Chapter 18
Diffusion and Sorption of Linear Esters in Selected Polymer Films 1
2
1
G.Strandburg ,P. T.DeLassus ,and B. A. Howell
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
1
Department of Chemistry, Central Michigan University, Mt. Pleasant, MI 48859 Barrier Resins and Fabrication Laboratory, The Dow Chemical Company, 1603 Building, Midland, MI 48674
2
Polymers are being used in more sophisticated food-packaging applications. These applications must do more than keep the food safe from oxygen damage. They must preserve the attractive flavor profile of the food. In short, the package must assist in flavor management. Permeation of flavor (and aroma) compounds in polymers can be part of flavor management in two general ways. First, unintended species can enter the food by permeation from the environment or by migration from the package itself. Second, the flavor and aroma molecules of the food may leave by permeation through the package or by simple sorption by the package. The flavor profile may be made unacceptable by broad diminution or by selective removal of a few components. This paper will describe experiments that concern this second area of flavor management. The experiments were directed toward the interactions between linear esters and some of the films that are important for food-packaging applications. The analysis of the data will focus on the important solution process with special attention for the thermodynamics. Framework f o r E x p e r i m e n t s
Aromas. Nine l i n e a r e s t e r s were i n c l u d e d i n t h i s s t u d y . They a r e l i s t e d i n T a b l e I . E s t e r s comprise an i m p o r t a n t f l a v o r g r o u p . Not a l l o f t h e s e e s t e r s a r e f o u n d i n f o o d . These s p e c i f i c e s t e r s p r o v i d e a s y s t e m a t i c approach t o a complex problem. They were p u r c h a s e d f r o m A l d r i c h C h e m i c a l Company as p a r t o f t h e " F l a v o r s and F r a g r a n c e s K i t #1: E s t e r s . " 0097-^6156/90/0423-0333$06.00/0 © 1990 American Chemical Society
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
334
BARRIER POLYMERS AND STRUCTURES
Table
I
L i n e a r E s t e r s f o r Permeation E s t e r Name
Number o f
Boiling
Carbons
5 5 6 7 7 8 9 10 10
Methylbutyrate Ethylpropionate Ethylbutyrate Propylbutyrate Ethylvalerate
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
Point
Ethylhexanoate Ethylheptanoate Ethyloctanoate Hexylbutyate
% Purity
102 99 120 142 144 168 188 206 208
98+ 97 + 98 + 98+ 98+ 98+ 98+ 98+ 98+
F i l m s . Three f i l m s were i n c l u d e d i n t h i s s t u d y . polyethylene i s not
(LDPE) was
considered
t o be
CAS
Number
*C
623- -42· -7 105- -37- -3 105- -54- -4 105- -66- -8 539- -82- -2 123- -66- -0 106- -30- -9 106- -32- -1 2639--63- -6
Low
density
i n c l u d e d as a r e p r e s e n t a t i v e p o l y o l e f i n . a b a r r i e r polymer.
It
I t has p e r m e a b i l i t i e s t o
s e l e c t e d aroma compounds s l i g h t l y h i g h e r t h a n the p e r m e a b i l i t i e s o f polypropylene
(1).
and h i g h d e n s i t y p o l y e t h y l e n e
c h l o r i d e copolymer
(co-VDC) f i l m was
A vinylidene
i n c l u d e d as an example o f a
b a r r i e r t h a t i s u s e f u l i n b o t h d r y and humid c o n d i t i o n s . was
made from a Dow
r e s i n which has
been d e s i g n e d
packaging a p p l i c a t i o n s . A hydrolyzed (EVOH) f i l m was humidity
ethylene-vinylacetate
o f 38
The
mole%
film
copolymer
polymer was
a blend of r e s i n s with
total
ethylene.
These f i l m s were t e s t e d as monolayers about 2.5 thick.
The
rigid
i n c l u d e d as an example o f a b a r r i e r f i l m t h a t i s
sensitive.
composition
for
χ
10~^m(=l m i l )
They would t y p i c a l l y be u s e d i n m u l t i l a y e r s t r u c t u r e s ;
however, t h e i n d i v i d u a l p e r m e a b i l i t i e s can be combined t o p r e d i c t the b e h a v i o r
of m u l t i l a y e r s .
Instrument.
The
a n a l y t i c a l instrument
shown s c h e m a t i c a l l y i n F i g u r e built
at The
f l a v o r and
Dow
f o r these
This instrument
aroma compounds t h r o u g h polymer f i l m s . instrument
solutions,
the e x p e r i m e n t a l
and
spectrometer.
The
was
designed
and
The
gas
handling
c o n t a i n s t h e plumbing, c o n t a i n e r s o f aroma film.
This enclosure
the temperature can be c o n t r o l l e d , + 1"C,
about 150"C.
experiments i s
C h e m i c a l Company f o r m e a s u r i n g t h e p e r m e a t i o n o f
s e c t i o n of the and
1.
i s insulated,
from subambient
d e t e c t o r i s a H e w l e t t - P a c k a r d 5970 mass
More d e t a i l s are a v a i l a b l e
(2).
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
to
18.
STRANDBURGETAL.
Diffusion and Sorption of Linear Esters
335
Film
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
©Κι
HP 5970
Control & Analysis
Mass
Computer
ΚΞ1 Display
Spectrometer Gas Handling
F i g u r e 1.
Schematic o f Instrument
T h i s i n s t r u m e n t i s u s e d i n two g e n e r a l ways. F i r s t , w i t h each new compound, a mass s p e c t r u m i s g e n e r a t e d t o i d e n t i f y t h e most p o p u l o u s and u n i q u e i o n f r a g m e n t s . Second, f o r a c t u a l p e r m e a t i o n e x p e r i m e n t s , t h e i n s t r u m e n t i s programmed t o m o n i t o r s e l e c t e d i o n fragments, t y p i c a l l y t h r e e , f o r each o f t h e aromas i n v o l v e d . When a s i n g l e permeant i s used, t h e t h r e e most p o p u l o u s i o n fragments may be chosen. However, when mixed permeants a r e used, s i g n i f i c a n t d e g e n e r a c i e s a r e a v o i d e d . A l l t h e e x p e r i m e n t s o f t h i s s t u d y were done w i t h a s i n g l e permeant. The r e s p o n s e o f t h e i n s t r u m e n t was d e t e r m i n e d t o be l i n e a r i n t h e o p e r a t i n g range and beyond, b o t h a t h i g h e r and lower c o n c e n t r a t i o n s . In a l l e x p e r i m e n t s , t h e f o l l o w i n g sequence was used. First, a c a l i b r a t i o n experiment was c o m p l e t e d by p r e p a r i n g a v e r y d i l u t e s o l u t i o n o f t h e permeant i n n i t r o g e n i n t h e one l i t e r f l a s k and i n t r o d u c i n g some o f t h e gaseous s o l u t i o n d i r e c t l y t o t h e mass spectrometer v i a a s p e c i a l l y designed i n t e r f a c e . A known c o n c e n t r a t i o n and a measured r e s p o n s e y i e l d a c a l i b r a t i o n c o n s t a n t . Then a p e r m e a t i o n experiment was c o m p l e t e d by p r e p a r i n g a d i l u t e s o l u t i o n o f t h e permeant i n n i t r o g e n i n t h e t h r e e l i t e r f l a s k and r o u t i n g t h i s gaseous s o l u t i o n p a s t t h e purged, e x p e r i m e n t a l f i l m . The d e t e c t o r r e s p o n s e was r e c o r d e d as a f u n c t i o n o f t i m e f o r subsequent a n a l y s i s .
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
336
BARRIER POLYMERS AND STRUCTURES
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
The computer was u s e d t o program and c o n t r o l t h e mass s p e c t r o m e t e r and t o c o l l e c t and a n a l y z e t h e d a t a . The computer was e q u i p p e d w i t h a CRT and a p r i n t e r . The advantages o f t h i s i n s t r u m e n t a r e a) i t c a n be u s e d w i t h v e r y d i l u t e s o l u t i o n s o f permeants, b) m u l t i p l e permeants may be u s e d i n a s i n g l e experiment, c) h u m i d i t y may be u s e d by a d d i n g water or a s a t u r a t e d s a l t s o l u t i o n t o t h e t h r e e l i t e r f l a s k , d) t h e e n t i r e p r o g r e s s o f t h e experiment c a n be m o n i t o r e d as a f u n c t i o n o f t i m e , and e) a wide range o f t e m p e r a t u r e s c a n be used. V a r i a b l e s . A range o f t e m p e r a t u r e s was u s e d w i t h t h e b a r r i e r f i l m s — co-VDC and EVOH. Warm t e m p e r a t u r e s were u s e d because t h e s e b a r r i e r polymers had low p e r m e a b i l i t i e s and low d i f f u s i o n c o e f f i c i e n t s at c o o l e r temperatures. E x p e r i m e n t s a t lower t e m p e r a t u r e s would have t a k e n p r o h i b i t i v e l y l o n g and may have been below t h e d e t e c t i o n l i m i t o f t h e i n s t r u m e n t . Data a t s e v e r a l t e m p e r a t u r e s a l l o w a more s o p h i s t i c a t e d a n a l y s i s o f t h e p e r m e a t i o n process. The LDPE f i l m was t e s t e d a t a s i n g l e , low t e m p e r a t u r e . A s i n g l e c o n c e n t r a t i o n o f permeant was u s e d f o r a l l t h e experiments. A p p r o x i m a t e l y two m i c r o l i t e r s o f f l a v o r / a r o m a compound were u s e d i n t h e t h r e e l i t e r f l a s k . T h i s c o r r e s p o n d s t o about 150 ppm (molar) and v a r i e s from e s t e r t o e s t e r depending upon t h e m o l e c u l a r weight. P r e v i o u s e x p e r i m e n t s have shown t h a t , i n t h i s range o f c o n c e n t r a t i o n s , t h e p e r m e a t i o n p r o c e s s i s n o t a s t r o n g f u n c t i o n o f t h e permeant c o n c e n t r a t i o n (3,4). T a b l e I I l i s t s t h e p a r t i a l p r e s s u r e (Ρ ) a t the experimental temperatures f o r t h e f i v e c a r b o n e s t e r and t h e n i n e c a r b o n e s t e r . A l s o i n c l u d e d a r e the vapor p r e s s u r e s ( P ) a t t h e s e t e m p e r a t u r e s , and t h e r a t i o P / P . χ
Q
X
Q
Table IL Partial Pressure at the Experimental Temperature for Five-and Nine-Carbon Esters
Ester
C-5
T(C)
P
105
1,.1
0
(Pa)
X
10
5
1
Ρ
χ
p
x
19
1..7
X
(Pa)
2
/ p
o
ΙΟ"
4
4
C-5
95
8,.1
X
10
4
18
2..2
X
10"
C-5
85
5,.9
X
10
4
18
3..0
X
10~
4
C-5
25
4,.5
X
10
3
15
3..3
X
10"
3
C-9
105
7,.1
X
10
3
12
1,.7
X
10"
3
C-9
95
4,.5
10
3
12
2 .7
X
10"
3
C-9
85
2,.8
10
3
11
3,.9
X
10"
3
10
1
9
1,.1
X
ίο-
C-9
25
8,.3
X X X
1) From t h e A n t o i n e e q u a t i o n 5 2) F o r a 2/iL sample
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
1
18. STRANDBURGETAL.
337
Diffusion and Sorption ofLinear Esters
H u m i d i t y was t e s t e d o n l y q u a l i b a c i v e l y i n a s i n g l e e x p e r i m e n t . In an experiment w i t h t h e EVOH f i l m a n d e t h y l v a l e r a t e a t 110*C, 0.25 m i l l i l i t e r s o f water was i n j e c t e d i n t o t h e t h r e e l i t e r f l a s k a f t e r the p e r m e a t i o n experiment h a d r e a c h e d s t e a d y s t a t e . W i t h i n seconds, the p e r m e a t i o n r a t e i n c r e a s e d t o above the d e t e c t i o n l i m i t o f t h e mass s p e c t r o m e t e r . T h i s was c o n s i s t e n t w i t h p r i o r e x p e r i e n c e wherein the p e r m e a b i l i t y and t h e d i f f u s i v i t y i n an EVOH f i l m i n c r e a s e by a f a c t o r o f about 1000 i n t h e p r e s e n c e o f m o i s t u r e (6). No more e x p e r i m e n t s were done w i t h h u m i d i t y f o r t h i s s t u d y .
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
Framework f o r
Analysis.
F o r a t h o r o u g h a n a l y s i s o f aroma t r a n s p o r t i n f o o d p a c k a g i n g , t h e p e r m e a b i l i t y (P) and i t s component p a r t s - t h e s o l u b i l i t y c o e f f i c i e n t (S) and t h e d i f f u s i o n c o e f f i c i e n t o r d i f f u s i v i t y (D) a r e needed. These t h r e e p a r a m e t e r s a r e r e l a t e d as shown i n E q u a t i o n 1.
(1)
Ρ = D χ S
The p e r m e a b i l i t y i s u s e f u l f o r d e s c r i b i n g the t r a n s p o r t r a t e a t steady s t a t e . The s o l u b i l i t y c o e f f i c i e n t i s u s e f u l f o r d e s c r i b i n g t h e amount o f aroma t h a t w i l l be a b s o r b e d by t h e package w a l l . The d i f f u s i o n c o e f f i c i e n t i s u s e f u l f o r d e s c r i b i n g how q u i c k l y t h e permeant aroma m o l e c u l e s move i n the f i l m and how much time i s r e q u i r e d t o reach steady s t a t e . E q u a t i o n 2 d e s c r i b e s s t e a d y s t a t e p e r m e a t i o n where Δ Μ i s t h e χ
—χ At
=
p
A
Δ
Ρχ
(2)
L
q u a n t i t y o f permeant χ t h a t goes t h r o u g h a f i l m o f a r e a A and t h i c k n e s s L i n a time i n t e r v a l At. The d r i v i n g f o r c e f o r t h e p e r m e a t i o n i s g i v e n as t h e p r e s s u r e d i f f e r e n c e o f t h e permeant a c r o s s the b a r r i e r , Δ ρ . I n an e x p e r i m e n t , AM /At i s measured a t s t e a d y s t a t e w h i l e A a n d L a r e known and Δ ρ i s e i t h e r measured o r calculated separately. The d i f f u s i o n c o e f f i c i e n t c a n be d e t e r m i n e d from the t r a n s i e n t p o r t i o n o f a complete p e r m e a t i o n e x p e r i m e n t . F i g u r e 2 shows how t h e t r a n s p o r t r a t e o r d e t e c t o r r e s p o n s e v a r i e s w i t h time d u r i n g a complete e x p e r i m e n t . A t t h e b e g i n n i n g o f an e x p e r i m e n t , t = 0, a c l e a n f i l m i s exposed t o the permeant on the u p s t r e a m s i d e . I n i t i a l l y , the p e r m e a t i o n r a t e i s e f f e c t i v e l y z e r o . Then "break t h r o u g h " o c c u r s , and the t r a n s p o r t r a t e r i s e s t o s t e a d y s t a t e . The d i f f u s i o n c o e f f i c i e n t c a n be c a l c u l a t e d i n e i t h e r o f two ways. E q u a t i o n 3 uses t^^r time t o r e a c h a t r a n s p o r t r a t e t h a t i s one-half of the steady s t a t e rate (7). χ
X
χ
t
D
h
e
-
L
2
7.2 t
(3) 1
/
2
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
338
BARRIER POLYMERS AND STRUCTURES
Equation
4 uses t h e
s l o p e i n t h e t r a n s i e n t p a r t o f t h e c u r v e and D
=
0.176
L
the
2
(slope) Rss
( 4 )
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
s t e a d y s t a t e r e s p o n s e Rss (8) . A f t e r Ρ has been d e t e r m i n e d w i t h E q u a t i o n 2 and D has been d e t e r m i n e d w i t h E q u a t i o n 3 (or 4 ) , and t h e n S can be d e t e r m i n e d w i t h E q u a t i o n 1.
Time Figure
2.
R e l a t i v e Transport
^-
Rate as a F u n c t i o n
o f Time
Many s e t s o f u n i t s are u s e d t o r e p o r t t h e p e r m e a b i l i t y i n t h e literature. T h i s p a p e r w i l l use SI u n i t s i n t h e f o l l o w i n g way. For E q u a t i o n 2 t o be v a l i d , the p e r m e a b i l i t y must have d i m e n s i o n s o f q u a n t i t y o f gas t i m e s t h i c k n e s s d i v i d e d by a r e a - t i m e - p r e s s u r e . If t h e k i l o g r a m i s u s e d t o d e s c r i b e t h e q u a n t i t y o f gas and t h e p a s c a l i s u s e d as t h e u n i t o f p r e s s u r e , t h e n u n i t s o f p e r m e a b i l i t y a r e kg-m/m «s«Pa. T h i s u n i t i s v e r y l a r g e and a cumbersome exponent often results. A more c o n v e n i e n t u n i t , t h e M o d i f i e d Z o b e l U n i t , (1 90 9 — —. » MZU = 10 * kg^m/itr* »s »Pa) , was d e v e l o p e d f o r f l a v o r p e r m e a t i o n . Z o b e l p r o p o s e d a s i m i l a r u n i t e a r l i e r (9) . The u n i t s o f t h e d i f f u s i o n c o e f f i c i e n t a r e m /s. The u n i t s o f t h e s o l u b i l i t y c o e f f i c i e n t are kg/m Pa. 2
υ
2
3
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
18. STRANDBURG ET AL·
339
Diffusion and Sorption ofLinear Esters
E q u a t i o n s 1, 2, and 3 a r e working d e f i n i t i o n s o f P, D, and S. No c o r r e c t i o n s a r e made f o r t h e c r y s t a l l i n i t y i n any o f t h e e x p e r i m e n t a l samples o f t h i s s t u d y . F o r most s i m p l e c a s e s , P, D, and S a r e s i m p l e f u n c t i o n s o f temperature as g i v e n i n E q u a t i o n s 5, 6, and 7. (Τ) = P
D
(T) = D
S
(Τ) - S
0
Q
Q
exp (-Ep/RT)
(5)
exp (-E /RT)
(6)
exp (-AH /RT)
(7)
D
S
where, P , D , and S a r e c o n s t a n t s , Τ i s t h e a b s o l u t e t e m p e r a t u r e , and R i s t h e gas c o n s t a n t . Ε i s t h e a c t i v a t i o n energy f o r permeation. E i s t h e a c t i v a t i o n energy f o r d i f f u s i o n , and A H i s t h e heat o f s o l u t i o n . I f l o g Ρ d a t a a r e p l o t t e d on t h e v e r t i c a l a x i s o f a graph and T"" i s p l o t t e d on t h e h o r i z o n t a l a x i s , a straight line w i l l result. The s l o p e w i l l be -0.43 E /R. The d i f f u s i o n c o e f f i c i e n t and s o l u b i l i t y c o e f f i c i e n t behave s i m i l a r l y . E q u a t i o n s 1, 5, 6, and 7 c a n be m a n i p u l a t e d t o y i e l d e q u a t i o n 8 which r e l a t e s t h e a c t i v a t i o n e n e r g i e s and t h e heat o f s o l u t i o n . Q
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
Ρ
Q
Q
D
g
1
p
E
p
= E
+ ΔΗ
D
(8)
3
E q u a t i o n s 1-7 were d e v e l o p e d f o r gas p e r m e a t i o n t h r o u g h r u b b e r y polymers. They must be u s e d w i t h c a u t i o n w i t h g l a s s y polymers and/or o r g a n i c v a p o r s t h a t i n t e r a c t s t r o n g l y w i t h t h e b a r r i e r . The heat o f s o l u t i o n c a n be s e p a r a t e d i n t o two b a s i c p a r t s namely, t h e heat o f c o n d e n s a t i o n (AH ) and t h e heat o f m i x i n g ( A H ) . Equation 9 expresses the r e l a t i o n s h i p C
ΔΗ The h e a t s o f experiments, literature. 9. The heat relationship
3
=
ΔΗ
α
m
+
AH
m
(9)
s o l u t i o n can be d e t e r m i n e d e x p e r i m e n t a l l y i n t h e s e and t h e h e a t s o f c o n d e n s a t i o n a r e a v a i l a b l e i n t h e The heat o f m i x i n g can t h e n be c a l c u l a t e d w i t h E q u a t i o n o f m i x i n g d e s c r i b e s t h e b a s i c thermodynamic between t h e polymer and t h e p e n e t r a n t .
EXPERIMENTS T y p i c a l Experiment. F i g u r e 3 shows t h e r e s u l t s o f a t y p i c a l experiment w i t h t h e co-VDC f i l m . The permeant was e t h y l b u t y r a t e . The experiment was done a t 100'C. The warm t e m p e r a t u r e c a u s e d t h e experiment t o p r o g r e s s q u i c k l y . Three i o n s fragments, m/z = 60, 71, and 88 were m o n i t o r e d by t h e mass s p e c t r o m e t e r . The t o t a l i o n i n t e n s i t y o f t h e s e t h r e e i o n s i s shown h e r e . The f i r s t r e s p o n s e i n F i g u r e 3 i s due t o c a l i b r a t i o n . Here 2.4 u l o f a 0.5% s o l u t i o n o f e t h y l b u t y r a t e i n acetone was i n j e c t e d i n t o t h e 1 - l i t e r f l a s k and d i l u t e d with nitrogen. The r e s u l t i n g gaseous s o l u t i o n was i n t r o d u c e d i n t o t h e mass s p e c t r o m e t e r v i a t h e i n t e r f a c e .
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
340
BARRIER POLYMERS A N D STRUCTURES
A f t e r t h e b a s e l i n e was o b t a i n e d a g a i n a t 34 m i n u t e s i n t o t h e run, t h e p e r m e a t i o n experiment began. Here 2.5 u l o f e t h y l b u t y r a t e had been i n j e c t e d i n t o t h e 3 - l i t e r f l a s k and d i l u t e d w i t h n i t r o g e n b e f o r e b e i n g c i r c u l a t e d p a s t t h e upstream s i d e o f t h e f i l m . B r e a k t h r o u g h o c c u r r e d a t about 38 minutes, and s t e a d y s t a t e was r e a c h e d a t 90 t o 100 min.
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
TIC
of DRTR:EB/S100.D
ϋ 52.0E4
:
c j j 10000: (C
W » • • 1 · · · 1·· · 1 · • 20
40
60
80
100
120
F i g u r e 3 . P e r m e a t i o n Experiment o rηE. t h) ylbutyrate i n a Τ1 me (mf 1 V i n y l i d e n e C h l o r i d e Copolymer F i l m a t 100"C
Organized Results. Many c o m b i n a t i o n s o f permeant e s t e r , f i l m , and t e m p e r a t u r e were s t u d i e d . F i g u r e 4 shows t h e p e r m e a b i l i t y r e s u l t s f o r a s i n g l e e s t e r - f i l m combination at 5 d i f f e r e n t temperatures. S i m i l a r graphs were made f o r t h e o t h e r e s t e r - f i l m c o m b i n a t i o n s . F i g u r e 5 shows p e r m e a b i l i t i e s o f a l l t h e e s t e r s a t 85"C i n t h e co-VDC f i l m . These d a t a were t a k e n from graphs l i k e F i g u r e 4. F i g u r e 6 shows t h e d i f f u s i o n c o e f f i c i e n t s o f a l l t h e e s t e r s a t 85"C i n t h e co-VDC f i l m . F i g u r e 7 shows t h e s o l u b i l i t y c o e f f i c i e n t s o f a l l t h e e s t e r s i n t h e co-VDC f i l m . Figure 8 i s a r e - p l o t of the d a t a i n F i g u r e 7 w i t h t h e b o i l i n g p o i n t o f t h e e s t e r as t h e horizontal axis. The a c t i v a t i o n e n e r g i e s f o r p e r m e a t i o n i n t h e co-VDC f i l m were a l l positive. The a c t i v a t i o n e n e r g i e s f o r t h e d i f f u s i o n c o e f f i c i e n t a r e shown i n F i g u r e 9. The h e a t s o f s o l u t i o n f o r t h e e s t e r s a r e shown i n F i g u r e 1 0 . Fewer e s t e r s were u s e d i n e x p e r i m e n t s w i t h t h e EVOH because t h e t r e n d s o b s e r v e d w i t h t h e co-VDC f i l m were a p p a r e n t . Figures 11, 12, and 13 show t h e p e r m e a b i l i t i e s , d i f f u s i o n c o e f f i c i e n t s , and s o l u b i l i t y c o e f f i c i e n t s f o r t h e e s t e r s a t 85"C i n t h e EVOH f i l m . F i g u r e s 14 and 15 show t h e a c t i v a t i o n e n e r g i e s f o r d i f f u s i o n and t h e heats of s o l u t i o n .
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
18.
STRANDBURGETAL.
Diffusion and Sorption of Linear Esters
lOOOOOr
•H ιΗ
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
JJSS S ^ Pi Φ
10000+
α.
ιοοο
0.0030
0.0026
F i g u r e 4. P e r m e a b i l i t y o f E t h y l b u t y r a t e V i n y l i d e n e C h l o r i d e Copolymer F i l m
in a
lOOOOOr
o ο •H iH
10000+
8
OH
ο ο -4-
5
β
7
8
4-
θ
10
Number of Carbons i n B s t e r Figure
5. P e r m e a b i l i t y o f E s t e r s a t 85'C V i n y l i d e n e C h l o r i d e Copolymer
in a
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
341
342
BARRIER POLYMERS AND STRUCTURES
4>
Ο
a
Φ
•Η
Ο
υ •rl «Η «Η
1β-14+
Φ
Ο
d α 0 ^
ο
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
3 «Η «Η •Η Ρ
le-15-
4-
5
4-
β
7
4-
8
9
10
Number of Carbons i n E s t e r F i g u r e 6. D i f f u s i o n C o e f f i c i e n t a t 85'C o f E s t e r s i n a V i n y l i d e n e C h l o r i d e Copolymer F i l m
Ο.ΙΟΟτ
8 α Φ
•Η
υ •Η *Η «Η
^
Φ οβ 0 Û4
ο2
0.010+
i
3 0
ο ο
CO
0.0015
4-
4-
6
7
4-
8
θ
10
Number of Carbons i n E s t e r Figure
7. S o l u b i l i t y C o e f f i c i e n t a t 85'C o f E s t e r s i n a V i n y l i d e n e C h l o r i d e Copolymer F i l m
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
18.
STRANDBURG ET A L
Diffusion and Sorption of Linear Esters
O.lOOr
43 α Φ
•Η
U
•Η «Η «Η
0
s i
°
ο
g 0.010+
* "Sa
Ο Ο
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
rH •Η ιΗ
Ο Ο
Ο CO
J
0.001
100
120
140
160
180
200
220
B o i l i n g Point Figure
8. S o l u b i l i t y C o e f f i c i e n t s o f E s t e r s a t 85*C i n a V i n y l i d e n e C h l o r i d e Copolymer F i l m
32
T
30f u
φ4 α
28+ Φ
§^
26+
•rl rH 4J (β
•Η
43
«3
Ο
O
24+
>X
Ο
Ο
^
22+ 20+
10 Number of Carbons i n E s t e r Figure
9. A c t i v a t i o n Energy f o r D i f f u s i o n o f E s t e r s i n a V i n y l i d e n e C h l o r i d e Copolymer F i l m
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
343
344
BARRIER P O L Y M E R S AND STRUCTURES
-4-r
-5-
-7--
Ο
o " - ^
°
-10»
ο
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
-11-
Ο
-12-13"
-14-1
1
1
1-
10 Number of Carbons
F i g u r e 10. Heats o f S o l u t i o n f o r E s t e r s i n a V i n y l i d e n e C h l o r i d e Copolymer F i l m
ΙΟΟΟτ
43 •rl rH
ri CSJ
0 ^
J
100
1
1
1
1
h
5
6
7
8
9
Number of Carbons Figure
11.
Permeability Coefficient of E s t e r s Through EVOH
a t 85'C
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
18.
Diffusion and Sorption of Linear Esters
STRANDBURGETAL.
α •Η
υ
10 •14 +
•Η «Η «Η
Ο ϋ
^
M
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
•H
^
43
30+
3
25-
+-
5
6
7
8
9
Number of Carbons F i g u r e 14. A c t i v a t i o n Energy o f D i f f u s i o n f o r E s t e r s Through EVOH
-1+ -2+
δ
el
-3+
% -4+
-5+ -6+ -7·
4-
1
6
7
f—
8
Number of Carbons F i g u r e 15. Heats o f S o l u t i o n f o r E s t e r s i n an EVOH Copolymer F i l m
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
18. STRANDBURG ET AL.
347
Diffusion and Sorption ofLinear Esters
F i g u r e s 16 t h r o u g h 18 show the
results
f o r the
LDPE f i l m .
Discussion. In each f i l m the p e r m e a b i l i t i e s i n c r e a s e as t h e s i z e o f the e s t e r i n c r e a s e s . The d a t a show t h a t t h i s r e s u l t i s d r i v e n by the s o l u b i l i t y c o e f f i c i e n t . The d i f f u s i o n c o e f f i c i e n t s d e c r e a s e as the s i z e o f the e s t e r i n c r e a s e s ; however, t h e s o l u b i l i t y c o e f f i c i e n t s i n c r e a s e g r e a t l y as t h e s i z e o f t h e e s t e r i n c r e a s e s . The q u a l i t a t i v e e f f e c t o f permeant s i z e on the d i f f u s i o n c o e f f i c i e n t was e x p e c t e d . A r e c e n t s i m p l e a n a l y s i s q u a n t i f i e d the r e l a t i o n s h i p between D and permeant s i z e f o r s p h e r i c a l permeants up t o Cg i n s e v e r a l polymers ( 10) . That a n a l y s i s i s n o t d i r e c t l y a p p l i c a b l e h e r e s i n c e t h e s e permeants a r e l i n e a r and l a r g e r . A n o t h e r s t u d y q u a n t i f i e s t h e r e l a t i o n s h i p between D and permeant s i z e f o r l i n e a r a l k a n e s i n p o l y e t h y l e n e (11). The d i f f u s i o n c o e f f i c i e n t a t 25"C was o b s e r v e d t o d e c r e a s e from 3.9 χ 1 0 " m^/s f o r n-hexane t o 2.2 χ 10 m^/s f o r n-nonane. The d i f f u s i o n c o e f f i c i e n t s f o r the e s t e r s i n the p r e s e n t s t u d i e s seem t o change comparable amounts. A t 85"C i n co-VDC and EVOH, t h e d i f f u s i o n c o e f f i c i e n t s f o r the e s t e r s d e c r e a s e b y about 3x as t h e number o f atoms ( e x c l u d i n g hydrogen) i n the backbone i n c r e a s e s from 6 t o 9 (5 carbons p l u s one oxygen t o 8 carbons p l u s one oxygen). The d i f f e r e n c e would be g r e a t e r a t 25'C because t h e a c t i v a t i o n e n e r g i e s f o r d i f f u s i o n are l a r g e r f o r the l a r g e r e s t e r s . This i s c o n s i s t a n t w i t h the r e s u l t s o f L a n d o i s - G a r z a and H o t c h k i s s f o r an e s t e r s e r i e s i n p o l y v i n y l a l c o h o l (12). At 30"C i n LDPE, t h e d i f f u s i o n c o e f f i c i e n t s d e c r e a s e b y about 30% as t h e number o f atoms i n the backbone o f t h e e s t e r i n c r e a s e s f r o m 6 t o 9. S t u d i e s o f a l k a n e s i n low d e n s i t y p o l y e t h y l e n e show s i m i l a r t r e n d s (13).
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
11
_
1
1
8
io T
o ο ο
100 +
ο
5
6
7
8
9
10
Number o f Carbons F i g u r e 16.
P e r m e a b i l i t y a t 30 C f o r e
Library 115S 16tft St., N.W. In Barrier Polymers and Structures; Koros, W.; Washington, O.C. 20038 ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
348
BARRIER POLYMERS A N D STRUCTURES
43
10r l 2 4 0 1«
•H
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
CQ «H «H •H
Q
4
5
-+6
7
Number
8
9
10
o f Carbons
F i g u r e 17. D i f f u s i o n C o e f f i c i e n t o f E s t e r s i n a LDPE F i l m
a t 30'C
l.OOOr
0.100+
«Η «Η
ο +> μ •H rH •Η
w
0.010+
rH
0 CO
0.001
—I 100
1 120
1 140
Boiling
1 160 Point
F— 180
200
°C
F i g u r e 18. S o l u b i l i t y C o e f f i c i e n t a t 30*C v s . B o i l i n g P o i n t o f E s t e r i n a LDPE F i l m
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
18. STRANDBURG ET AL»
349
Diffusion and Sorption of Linear Esters
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
The a c t i v a t i o n e n e r g i e s f o r d i f f u s i o n i n t h e co-VDC and EVOH f i l m s i n c r e a s e as t h e s i z e o f t h e e s t e r i n c r e a s e s . T h i s i s e x p e c t e d s i n c e c o o p e r a t i v e m o t i o n o f l a r g e r zones o f t h e polymer m a t r i x a r e necessary t o c r e a t e l a r g e r holes f o r passage. The a c t i v a t i o n e n e r g i e s f o r d i f f u s i o n i n LDPE were n o t d e t e r m i n e d . The s o l u b i l i t y c o e f f i c i e n t s make i n t e r e s t i n g c o n t r i b u t i o n s t o the p e r m e a b i l i t i e s . The s o l u t i o n p r o c e s s o f t h e s e gas phase permeants c a n be s e p a r a t e d f o r a n a l y s i s i n t o two components c o n d e n s a t i o n and m i x i n g . Table I I I contains the heats of condensation f o r the experimental e s t e r s . Table I I I also contains t h e h e a t s o f s o l u t i o n i n t h e polymer f i l m s from l i n e a r f i t s o f t h e d a t a i n F i g u r e s 10 and 15. F i n a l l y , T a b l e I I I c o n t a i n s t h e h e a t s o f mixing f o r the e s t e r s i n the f i l m s . The h e a t s o f m i x i n g were c a l c u l a t e d u s i n g e q u a t i o n 9.
Table III Heats of Condensation and Solution for Experimental Esters Number o f
AH
ΔΗ
Q
Carbons
a)
1
3
ΔΗ
3
AH
m i x
AH
m i x
co-VDC
EVOH
co-VDC
EVOH
-8..4
-1..6
0..4
7.3
5
-8..88
6
-9..47
7
-10. .48
1
-9..7
-2..8
0..8
7.7
8
-11. ,20
2
-10, .3
-3,.5
0..9
7.7
9
-11. .92
-10, .9
-4,.1
1..0
7.9
10
-12, .87
-9..1
2
-11, .5
—— ——
0..4
1..4
kcal/mole
1) average
o f two v a l u e s
2) e x t r a p o l a t e d v a l u e s
The h e a t s o f c o n d e n s a t i o n a r e r e l i a b l e d a t a : On t h e o t h e r hand, there i s c o n s i d e r a b l e experimental u n c e r t a i n t y i n the heats of solution. The t r e n d s i n t h e heat o f s o l u t i o n a r e more c e r t a i n ; however, t h e a c t u a l v a l u e s a r e n o t so c e r t a i n . This uncertainty a r i s e s from two s o u r c e s . F i r s t , the s o l u b i l i t y c o e f f i c i e n t s are d e r i v e d from t h e p e r m e a b i l i t i e s and t h e d i f f u s i o n c o e f f i c i e n t s . Hence, t h e r e l a t i v e u n c e r t a i n t i e s o f b o t h Ρ and D t r a n s f e r t o S. The h e a t s o f s o l u t i o n a r e d e r i v e d by f i t t i n g e q u a t i o n 7 t o o n l y 3 o r 4 data. This i s not i d e a l . F u t u r e work w i l l expand t h e d a t a base to test t h i s preliminary analysis. Nevertheless, the trends f o r the heats of mixing a r e probably c o r r e c t as shown i n T a b l e I I . As t h e e s t e r s g e t l a r g e r , t h e m o l e c u l e becomes more l i k e an a l k a n e , and t h e p o l a r e s t e r group i s diluted. The t r e n d i n t h e h e a t s o f m i x i n g f o r t h e co-VDC f i l m i s interesting. As t h e e s t e r s become l a r g e r t h e h e a t s o f m i x i n g become l e s s f a v o r a b l e i n t h e co-VDC f i l m . This i s a r e f l e c t i o n of the
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
350
BARRIER POLYMERS AND STRUCTURES
d i l u t i o n of the ester function. Esters are known to interact well with chlorine containing polymers. The heats of mixing f o r the esters i n the EVOH f i l m are unfavorable. They are more unfavorable than the heats of mixing i n the co-VDC f i l m . The heats of mixing i n the EVOH f i l m became more unfavorable as the size of the ester increases. This behavior may be predicted by s o l u b i l i t y parameters. Future work w i l l include a variety of functional groups to study the s p e c i f i c interactions of polymer and permeant. SUMMARY 1.
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch018
2. 3. 4. 5. 6. 7.
The d i f f u s i o n c o e f f i c i e n t decreases modestly as the ester size increases f o r low density polyethylene, EVOH and co-VDC f i l m s . The s o l u b i l i t y c o e f f i c i e n t undergoes a much greater change with increasing ester s i z e . Thus the permeability increases with increased ester s i z e . P l a s t i c i z i n g the polymer f i l m can result i n a dramatic increase i n the d i f f u s i o n c o e f f i c i e n t . Important flavor and aroma compounds can be l o s t to the food package by sorption. The amount of flavor loss to the package i s dependent on both d i f f u s i o n and s o l u b i l i t y c o e f f i c i e n t s . The heats of mixing are dependent on s p e c i f i c interactions between polymer and permeant.
LITERATURE CITED 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
DeLassus, P. T.; Hilker, B. L . , Proc. Future-Pak '85 (Ryder), 1985, p. 231. Tou, J. C.; Rulf, D. C.; DeLassus, P. T.; accepted for publiciation in Analytical Chemistry. DeLassus, P. T.; Tou, J. C.; Babinec, M. A.; Rulf, D. C.; Karp, Β. K.; Howell, B. A.; ACS Symposium Series 365, Food and Packaging Interactions (J. H. Hotchkiss, ed.) 1988, p. 11. Zobel, M. G. R., Polymer Testing 1989, 5, 153. Lange's Handbook of Chemistry 13th Edition, McGraw-Hill, N.Y., 1985, pp 10-28. DeLassus, P. T.; Strandburg, G., Howell, Β. Α., TAPPI Journal, 1988, 71(11), 177. Ziegel, K. D.; Frensdorff, Η. K.; Blair, D. E . , J. Polym. Sci., Part A-2, 1969, 7, 809. Pasternak, R. Α.; Schimscheimer, J. R.; Heller, J., J. Polym. Sci., Part A-2, 1970, 8, 467. Zobel, M. G. R., Polymer Testing 1982, 3, 133. Berens, A. R.; Hopfenberg, H. B., J. Membrane Sci., 1982, 10, 283. Peters, H.; Vanderstracten, P.; Verhoeye, L.; J. Chem. Tech. Biotech., 1979, 29, 581. Landois-Garza, J.; Hotchkiss, J. H., Food and Packaging Interactions, ACS Symposium Series 365, 1987, 53. Asfour, A. F. Α.; Saleem, M.; DeKee, D., Journal of Applied Polymer Science, 38, 1989, 1503.
RECEIVED January 31, 1990
In Barrier Polymers and Structures; Koros, W.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.