Bioregulators for Pest Control - American Chemical Society

However, if an alkylating agent has a high affinity for nucleic acids, if an ..... stabilized upon the reaction with the enzyme to such a degree that ...
0 downloads 0 Views 2MB Size
9 Use of Transition-State Theory in the Development of Bioactive Molecules

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

YEHIA A. I. ABDEL-AAL1 and BRUCE D. HAMMOCK Departments of Entomology and Environmental Toxicology, University of California, Davis, CA 95616

The application o f transition s t a t e t h e o r y t o enzyme catalysis is p r e s e n t e d in terms o f m e c h a n i s t i c and e n e r g e t i c approaches. These t r e a t m e n t s emphasize t h e rationale o f u s i n g transition s t a t e a n a l o g s as bio­ active m o l e c u l e s . I n c l u d e d in this c h a p t e r a r e some criteria f o r d e t e r m i n i n g if a compound is a transition s t a t e a n a l o g . A h y p o t h e s i s is t h e n p r e s e n t e d t h a t t h e initial b i n d i n g o f some insecticidal carbamates and organophosphates t o acetylcholinesterase is dependent in p a r t upon their m i m i c k i n g t h e transition s t a t e c o n ­ figuration o f acetylcholine. As an indication o f how transition s t a t e t h e o r y c o u l d be a p p l i e d t o problems in agricultural c h e m i s t r y , we p r e s e n t d a t a from t h i s l a b o ­ r a t o r y t h a t some t r i f l u o r o m e t h y l k e t o n e inhibitors o f i n s e c t j u v e n i l e hormone e s t e r a s e ( s ) a r e transition s t a t e mimics and e x t e n d t h i s argument by a p p l y i n g a q u a n t i t a t i v e structure-activity relationship approach to these analogs. There has been a n o b v i o u s d e c l i n e i n t h e number o f commercial a g r i ­ c u l t u r a l and p h a r m a c e u t i c a l c h e m i c a l s d u r i n g t h e l a s t decade. There a r e two major r e a s o n s f o r t h i s d e c l i n e . F i r s t , there are i n ­ c r e a s i n g l y t i g h t e r r e q u i r e m e n t s f o r market development. To u s e a g r i c u l t u r a l c h e m i c a l s as a n example, we s e e an i n c r e a s i n g l y narrow m a r g i n o f p r o f i t f o r f a r m e r s and i n c r e a s i n g c o n c e r n o v e r e n v i r o n ­ mental h e a l t h e f f e c t s . The c o s t o f r e g i s t r a t i o n , p r o d u c t i o n and marketing a l s o continues t o i n c r e a s e . Secondly, the cost of d i s ­ c o v e r y has i n c r e a s e d d r a m a t i c a l l y . There a r e numerous components t o t h i s o b s e r v a t i o n as w e l l , b u t s i m p l i s t i c a l l y one c a n s e e t h a t t o meet t h e t i g h t r e q u i r e m e n t s f o r market development, more complex and e x p e n s i v e s y n t h e s e s and b i o a s s a y s a r e r e q u i r e d . Random s c r e e n i n g w i t h t h e a i d o f some s e r e n d i p i t y s e r v e d e f f e c t i v e l y i n t h e p a s t f o r the d i s c o v e r y o f new b i o l o g i c a l a c t i v i t i e s , y e t we have reached t h e

1

O n leave from the Department of Plant Protection, College of Agriculture, Assiut University, Assiut, A . R . Egypt.

0097-6156/85/0276-0135$07.50/0 © 1985 American Chemical Society

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

BIOREGULATORS FOR PEST CONTROL

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

136

p o i n t of d i m i n i s h i n g r e t u r n s w i t h r e g a r d t o i t s a p p l i c a t i o n t o f u t u r e problems. T h e r e f o r e , a theme of s e v e r a l of the m a n u s c r i p t s from t h i s m e e t i n g r e l a t e s t o the development of new paradigms f o r the d i s c o v e r y of b i o l o g i c a l a c t i v i t y . M o l e c u l e s can r e a c t w i t h a b i o l o g i c a l m a t r i x i n many ways. At l e a s t some b i o l o g i c a l a c t i v i t y i s common among c h e m i c a l l y r e a c t i v e species. F o r i n s t a n c e , M i c h a e l a c c e p t o r s and a c e t y l a t i n g a g e n t s a r e commonly i r r i t a t i n g agents or g e n e r a l c y t o t o x i n s . M o l e c u l e s may r e v e r s i b l y r e a c t w i t h b i o l o g i c a l systems based upon o n l y s o l u b i l i t y o r weak m o l e c u l a r i n t e r a c t i o n s w i t h b i o l o g i c a l d e p r e s s a n t s as prime examples. However, t h e s e m o l e c u l e s l a c k the s p e c i f i c i t y d e s i r e d f o r f i e l d a p p l i c a t i o n and the p o t e n c y needed f o r economic f e a s i b i l i t y . However, i f an a l k y l a t i n g agent has a h i g h a f f i n i t y f o r n u c l e i c a c i d s , i f an a c e t y l a t i n g agent b i n d s w e l l t o an enzyme a c t i v e s i t e , or i f an i n e r t m o l e c u l e can form s e v e r a l weak m o l e c u l a r i n t e r a c t i o n s w i t h a r e c e p t o r s i t e , t h e s e m o l e c u l e s may d i s p l a y v e r y h i g h b i o l o g i ­ c a l a c t i v i t y indeed. D u r i n g the l a s t s e v e r a l y e a r s we have become impressed w i t h the u t i l i t y of t r a n s i t i o n s t a t e t h e o r y i n the o p t i m i z a t i o n as w e l l as the d i s c o v e r y of b i o l o g i c a l l y a c t i v e s t r u c t u r e s . Empirical approaches i n d i c a t e t h a t a mimic of an e n z y m e - s u b s t r a t e t r a n s i t i o n s t a t e c o u l d have a K j below 1 0 ^ M (± 2) · A l t h o u g h one i s not l i k e l y t o p r e c i s e l y mimic a t r a n s i t i o n s t a t e , even a vague mimic c o u l d s t i l l be a v e r y p o t e n t i n h i b i t o r . T h e r e f o r e , we f e e l t h a t t r a n s i t i o n s t a t e t h e o r y i s l i k e l y t o be one of s e v e r a l approaches u s e f u l i n a g r i c u l t u r a l c h e m i s t r y . Thus i n the f o l l o w i n g pages we p r e s e n t a b r i e f r e v i e w of the a p p l i c a t i o n of t r a n s i t i o n s t a t e t h e o r y i n enzyme c a t a l y s i s i n terms of b o t h m e c h a n i s t i c and e n e r g e t i c treatments. These t r e a t m e n t s i n t r o d u c e the r a t i o n a l e of u s i n g t r a n s i t i o n s t a t e a n a l o g s as b i o a c t i v e m o l e c u l e s . Data from t h i s l a b o r a t o r y were p r e s e n t e d as an example of the use of t r a n s i t i o n s t a t e t h e o r y i n the development o f p o t e n t i n h i b i t o r s of i n s e c t j u v e n i l e hormone e s t e r a s e ( s ) . - 1

9

T r a n s i t i o n State

Theory

I t i s w e l l known from s t r u c t u r a l and k i n e t i c s t u d i e s t h a t enzymes have w e l l - d e f i n e d b i n d i n g s i t e s f o r t h e i r s u b s t r a t e s 03), sometimes form c o v a l e n t i n t e r m e d i a t e s , and g e n e r a l l y i n v o l v e a c i d i c , b a s i c and n u c l e o p h i l i c g r o u p s . Many of the c o n c e p t s i n c a t a l y s i s a r e based on t r a n s i t i o n s t a t e (TS) t h e o r y . The f i r s t q u a n t i t a t i v e f o r m u l a t i o n of t h a t t h e o r y was e x t e n s i v e l y used i n the work o f H. E y r i n g ( 4 , _ 5 ) · Noteworthy c o n t r i b u t i o n s t o the b a s i c t h e o r y were made by o t h e r s (see (6) f o r review). As an e l e m e n t a r y i n t r o d u c t i o n , we w i l l a p p l y the fundamental assumptions of the TS t h e o r y i n s i m p l e enzyme c a t a l y s i s as f o l l o w s . (a) In e v e r y c h e m i c a l r e a c t i o n the r e a c t a n t s a r e i n e q u i l i b r i u m w i t h an u n s t a b l e a c t i v a t e d complex, the t r a n s i t i o n s t a t e complex, which decomposes t o g i v e p r o d u c t s . In t h i s complex c h e m i c a l bonds a r e i n the p r o c e s s of b e i n g formed or b r o k e n . T h e r e f o r e , i t o c c u r s a t the peak of the r e a c t i o n c o o r d i n a t e diagram, i . e . a t the s a d d l e p o i n t s o f p o t e n t i a l energy s u r f a c e s (_7). In c o n t r a s t , i n t e r ­ m e d i a t e s , whose bonds a r e f u l l y e s t a b l i s h e d , occupy the t r o u g h s i n the diagram ( F i g u r e 1 ) . These i n t e r m e d i a t e s can e i t h e r be t r a n s i e n t

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

9.

ABDEL-AAL AND

137

Development of Bioactive Molecules

HAMMOCK

or a c t u a l i s o l a t a b l e i n t e r m e d i a t e s such as an a c y l enzyme, (b) I t i s p o s t u l a t e d t h a t the s t a r t i n g m a t e r i a l s ( i n case of enzyme c a t a l y s i s the enzyme (E) and i t s s u b s t r a t e ( S ) ) a r e i n e q u i l i b r i u m w i t h a l l complexes which o c c u r b e f o r e the a c t i v a t e d complex (ES ) and a l s o w i t h the a c t i v a t e d complex i t s e l f " E q u a t i o n 1".

Ε + S

Km ^ES

kcat >ES*

kT/h >E

ι

+ Products

(1)

t

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

*2 (c) The i m p o r t a n t p o s t u l a t e i s made t h a t i n t h i s t h e o r y a l l t h e a c t i v a t e d complexes decompose t o p r o d u c t s a t e x a c t l y the same r a t e f o r a g i v e n temperature. T h i s means t h a t the r a t e i s p r o p o r t i o n a l to the c o n c e n t r a t i o n o f ES* w i t h a u n i v e r s a l p r o p o r t i o n a l i t y con­ s t a n t (kT/h) where k i s the Boltzmann's c o n s t a n t , Τ i s the a b s o l u t e temperature and h i s the P l a n k ' s c o n s t a n t . A t 25° (kT/h) e q u a l s 6.212xl0 sec" . 1 2

1

r a t e - kT

[ES*]

However ES* i s i n e q u i l i b r i u m w i t h Ε and e q u i l i b r i u m constant K as f o l l o w s :

(2)

S and

i s governed by

the

t

[ES*]

= Κ*

(3)

[EUS] S u b s t i t u t i o n f o r the v a l u e of [ES*] i n " E q u a t i o n 2" " E q u a t i o n 3" r e s u l t s i n the f o l l o w i n g e q u a t i o n :

from

r a t e = [E] [ S J K ^ k T j h

(4)

However, from " E q u a t i o n 1" the r a t e a l s o s h o u l d be p r o p o r t i o n a l t o [E] and [S] and a second o r d e r r a t e c o n s t a n t ( k 2 ) : rate - k [E][S]

(5)

2

Comparing " E q u a t i o n 5" w i t h k

2

" E q u a t i o n 4"

indicates that:

- kT K £

(6)

( d ) A s p e c i a l p r o p e r t y of the a c t i v a t e d TS complex i s t h a t i t has a u n i q u e , v e r y l o o s e i n t e r n a l mode o f v i b r a t i o n , which i s u n s t a b l e with respect to d i s s o c i a t i o n i n t o products. This " v i b r a t i o n " occurs a l o n g the r e a c t i o n c o o r d i n a t e ( F i g u r e 1 ) . T h e r e f o r e we w i l l c o n ­ s i d e r the TS complex as the end p o i n t on the energy p r o f i l e f o r simplicity. F r e e Energy Change and TS T h e o r y . We w i l l now e x p r e s s the mechanism of enzyme c a t a l y s i s " E q u a t i o n 1" i n terms o f the change i n the f r e e energy as f o l l o w s :

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

138

BIOREGULATORS F O R PEST C O N T R O L

AG„ E+S

AG

4-

-7

ES

ES*

(7)

• AG*. By a p p l y i n g t h e well-known r e l a t i o n s h i p between t h e G i b b s - e n e r g y change and t h e e q u i l i b r i u m c o n s t a n t ( 8 ) t o t h e above scheme, one finds:

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

AG* = -RT I n K*

(8)

where K* i s t h e e q u i l i b r i u m c o n s t a n t between t h e r e a c t a n t s and t h e TS. Analogous e q u a t i o n s r e l a t e t h e e q u i l i b r i u m c o n s t a n t o f any s t e p and t h e c o r r e s p o n d i n g f r e e energy change. JJpon rearrangement o f " E q u a t i o n 8" and i n t r o d u c i n g t h e v a l u e o f K i n terms o f AG i n t o " E q u a t i o n 6", t h e f o l l o w i n g e q u a t i o n r e s u l t s : t

k

2

t

-AG*/RT = kT . e h

(9)

U s i g g t h e f a m i l i a r r e l a t i o n s h i p between g i b b s f r e e energy change ( A G ) and t h e change i n t h e e n t h a l p y (AH ) and e n t r o p y ( A S ) , t

fc

AG*

t

=ΔΗ* -TAS*

(10) *

" E q u a t i o n 9" c a n be e x p r e s s e d i n terms o f AH follows: -AH /RT AS /R k - kT . e e h t

ic t

and AS as t

t

(11)

2

" E q u a t i o n 11" i n d i c a t e s , from t h e t h e o r e t i c a l p o i n t o f view, t h a t k f o r a p a r t i c u l a r enzyme c a n be a c c e l e r a t e d by e i t h e r a d e c r e a s e i n the e n t h a l p y and^or an i n c r e a s e i n t h e e n t r o p y o f t h e ^ o v e r a l l r e ­ a c t i o n E+S — * ES so t h a t t& w i l l be n e g a t i v e and ^ will be p o s i t i v e i n t h e above e q u a t i o n . The r o l e o f e n t r o p y change i n terms o f d i f f e r e n t e n t r o p y v e c t o r s , t r a n s l a t i o n a l , r o t a t i o n a l and i n t e r n a l e n t r o p i e s i n enzyme c a t a l y s i s i s n o t an easy t a s k and t h e r e a d e r s h o u l d r e f e r t o s p e c i a l t e x t b o o k s i n p h y s i c a l o r g a n i c chemis­ t r y ( s e e ( 8 ^ and r e f e r e n c e s t h e r e i n ) . T h e o r e t i c a l l y f o r m i n g a TS complex (ES ) from an enzyme and s u b s t r a t e (2 + 1 r e a c t i o n ) would l e a d t o a l o s s o f t h e e n t r o p y o f t h r e e degrees o f t r a n s l a t i o n a l freedom. However, a l o o s e t r a n s i t i o n s t a t e w i t h a h i g h p o t e n t i a l energy may, perhaps, be c o n s i d e r e d as two m o l e c u l e s i n c l o s e j u x t a ­ p o s i t i o n b u t r e t a i n i n g c o n s i d e r a b l e e n t r o p y freedom. Furthermore, enzymic r e a c t i o n s a r e d i f f e r e n t from pure o r g a n i c c h e m i c a l r e a c t i o n s s i n c e t h e former r e a c t i o n t a k e s p l a c e i n t h e c o n f i n e s o f t h e enzyme s u b s t r a t e complex. T h e r e f o r e , t h e remarkably h i g h c a t a l y t i c a c t i v i t y o f enzymes c o u l d be a t t r i b u t e d t o l o c a l i z a t i o n o f S o r S w i t h i n t h e a c t i v e s i t e w i t h s u s c e p t i b l e bonds o f t h e s u b s t r a t e o r i t s TS c o n f i g u r a t i o n o p t i m a l l y o r i e n t e d t o t h e a p p r o p r i a t e c a t a l y t i c 2

t

t

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

9.

ABDEL-AAL AND

139

Development of Bioactive Molecules

HAMMOCK

m o i e t i e s of the enzyme ( 3 ) . Due t o t h i s l o c a l i z a t i o n and o r i e n ­ t a t i o n , t h e s u b s t r a t e would be r o u g h l y c o n s i d e r e d as p a r t o f the same m o l e c u l e as the c a t a l y t i c group so t h e r e i s no e x t e n s i v e l o s s i n e n t r o p y as the r e a c t i o n would be assumed t o be i n t r a m o l e c u l a r . I f t h e r e i s a g r e ^ t l o s s of e n t r o p y , i t would be on f o r m i n g the ES r a t h e r t h a n ES complex which r e s u l t s i n i n c r e a s i n g 1^ ( 8 ) . The e n t r o p y change i n terms o f t r a n s l a t i o n a l , r o t a t i o n a l and i n t e r n a l r o t a t i o n a l e n t r o p y has been d i s c u s s e d i n more d e t a i l (9,10) i n f a v o r of c o n t r i b u t i o n t o the b i n d i n g o f Ε and S* r a t h e r than S. However, the Van der Waals a t t r a c t i o n ( h y d r o p h o b i c bonding) i n enzyme-sub­ s t r a t e i n t e r a c t i o n s might i n c r e a s e the e n t r o p y o f e i t h e r ES o r ES as compared t o t h a t o f the r e a c t a n t s by e j e c t i n g water m o l e c u l e s f o r m e r l y bound t o the c a t a l y t i c s i t e ( s ) ( 1 1 ) . As i l l u s t r a t e d i n the above d i s c u s s i o n , S* b i n d s more t i g h t l y t o the enzyme than S. Thus more m o l e c u l e s of s o l v a t i n g water would be r e l e a s e d upon the f o r ­ m a t i o n o f ES* r e s u l t i n g i n an a d d i t i o n a l e n t r o p i e advantage f o r i t s formation. Such h y d r o p h o b i c bonding and e n t r o p y change i n t h e r e ­ a c t i o n o f enzyme w i t h s u b s t r a t e o r i n h i b i t o r s w i l l be f u l l y ex­ p l a i n e d i n t h e next s e c t i o n . T r a n s i t i o n S t a t e and B i n d i n g Energy. There a r e a t l e a s t two major f a c t o r s which a c c o u n t f o r enzyme c a t a l y s i s . The f i r s t one i s a c o m b i n a t i o n o f e n t r o p i e , a c i d base c a t a l y s i s and e l e c t r o s t a t i c effects. The second one depends m o s t l y on the enzyme s u b s t r a t e c o m p l e m e n t a r i t y which r e s u l t s i n a l a r g e amount o f b i n d i n g energy which may be used to d i s t o r t the s u b s t r a t e t o the s t r u c t u r e o f the p r o d u c t s ( 1 2 ) . The l a t t e r f a c t o r seems t o be o f h i g h importance i n l o w e r i n g the a c t i v a t i o n energy o f the o v e r a l l r e a c t i o n and s u b s e ­ q u e n t l y i n c r e a s i n g t h e magnitude of k which i s d e f i n e d as k /K i n the s i m p l e M i c h a e l i s - M e n t e n mechanism where K = K . L e t us now put the s i m p l e scheme f o r enzyme c a t a l y s i s i n terms of b o t h mecha­ n i s t i c and e n e r g e t i c e n t i t i e s . 2

c a t

s

K

E+S

ν

m ^ ES

kcat

m

m

. >ES*

w

N

— AG

(12)

^cat AG

t

The above scheme can be seen c l e a r l y from F i g u r e 2 i n which A G i s a l g e b r a i c a l l y n e g a t i v e , i . e . f a v o r a b l e r e a c t i o n due t o the r e a l i ­ z a t i o n o f b i n d i n g energy. However, A G * i s p o s i t i v e ( u n f a v o r a b l e r e a c t i o n ) due t o the a c t i v a t i o n energy o f bond rearrangement i n the a c t i v a t e d TS complex. J h a t i s the a c t i v a t i o n e n e r g y A G f o r t h e whole p r o c e s s (E+S * ES ) would be S

t

AC

AG

+

AG,

(13)

s

S u b s t i t u t i o n f o r the v a l u e of A G * i n " E q u a t i o n 9" by " E q u a t i o n 13" r e s u l t s i n the f o l l o w i n g e q u a t i o n :

AG* +

AG

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

g

140

BIOREGULATORS FOR PEST CONTROL

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

ES*

Reaction coordinate F i g u r e 1. Schematic r e p r e s e n t a t i o n i n an e n z y m e - c a t a l y z e d r e a c t i o n .

*G*=ûG + A(f =ûG +Ad+AG ( s

s

REACTION

b

o f the f r e e energy

changes

(—) )

COORDINATE

F i g u r e 2. Schematic r e p r e s e n t a t i o n o f the f r e e e n e r g y changes i n an e n z y m e - c a t a l y z e d r e a c t i o n where t h e enzyme i s comple­ mentary t o e i t h e r t h e s u b s t r a t e ( b r o k e n l i n e s ) o r t o i t s t r a n s i t i o n state configuration ( s o l i d l i n e s ) .

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

9.

Development of Bioactive Molecules

ABDEL-AAL AND HAMMOCK

k

2

=

kcat/Km " kT h

e

-AG*/RT e

-AG /RT e

141

(14)

From t h e above e q u a t i o n i t c a n be shown t h a t t h e b i n d i n g energy o f ES complex and/or o f E S * complex c a n p l a y a c r u c i a l r o l e i n l o w e r i n g AG o r AG r e s p e c t i v e l y and e v e n t u a l l y i n c r e a s i n g t h e c a t a l y t i c activity (k /K ). However, s i n c e t h e s t r u c t u r e o f t h e s u b s t r a t e (based on TS t h e o r y ) changes throughout t h e r e a c t i o n , i t i s l i k e l y t h a t t h e u n d i s t o r t e d enzyme c a n have maximum complementariness t o o n l y one s p e c i e s (S o r S ) o f t h e s u b s t r a t e ( 8 ) . A t t h i s p o i n t an important q u e s t i o n a r i s e s r e g a r d i n g which form o f s u b s t r a t e would have t h e h i g h e s t c o m p l e m e n t a r i t y and t h e h i g h e s t b i n d i n g energy i n i t s r e a c t i o n w i t h t h e enzyme. The importance o f t h e above q u e s t i o n comes from t h e f a c t t h a t i t s answer i s c o n s i d e r e d t o be t h e main r a t i o n a l e f o r t h e development o f TS-analogues (TSA) as enzyme i n ­ hibitors. The q u a l i t a t i v e answer t o t h i s q u e s t i o n was i n t r o d u c e d by Haldane (12) and P a u l i n g (1,2) as t h e f a v o r e d c o m p l e m e n t a r i t y would be between t h e enzyme and t h e t r a n s i t i o n s t a t e p o r t i o n (S ) o f the s u b s t r a t e r a t h e r than between t h e enzyme and t h e s u b s t r a t e itself. I n s u p p o r t i n g t h e g r e a t i n s i g h t o f Haldane and P a u l i n g , F e r s h t ( 8 ) proved c o l l e c t i v e l y t h a t t h e i n t r i n s i c b i n d i n g energy i n driving k / K would be i n f a v o r o f t h e t r a n s i t i o n s t a t e . I n t h e f o l l o w i n g p a r a g r a p h s we w i l l s l i g h t l y modify F e r s h t ' s approach t o show t h a t i t i s e n e r g e t i c a l l y e x p e n s i v e f o r enzyme c a t a l y z e d r e ­ a c t i o n s t o have maximum b i n d i n g i n t e r a c t i o n s w i t h t h e s u b s t r a t e r a t h e r than i t s TS c o n f i g u r a t i o n . g

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

c a t

c a t

m

m

Assume t h a t t h e e x t r a b i n d i n g energy r e s u l t i n g from complemen­ t a r i t y t o t h e s u b s t r a t e o r t o i t s TS e q u a l s AGfc. I f t h i s e x t r a b i n d i n g energy i s i n t h e enzyme s u b s t r a t e complex, i t w i l l d e c r e a s e the v a l u e o f K and reduce i t s f r e e energy change t o become uGq-uG^. However, s i n c e t h e f o r m a t i o n o f TS complex w i l l l e a d t o a r e d u c t i o n i n b i n d i n g energy as t h e s u b s t r a t e geometry changes t o g i v e p o o r e r f i j and e v e n t u a l l y t h i s w i l l i n c r e a s e AG f o r k t o be AG + 2 A G « A G ç f o r t h e o v e r a l l r e a c t i o n ( k / K ) can be c a l c u l a t e d (see F i g u r e 2) t o be t h e sum o f AG v a l u e s f o r t h e p r e c e d i n g s t e p s as f o l l o w s : m

c a t

b

c a t

m

(15) AG +AG +AG S u b s t i t u t i o n f o r t h e components of AG?! ("Equation 15") i n t o " E q u a t i o n 9": -AG*/RT k

2

38

kcat/Km = kT . e h

-AG /RT e 8

-AG /RT e b

(16)

Comparing " E q u a t i o n 16" w i t h " E q u a t i o n 14" where i n t h e l a t t e r t h e maximum i n t r i n s i c b i n d i n g energy was assumed t o be i n t h e a c t i v a t e d TS complex and t a k i n g i n t o c o n s i d e r a t i o n AG t o be o r i g i n a l l y b

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

142

BO IREGULATORS FOR PEST CONTROL

p o s i t i v e i n " E q u a t i o n 16" one f i n d s t h a t the f a v o r a b l e maximum f i t i s l i k e l y t o be w i t h the t r a n s i t i o n s t a t e c o n f i g u r a t i o n r a t h e r t h a n the s u b s t r a t e i t s e l f . In f a c t the enzyme can have an e x t r a AGfc/RT c a t a l y t i c a c t i v i t y by a f a c t o r o f e (by d i v i d i n g " E q u a t i o n 14" o v e r " E q u a t i o n 16") j u s t by u s i n g the same amount of b i n d i n g e n e r g y i n i n t e r a c t i o n w i t h S* r a t h e r t h a n w i t h S. I t i s not h a r d t o r e a l i z e the above arguments s i n c e ^cat/^m * independent of the i n t e r a c t i o n s i n the i n i t i a l e n z y m e - s u b s t r a t e complex ( F i g u r e 2 ) . A l t h o u g h the o v e r a l l c a t a l y t i c a c t i v i t y of an enzyme c a t a l y z e d r e a c t i o n can be a c c o u n t e d f o r b o t h by the a f f i n i t y o f the s u b s t r a t e t o the enzyme ( 1 ^ or more a c c u r a t e l y l/î^) and the s u b s t r a t e r e ­ activity ( k ) , the l a t t e r v a l u e seems t o be more i m p o r t a n t i n r e f l e c t i n g the e x t r a b i n d i n g e n e r g y i n t h e ES* complex. This b i n d i n g energy, as mentioned b e f o r e , w i l l d e c r e a s e the energy of a c t i v a t i o n f o r the r e a c t i v i t y p r o c e s s (k ). T h i s h y p o t h e s i s has been s u p p o r t e d w i t h some s e r i n e p r o t e a s e s where i n c r e a s i n g the l e n g t h o f the l e a v i n g group i n c r e a s e d k for c h y m o t r y p s i n (13,14) o r i n c r e a s i n g the l e n g t h of the p o l y p e p t i d e c h a i n o f the s u b s t r a t e i n c r e a s e d k t f o r e l a s t a s e ( 1 5 ) . The c a t a l y t i c rate constant ( k ) f o r j u v e n i l e hormone e s t e r a s e from the l a r v a l hemolymph o f T r i c h o p l u s i a n i u s i n g J H j , J H u i (16) and JHJI (17) as s u b s t r a t e s was k i n e t i c a l l y measured t o be r e s p e c t i v e l y 37.1, 19.4 and 31.8 m i n " . Mumby and Hammock (18) r e p o r t e d the p a r t i t i o n c o e f f i c i e n t ( l o g Ρ v a l u e s ) f o r 3 s e r i e s o f g e r a n y l de­ r i v a t i v e s and J H j . The l o g Ρ v a l u e f o r the l a t t e r compound was 3.71. Log Ρ v a l u e s f o r the 2 , 3 - u n s a t u r a t e d - 6 , 7 - e p o x i d e s , as the c l o s e s t s e r i e s t o the s t r u c t u r e o f JH homologs, were s u b j e c t e d t o Hansen's approach (19,20) t o measure the s u b s t i t u e n t h y d r o p h o b i c i t y (π). The % v a l u e f o r CH3 was c a l c u l a t e d from d i f f e r e n t com­ p a r i s o n s t o be 0.47, 0.49, 0.54 w i t h an a v e r a g e v a l u e o f 0.5 i n an e x c e l l e n t agreement w i t h the r e p o r t e d v a l u e s f o r CH3 (0.49-0.56) c a l c u l a t e d from the o c t a n o l / w a t e r p a r t i t i o n c o e f f i c i e n t s of f o u r d i f f e r e n t systems ( 2 1 ) . Therefore i t i s reasonably accepted to c a l c u l a t e the e x p e c t e d l o g Ρ v a l u e s f o r J H u and J H m from t h a t o f J H j u s i n g the π v a l u e f o r CH3 group. I n t e r e s t i n g l y a good c o r r e l a t i o n between l o g Ρ and k f o r the t h r e e homologs was o b t a i n e d ( F i g u r e 3 ) . T h i s c o r r e l a t i o n might i n d i c a t e t h a t the b i n d i n g energy t h r o u g h h y d r o p h o b i c i n t e r a c t i o n s i s l i k e l y t o be i n v o l v e d i n the TS complex (ES ) . S i n c e v a l u e s o f were o b t a i n e d from d i f f e r e n t hemolymph p o o l s , the a c t i v i t y o f the enzyme from one s i n g l e hemolymph p o o l was measured towards the t h r e e homologs a t a f i n a l molar c o n c e n t r a t i o n o f 5x10"^ and the d a t a were p l o t t e d a g a i n s t l o g P. The same r e l a t i o n was o b t a i n e d as w i t h k which i s e x p e c t e d s i n c e a t the s u b s t r a t e c o n c e n t r a t i o n used (~two o r d e r s o f magnitude g r e a t e r than the v a l u e s o f K f o r the t h r e e homologs), the v e l o c i t y would a p p r o x i m a t e Vmax and the l a t t e r equals k a t [ t ] ' An e x c e l l e n t l i n e a r f u n c t i o n r e l a t i o n s h i p ( r » 0 . 9 9 9 ) between the v e l o c i t y and k ( F i g u r e 3, i n s e t ) was o b t a i n e d and s u p p o r t s the above d i s c u s s i o n . One o f the advantages o f the above a p p r o a c h i s t h a t one can e s t i m a t e the m o l a r e q u i v a l e n c y o f a s p e c i f i c enzyme i n crude p r e p a r a t i o n s . S i n c e a t enzymes u b s t r a t e s a t u r a t i o n c o n d i t i o n s v ^ V ^ ^ k Q ^ t E ^ ] , the above r e l a t i o n ( F i g u r e 3, i n s e t ) e n a b l e s the c a l c u l a t i o n o f [ E ] from the

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

s

c a t

c a t

c a t

c a

c a t

1

c

a

t

k

c

a

t

c a t

m

E

C

2

c

a

t

t

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

9.

ABDEL-AAL A N D H A M M O C K

143

Development of Bioactive Molecules

s l o p e o f t h e I n s e t (1.22 nmoles/ml plasma) which i s e q u i v a l e n t t o 1.22xlO"" M o f j u v e n i l e hormone e s t e r a s e i n t h e hemolymph o f T. n i . I n f a c t t h i s average number i s i n c l o s e agreement w i t h t h a t c a l c u ­ l a t e d from u s i n g each s u b s t r a t e s e p a r a t e l y u s i n g d i f f e r e n t hemolymph p o o l s ( 1 6 ) . The a b i l i t y t o d e t e r m i n e t h e m o l a r i t y o f a c a t a l y t i c s i t e i n s i t u i s o f tremendous b e n e f i t i n t h e e l u c i d a t i o n o f p h y s i o l o g i c a l or pharmacokinetic parameters. 6

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

T r a n s i t i o n S t a t e A n a l o g s (TSA) The q u a l i t a t i v e d e s c r i p t i o n o f enzyme c a t a l y s i s i n terms o f t h e TS t h e o r y ( P a u l i n g , 1_,2) t h a t the enzyme i s complementary t o an un­ s t a b l e m o l e c u l e w i t h o n l y t r a n s i e n t e x i s t e n c e ; namely, t h e a c t i v a t e d complex (ES*) f o r which t h e power o f a t t r a c t i o n by the enzyme i s much g r e a t e r t h a n t h a t o f t h e s u b s t r a t e i t s e l f has been d i s c u s s e d e n e r g e t i c a l l y ( 8 ) and m e c h a n i s t i c a l l y (10,22-25). P a u l i n g ' s a s ­ s e r t i o n has opened a new e r a i n enzymology, and r e l e v a n t t o o u r d i s c u s s i o n i s t h e s t a b i l i z a t i o n o f t h e a c t i v a t e d complex and TSA as p o w e r f u l enzyme i n h i b i t o r s . As the t r a n s i t i o n s t a t e i s a mathe­ m a t i c a l construction (with a t y p i c a l h a l f - l i f e of l O " ^ m s e c , ( 2 2 ) ) , i t s s t r u c t u r e cannot be d e f i n e d i n common c h e m i c a l s i g n language. I n f a c t d i f f i c u l t y i n i s o l a t i n g and d e f i n i n g t r a n s i t i o n s t a t e complexes was the major r e a s o n b e h i n d the r e c r e a t i o n o f P a u l i n g ' s concept t o d e s i g n s t a b l e a n a l o g s a p p r o a c h i n g t h e s t r u c t u r e of t h e a l t e r e d s u b s t r a t e i n the t r a n s i t i o n s t a t e w i t h o u t u n d e r g o i n g c a t a l y t i c conversion. E v e n t u a l l y t h e s e TSA a r e e x p e c t e d t o be s t a b i l i z e d upon the r e a c t i o n w i t h t h e enzyme t o such a degree t h a t t h e y approach ground s t a t e energy minima ( F i g u r e 4 ) . T h i s s t a b i ­ l i z a t i o n would i n f a c t e n a b l e i n d i r e c t o b s e r v a t i o n o f the s t r u c t u r e o f t h e enzyme-TS by u s i n g t h e a v a i l a b l e t e c h n i q u e s . Furthermore, i f a TSA t a k e s advantage o f t h e a d d i t i o n a l , f a v o r a b l e b i n d i n g i n t e r ­ a c t i o n s t h a t a r e i n h e r e n t i n ES* i n t e r a c t i o n s , i t c o u l d be an e x t r e m e l y p o w e r f u l i n h i b i t o r t o the l i m i t o f s t o i c h i o m e t r i c r e ­ action. T h e o r e t i c a l l y a p e r f e c t TSA would have t h e same a f f i n i t y f o r t h e enzyme as the t r a n s i t i o n s t a t e o f the s u b s t r a t e ( F i g u r e 4 ) . The q u e s t i o n a t i s s u e now i s : what i s t h e magnitude o f enzyme-TS a f f i n i t y as compared t o enzyme s u b s t r a t e a f f i n i t y ? This question has been f u l l y d e c l a r e d by s e v e r a l workers (10,22,23,25). In the f o l l o w i n g p a r a g r a p h s we w i l l summarize t h e i r m a t h e m a t i c a l approach i n a s i m p l e way. Note t h a t i n t h i s s e c t i o n a l l e q u i l i b r i a a r e d e f i n e d as a s s o c i a t i o n c o n s t a n t s . The two r e a c t i o n s t o be compared a r e : K

E+S ^

ES ^ — ^ E S

(17)

where K^s i s t h e e q u i l i b r i u m a s s o c i a t i o n c o n s t a n t the enzyme and s u b s t r a t e .

E+S* ν However, t h e r e s h o u l d 18" as f o l l o w s :

(= 1/K ) m

between

ES*

be a h y p o t h e t i c a l

(18) step

that precedes

"Equation

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

BIOREGULATORS FOR PEST CONTROL

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

8 E ^> R Ç ^ E ^ RÇ-OE ^ 3

CF

F

3

CF

3



F i g u r e 7. Proposed scheme f o r the r e a c t i o n s o f J H - e s t e r a s e w i t h JH homologs (A) and w i t h t r i f l u o r o m e t h y l k e t o n e s ( B ) .

PI

5 0

(Calc'd)

F i g u r e 8 . R e l a t i o n s h i p between the observed P I 5 0 v a l u e s the P I 5 0 v a l u e s c a l c u l a t e d from " E q u a t i o n 3 5 " .

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

and

156

BIOREGULATORS FOR PEST CONTROL

From the s l o p e of the p h y s i c o c h e m i c a l parameters i n " E q u a t i o n 36" i t appeared t h a t π, MR and σ have about the same weight i n m o d e l i n g the a c t i v i t y of the 13 meta and p a r a s u b s t i t u t e d compounds. The im­ portance of Ε and cT seems t o be l e s s a l t h o u g h h i g h c o v a r i a n c e between E and b o t h π and MR i s a s e r i o u s o b s t a c l e p r e v e n t i n g the true d e l i n e a t i o n of E effects. Meanwhile the e q u a t i o n r e v e a l s t h a t h y d r o p h o b i c s u b s t i t u e n t s ( p o s i t i v e π term) w i t h l a r g e MR and el e c t r o n d o n a t i n g p r o p e r t i e s ( n e g a t i v e σ term) would enhance the i n h i b i t o r y potency o f the t r i f l u o r o m e r c a p t o p h e n y l a c e t o n e as a p a r e n t compound. I n f a c t t h i s was the r a t i o n a l e b e h i n d s y n t h e s i z i n g the p a r a t - b u t y l a n a l o g , and i t came out t o be the most a c t i v e congener among the t e s t e d compounds. S i n c e c o v a r i a n c e between MR and π i s low ( r ^ « 0.46), they a r e c o n s i d e r e d t o be o r t h o g o n a l and have different substituent effects. As d i s c u s s e d e a r l i e r f o r the a l k y l compounds, t h e s e s u b s t i t u e n t e f f e c t s might e s t a b l i s h d i f f e r e n t type of i n t e r a c t i o n s , i . e . p o l a r and a p o l a r i n t e r a c t i o n s . Since these compounds a r e s u b s t i t u t e d i n the same p o s i t i o n s , i t i s not c l e a r whether those t y p e s o f i n t e r a c t i o n s a r e i n two d i f f e r e n t t y p e s of enzymic spaces o r one space which i s open t o s u r r o u n d i n g s o l u t i o n . I n any case t h i s l e a d s t o f u r t h e r r e s e a r c h i n which c r y s t a l l o g r a p h i c s t r u c t u r e of JHE might shed some l i g h t on the b i n d i n g s p a c e ( s ) and the r o l e o f d e s o l v a t i o n i n t h e i r i n t e r a c t i o n w i t h t h e s e n o v e l i n ­ hibitors. A t t h i s moment, the c o e f f i c i e n t of n e a r 1 w i t h % i n " E q u a t i o n 36" s h o u l d not be i g n o r e d and as has been d i s c u s s e d b e f o r e (70) f o r p a p a i n l i g a n d i n t e r a c t i o n s , b r i n g s out the c l o s e p a r a l l e l between b i n d i n g t o JHE and p a r t i t i o n i n g i n t o o c t a n o l . T h i s i n ­ d i c a t e s t h a t t h e r e might be a t r u e h y d r o p h o b i c pocket on the enzyme a c t i v e s u r f a c e where i n t e r a c t i o n i s d r i v e n by d e s o l v a t i o n and the i n t e r a c t i o n i s l i k e l y to be e n t r o p i e i n n a t u r e . This conclusion s h o u l d not be o v e r s i m p l i f i e d s i n c e e x t e n s i v e thermodynamic s t u d i e s c e r t a i n l y a r e r e q u i r e d t o shed some l i g h t on the r o l e of b o t h e n t r o p y and e n t h a l p y changes f o r the i n h i b i t i o n p r o c e s s by t h e s e compounds. s

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

s

The s e l e c t i v e i n h i b i t i o n o f JHE and o r n a p h t h y l a c e t a t e e s t e r a s e ( s ) by o r t h o , meta and p a r a s u b s t i t u t e d compounds showed t h a t meta and p a r a s u b s t i t u t i o n o f f e r e d s e l e c t i v i t y towards JHE, however, the o r t h o s u b s t i t u t e d compounds f a v o r e d i n h i b i t i o n o f ce-naphthyl a c e t a t e e s t e r a s e s ( 5 4 ) . I t was thought t h a t s u b s t i t u t i o n i n the o r t h o p o s i t i o n might be d e t r i m e n t a l f o r i n h i b i t i o n of JHE. T h e r e f o r e we d e c i d e d t o add E v a l u e f o r the o r t h o s u b s t i t u e n t s i n the r e g r e s s i o n a n a l y s i s t o merge the o r t h o compounds w i t h t h e i r meta and p a r a a n a l o g s i n the same r e g r e s s i o n , " E q u a t i o n 37". s

P I = 5 . 0 5 + 0.74 50

Σπ + 1.14

Σ l o g MR

- 0.61

Σσ-0.11

( Σσ)

2

+ 0.61

E

g

(ortho) η 18

r 0.92

s 0.45

(37)

By comparing " E q u a t i o n s 36 and 37" one can see t h a t the c o e f f i c i e n t s o f π and MR a r e more s t a b l e t o the a d d i t i o n of the o r t h o compounds to the r e g r e s s i o n a n a l y s i s . However, the c o e f f i c i e n t s o f σ terms became s m a l l upon the a d d i t i o n of E ortho. The s t a b i l i t y of the s

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

9.

ABDEL-AAL AND

HAMMOCK

157

Development of Bioactive Molecules

c o e f f i c i e n t s o f π and MR i n a d d i t i o n t o t h e f a c t t h a t the i n t e r c e p t s i n b o t h e q u a t i o n s a r e so s i m i l a r t o t h e o b s e r v e d P I 5 0 v a l u e (5.08) f o r the p a r e n t u n s u b s t i t u t e d compound might suggest the v a l i d i t y o f these e q u a t i o n s and s u p p o r t the above d i s c u s s i o n i n m o d e l i n g t h e i n t e r a c t i o n of t h e s e compounds w i t h JHE i n terms of t h e i r h y d r o p h o b i c i t y and molar r e f r a c t i v i t y . F i g u r e 9 shows the r e l a t i o n be­ tween the o b s e r v e d P I 5 0 v a l u e s f o r the members of the a r o m a t i c s e r i e s and the P I 5 0 v a l u e s c a l c u l a t e d from " E q u a t i o n 37". I n c o n c l u s i o n , a l t h o u g h our QSAR f o r the i n h i b i t i o n o f JHE w i t h t r i f l u o r o m e t h y l k e t o n e s does not o f f e r an e x c e l l e n t and sharp f i t of the d a t a t o t h e r e g r e s s i o n ("Equations 33-37"), i t might p r o v i d e the c h e m i s t w i t h a model and rough base l i n e f o r t e s t i n g new com­ pounds. I n g e n e r a l the i n t e r a c t i o n s of t h e s e compounds w i t h JHE a r e l i k e l y t o be h y d r o p h o b i c and nonhydrophobic. Whether the l a t t e r type i s s e p a r a b l e from the former o r i n f a c t i t i s h y d r o p h o b i c w i t h ­ out b e i n g dependent on d e s o l v a t i o n i s not c l e a r . N e v e r t h e l e s s , as t h e s e compounds a r e c o n s i d e r e d to be s t a b l e TSA, t h e y o f f e r a v a l u a b l e t o o l i n s t u d y i n g the x - r a y c r y s t a l l o g r a p h y of JHE and i t s TS complex from which v a l u a b l e i n f o r m a t i o n can be c o u p l e d w i t h the QSAR s t u d y and would g r e a t l y i n c r e a s e our u n d e r s t a n d i n g o f JH-JHE interaction. I t i s worth r e p o r t i n g t h a t one of t h e s e a n a l o g s was a t t a c h e d t o i n s o l u b l e s u p p o r t and proved t o be an e x c e l l e n t l i g a n d f o r the p u r i f i c a t i o n o f JHE by a f f i n i t y chromatography ( 5 1 ) . T h i s i s the f i r s t s t e p i n a p p r o a c h i n g the t h r e e d i m e n s i o n a l s t r u c t u r e of JHE and J H E - i n h i b i t o r complex.

9h

PIso (Calc'd)

F i g u r e 9. R e l a t i o n s h i p between the o b s e r v e d P I 5 0 v a l u e s the P I 5 0 v a l u e s c a l c u l a t e d from " E q u a t i o n 37".

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

and

BIOREGULATORS FOR PEST CONTROL

158 Acknowledgments

This work was supported, in part, by NIEHS Grant ROI ES02710-03 and and award in Agricultural Chemistry from the Herman Frasch Foun­ dation. B. D. Hammock by NIEHS Research Career Development Award 5K04 ES00107-05. The illuminating discussion and technical assis­ tance of Terry Hanzlik and Jim Ottea, and the patience of Ms. Peggy Kaplan and Kathleen Dooley in typing and revising the manuscript are gratefully appreciated.

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.

Pauling, L . Chem. Eng. News 1946, 24, 1375. Pauling, L . Am. Scient. 1948, 36, 51. Kirsch, J. F. Ann. Rev. Biochem. 1973, 42, 205. Eyring, H. J . Chem. Phys. 1935, 3, 107. Eyring, H. Chem. Rev. 1935, 17, 65. Laidler, K . J . "Theories of Chemical Reaction Rates"; McGrawH i l l : New York, 1969. Moss, S . J . ; Coady, C . J . J . Chem. Educ. 1983, 60, 455. Fersht, A. "Enzyme Structure and Mechanism"; W.H. Freeman: San Francisco, 1977; Chap. 2, 9, 10. Page, M.I.; Jencks, W.P. Proc. Nat. Acad. Sci. U.S.A. 1971, 68, 1678. Lienhard, G.E. Science 1973, 180, 149. Laidler, K . J . "Some Kinetic and Mechanistic Aspects of Hydrolytic Enzyme Action"; Discussion Farady Soc. 1955, 20, pp. 8395. Haldane, J.B.S. "Enzymes"; Longmans, Green and Co: London; 1930. Baumann, W.K.; Bizzozero, S.A.; Dutler, H. FEBS Letts. 1970, 8, 257. Baumann, W.K.; Bizzozero, S.A.; Dutler, H. Eur. J . Biochem. 1973, 39, 381. Thompson, R.C.; Blout, E.R. Biochemistry 1973, 12, 57. Abdel-Aal, Y . A . I . ; Hammock, B.D. Insect Biochem. (in press). Abdel-Aal, Y . A . I . ; Hammock, B.D., unpublished data. Mumby, S.M.; Hammock, B.D. J . Agric. Fd. Chem. 1979, 27, 1223. Fujita, T.; Iwasa, J.; Hansch, C. J . Am. Chem. Soc. 1964, 86, 5175. Leo, Α.; Hansch, C . ; Elkins, D. Chem. Rev. 1971, 71, 525. Hansch, C.; Leo, A. "Substituent Constant for Correlation Analysis in Chemistry and Biology"; Wiley-Interscience: New York, 1979. Wolfenden, R. Nature 1969, 223, 704. Wolfenden, R. Acc. Chem. Res. 1972, 5, 10. Lienhard, G.E. Ann. Rep. Med. Chem. 1972, 7, 249. Lienhard, G.E.; Secemski, I.I.; Koehler, K.A. In "Cold Spring Harbor Symposia on Quantitative Biology"; 1972, vol. 36, 45-51. Jenks, W.P. "Catalysis in Chemistry and Enzymology"; McGrawH i l l : New York, 1969. Wolfenden, R. Ann. Rev. Biophys. Bioeng. 1976, 5, 271. Bartlett, P.Α.; Marlowe, C.K. Biochemistry 1983, 22, 4618. Berezin, I.V.; Kazanskaya, N.F.; Klyosov, A.A. FEBS Letts. 1971, 15, 121.

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

9. ABDEL-AAL AND HAMMOCK 30. 31. 32. 33. 34. 35.

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60.

Development of Bioactive Molecules

159

Thompson, R.C. Biochemistry 1973, 12, 47. Westerik, J . O . ; Wolfenden, R. J . Biol. Chem. 1972, 247, 8195. Wolfenden, R.; Wentworth, D.F.; Mitchell, G.N. Biochemistry 1977, 16, 5071. Thompson, R.C.; Bauer, C.-A. Biochemistry 1979, 18, 1552. Smissaert, H.R. In "Toxicology, Biodégradation and Efficacy of Livestock Pesticides"; Khan, M.A.; Haufe, W.O., Eds.; Swets & Zeitlinger: Amsterdam, 1970; pp. 43-72. Rosenberry, T . L . In "Adv. in Eznymol."; Meister, A. Ed.; Wiley: New York, 1975, Vol. 43, pp. 103-218. Aldridge, W.N.; Reiner, E . "Enzyme Inhibitors as Substrates: Interaction of Esterases with Esters of Organophosphorus and Carbamic Acids"; North Holland-Amsterdam, 1975. Main, A.R. Science 1964, 144, 992. Main, A.R.; Iverson, F. Biochem. J . 1966, 100, 525. Main, A.R. In "Introduction to Biochemical Toxicology"; Hodgson, Ε . ; Guthrie, F . E . , Eds.; Elsevier: New York, 1980, Chap. 11. Chiu, Y.C.; Fahmy, M.A.H.; Fukuto, T.R. Pestic. Biochem. Physiol. 1973, 3, 1. Wustner, D.A.; Smith, C.; Fukuto, T.R. Pestic. Biochem. Physiol. 1978, 9, 281. Metcalf, R.L. Bull. WHO 1971, 44, 43. O'Brien, R.D. "Toxic Phosphorus Esters"; Academic: New York, 1960. Hammock, B.D.; Quistad, G.B. In "Progress in Pesticide Biochemistry"; Huston, D.H.; Roberts, T.R., Eds.; Wiley: New York, 1981, Vol. 1, p. 1. de Kort, C.A.D.; Granger, N.A. Ann. Rev. Entomol. 1981, 26, 1. Sparks, T . C . ; Hammock, B.D. Insect Biochem. 1979, 9, 411. Wing, K.D.; Sparks, T . C . ; Lovell, V.M.; Levinson, S.O.; Hammock, B.D. Insect Biochem. 1981, 11, 473. Wing, K.D.; Rudnicka, M.; Jones, G.; Jones, D.; Hammock, B.D. J . Comp. Physiol. Β 1984, 154, 213. Rudnicka, M.; Hammock, B.D. Insect Biochem. 1981, 11, 437. Abdel-Aal, Y . A . I . ; Roe, R.M.; Hammock, B.D. Pestic. Biochem. Physiol. 1984, 21, 232. Abdel-Aal, Y . A . I . ; Hammock, B.D., unpublished data. Junge, W.; Krisch, K. CRC Crit. Rev. Toxic. 1975, 3, 371. Powers, J . C . In "Methods in Enzymology"; Jakoby, W.B.; Wilchek, M . , Eds.; Academic: New York, 1977, Vol. XLVI, pp. 197-208. Hammock, B.D.; Abdel-Aal, Y . A . I . ; Mullin, C.A.; Hanzlik, T.N.; Roe, R.M. Pestic. Biochem. Physiol, (in press). Kraut, J . Ann. Rev. Biochem. 1977, 46, 331. Brodbeck, U.; Schweikert, K.; Gentinetta, R.; Rottenberg, M. Biochim. Biophys. Acta 1979, 567, 357. Hammock, B.D.; Wing, K.D.; McLaughlin, J.; Lovell, V.M.; Sparks, T.C. Pestic. Biochem. Physiol. 1982, 17, 76. Lotti, M.; Ketterman, Α.; Waskell, L.; Talcott, R.E. Biochem. Pharmacol. 1983, 32, 3735. Roe, R.M., personal communication. Magee, P.S. In "Insecticide Mode of Action"; Coates, J.R. Ed.; Academic: New York, 1982, Chap. 5, pp. 101-161.

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

160

61. 62. 63. 64. 65. 66.

Downloaded by PENNSYLVANIA STATE UNIV on March 16, 2013 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch009

67. 68. 69. 70.

BIOREGULATORS FOR PEST CONTROL

Hammock, B.D.; Sparks, T . C . ; Mumby, S.M. Pestic. Biochem. Physiol. 1977, 7, 517. Pauling, L.; Pressman, D. J . Am. Chem. Soc. 1945, 67, 1003. Dunn, III, W.J. Eur. J . Med. Chem. 1977, 12, 109. Hancock, C.K.; Meyers, E . A . ; Yager, B . J . J.Am. Chem. Soc. 1961, 83, 4211. Balaban, A . T . ; Chiriac, Α.; Motoc, I.; Simon, Z. In "Lecture Notes in Chemistry"; Berthier, G. et a l . , Eds.; SpringerVerlag: New York, 1980, Vol. 15, pp. 1-178. Glasstone, S. "Textbook of Physical Chemistry"; 2nd Ed.; D. Van Nostrand: New York; 1946, p. 531. Agin, D.; Hersh, L.; Holtzman, D. Proc. Nat. Acad. Sci. U.S.A. 1965, 53, 952. Franks, F. In "Water"; Franks, F. Ed.; Plenum Press: New York, 1975, Vol. IV, Chap. 1. Yoshimoto, M.; Hansch, C. J . Org. Chem. 1976, 41, 2269. Hansch, C.; Smith, R.N.; Rockoff, Α.; Calef, D.F.; Jow, P.Y.C.; Fukunaga, J . Y . Arch. Biochem. Biophys. 1977, 183, 383.

RECEIVED February 11, 1985

In Bioregulators for Pest Control; Hedin, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.