baier, R E., "Materials Compatible with Blood," Vol. 2, Ann. Rep. Contract PH 43-68-84 (1973) available Nat. Tech. Inf. Serv., Springfield, Va. 34. Moyer, L. S., Gorin, M. H., J. Biol. Chem. (1940) 133, 605. 35. Mirkovitch, V., Beck, R. E., Andrus, P. G., Leininger, R.I.,J. Surg. Res. (1964) 4, 395. 36. Vroman, L., Adams, A. L., Klings, M., Fischer, G., ADVAN. CHEM. SER. (1975) 145, 255. 37. Baier, R. E., DePalma, V. Α., Furuse, Α., Gott, V. L., Lucas, T., Sawyer, P. N., Srinivasan, S., Stanszweski, B., unpublished data. 38. Baier, R. E., Dutton, R. C., Gott., V. L., Advan. Exp. Med. Biol. (1970) 7, 235. 39. Harrison, J. H., Amer. J. Surg. (1958) 95, 3. 40. Baier, R. E., Gott, V. L., Furuse, Α., Trans. Amer. Soc. Artif. Intern. Org (1970) 16, 50. 41. Baier, R. E., "Adhesion in Biological Systems," R. S. Manly, Ed., Chap. 2, Academic, New York, 1970. 42. Ward, C. Α., Stanga, D., Collier, R. P., Zingg, W., Trans. Amer. Soc. Artif. Intern. Organs (1974) 20. 43. Kolobow, T., Stool, E. W., Weathersby, P. K., Pierce, J., Hayano, F., Trans. Amer. Soc. Artif. Intern. Organs (1974) 20. 44. Johnson, Jr., R. E., Dettre, R. H., J. Colloid Interface Sci. (1966) 21, 610. 45. Shafrin, E. G., Zisman, W. A., J. Phys. Chem. (1967) 71, 1309. 46. Taylor, A. C., "Adhesion in Biological Systems," R. S. Manly, Ed., Aca demic, New York, 1970. 47. Wilkins, J. F., "Adhesion of Ehrich Ascites Tumor Cells to Surface-Modified Glass," Ph.D. Dissertation, State University of New York at Buffalo, 1974. 48. Maroudas, N., J. Theor. Biol., in press. 49. Weiss, P., Harvey Lect. (1959) 55, 13. 50. Neumann, A. W., van Oss, C. J., Szekely, J., Kolloid Ζ. Z. Polym. (1973) 251, 415. 51. van Oss, C. J., Gillman, C. F., Neumann, A. W., Immunol. Chem. (1974) 3, 77. 52. van Oss, C. J., Good, R. J., Neumann, A. W., J. Electroanal. Chem. (1972) 37, 387. 53. Baier, R. E., "Epidermal Wound Healing," H. I. Maibach and D. T. Rovee, Eds., Chap. 2, Year Book Medical, Chicago, 1972. 54. Leininger, R. I., Crit. Rev. Bioeng. (1972) 1, 333. 55. Baier, R. E., Lippes, J., ADVAN. CHEM. SER. (1975) 145, 308. 56. Glantz, P., Odontol. Revy (1969) Suppl. 17. 57. Glantz, P., Hansson, L., Odontol. Revy (1972) 23, 205. 58. Lasslo, Α., Quintana, R. P., Eds., "Surface Chemistry and Dental Integu ments," C. C. Thomas, Springfield, 1973. 59. Baier, R. E., "Surface Chemistry and Dental Integuments," A. Lasslo and R. P. Quintana, Eds., Chap. 5, C. C. Thomas, Springfield, 1973. 60. Quintana, R. P., ADVAN. CHEM. SER. (1975) 145, 290. 61. Marshall, K. C., Stout, R., Mitchell, R., J. Gen. Microbiol. (1971) 68, 337. In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by EASTERN KENTUCKY UNIV on February 25, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch001
1. BAiER
Applied Chemistry
25
62. Corpe, W. Α., "Adhesion in Biological Systems," R. S. Manly, Ed., Chap. 4, Academic, New York, 1970. 63. Marshall, K. C., Proc. 3rd Intern. Cong. Marine Corrosion and Fouling, p. 625, Northwestern University Press, Evanston, 1973. 64. Goupil, D. W., DePalma, V. Α., Baier, R. E., Proc. Marine Technol. Soc., 9th Ann. Conf., Washington, D.C., 1973, p. 445. 65. Baier, R. E., Proc. 3rd Intern. Cong. Marine Corrosion and Fouling, p. 633, Northwestern University Press, Evanston, 1973. 66. Cook, M., Baier, R. E., Sargent, H., Proc. 21st Mtg. Brit. Div. IADR, 1973, Abst. 116. 67. Cook, M., "Adhesion in Biological Systems," R. S. Manly, Ed., Chap. 8, Academic, New York, 1970. 68. Crisp, D. J., Ryland, J. S., Proc. Roy. Soc. London (1963) 158B, 364. 69. Fenstermaker, C. Α., Grant, W. H., Morrissey, B. W., Smith, L. E., Stromberg, R. R., "Interaction of Plasma Proteins with Surfaces," Nat. Bur. Stand. Rep. (1974) 74-470. 70. Lee, R. G., Adamson, C., Kim, S. W., Thromb. Res. (1974) 4. 71. Loeb, G. I., J. Colloid Interface Sci. (1969) 31, 572. 72. Nyilas, E., Proc. 23rd Ann. Conf. Eng. Med. Biol. (1970) 12, 147. 73. Andrade, J. D., Med. Instrum. (1973) 7 ,110. 74. Malcolm, B. R., Progr. Surface Membrane Sci. (1973) 7, 183. 75. Loeb, G. I., J. Colloid Interface Sci. (1968) 26, 236. 76. Loeb, G. I., Baier, R. E., J. Colloid Interface Sci. (1968) 27, 38. 77. Loeb, G. I., Amer. Chem. Soc., Div. Polym. Chem., Prepr. 11, 1313 (Chi cago, September, 1970). 78. Baier, R. E., Proc. 13th Conf. Great Lakes Res., Ann Arbor, Michigan (1970) p. 114. 79. Baier, R. E., J. Geophys. Res. (1972) 77, 5062. 80. Baier, R. E., Goupil, D. W., Bull. Union Oceanogr. France (1973), A 1. 81. Baier, R. E., Goupil, D. W., Perlmutter, S., King, R. W., J. Rech. Atmos., in press. 82. Abe, T., Rec. Oceanogr. Works Jap. (1954) 1, 18. 83. Abe, T., J. Oceanogr. Soc. Jap. (1962) 20, 242. 84. Baier, R. E., Aust. Nat. Hist. (1972) 17, 162. 85. Goldacre, R. D., J. Anim. Ecol. (1949) 18, 36. 86. Baier, R. E., Shafrin, E. G., Zisman, W. Α., Science (1968) 162, 1360. RECEIVED
June 28, 1974.
In Applied Chemistry at Protein Interfaces; Baier, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.