Biomass as a Nonfossil Fuel Source - ACS Publications - American

It is likely that energy requirements can only be met by combined development of several energy sources. Among alternative energy sources, the product...
0 downloads 6 Views 1MB Size
22 Silvicultural Systems for the Energy Efficient Production of Fuel Biomass F. THOMAS

1

LEDIG

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

Yale University, Greeley Memorial Laboratory, 370 Prospect Street, New Haven, CT 06511

The price of imported crude oil delivered to the United States increased 235% on a constant dollar basis between 1960 and 1976 (9). Most of this increase occurred between 1973 and 1974 when the actual price of crude oil went from $4.00/barrel to $12.52. An additional increase of 14.5% has been announced by the OPEC oil ministers, raising prices to $14.54 by October 1979 (13). Given the continued high rate of inflation, it is a certainty that OPEC will find it desirable to keep pace by future price increases, and should it be politically expedient to the Arab world, prices could again rise dramatically. Increasing prices for oil and the threat of arbitrarily restricted supply are incentives to explore alternative energy sources, particularly those under domestic control. It is likely that energy requirements can only be met by combined development of several energy sources. Among alternative energy sources, the production of biomass from agricultural crops and forest trees has much promise. However, total U.S. energy consumption in 1975 was 71 Q (Q or quad = 10 Btu), but total annual production of biomass from crop and forest land based on current management practice has been estimated by one analyst to be 21 Q (6). Better than 50 percent of the total production was from agricultural land, and because food has a higher priority than energy, prime agricultural land will probably contribute little to a solution of the energy problem. It appears that forest biomass cannot singularly alleviate the U.S. energy shortages, but 15

1

Current address: Institute of Forest Genetics, U.S. Forest Service, P.O. Box 245, Berkeley, CA 94701

0097-6156/81/0144-0433$05.00/0 © 1981 American Chemical Society

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

448

BIOMASS AS A NONFOSSIL F U E L SOURCE

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

nevertheless, it can play an i m p o r t a n t role. T h e use of forests for fuel has several s i g n i f i c a n t e n v i r o n m e n t a l a d v a n t a g e s . Forests are aesthetically p l e a s i n g , a n d fuel p l a n t a t i o n s c a n d o u b l e as sites for leisure recreation, c o n t r i b u t e to t h e m a i n t e n a n c e of w o r l d g e o c h e m i c a l c y c l e s , a n d w h e n c o n s u m e d for f u e l , c o n t r i b u t e m i n i m a l l y t o a t m o s p h e r i c p o l l u t i o n because b i o m a s s is l o w in sulfur c o n t e n t . T h e l o w a n n u a l p r o d u c t i o n of 9 Q f r o m U.S. forest land c o m p a r e d t o 12 Q f r o m a g r i c u l t u r a l land reflects a lack of m a n a g e m e n t a n d m i n i m a l care of forests. It is c e r t a i n t h a t p r o d u c t i o n c o u l d be s u b s t a n t i a l l y increased by proper c h o i c e of species a n d strain, c u l t i v a t i o n , c o n t r o l of s p a c i n g , a n d fertilization ( I f i ) . But. intensive c u l t u r e w i l l result in increased energy d e m a n d s . For e x a m p l e , reliance o n natural regeneration requires no e x p e n d i t u r e o f o u t s i d e e n e r g y e x c e p t for harvest, b u t p l a n t i n g uses 1.2 t o 1.5 x 1 0 Btu/ha(5). 6

T a b l e I. E N E R G Y R E Q U I R E M E N T S I N F O R E S T O P E R A T I O N S B t u ha

Operation Seed c o l l e c t i o n Nursery p r o p a g a t i o n

1

6

χ 10

281.21 0.14

Site p r e p a r a t i o n Burning: hand Burning: helicopter

3.267.81 2.237.82

Hand Machine Aerial s p r a y i n g Stocking control Fertilization

1.541.28 1.217.71

1.071.99

0

b

c

For q u a n t i t y s u f f i c i e n t seedlings/lb. For 2 2 2 3 s e e d l i n g s / h a .

b

335.92 1.284.40

KG blade, pile a n d b u r n slash C h o p p i n g , c r u s h i n g or r i p p i n g w / o piling Bedding Planting

a

a

1,729.00 834.86 37,529.18 to

plant

2223

seedlings

at

8000

plantable

P l o w i n g to create f u r r o w s a n d m o u n d s so t h a t t h e m o u n d s are raised a b o v e high w a t e r table.

Fertilization w o u l d c l a i m an a d d i t i o n a l e x p e n d i t u r e of 3 7 5 x 10 B t u / h a , and seed p r o d u c t i o n , nursery p r o d u c t i o n of seedlings, site p r e p a r a t i o n , a n d

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

22.

LEDiG

Silvicultural Systems for Fuel from Biomass

449

c o n t r o l of s t o c k i n g all require e n e r g y i n p u t (Table I). In a g r i c u l t u r e , industrialization or m e c h a n i z a t i o n has increased yields, b u t o n an e q u i v a l e n t e n e r g y basis t h e increase in yield is less t h a n t h e overall increase in i n p u t s . The energy ratio a c t u a l l y d e c l i n e d f r o m 1 9 4 5 t o 1 9 7 0 (19). It is i m p o r t a n t t o d e t e r m i n e w h e t h e r i n p u t s are so h i g h t h a t intensive c u l t u r e of forests f o r fuel biomass is i m p r a c t i c a l or w h e t h e r increased i n p u t s c a n establish forest b i o m a s s as a s i g n i f i c a n t c o m p o n e n t of t h e t o t a l e n e r g y p i c t u r e . T w o factors t o e x a m i n e are: 1) e n e r g y e f f i c i e n c y or energy o u t p u t / e n e r g y i n p u t a n d 2) net e n e r g y yields u n d e r d i f f e r e n t intensities o f m a n a g e m e n t .

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

PRODUCTION EFFICIENCY Certainly, o n e of t h e m o s t e n e r g y - e f f i c i e n t systems f o r t h e p r o d u c t i o n of biomass is a t r a d i t i o n a l s i l v i c u l t u r a l s y s t e m using natural regeneration. Natural regeneration is forest regeneration either f r o m s t u m p s p r o u t i n g , seedling or saplings already present w h e n t h e m a t u r e s t a n d w a s harvested, g e r m i n a t i o n of seed t h a t lay d o r m a n t in t h e litter, or seeding f r o m s u r r o u n d i n g forest w i t h o u t t h e i n p u t s of site p r e p a r a t i o n , p l a n t i n g or c u l t i v a t i o n . N e g l e c t i n g t r a n s p o r t , s u c h systems w o u l d g e n e r a t e e n e r g y costs o n l y f o r h a r v e s t i n g , w h i c h are a s s u m e d t o be 5.16 gal o i l / c o r d of w o o d [ ] ) . O n t h e average hectare o f c o m m e r c i a l forest land in N e w England, t h e r e are 6 0 c o r d s w h e n b o t h b r a n c h e s a n d s t e m are i n c l u d e d . On this basis, gross e n e r g y yield c a n be c a l c u l a t e d as 1,642 m i l l i o n B t u / h a (Table II). Based on net a n n u a l g r o w t h in N e w E n g l a n d , a b o u t 6 2 years w o u l d be necessary t o achieve this yield. T h e ratio of e n e r g y yields t o energy costs w o u l d be 3 7 c o m p a r e d t o a b o u t 5.3 for t h e p r o d u c t i o n of silage c o r n , o n e of t h e m o s t e n e r g y - e f f i c i e n t forms of agriculture(]2).

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

450

BIOMASS AS A NONFOSSIL F U E L SOURCE

Table II. ENERGY YIELD F R O M ONE HECTARE OF C O M M E R C I A L FOREST L A N D IN N E W E N G L A N D C u b i c feet of w o o d in tree s t e m s 5 inches d i a m e t e r a n d g r e a t e r A l l o w a n c e for b r a n c h e s a n d foliage as 3 0 % of t o t a l T o t a l c u b i c feet E q u i v a l e n t in c o r d s E q u i v a l e n t in p o u n d s dry w e i g h t E q u i v a l e n t in B t u Cost of harvest in gallons of o i l Equivalent cost in B t u Energy o u t p u t / e n e r g y i n p u t

3.522

8

b

0

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

d

6

f

8

b

c

d

β

f

1.509 5.031 60 193.190 ,6 1.642 x 10 310 4 4 x 10>6 37 (

1

F r o m r e f . 18. A t 0.012 c o r d / c u b i c f o o t A t 3200 lb/cord A t 8500 Btu/lb. From ref. 1. A t 6 x 1 0 Btu/barrel 6

On i n d u s t r i a l lands d e v o t e d t o t h e p r o d u c t i o n of w o o d p r o d u c t s , a m o r e intensive s y s t e m is a p p l i e d . Rather t h a n risk failure of natural r e g e n e r a t i o n or lose p r o d u c t i v e c a p a c i t y w h i l e w a i t i n g for natural seed years, m o s t c o m m e r c i a l o p e r a t i o n s resort t o p l a n t i n g . Planting also provides better c o n t r o l of species c o m p o s i t i o n t h a n is o b t a i n a b l e w i t h natural regeneration. In this case, sites are intensively prepared by m e c h a n i c a l means, seedlings p r o d u c e d in nurseries are p l a n t e d at u n i f o r m s p a c i n g , a n d t h e site is fertilized. For a 3 0 - y e a r r o t a t i o n , t h e c y c l e b e t w e e n r e g e n e r a t i o n a n d harvest, S m i t h a n d J o h n s o n (24) c a l c u l a t e d an energy ratio of 2 2 for t r a d i t i o n a l l y harvestable p r o d u c t s , w h i c h is still m u c h better t h a n our m o s t efficient a g r i c u l t u r a l s y s t e m s . W h e n b r a n c h e s a n d foliage are i n c l u d e d as 3 0 % of t o t a l a b o v e g r o u n d b i o m a s s , a c o n s e r v a t i v e f i g u r e , t h e ratio is 34.8. For Eucalypt species u n d e r m a n a g e m e n t in A u s t r a l i a , t h e ratio w a s 2 0 : 1 w h i c h surpassed cassava a n d kenaf b u t w a s equalled by e l e p h a n t grass on a t o t a l c r o p yield basis (16). Similar values w e r e c a l c u l a t e d for Douglas-fir a n d loblolly pine (Table III); i.e. 7.6 t o 17.4 (5), b u t these i n c l u d e only t h e t r a d i t i o n a l l y harvested p r o d u c t s , i g n o r i n g b r a n c h a n d foliage biomass.

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

22.

LEDiG

451

Silvicultural Systems for Fuel from Biomass

T a b l e I I I . E N E R G Y C O S T S A N D Y I E L D S FOR T H E I N T E N S I V E M A N A G E M E N T OF DOUGLAS-FIR A N D LOBLOLLY P I N E Btu h a Douglas-Fir

1

8

Costs

vr" x 10~ Loblolly pine" 1

3

High Intensity L o w Intensity

Site p r e p a r a t i o n Planting Aerial spraying

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

5

Stocking control Thinning Fertilization

25.7

140.9 88.9

44.5 84.0 16.7

84.0 33.4 1.153.4

Fire p r o t e c t i o n

4.503.5 9.7

4.503.5 9.7

Harvest

7.647.3

4,621.3

0

140.9 61.7

Btu ha'

1

yr"

1

9.7 3.007.1 x 1 0

6

Total energy consumption Total e n e r g y yield Net e n e r g y yield a

b

c

12.33 142.07 129.74

10.64 77.85 67.21

3.22 55.92 52.70

50-year r o t a t i o n 25-year rotation A s s u m i n g 8,746 B t u / c u b i c f o o t (18)

Finally, consider still m o r e intensive systems, variously called s h o r t - r o t a t i o n , intensive c u l t u r e (27) or m i n i - r o t a t i o n s y s t e m s (2Λ). S u c h s c h e m e s e m p l o y species t h a t s p r o u t after c u t t i n g , s u c h as poplars, s y c a m o r e , or w i l l o w s , so r e g e n e r a t i o n is a u t o m a t i c after each harvest (4, 25). T h e s y s t e m of r e g e n e r a t i n g a s t a n d b y s t u m p s p r o u t i n g is k n o w n as c o p p i c i n g . S p a c i n g of trees is very close, less t h a n 1 2 x 1 2 d m , a n d rotations are b e t w e e n 2 t o 10 years, d e p e n d i n g u p o n s p a c i n g . Site p r e p a r a t i o n before p l a n t i n g is intense a n d is f o l l o w e d u p by c u l t i v a t i o n t o c o n t r o l w e e d s , b o t h herbaceous a n d w o o d y . H a r v e s t i n g e m p l o y s t e c h n i q u e s and e q u i p m e n t similar t o t h a t used in p r o d u c t i o n of silage c o r n , so t o t a l a b o v e - g r o u n d biomass is harvested. Fertilization is m a n d a t o r y t o preserve site p r o d u c t i v i t y , a n d irrigation has been advised. One c a l c u l a t i o n (Table IV) o f e n e r g y e f f i c i e n c y in these systems i n d i c a t e d a ratio b e t w e e n 11.2 t o 12.6 in W i s c o n s i n for t h e first r o t a t i o n (28). Efficiency w o u l d be higher for s e c o n d rotations o f sprout origin because t h e root s y s t e m has already been f a b r i c a t e d a n d is in place, so t h a t g r o w t h of a b o v e - g r o u n d p o r t i o n s is greatly accelerated. Other a u t h o r s (1Q) s u g g e s t

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

452

BIOMASS AS A NONFOSSIL F U E L SOURCE

e f f i c i e n c y m a y b e h i g h e r in s o u t h e r n l a t i t u d e s ; e.g. 13.4 i n Pennsylvania (Table V) a n d 15.3 in Louisiana (Table VI). T a b l e I V . E N E R G Y C O S T S A N D Y I E L D S FOR S H O R T R O T A T I O N , I N T E N S I V E C U L T U R E OF POPLAR A N D J A C K P I N E S B t u ha Poplar

Costs

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

Fuel for o p e r a t i o n s Manufacture, transport, and a p p l i c a t i o n of fertilizer M a n u f a c t u r e of irrigation s y s t e m Fuel f o r irrigation Plant p r o p a g a t i o n Other inputs Chipping

yr"

1

x 10' Jack Pine 3

6,940 11,640

5.070 5.080

2.040 5.220 20 130 1.330

2.040 5.220 250 130 930

Btu h a ' yr" 1

T o t a l energy yield

27.32 306.40

Net e n e r g y yield

279.08

Total energy consumption

1

2 8

1

x 10"

e

18.72 236.40 217.68

T a b l e V . E N E R G Y C O S T S A N D Y I E L D S FOR S H O R T - R O T A T I O N , INTENSIVE CULTURE OF POPLAR A N D N A T U R A L L Y REGENERATED FOREST 2

Btu ha' Costs

1

yr"

Intensive Culture

Fertilizer Growing and harvesting Chipping Other

15.82 212.52 196.70

3

Natural Forest

9.962 4.751 896 211 B t u ha

Total e n e r g y c o n s u m p t i o n Total energy yield Net e n e r g y yield

x 10"

1

5.394 268 48 1

yr" x 10' 1

6

5.71 63.57 57.86

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

22.

LEDIG

453

Silvicultural Systems for Fuel from Biomass

Table V I . ENERGY COSTS A N D YIELDS, NEGLECTING T R A N S P O R T A T I O N , FOR S H O R T R O T A T I O N , I N T E N S I V E C U L T U R E O F POPLAR ON "ENERGY F A R M S " IN WISCONSIN A N D L O U I S I A N A 1 0

Btu h a yr" 1

Costs Supervision Field s u p p l y

Wisconsin 82 26 466 269 64

Harvesters T r a c t o r haul Irrigation m o v e Irrigation p u m p i n g Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

1

4,908 397 762 57

Manufacture of P2O5

Manufacture of K2O Ground operations Aircraft operations

5,055 404 344 30 8 32

7

Fertilizer t r a n s p o r t

48 Btu h a yr" 1

Total energy consumption Total e n e r g y yield

18.13 191.76 173.63

Net e n e r g y yield

3

26 389 271 32 5,524

11,047

M a n u f a c t u r e o f urea

x 10 Louisiana 82

1

X 10"

6

30.46 473.21 442.75

For each level of s i l v i c u l t u r a l intensity, t h e reported values i n d i c a t e t h e p r o d u c t i o n o f forest b i o m a s s is h i g h l y energy-efficient. H o w e v e r , it s h o u l d be observed t h a t t h e c a l c u l a t i o n s in Tables ll-VI d o n o t take i n t o a c c o u n t processing of t h e b i o m a s s , n o t a b l y d r y i n g , a n d t r a n s p o r t , w h i c h c a n be h i g h l y variable. NET ENERGY YIELDS Efficiency is generally h i g h e s t w i t h m i n i m a l i n t e n s i t y o f c u l t u r e , leaving t h e i m p r e s s i o n t h a t intensive c u l t u r e s h o u l d be a v o i d e d in t h e p r o d u c t i o n o f forest fuels. But t h a t is n o t necessarily t h e case. N e t energy yield s h o u l d be t h e p r i m a r y c o n c e r n in biomass fuel p r o d u c t i o n , n o t p r o d u c t i o n efficiency. In a s t u d y o f biomass p r o d u c t i o n in s h o r t - r o t a t i o n poplar a n d jack pine p l a n t a t i o n s , Z a v i t k o v s k i (£2) t e n t a t i v e l y p o i n t o u t t h a t n e t energy yield increased as a f u n c t i o n o f i n p u t (Figure I). T h e e x a m p l e of n a t u r a l l y regenerated forest p r e s e n t e d here seems t o f i t t h e p a t t e r n w e l l . Based o n a net a n n u a l g r o w t h o f 8 1 c u b i c feet h a " (12), a n average r o t a t i o n f o r a s t a n d 1

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

454

BIOMASS AS A NONFOSSIL F U E L SOURCE

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

500i

Figure 1. Relationship between net energy yield and energy input for short-rotation intensive culture of hybrid (1) poplar and (2) jack pine, energy farms in (3) Wisconsin and (4) Louisiana, intensively cultured (5) Douglas fir and (6) loblolly pine, (7) loblolly pine under average intensity of management, (8) intensively managed southern pine, (9) short-rotation, non-irrigated poplar, (10) short-rotation natural forest in Pennsylvania and (11) natural forest in New England. Energy yields are for dry wood, and input does not include drying. Branches and foliage not included in 5, 6, 7. (2, 5, 10, 24, 28)

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

22.

LEDIG

Silvicultural Systems for Fuel from Biomass

455

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

of 5,031 c u b i c f e e t / h a w o u l d be 6 2 years, t h e f i g u r e used in c a l c u l a t i n g e n e r g y yield per hectare per year in Figure I. O n t h e o t h e r h a n d , yields f r o m t h e s c h e m e proposed by S m i t h a n d J o h n s o n (24) are h i g h . The reason seems to be a n e s t i m a t e o f a n n u a l g r o w t h w h i c h is higher t h a n t h a t achieved o n m o s t sites. Values f o r poplar in Louisiana (10) are also h i g h , perhaps, r e f l e c t i n g real a n d s i g n i f i c a n t regional a n d species v a r i a t i o n in p r o d u c t i v i t y . T h e i m p o r t a n t p o i n t is t h a t f o r t h e present rate of biomass p r o d u c t i o n f r o m u n m a n a g e d stands, a land area t h e size o f t h e entire U n i t e d States w o u l d n o t satisfy its energy d e m a n d s , b u t a n area o n l y o n e - t h i r d its size w o u l d be s u f f i c i e n t w i t h t h e s h o r t - r o t a t i o n , intensive c u l t u r e s c h e m e of Zavitkovski (27). FUEL CONVERSION A l l o f t h e f o r e g o i n g , i n c l u d i n g Tables ll-VI. is p r e d i c a t e d o n t h e basis of d i r e c t use o f biomass as f u e l , w i t h n o p r o v i s i o n f o r d r y i n g . In fact, t h e greatest d e m a n d is f o r gaseous o r liquid fuels s o c o n v e r s i o n t o a l c o h o l , m e t h a n e , or p y r o l y t i c oil is a m o r e likely fate f o r biomass. Because w a t e r c o n t e n t of green w o o d is r o u g h l y 5 0 % , a great deal o f its c h e m i c a l e n e r g y w i l l be required f o r d r y i n g . For s h o r t - r o t a t i o n intensive c u l t u r e s c h e m e s , d r y i n g w o u l d reduce t h e e f f i c i e n c y ratio t o 4.3 t o 4.7 (2g). F u r t h e r m o r e , t o break d o w n lignocellulose t o f e r m e n t a b l e sugars is energetically expensive. Therefore, crops like cassava a n d sugar cane w i t h h i g h sugar c o n t e n t c a n be c o n v e r t e d t o alcohol m o r e e f f i c i e n t l y t h a n w o o d . T h e e f f i c i e n c y of p r o d u c t i o n a n d c o n v e r s i o n of e u c a l y p t s t o alcohol is s o l o w t h a t it is u n e c o n o m i c , a n d t o p y r o l y t i c oil it is 5 8 % . e q u a l t o b u t n o better t h a n cereal s t r a w (J6). T h e h i g h e f f i c i e n c y of forests f o r biomass p r o d u c t i o n is offset b y t h e l o w e f f i c i e n c y of c o n v e r s i o n t o l i q u i d a n d gaseous fuels. T h e m a j o r a d v a n t a g e of forest fuels is in d i r e c t use for g e n e r a t i o n o f heat or power. Nevertheless, t h e n e t e n e r g y yield of 1 4 5 G J / h a for p y r o l y t i c oil f r o m e u c a l y p t u s in A u s t r a l i a is s e c o n d only t o t h e 1 5 4 G J / h a f o r a l c o h o l f o r cassava (2). So even after c o n v e r s i o n , trees remain a c o m p e t i t i v e source of l i q u i d fuels. Biomass w i l l p r o b a b l y never s u p p l y t h e entire energy needs of a d e v e l o p e d e c o n o m y , even locally, b u t m a y be o n e c o m p o n e n t of a c o m p r e h e n s i v e p r o g r a m . It is m o r e likely t h a t forest trees w i l l be used f o r energy p r o d u c t i o n t h a n a g r i c u l t u r a l c r o p s because o f t h e relative shortage o f g o o d a g r i c u l t u r a l land t h a t w i l l s u p p o r t t h e g r o w t h o f crops like sugar cane or cassava a n d p e r m i t use o f t h e m e c h a n i z e d t e c h n o l o g y necessary t o t h e i r efficient c u l t u r e . Good a g r i c u l t u r a l land has a higher value f o r f o o d p r o d u c t i o n . Therefore, despite t h e l o w c o n v e r s i o n e f f i c i e n c y o f w o o d , it w i l l be t h e major c o m p o n e n t of m a n y biomass f o r fuel p r o g r a m s .

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

456

BIOMASS AS A NONFOSSIL F U E L SOURCE

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

I M P R O V I N G EFFICIENCY H o w do trees achieve an a d v a n t a g e in energy e f f i c i e n c y of biomass p r o d u c t i o n c o m p a r e d to crops s u c h as c o r n , w h i c h w e are a c c u s t o m e d t o t h i n k i n g of as a p h y s i o l o g i c a l l y " e f f i c i e n t " plant, e m p l o y i n g t h e C 4 - p a t h w a y of c a r b o n f i x a t i o n ? Part of t h e a n s w e r is t h a t s i l v i c u l t u r e is less intensive t h a n a g r i c u l t u r e , so e n e r g y i n p u t is lower. But there are also differences in o u t p u t o n a yearly basis. Perennial tree species e n j o y a longer g r o w i n g season t h a n a n n u a l crops. W h i l e their rates of c a r b o n d i o x i d e f i x a t i o n are generally l o w e r t h a n t h o s e of h i g h l y p r o d u c t i v e annuals, trees m a i n t a i n t h e i r a c t i v i t y for a longer p e r i o d , a n d because of their p e r m a n e n t b r a n c h s t r u c t u r e , c a n rapdily d e p l o y foliage in t h e s p r i n g t o c a p t u r e a large f r a c t i o n of t h e i n c i d e n t r a d i a t i o n . In a n n u a l s the process of c r o w n closure m u s t b e g i n all over again each s p r i n g , a l l o w i n g m u c h of t h e e n e r g y f l u x t o fall b e t w e e n plants. Evergreen conifers are p a r t i c u l a r l y p r o d u c t i v e over l o n g rotations, surpassing d e c i d u o u s a n g i o s p e r m s (14), d e s p i t e t h e l o w e r u n i t leaf rates of c a r b o n d i o x i d e f i x a t i o n o f t e n f o u n d in conifers. Evergreens c a n take rapid a d v a n t a g e of suitable c o n d i t i o n s for g r o w t h in s p r i n g or fall because t h e i r foliage is a l w a y s d i s p l a y e d . But in fact, their greatest a d v a n t a g e lies in l o w e r yearly costs of foliage p r o d u c t i o n . Evergreen foliage remains f u n c t i o n a l f r o m t w o t o several years, d e p e n d i n g u p o n species, w h e r e a s d e c i d u o u s trees m u s t reinvest in an e n t i r e n e w c a n o p y every year. For e x a m p l e , w i t h t h e s a m e a n n u a l i n v e s t m e n t in leaf. N o r w a y s p r u c e has t w o t o t h r e e t i m e s greater c a r b o n d i o x i d e u p t a k e t h a n t h e d e c i d u o u s species, European b e e c h , because s p r u c e retain its leaves for five to seven years (22). Nevertheless, t h e e f f i c i e n c y of e n e r g y p r o d u c t i o n a n d net e n e r g y yields are m u c h less t h a n t h e t h e o r e t i c a l limit, even in conifers. One possibility for i m p r o v e m e n t is t h r o u g h b r e e d i n g . O n l y in t h e last t w o decades has there been major effort in i n c o r p o r a t i n g i m p r o v e d varieties or lines into forest p l a n t i n g s , b u t none of these lines has been selected for e n e r g y p r o d u c t i o n . S o m e reviewers have s u g g e s t e d g e n e t i c i m p r o v e m e n t or e n v i r o n m e n t a l m a n i p u l a t i o n of energy c o n t e n t in tree biomass (Q. 2 6 . 2 8 ) ; for e x a m p l e , by s t i m u l a t i n g t h e p r o d u c t i o n of h y d r o c a r b o n s s u c h as oleoresins a n d latex, m o r e h i g h l y r e d u c e d c o m p o u n d s t h a n s t r u c t u r a l c a r b o h y d r a t e s like cellulose a n d l i g n i n . Since 1 9 4 5 , latex yield in r u b b e r trees w a s increased nearly six-fold by b r e e d i n g (8). But a trade-off of o n e c o m p o u n d for a m o r e h i g h l y e n e r g e t i c one w i l l not by itself increase t h e net e n e r g y yield per hectare. A pine can store either one g r a m of g l u c o s e w i t h a caloric value of 3.7 kcal or use t h e glucose t o p r o d u c e a more r e d u c e d c o m p o u n d , s u c h as lipid. For e x a m p l e , 0.32 g of p a l m i t i c acid w i t h a caloric value of 3 kcal can be p r o d u c e d f r o m 1.0 g g l u c o s e (Table VII). The a c t u a l loss of stored energy o c c u r s because s o m e of t h e g l u c o s e m u s t be respired to generate t h e A T P required in t h e

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

22.

LEDIG

457

Silvicultural Systems for Fuel from Biomass

c o n s t r u c t i o n of t h e lipid (17)· Very little of t h e energy is lost in g o i n g f r o m hexose sugars t o cellulose; m u c h is lost in p r o d u c t i o n of lipids, oleoresins, a n d o t h e r h i g h l y r e d u c e d c o m p o u n d s . The o n l y possible value of breeding for e n e r g y - r i c h c o m p o u n d s m a y be t o reduce h a n d l i n g a n d storage costs. C o n c e n t r a t i o n o f t h e s a m e h e a t i n g value in a smaller package m i g h t result in some e c o n o m y , b u t it seems d o u b t f u l t h a t it w o u l d offset t h e caloric loss. Table VII. LIPID YIELD F R O M GLUCOSE A S C A R B O N SKELETON

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

A N D ENERGY SOURCE P r o d u c t i o n value - w t . of l i p i d / w t . of substrate for C-skeleton (19) Energy r e q u i r e m e n t f a c t o r — mois A T P t o synthesize g r a m of lipid (19) Yield of A T P f r o m o x i d a t i o n of 1 m o l

0.351 0.05097 36

g l u c o s e t o C 0 a n d H 0 (17) 2

2

M o l e c u l a r w t . of g l u c o s e (2§) Heat of c o m b u s t i o n of o n e m o l g l u c o s e in k c a l (29) Heat of c o m b u s t i o n of o n e g g l u c o s e in kcal W e i g h t of g l u c o s e in C-skeleton of

180.16 673 3.7

p/0.351

ρ g r a m s of lipid W e i g h t of glucose needed t o s u p p l y energy for synthesis One g g l u c o s e —> 0.32 g lipid

0.05097p (180.16/36)

M o l e c u l a r w t . of p a l m i t i c a c i d , a lipid (29) Heat of c o m b u s t i o n of o n e m o l

254 2398.4

p a l m i t i c acid in kcal (29) Heat of c o m b u s t i o n of 0.32 g p a l m i t i c acid in kcal

3.0

T h e o n l y w a y t o increase e n e r g y yield per hectare is t o increase e n e r g y c a p t u r e a n d t h e e f f i c i e n c y of c o n v e r s i o n t o c a r b o h y d r a t e . A more r a p i d g r o w i n g s t a n d , or a g g r e g a t i o n of trees, w i l l be more p r o d u c t i v e of energy, a s s u m i n g its c h e m i c a l c o m p o s i t i o n is u n c h a n g e d , t h a n a s l o w - g r o w i n g stand. Breeding p r o g r a m s in s o u t h e r n pines have been successful in increasing v o l u m e p r o d u c t i o n a b o u t 15% in t h e first g e n e r a t i o n and increases of 2 5 % seem reasonable for t h e s e c o n d g e n e r a t i o n (B. J. Z o b e l . pers. c o m m u n .

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

458

BIOMASS AS A NONFOSSIL F U E L SOURCE

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

1978). T h e p h y s i o l o g i c a l basis for these gains is u n k n o w n a n d c o u l d reflect b e t t e r utilization of i n c i d e n t solar radiation because of i m p r o v e d c a n o p y a r c h i t e c t u r e , ability t o utilize m o r e of t h e g r o w i n g season, a n d e n h a n c e d rate c a r b o n d i o x i d e a b s o r p t i o n a n d f i x a t i o n , a l o w e r rate of respiration for tissue m a i n t e n a n c e , or a r e d u c t i o n in losses to p a t h o g e n s a n d stress f a c t o r s of a n o n a c u t e t y p e . M a x i m u m o b s e r v e d e f f i c i e n c y for p h o t o s y n t h e s i s of poplar u n d e r intensive c u l t u r e w a s 3.5% of t h e v i s i b l e s p e c t r u m (22), for Serbian s p r u c e 7.9% ( I S ) , for maize 10.9% (7). T h e goal of breeders is t o increase e n e r g y yields b y r e a c h i n g t h e m a x i m u m t h e o r e t i c a l e f f i c i e n c y of 12% (15i). O n t h e o t h e r side of t h e c o i n , b r e e d i n g c o u l d help t o r e d u c e d e p e n d e n c e o n e n e r g y i n p u t t h e r e b y also increasing net e n e r g y y i e l d a n d s u b s t a n t i a l l y i m p r o v i n g t h e e f f i c i e n c y ratio. Fertilization is o n e of t h e m o s t c o s t l y i t e m s in s i l v i c u l t u r a l s c h e m e s for f u e l b i o m a s s p r o d u c t i o n . M a n u f a c t u r e a n d t r a n s p o r t of fertilizers in t h e s h o r t - r o t a t i o n , intensive c u l t u r e s c h e m e of Z a v i t k o v s k i (22) c o u l d a c c o u n t for nearly half of t h e t o t a l e n e r g y i n p u t . In S m i t h a n d J o h n s o n ' s s c h e m e , (24) 70% of t h e t o t a l i n p u t f o r site p r e p a r a t i o n a n d c u l t i v a t i o n w a s for fertilization. M o s t or all of these i n p u t s are related t o n i t r o g e n fertilization. If b r e e d i n g c o u l d d e v e l o p t y p e s less d e p e n d e n t u p o n m i n e r a l fertilizers, it w o u l d result in a major i m p r o v e m e n t in t h e e n e r g y b a l a n c e sheet. In fact, t h e r e are major differences in g e n e t i c response t o f e r t i l i z a t i o n , a n d o f t e n t h e g e n o t y p e s m o s t responsive t o fertilization are t h o s e t h a t are poorest w i t h o u t fertilization (\χ). S o m e g e n o t y p e s have a relatively stable p e r f o r m a n c e , o f t e n equal t o t h e fertilizer-responsive t y p e s w h e n fertilized a n d b e i n g g r e a t l y superior w h e n g r o w n w i t h less t h a n o p t i m u m levels of n i t r o g e n . A n o t h e r b u t m o r e r e m o t e possibility for i m p r o v e m e n t is t h r o u g h i n c o r p o r a ­ t i o n of n e w s y m b i o n t s or n e w genes for n i t r o g e n f i x a t i o n in w o o d y plants. S o m e p l a n t s i m p o r t a n t t o a g r i c u l t u r e have n i t r i f y i n g bacteria, h o u s e d in special root s t r u c t u r e s , t h a t e x t r a c t gaseous n i t r o g e n f r o m t h e a t m o s p h e r e . T h e n i t r o g e n soon appears f i x e d in a m i n o a n d a m i d e f o r m s . L e g u m e s like alfalfa are t h e m o s t n o t a b l e e x a m p l e s of plants t h a t are host t o n i t r o g e n f i x i n g bacteria, a n d t h e y are o f t e n alternated w i t h o t h e r crops t o m a i n t a i n a n d i m p r o v e soil fertility. A m o n g w o o d y perennials, alders are c a p a b l e of c o n v e r t i n g a t m o s p h e r i c n i t r o g e n . T h r o u g h g e n e t i c e n g i n e e r i n g , it m a y s o m e d a y be possible t o i m p r o v e t h e g r o w t h of o t h e r a g r i c u l t u r a l a n d forest crops by t h e a d d i t i o n of n i t r i f y i n g c a p a c i t y . In t h e m e a n t i m e , proper c h o i c e of species or b r e e d i n g of trees w h i c h are e f f i c i e n t scavengers of soil n i t r o g e n m a y reduce t h e need for fertilization.

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

22.

LEDIG

Silvicultural Systems for Fuel from Biomass

459

W O O D PRODUCTS A N D RESIDUALS

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

Irrespective of h o w e f f i c i e n t l y forests c a n c a p t u r e e n e r g y is t h e q u e s t i o n o f w h e t h e r w o o d c a n be e c o n o m i c a l l y sold as fuel. A l l p r o j e c t i o n s s u g g e s t a c o n t i n u e d increase in d e m a n d f o r fiber a n d solid p r o d u c t s w h i c h w i l l be s u p p l i e d f r o m a d w i n d l i n g land base. N o t o n l y c o u l d w o o d increase in value relative t o a s u b s t i t u t e like c o a l , b u t t h e energy balance m i g h t be e n h a n c e d more b y p r o m o t i n g w o o d as a material t h a n as a fuel source. For e x a m p l e , f o r every B t u e x p e n d e d in c o n s t r u c t i n g a house o f w o o d , there w o u l d be 6 B t u for steel or 2 5 Btu f o r a l u m i n u m (23). Of course, this is t r u e for f u r n i t u r e or any o t h e r m a n u f a c t u r e d i t e m s in w h i c h material s u b s t i t u t i o n s are possible. T h u s , t h e best e n e r g y value o f w o o d m i g h t be its u t i l i t y f o r a diversity of p r o d u c t s t h a t are f r e q u e n t l y m a d e f r o m more energetically costly materials. A s a b y p r o d u c t of w o o d p r o c e s s i n g , extensive residuals are p r o d u c e d . Slabs, t h e r o u n d e d shell o u t s i d e t h e s a w n boards, a l w a y s c o n s t i t u t e d a h i g h p r o p o r t i o n of t h e log, b u t t h e t r e n d t o shorter, e c o n o m i c rather t h a n biologic rotations f o r c e d harvest o f smaller trees, a n d increased t h e p r o p o r t i o n of slab t o board. These residuals are already salvaged b y large mills. T h e y are c h i p p e d a n d sold f o r p u l p i n g or used t o s u p p l y heat a n d energy f o r mill o p e r a t i o n . O n a local scale, use of mill residuals m a y have a major i m p a c t . A n o t h e r class of residuals, a n d o n e n o t f r e q u e n t l y used, includes t h e branches, t w i g s , leaves, a n d roots left in t h e forest. Branches a n d leaves m a y c o n s t i t u t e a b o u t 3 5 % of t h e t o t a l biomass or an a m o u n t equal t o t h e s t e m biomass (2g). C h i p p i n g t h e t o p s in t h e forest is q u i t e practical and c o u l d have an i m p a c t o n local fuel needs. Roots represent 2 0 % of t h e a b o v e - g r o u n d biomass a n d c o n s t i t u t e a n o t h e r source of fuel. M e c h a n i z e d s y s t e m s f o r root e x t r a c t i o n are available, b u t t h e i m p a c t of root e x t r a c t i o n o n soil s t r u c t u r e a n d site p r o d u c t i v i t y m a y be u n f a v o r a b l e a n d . o f course, c o u l d not be used in systems of c o p p i c e regeneration. CONCLUSIONS P r o d u c t i o n of biomass b y forests is h i g h l y energy efficient. Purely e x p l o i t a t i v e s c h e m e s are more efficient t h a n h i g h l y intensive silviculture. H o w e v e r , n e t e n e r g y yield increases w i t h i n t e n s i t y of c u l t i v a t i o n , so silvicultural s y s t e m s a p p r o a c h i n g those o f a g r i c u l t u r a l c r o p p i n g s h o u l d be f a v o r e d f r o m a n energy p r o d u c t i o n s t a n d p o i n t . Efficiency c a n be f u r t h e r increased by b r e e d i n g , a n area n e g l e c t e d in forestry f o r c e n t u r i e s after it h a d b e c o m e a p r o v e n assist in a g r i c u l t u r e . T h e rate of p r o d u c t i o n o f biomass c a n be increased by b r e e d i n g for rapid g r o w t h . S i m u l t a n e o u s l y , it m a y be possible t o reduce e n e r g y i n p u t s by b r e e d i n g f o r trees t h a t d o n o t require s u p p l e m e n t a l fertilization or by e n g i n e e r i n g n e w s y m b i o t i c relationships w i t h n i t r o g e n - f i x i n g o r g a n i s m s .

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

460

BIOMASS AS A NONFOSSIL

F U E L SOURCE

T h o u g h p r o d u c t i o n of forest biomass is efficient, its c o n v e r s i o n to gaseous or l i q u i d fuels is not. Cellulose a n d lignin are m o r e d i f f i c u l t t o c o n v e r t t o alcohol or m e t h a n e t h a n sugars, a m a j o r c o m p o n e n t of biomass in some c r o p plants. Therefore, trees w i l l p r o b a b l y be used d i r e c t l y for b u r n i n g or perhaps in p y r o l i t i c c o n v e r s i o n , a process w h i c h holds s o m e p r o m i s e . M e r e l y increasing reliance o n w o o d in c o n s t r u c t i o n w i l l have a positive effect on w o r l d energy b u d g e t s because p r o d u c t i o n of s u b s t i t u t e s requires a h i g h e n e r g y e x p e n ­ d i t u r e . P r o d u c t i o n of w o o d p r o d u c t s i n e v i t a b l y p r o d u c e s residuals. These c a n a n d are b e i n g used in e n e r g y p r o d u c t i o n a n d m a y have a m a j o r i m p a c t o n a local scale.

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

REFERENCES

1.

"Fuel Requirements for Harvesting Pulpwood"; American Pulpwood Association: Washington, D.C., 1975; p 15.

2. Blankenhorn, P. R.; Bowersox, T. W.; Murphy, W. K. Tappi 1978, 61, 5760. 3.

Boardman, Ν. K. "Proceedings", Fourth International Congress on Photosynthesis; Biochemical Society: London, 1977; 635-44.

4. Bowersox, T. W.; Ward, W. W. J. For. 1976, 74, 750-3. 5. Burks, J. E. "Proceedings"; 1978 Joint Conv. Soc. Am. For. and Can. Inst. For.; Soc. Am. For.: Washington, D.C., 1979; 146-48. 6.

Burwell, C. C. Science 1978, 199, 1041-8.

7.

Caldwell, Μ. Α.; Cooper, J. P., Ed. "Photosynthesis and Productivity in Different Environments"; Cambridge Univ. Press: Cambridge, 1975; 4173.

8.

Calvin, M. Science 1974, 184, 375-81.

9.

Federal Energy Administration. "Energy in Focus, Basic Data"; U.S. Federal Energy Administration: Washington, D.C., 1977; p 13.

10. Fege, A. S.; Inman, R. E.; Salo, D. J. J. For. 1979, 77, 358-61. 11. Goodard, R. E., et al., Eds. "Tree Physiology and Yield Improvement"; Academic Press: London, 1976; pp 449-62.

Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

22. LEDIG Silvicultural Systems for Fuel from Biomass 461

12. Heichel, G. H. Am. Sci. 1976, 64, 64-72. 13. Ibrahim, Y. M. N.Y. Times 1978,

128 (44-070), A1, D6.

14.

Kira, T.; Cooper, J. P., Ed. "Photosynthesis and Productivity in Different Environments"; Cambridge University Press: Cambridge, 1975; 5-40.

15.

Ledig, F. T.; Linzer, D.I.H. Chemtech 1978, 8, 18-27.

Downloaded by CORNELL UNIV on July 24, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch022

16. McCann, D. J.; Saddler, H.D.W. Search 1976, 7, 17-23. 17.

Noggle, G.R.; Fritz, G. J. "Introductory Plant Physiology"; Prentice-Hall: Englewood Cliffs, N.J., 1976.

18.

Pecoraro, J. M.; Chase, R.; Fairbank, P.; Meister, R. New England Federal Regional Council, Energy Resource Development Task Force, Wood Utilization Group: Boston, Mass., 1977; p 91.

19.

Penning de Vries, F.W.T.; Brunsting, A.H.M.; van Laar, H.H. J. Theor. Biolo. 1974, 45, 339-77.

20.

Pimentel, D.; Jewell, W. J., Ed. "Energy Agriculture, and Waste Management"; Ann Arbor Sci. Publ.: Ann Arbor, Mich., 1975; pp 5-16.

21.

Schreiner, E. J. U.S. For. Serv. Res. Pap. 1970, NE-174, p 32.

22. Shulze, E.-D; Fuchs, M.; Fuchs, M. I. Oecologia 1977, 30, 239-48. 23. Smith, D. M. Connecticut Woodlands 1978, 43 (2), 3-5. 24. Smith, D. M.; Johnson, E. C. J. For. 1977, 75, 208-10. 25.

Steinbeck, K.; McAlpine, R. G.; May, J. T. J. For. 1972, 70, 210-14.

26.

Szego, G. C.; Kemp, C. C. Chemtech 1973, 3, 275-84.

27.

Zavitkovski, J. "Proceedings", Joint Convention of the Society of American Forestry and Canadian Institute of Forestry; Washington, D.C., 1979; Society of American Forestry: Washington, D.C., 1979; 13237.

28.

Zavitkovski, J. submitted for publication in For. Sci..

29.

Weast, R. C., Ed. "Handbook of Chemistry and Physics"; Chemical Rubber Co.: Cleveland, Ohio, 1969.

RECEIVED JUNE 18, 1980. Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.