Chemical Sensors - Analytical Chemistry (ACS Publications)

May 19, 1998 - He received the Ph.D. degree in physical chemistry from the Heyrovsky Institute of Physical Chemistry and Electrochemisty of the Czecho...
6 downloads 29 Views 250KB Size
Anal. Chem. 1998, 70, 179R-208R

Chemical Sensors Jirˇı´ Janata* and Mira Josowicz

School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta, Georgia 30332-0400 Petr Vany´sek

Department of Chemistry, Nothern Illinois University DeKalb, Illinois 60115 D. Michael DeVaney

Pacific Northwest National Laboratory,1 Richland, Washington 99352 Review Contents Thermal Sensors Mass Sensors Electrochemical Sensors Potentiometric Sensors Amperometric Sensors Conductometric Sensors Optical Sensors Conclusions References

Table 1 181R 182R 182R 183R 190R 192R 195R 197R 198R

In this review we are trying to cover the four-year gap in this series (A1). In this period, over 8278 references (in English only) have been retrieved from the Institute of Scientific Information database by the same search routine that was used previously. It represents 49% increase in the total. This relative increase alone attests to the vitality of the chemical sensing field. However, the absolute figures are somewhat distorted by the fact that many papers using term “sensors” really describe a sensing system (i.e., a chemical assay). Moreover, the trend to publish the same data several times, under a slightly modified title, has become a common practice in all fields of science, and chemical sensors are not an exception. As much as possible, we tried to use only one article from such multiple clusters. With this amount of information, it is only possible to scan the titles of the individual papers and then to select only approximately 10% for the final review. We hope that our colleagues whose paper is not cited understand that the decision to include or not to include a paper does not imply our judgment of the quality of that paper. It is interesting to see where are most chemical sensor papers published. From the papers included in this review, 17% appeared in Sensors and Actuators, B, 11% in Analytical Chemistry, 6% in Analytical Chimica Acta, 4% in Electroanalysis, and 3% in The Analyst. The remaining 60% is scattered throughout the literature. This surprisingly high figure indicates that the subject of chemical sensors is not a hobby of a few specialists but draws from a broad scientific and engineering base. Our aim has been to provide a critical assessment of the new trends, features, and distribution of effort in the entire chemical sensor field. This information is summarized in Table 1, which 1 Pacific Northwest Laboratory is operated by the Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830.

S0003-2700(98)00010-9 CCC: $15.00 Published on Web 05/19/1998

© 1998 American Chemical Society

topic reviews thermal mass potentiometric amperometric conductometric optical totals/year

average % 1985-1989 1990-1991 1992-1993 1994-1997 % change 78 6 21 419 96 66 62 668

145 15 40 309 210 101 142 962

347 12 126 260 208 123 312 1391

453 64 182 374 356 275 364 2070

22 +30 3 +435 9 +44 18 +44 17 +71 13 +123 18 +16 +49

shows the cumulative totals, percentage representation of the individual types of sensors, and the change since the 1994 review. The cutoff dates of this review period were 1 December 1993 until 30 November 1997. The review is structured similarly to the previous reviews in this series; i.e., it is divided by the transduction principles to thermal, mass, potentiometric, amperometric, conductometric, and optical sensors. The Introduction contains books and reviews. Also included in the Introduction are the papers discussing subjects of general interest that transcend the dividing boundaries given by the individual transduction principles, such as data reduction, fabrication, selectivity issues, etc. The selection rules for this section are slightly different from the rest. Here we have included reviews regardless of the language and only those containing 50 or more references. The reviews dealing with a specific transduction principle are included in the Introduction to that particular section. The entire sensing database from which review is written is available on the Web. The address is http:/ /www.chem.tamu.edu/walker/chemsensors.html. Books and General Reviews. The maturity of the chemical sensor field is reflected in a large number of books devoted to sensors in general (A2-A4), biosensors (A5-A10), and gas sensors (A11, A12). Whenever possible, we tried to exclude bound proceedings of sensor conferences because they usually contain material that had been published in regular journals or is otherwise unpublishable. Selectivity. The quest for better selectivity remains the cornerstone of the chemical sensing research. It follows two different routes: biologically derived selectivity, i.e., biosensors and synthesized selective materials containing specific binding sites, or selective matrixes, i.e., chemical sensors. Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 179R

Biosensing in general has been the most reviewed topic both in the article (A13-A15) and in the book form. Several general discussions of enzyme sensors have been published (A16, A17). Peroxidase-modified (A18, A19) and NAD dehydrogenase-modified (A20, A21) electrodes offer selectivity and a common transduction principle for amperometric sensing of many oxidizable substrates, such as neurotransmitters (A22). Conducting polymers (A23-A25) and redox hydrogels (A26) provide a convenient matrix for enzymes requiring electron transfer. On the other hand, enzymes immobilized in inorganic supports have been reviewed (A27). Synthesis of polymeric microcapsule array containing enzymes has been described (A28). Metalloproteins are closely related to enzymes in their application in chemical sensors (A29). Hydrophobic enzymes working in nonaqueous solvents (A30) have been suggested for optical sensors (A31). Direct electron transfer in electrochemical enzyme sensors has been discussed (A32). Epoxies containing graphite particles with immobilized enzymes have been used as sensing layers in amperometric biosensors (A33). Immunochemically derived selectivity receives continuing attention (A34) despite the obvious problems with the reversibility and kinetic nature (A35-A37) of the antibody-antigen reaction. The structure-binding relationship in antibody-antigen complex formation and the role of orientation of immobilized immunoreagents (A38) have been examined (A39). A general strategy for immobilization has been suggested (A40). Another class of related recognition sites is catalytic antibodies, which combine enzymatic and immunochemical functions in chemical sensors (A41). Odorant-binding proteins have been suggested for construction of odor-discriminating biosensors (A42, A43). The general issue of protein-ligand recognition (A44) and molecular modeling of host-guest inclusion (A45) has been discussed in the context of chemical sensing. Principles, manufacturing, and applications of immunochemical internal reflectance biosensors have been reviewed (A46). The potential for clinical application of immunosensors remains high, but the only sensors that have found some commercial application so far are optical immunosensors (A47). Nevertheless, electrochemical immunosensing has been reviewed (A48). A combined immunochemical-enzyme approach to selectivity has been described (A49). Introduction of DNA to the direct chemical sensing area did not have to wait too long, and biosensors utilizing DNA as the recognition element (A50) have been given a new names “genosensors” (A51). The irreversibility of this highly selective binding places the DNA-based devices among detectors or assays, rather than among conventional sensors (A52). A comparison has been made between biosensors based on enzymatic, immunochemical, and DNA recognition principles (A53). A new type of glucose sensing based on an old principle has been investigated. It involves formation of complexes between boronic acid and various saccharides (A54). The use of glucose oxidase in glucose sensors is an old subject, and the review of this topic is included here only as an update (A55). Definitions and official nomenclature for biosensors have been recommended by the IUPAC (A56). Synthetic as opposed to biologically derived selectivity in many cases tries to mimic biochemical interactions. Molecular recogni180R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

tion by supramolecular materials (A57, A58) has been proposed for potentiometric (A59) and mass sensors (A60) for gases, vapors (A61), and liquid media (A62). Molecular recognition of analytes is a hot and controversial topic (A63). Thus, the reality of specific recognition of vapors by cavitands has been shown to be wrongly interpreted (A64). Phthalocyanines have been used as selective materials in all types of chemical sensors (A65). On the other hand, tunable selectivity of phenanthroline complexes has been demonstrated for electrochemical sensors (A66). Calixarenes have been used as specific binding sites in sensors based on different transduction principles (A67-A69). Molecular imprinting (A70-A72) is an idea that was introduced in mid-1950s by Linus Pauling and that has now attracted the attention of researchers developing selective layers for chemical sensors. Its true value in chemical sensing remains to be seen. Imprinted polyurethanes have been used for construction of optical sensors (A73). A review containing over 700 references covers the subject of fluorescence modulation by recognition events. Composite materials used for optical (A74) and electrochemical (A75) sensing have been reviewed. Self-assembly became a popular method of creating selective layers for chemical sensors from, for example, phthalocyanines (A76) or lanthanides (A77). The thiol-gold system dominates this type of materials (A78). One of the oldest forms of self-assembly is formation of free-standing and supported black lipid membranes (A79, A80). Membrane proteins promote natural self-assembly and can increase the mechanical stability of sensing membranes (A81, A82). A 3-D self-assembly on the millimeter scale has been demonstrated (A83). Self-assembled multilayers (A84) and immunochemical layers (A85) have been described. The Langmuir-Blodgett (LB) technique offers a better control of creating thin films than the self-assembly although it is more expensive and more difficult to use. Selective layers based on LB films have been reviewed (A86) and the electron transfer and mechanism of redox reaction in these systems have been discussed (A87). The selectivity can be also derived from the matrix not containing any bona fide binding sites. In that respect, various polymers remain the key building blocks of many chemical sensors (A88). Organic polymeric membranes (A89) with catalytic properties can be used in different types of chemical sensors. Electroactive polymers are a class of materials that can be conveniently used in many types of chemical sensors (A90-A92) and biosensors (A93). Immobilization of metalloporphyrins in these materials provides specific binding sites (A94). Semiconducting metal oxide sensors (A95, A96), particularly tin dioxide sensors (A97, A98), remain the most popular type for automotive application. A bismuth oxide sensor (A99) is claimed to offer some advantages over zirconium oxide sensors. Gas sensors based on sulfate electrolytes (A100) and solid-state electrolytes for chemical sensors (A101) have been reviewed. Ceramic materials are the heart of many gas sensors (A102). The assessment of the status of gas sensors and prediction of future trends in this field have been presented (A103). There are several reviews of proton-conducting materials for chemical sensing (A104, A105). Matrixes created by the sol-gel process have become a popular medium for immobilization of biological molecules (A106-A108).

Sensing Arrays and Higher-Order Sensors. Relatively new and probably the most important trend in the chemical sensors today are higher-order sensors and chemical sensing arrays. “Higher order” means that more than one transduction principle is applied to the same selective layer. For example, a selective layer on a surface acoustic wave sensor can be simultaneously interrogated as a chemiresistor or optically. On the other hand, an array of different selective layers used in the same transduction principle forms a sensor array of zero order. Both the order and the number of sensing layers in the array increase the number of data acquisition channels and thus the information content (A109). It is essential that the different layers and higher-order sensors are orthogonal in their response. Rules for calibration of chemical sensing arrays have been discussed (A110, A111). The use of neural nets for evaluation of response from sensing arrays has been described (A112A114). A new name has been coined for the neural nets for chemical sensorssChemNets (A115). The public domain software PLS•Toolbox is a useful tool for chemometric evaluation of response from sensing arrays (A116). A self-diagnostic feature of a gas sensing array has been described (A117). Progress in the sensor arrays has been summarized (A118). It has been shown that the electrodes can be conveniently arranged as interdigitated array of microelectrodes (A119). An array of microhot plates has been described for detection of gases (A120). A sensor array for tracking gradients of vapors and gases (chemotaxic sensors) has been described (A121, A122). “Machine olfaction” became a hot topic in the recent years (A123-A125) and quickly became known as an “electronic nose”. An electronic nose for detection of pollen has been described (A126), but the electronic feature for suppression of hay fever has not been mentioned. Mimicking of taste sensing using chemiresistor arrays of phospholipid membranes has been demonstrated (A127). Surprisingly, it has not yet been advertised as the “electronic tongue”. Another new trend has emergedsselectivity derived from the dynamic behavior of the sensors. Thus, information contained in the kinetic, as opposed to the steady state, part of the response has been a focus of several reviews (A128) and articles (A129A132). Neural nets have been used for dynamic signal processing (A133). Noise from the chemiresistor has been used as the source of information in gas sensing (A134), and the chaotic behavior of a biosensor has been analyzed (A135). Description of a simple classroom experiment of monitoring urea (A136) is an encouraging sign of the recognition of the chemical sensors as an integral part of the academic curriculum. Fabrication. An important aspect of fabrication of sensing arrays is the ability to deposit multiple selective layers in defined areas of the chemical sensor. This requirement presents both materials and processing challenges, which increase with the diminishing feature size of the sensor. In that context, the ultimate limits of miniaturization of chemical sensors have been discussed (A137). Dry (A138), ion beam (A139), electron beam (A140), electrochemical (A141), and laser (A142) patterning of selective layers has been described. A laser-assisted deposition has been used for fabrication of biosensors, molecular electronic devices (A143), and Nasicon and similar thin films (A144, A145). A spatially controlled membrane deposition has been used in

fabrication of an integrated pO2, pCO2, and pH sensing array (A146). Atomic force and fluorescence microscopies have been used for characterization of patterned sensor surfaces (A147). Photocurable polymers (A148) such as poly(vinyl alcohols) (A149) are interesting for fabrication of sensing arrays. The biocompatibility of polyurethanes used in construction of chemical sensors has been critically evaluated (A150). Immobilization and patterning of bacterial surface layers, so-called S-layers, on biosensors (A151, A152) is a new addition to the library of selective materials. The ability to immobilize biomolecules photochemically opens a possibility for patterning sensing arrays (A153-A155). An oriented immobilization of cell adhesion protein onto the chemical sensor surface is an interesting design tool (A156). Applications. Specialized reviews describe the use of biosensors in pharmaceutical (A157-A160), food (A161), clinical (A162), and gas analysis (A163). Different principles can be employed for sensing of oxygen in biomedical applications (A164). Environmental sensing and monitoring is a subject of several general reviews and covers both gas (A165) and liquid (A166) applications. The changing geopolitical situation impacts the sensor and sensing systems applications as well. There is a growth of literature describing sensors for security and defense applications aimed mainly at the detection and prevention of terrorist activities and detection of illicit substances in general (A167, A168). A comprehensive review of detection of explosives (A169) and organophosphorus compounds (A170) has been prepared. Many of these sensors are based on inhibition of cholinesterase activity (A171). THERMAL SENSORS Reviews of thermal sensors in general (B1), sensing arrays based on tin dioxide (B2), pyroelectric sensors (B3,-B5) and flowthrough enzymatic reactors with thermistor detection, so-called “enzyme thermistors” (B6), have been published. It has been shown that ac modulation of thin-film pyroelectric transducer (B7) or a Si-planar pellistor (B8) improves the response to natural gas and methane. Similarly, a 20-Hz vibration of enzyme thermistor improves the thermal noise rejection of this sensor (B9). Several new ideas and applications have emerged in the thermosensing of gases. A solid-state catharometer with some selectivity for different gases (B10), a pellistor array based on Si-planar technology (B11), and a thick-film pellistor array (B11) have been reported (B12). Detection of gases and organic vapors by the photopyroelectric effect has been demonstrated (B13B15). A pyroelectric structure useful for sensing was prepared using the LB method (B16). Change in the thermionic emission due to the chemical modulation of work function appears to be a new sensing principle (B17). The Seebeck effect has been used as the transduction principle for sensing of combustible gases (B18). A thermopile was used for measurement of heat absorption upon inclusion of organic vapors in various clathrates (B19) and free-standing membranes (B20). New materials for fabrication of pyroelectric sensors based on perovskites (B21) and new copolymer materials (B22) have been introduced. Correlation between porosity of the pellistor and its response has been observed (B23). Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

181R

MASS SENSORS A large number of papers and reviews in this category attest to the popularity of sensors based on mass detection. Application of acoustic wave sensors for liquid and gas sensing has been reviewed (C1, C2). Mass sensors have been used for environmental applications (C3). Figures of merit for different types of mass sensors have been critically compared (C4), and mass sensitivity of the Rayleigh and the Love waves have been compared (C5, C6). Impedance Analysis. Analysis of the complete admittance curve has become a more refined approach for obtaining information from both the quartz crystal microbalances (QCMs) (C7C9) and other mass transducers, such as surface acoustic wave (SAW) devices (C10), and flexural plate (FP) devices (C11). This analysis is necessary for the use of piezoelectric oscillators in liquids (C12, C13) or with bioselective layers (C14-C16). A theoretical model of energy transfer between the oscillating crystal and the surrounding medium (C17) and the analysis of electrodeseparated piezoelectric sensors have been developed (C18). The dynamic response of a QCM (C19) or SAW device (C20) is another approach that can be used to enhance the chemical selectivity for mass sensors. There are several papers in which arrays of CMS for detection of organic vapors and gases are described (C21, C22). Increasing the number of selective elements in an array does not necessarily lead to a more powerful information acquisition. The procedure for determining the optimum type and number of selective layers in an array has been discussed (C23). Selective Layers. A rational as opposed to a random selection of selective materials is the preferred approach for optimal design of mass sensors and sensor arrays. A good correlation between the vapor sorption and linear solvation energy for fullerenes has been obtained (C24). Semiempirical molecular orbital theory was used to predict gas/polymer interactions and the resulting response of the QCM (C25, C26). Films containing modified calixarenes (C27-C29) and cyclodextrins (C30) have been used for selective sensing of organic compounds with SAWs. Paracyclophanes were found to act as specific layers for detection of aromatic and chlorinated hydrocarbons (C31). Dendrimers (C32) are a class of compounds that offer a range of designed selectivity for use with mass sensors. Self-assembled monolayers (C33), electrodeposited phospholipid films (C34), polythiophene LB films (C35), and zeolites (C36) have been used as selective layers for QCM. A complete admittance analysis was required to interpret response of QCM coated with a clay selective layer (C37). The degree of penetration of vapors of branched and linear hydrocarbons into fluorinated polyimide film has been studied in detail using SAW (C38). Chirality is another aspect of chemical selectivity that can be probed by mass sensors (C39, C40). Selective intercalation of inorganic gases into metal phosphonates offers a high degree of selectivity (C41). Coupling selectivity of immunochemical and DNA interactions with mass detection is a relatively old hope. The analysis of the complete resonant curve or the use of different modes of vibration has been examined as the possible means of avoiding the usual pitfalls associated with the interfacial energy transfer in such systems. Thus, performance of an immunosensor based on horizontal polarized-SAW (C42) has been studied, and combined 182R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

electrochemical/mass detection is claimed to be the basis of a new immunosensor (C43). The effect of immobilization of DNA on QCM has been examined (C44-C46). Effects Related to Mass Change. Mass sensors are more than just an analytical tool. Diverse effects have been studied that rely on coupling of the chemical layer to the electromechanical device through interfacial effects such as adhesion, wetting, and microviscosity. The acoustoelectric effect on QCM operated in liquids has been studied (C47). The feasibility of using SAWs to determine adhesion of polyimide films to quartz has been examined (C48). The effects of temperature and humidity on the response of polymer-coated acoustic wave sensor arrays for gas sensing has been evaluated (C49). Closely related are the dewetting effects observed with polymer-coated SAW devices (C50). The well-known temperature sensitivity of QCM has been employed for calorimetric/mass measurements (C51). Simultaneous measurement of mass and viscosity (C52) and phase transitions in lipid multilayers (C53) have been described. The use of QCM for determination of potential of zero charge has been described (C54), and chemical effects induced by the acoustic waves have been described (C55). Simultaneous measurement of multiple parameters (i.e., higherorder sensors), such as mass and resistivity changes of polypyrrole (C56) has been described. Grazing angle spectroelectrochemistry was combined with QCM as a powerful tool for electrochemical studies (C57). Assessment of the electrochemical quartz crystal microbalance (EQCM) as a sensor and electrochemical tool has been published (C58). Design and Fabrication. New design features extend the potential usability of mass sensors to some challenging applications. An acoustic wave sensor integrated with IC electronics has been designed (C59). A probe consisting of two independently oscillating and electrically isolated crystals has been used for liquid and gas sensing (C60). It has been shown that by vibrating the entire QCM the adverse effects of coupling of the shear-mode energy to the surrounding liquid can be mitigated (C61). Piezoelectric layers prepared by thick-film technology have been used as substrates for mass sensors (C62). Resonating microcantilevers have been used as mass sensors for detection of vapors (C63). It has been shown that 10-µm-thick tensioned polymer films can be used as oscillators for mass sensing (C64). A partial casting on water (C65) and a multiple-droplet selective layer casting (C66) were used to build a SAW array sensor. ELECTROCHEMICAL SENSORS A comprehensive review of electrochemical sensors is included in a book on solid-state electrochemistry (D1). There is a large number of reviews of biosensors based exclusively on electrochemical principles (D2-D4). Different types of chemical sensors have been used for electrochemical sensing of gases of medical interest (D5). A review honoring the work of the late Professor W. Simon is a fitting tribute to one of the leading scientists in the field of ionselective electrodes (ISE) (D6). Specialized reviews dealing with perfluorinated ion-exchange membranes (D7), conductive epoxies (D8), potentiometric sensors for pharmaceutical applications (D9),

intracellular ISEs (D10), and NMR techniques for investigation of glass membranes (D11) have been published. The issue of selectivity and detection limits of ISE has been revisited (D12D14). Ion-sensitive field effect transistors (ISFETs) and other miniaturized ion sensors are the subject of another recent review (D15). The performance of ISEs and ISFETs in flow systems has been critically evaluated (D16). A review containing over 300 references of synthetic ionophores for the lithium ion (D17) and detection of surfactants by electrochemical sensors (D18) has been published. Preconcentration of analytes into the bulk of the selective layer in amperometric sensors is one way to achieve lower detection limits (D19). Nanostructuring of gold electrodes has been used as the means of fabricating an electrochemical array (D20). Modified carbon paste electrodes (D21-D24) receive continuing attention as selective amperometric probes for organic (A22) and inorganic species (D25, D26). POTENTIOMETRIC SENSORS (1) General Introduction. The IUPAC Commission on Electroanalytical Chemistry critically elaborated procedures for calibration of ISE and limitations of new approaches for determination of selectivity coefficients. Calibrations by metal ion buffers, serial dilution, and flow procedures were discussed and compared. Comments on activity standards, concentration standards, and ionic strength were made (D27). The critical evaluation of limitations of the Nicholsky-Eisenman (N-E) equation for the detection of potentiometric selectivity coefficients, KA,Bpot, ions of unequal charge, non-Nernstian behavior of interfering ions, and activity dependence of KA,Bpot resulted in recommendation of methods for reporting KA,Bpot values (D28). IUPAC recommendations have been also made about terminology and conventions for ISFET devices (D29). The terms gate voltage, drain current, and gate bias potential were defined, experimental techniques for measurements with ISFETs were summarized, and the appropriate graphical representation of the output signal was presented. Thermodynamic interpretation of EMF of polyionic membrane cells in terms of mixed activities was proposed for the detection of transfer numbers of ions and solvent across membrane and for the detection of selectivities of membranes to be used in ISEs (D30). A measuring technique suitable for the prediction of the electroanalytical equilibrium signal of a potentiometric sensor based on the evaluation of asymptotes of the response of the cell and the confidence interval from the signals measured in the socalled information dominant section of the response was proposed (D31). Three new principles for discrimination of organic guests by the membrane potential change, which are based on the hostguest recognition of charged groups, hydrogen-bonding groups, or steric shapes of nonpolar moieties, are described (D32). A cation permselectivity at the phase boundary of ionophoreincorporated solvent polymeric membranes has been studied by optical second harmonic generation (SHG) using the space charge separation model (D33, D34). Impedance spectroscopy of plasticized PVC membranes containing neutral ion carriers carried out under steady-state currents showed that changes in ionic concentration profiles of neutral carriers and ionic species were associated with an increase in bulk

membrane resistance and Warburg impedance (D35). Measurements of diffusion coefficients of the neutral ionophores in plasticized PVC membranes using small-amplitude ac/dc techniques were shown to be possible (D36). The ac impedance characteristics of an ISE|insulator|semiconductor (MIS) structure designed for chemical sensing applications were modeled quantitatively for a frequency range from approximately 5 Hz to 40 kHz. The bulk resistance of the membrane contributed significantly to the equivalent capacitance at UTP, GTP > was constructed based on a planar bilayer lipid membrane (BLM) embedded with Na+,K+-ATPase (Na+ pump) (D213, D214). A method to construct enzyme-based biosensors, where the enzyme is entrapped in a lipid matrix, was presented (D215). Potentiometric responses of solvent polymeric membrane electrodes for nucleotides based on neutral derivatives of cytosine and thymine represent the first cases of ISEs with reported Nernstian slopes in which potentiometric selectivities are due to the formation of hydrogen bonds between a neutral ionophore and a neutral moiety of the analyte. No explanation of the mechanism is given (D216). Bienzymic potentiometric electrodes for creatine and L-arginine determination using an ammonium-selective electrodes as internal sensor have been described (D217). PVC membrane containing lipophilic alkylated cyclodextrins as hosts was used for detection of subpicomolar levels of acetylcholine (D218) and for detection of onium ions in clinical, pharmaceutical, and forensic analysis (D219). Functionalized, lipophilic (R-, β-, and γ-cyclodextrins were synthesized and their suitability as onium ion-selective, potentiometric sensors studied (D220, D221). (4) Potentiometric Gas Sensors. Theoretical analysis of the electromotive force of a high-temperature solid-state galvanic cell incorporating a composition gradient solid electrolyte was carried out (D222). The potential-type sensor using the battery systems M1/MnOx/ M2 as the sensing elements, where M1/M2 are two electrodes of different metals, and MnOx samples act as the solid electrolyte was demonstrated for a systems consisting MnO2 electrolytes with Pt/Cu electrodes, which is most favorable for obtaining high electrical potentials in a high ambient humidity (D223). Direct energy conversion by nonsymmetrical electrodes on an oxide electrolyte electrochemical cell and its applications in multi-gas sensing were demonstrated with several gas mixtures (D224). The theoretical behavior of concentration cells based on ABO3 perovskite materials with protonic and oxygen ion conduction was described (D225). A ZrO2 solid-electrolyte sensor for the detection of oxidizable gases which uses the generation of a non-Nernstian electrode potential was developed (D226). A low-temperature zirconia oxygen gauge, based on new Bi3Ru3O11-ZrO2 as electrode material instead of other ruthenium oxides, hardly deteriorates during the test period of 90 days (D227). A highly sensitive (10 ppb-1 ppm) O3 sensor using In2O3 as sensing film was developed (D228). O2 sensors based on Y2O3stabilized ZrO2 (YSZ) can be protected by dense filters with high

electrochemical permeability to ensure longer lifetime (D229). The response of the solid-state potentiometric CO2 sensors with anion conductor (LaF3) and metal carbonate (Li2CO3) follows the Nernst equation for the two-electron reduction of CO2 in the concentration range 40-2000 ppm at 400 and 450 °C (D230). Development and testing of a miniature carbon dioxide solid-state electrochemical gas sensor was described (D231). Nasicon prepared by the sol-gel method has been used as a solid electrolyte for carbon dioxide detection (D232). A solid-state sensor based on two platinum electrodes that differ in their true-to-geometrical surface area ratios and that are in contact with Nafion 117 was tested as a hydrogen sensor (D233). Operating characteristics and modeling of a solid-state hydrogen sensor fabricated by covering one of the planar Pt electrodes with an oxide catalyst mixture containing CuO/ZnO/ Al2O3 were described (D234). A high-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode showed fairly good sensing characteristics and excellent selectivity to H2 in the presence of NO, NO2, CH4, CO2, and H2O, as well as good long-term stability (D235). The possibility for a potentiometric humidity sensor of composite membranes prepared from anion-exchange membranes and polypyrrole was presented (D236). NOx determination with galvanic zirconia solid electrolyte cells used for O2 detection was discussed (D237). A potentiometric gas sensor capable of monitoring gaseous sulfur and/or hydrogen sulfide based on silver β-alumina solid electrolyte (Ag|Ag β-alumina|Ag2S, MoSx, S2, N2, Au) was designed and tested in oxygen-free atmospheres at temperatures between 908 and 1043 K (D238). The carbon dioxide sensing characteristics of solid-state electrochemical sensors based on sodium ionic conductors, Na3Zr2Si2PO12, operated from 370 to 520 °C were presented (D239). The effect of yttria addition to Na2CO3/BaCO3 composites for potentiometric CO2 sensors was studied in respect to ionic conductor, microstructure, and sensing properties (D240). The EMF and the sensitivity of ceramic CO2 sensors with thin- and thick-film electrodes with Na-R-Al2O3 and Nasicon were evaluated (D241). The analysis of the response of a zirconia sensor to multicomponent gas mixtures providing insight and design guidance in optimizing sensor operation for specific applications was performed (D242). Detection of hydrocarbons in air and purification of exhaust gas under lean-burn conditions using solid electrolytes has been demonstrated (D243). A high-temperature (973 K) ceramic sensor for detection of gaseous hydrocarbons was constructed using CaZr0.9In0.1O3 and yttria-stabilized zirconia as the proton and O2 conductors, respectively, with a Pt/La0.6Ba0.4CoO3 and an Au electrode (D244). Improvement of the thermal shock resistance of R-Al2O3 ceramics for sensor applications has been achieved by incorporation fibers of Al2O3 and ZrO2 into R-Al2O3 (D245). A perovskite-type oxide of LaGaO3 doped with Sr and Mg exhibits a high oxide ion conduction over a wide range of oxygen partial pressures (D246). A hydrogen sensor based on ammonium tantalum tungsten oxide as a proton-conductive solid electrolyte for a hydrogen

sensor based on EMF measurement exhibited the highest level of conductivity and sensitivity to H2 at temperatures from 400 to 723 K and a response within 30-100 s (D247). A hybrid metal-free phthalocyanine/silicon FET sensor for reversible detection of NO2 has been demonstrated (D248). Application of iodine-doped poly(cyclophosphazene) film for potentiometric detection of tributyl phosphate vapor using a Kelvin probe was described (D249). Catalytic metal gate-SiO2-SiC (MOSiC) capacitors operating at ∼800 °C were used as high-temperature H or H-containing gas sensor devices (D250). A novel hybrid technique for manufacturing gas sensing field effect structures (GasFETs) with an air gap is reported (D251). Gas sensing results of charge flow transistors incorporating polyaniline films to very low concentration of NOx and SO2 have been obtained via an operation mode similar to that used for the conventional MOSFET (D252). Fabrication advantages of a new chemical sensor based on a MOS transistor with rear contacts and two flat surfaces based on some initial results from the development of this technology have been reported (D253). In situ modification of the NOx sensitivity of thin discontinuous platinum films as gates of chemical sensors was discussed (D254). H2 gas sensing devices based on a porous platinum metal oxidesemiconductor field effect transistor (MOSFET) were fabricated (D255). The mechanism of hydrogen adsorption effects on diamond-based MIS hydrogen sensors has been analyzed (D256). The catalytic effect of the Pd metal gate structure of the MOS can be modulated by applying a cyclic treatment (HCT) which modifies the structure of the palladium film evaporated on the silicon dioxide (D257). Langmuir analysis on hydrogen gas response from 1 to 10 000 ppm of palladium gate FET was carried out (D258). The optimization, characterization, and analytical performance of a suspended gate field effect transistor (SGFET), with a selective polyaniline/Hg layer, for monitoring low levels of HCN in air were described (D259). The use of semiconductor sensors for detection of H2 in nuclear reactor installations was discussed (D260). Two-dimensional numerical simulation for gas chemisorption on metal oxide layers and their implementation in the work function change on the sensitive layer of a suspended-gate fieldeffect transistor and the current modulation in a ZnO layer were described (D261). A probe consisting of a water-cooled metal support, an Y2O3stabilized ZrO2 reference electrode, and an Al2O3 indicator electrode was developed for measuring O activity in molten glass (D262). Development of a long-term oxygen sensor in molten copper using a MgO-PSZ electrolyte tube was discussed (D263). Several types of solid reference electrodes for potentiometric gas sensors based on solid sodium ion conductors (e.g., Na+/(βalumina or Nasicon) were described and the observed experimental results are discussed in view of theoretical predictions (D264). With Bi2Ru2O7 and Bi3Ru3O11 as electrode materials, the zirconia sensor can be used at a temperature as low as 450 K (D265). The role of formation of charge-transfer complexes in work function gas sensors has been discussed (D266). Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

189R

AMPEROMETRIC SENSORS (1) General Introduction. Molecular recognition at membrane surfaces was investigated by exploiting three different principles of signal transduction, i.e., (1) active transport, (2) ion channel function, and (3) membrane potential change (D267). Ultrathin porous carbon films employed as transducers for amperometric detection couple the advantages of high enzyme loadings and large microscopic area with a small geometric area which greatly enhances sensitivity (D268). The application of dispersed palladium microparticle films in conducting polymer to biosensors has been investigated (D269). The influence that various experimental parameters have on the electrochemical response of zeolite-modified electrodes was studied using ion-exchange voltammetry (D270). Four potential step in a single-pulse sequence mode, which tends to eliminate the charging current, is recommended for amperometric sensors (D271). The concept of combination of an Ag6I4WO4 pellet with a UV decomposition unit as an amperometric sensor for detecting hydrocarbons in the ppm range was presented (D272). Fabrication. Nanometer-sized glass-sealed metal ultramicroelectrodes (Umps) with effective electrode radii of 2-500 nm were made (D273). Binder paste as a new composite material for biosensors and electrochemical bioreactors was reported (D274). It was found that electrochemically generated cresole film mixtures protect glassy carbon surfaces from poisoning when used for detection of different phenolic materials (D275). A new class of composite electrodes made of sol-gel-derived C-SiO2 materials can serve as an indicator electrode in amperometric sensing and biosensing applications that offer higher stability than carbon paste electrodes and are more amenable to chemical modification than monolithic and composite carbon electrodes (D276). A printed microelectrode array of some 1000-3000 electrodes and an amperometric sensor, which consists of an amperometric transducer in combination with an adjacent Ag ink reference electrode, was fabricated for the detection of heavy metal traces for environmental field analysis (D277). The performance of microsensor arrays with 1024 individually addressable amperometric cells which were realized in silicon planar technology (10 mm × 10 mm and 30 mm × 30 mm substrates) with separated hydrogel membranes was presented for two-dimensional oxygen concentration mapping (D278). Polyhydroxy cellulose enzyme electrodes for the water-free organic phase have been fabricated and tested (D279, D280). To decrease the mass-transfer resistance of oxygen permeation and to improve the response of the enzyme electrode, a series of amphiphilic poly(vinyl cinnamate) membranes were prepared by using photosensitive PVC (D281). Enzyme-entrapping membranes for biosensors were obtained by radiation-induced polymerization (D282), deposition of enzymes using electrochemical aided adsorption in the presence of glutaraldehyde (D283, D284), electrochemical deposition of enzyme in a conducting polymer (D285, D286), or using screen printing of the enzyme from the carbon ink (D287). Spatially controlled on-wafer and on-chip enzyme immobilization using photochemical and electrochemical techniques (D288) as well as polyacrylamide polysiloxane membrane depositions (A146) was reported. Specific examples of microencapsulation of enzyme layer in ex vivo biosensors have been presented (D289). 190R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

Interdigitated array, thin-film noble metal microelectrodes deposited with different geometries were fabricated by photolithography and electron beam lithography on silicon substrates (D290). A radio frequency plasma-polymerized perfluoroallylphosphonic acid film was prepared for use in amperometric biomedical sensors (D291). Application of excimer laser micromachining for the fabrication of disk microelectrodes in a composite membrane or thin laminate arrangement has been demonstrated (D292). (2) Modified Electrodes. A nonlinear reaction/diffusion equation with Michaelis-Menten kinetics in electroactive polymer films was formulated, and approximate analytical solutions for the substrate concentration profiles and corresponding current responses were developed (D293). A theoretical analysis describing the transient current response of a conducting polymer-based amperometric chemical sensor to a concentration step was found to be in a good agreement with that obtained experimentally for the detection of ascorbate at polypyrrole electrodes (D294). A polyaniline-dispersed mercury electrode for the detection of monochloramine and dichloramine was made (D295). A novel photoelectrochemical sensor, the microoptical ring electrode (MORE), based on a thin-ring microelectrode and a fiber-optic light guide as the insulating material acting as an interior to the ring, is capable of delivering light directly to the region of electrochemical measurement. It can be used to conduct microelectrochemical studies of systems with complex photochemistry and to conduct detection of photogenerated species (D296). Chemically modified carbon paste electrodes containing Fe(III)Y zeolite (D297) or zeolite molecular sieves (D298) were applied for detection of ascorbic acid or copper trace in aqueous solution, respectively. Polycrystalline platinum electrodes modified with Nafion and cellulose acetate were investigated for the detection of nitric oxide based on its oxidation (D299). A ruthenium(II) complex/Nafion-modified electrode combined with a carbon dioxide sensor was used for selective determination of oxalate (D300). A preliminary examination of a simple and rapid screening method for quantifying the range of toxic organohalides directly in aqueous solution with a metalloporphyrin catalyst was described (D301). A sensor with a poly(tetrafluoroethylene) (PTFE) membrane (10% voids) and a porous carbon felt electrode was fabricated for the detection of residual ozone in water (D302). A gold electrode modified with a self-assembled monolayer of thiols was examined as an electrochemical detector for ionic surfactants (D303). Gold ultramicroelectrodes (UMEs) modified with a thioctic acid monolayer show selectivity for electroinactive electrolyte anions, which participate indirectly in the electrode reaction (D304). A mixed-valent ruthenium oxide-ruthenium cyanide film on glassy carbon electrode exhibits excellent electrocatalytic activity toward oxidation of simple aliphatic alcohols and polyhydric compounds in acidic media (D305). (3) Gas Sensors. The detection of volatile compounds with chemical gas sensors is of increasing interest in the nondestructive detection of food quality (D306). The development of a new microelectrode gas sensor for the simultaneous measurement of

O2 and CO2 was described (D307, D308). Low detection limits for AsH3, SiH4, and organic vapors were reported with a thin gold film electrode ion-plated on a gas-permeable membrane (D309). A study of the rapid detection of CO in air employing protonic conductor/Pt interfaces shows that electrochemical oxidation of CO is controlled by the formation of the precursor OHad radicals which react rapidly with CO (D310). A planar type of limiting current oxygen sensor with Pt electrodes on only one side of the zirconia disk was fabricated and parameters affecting the sensor characteristics were investigated (D311). Hydrogen sensing with a solid-state H sensor fabricated with a 9% YSZ disk sandwiched between two Pt films covered by a catalyst was examined under limiting current conditions (D312). The possibility for CO2 detection in N2/CO2 gas mixtures by a zirconia (solid-electrolyte) electrolysis cell operating in a limiting-current mode was demonstrated (D313, D314). A novel amperometric ZrO2 gas sensor for measurement of air/fuel ratio on either side of the air/fuel stoichiometry was described (D315). A new technique was proposed to study the kinetics and the surface reactions of hightemperature zirconia electrode reactions (D316). The measurement of D2O concentration in a mixture of H2O and D2O was studied using CaZr0.9In0.1O3- as a high-temperature protonic conductor (D317). An amperometric solid-state sensor for NO and NO2, based on protonic conduction of (zirconium phosphate with titanium hydride as reference and Au as counter electrode, was able to operate at room temperature (D318). Factors that influence the open-circuit potential of a Pt/solid polymer electrolyte (SPE) electrode in air containing low concentrations of H2 were studied (D319). The electrochemical response to H2, O2, CO2, and NH3 of a solid-state cell based on a cation- or anion-exchange membrane serving as a solid polymer electrolyte, with response time in the order of 1 min, was determined (D320). The response behavior of electrodes for solid electrolyte Nernstian CO2 gas sensors was characterized using the pressure modulation technique (D321). A hydrogen sensor with a ppm-range sensitivity was accomplished by using poly(vinyl alcohol)-phosphoric acid as the solid electrolyte sandwiched between two palladium films (D322). Monitoring of hydrogen at high-temperature, high-pressure aqueous solutions has been demonstrated (D323). A hydrogen probe equipped with strontium cerium oxide, SrCeO3-based proton conductor, and calcium/calcium hydride reference electrode generated a stable cell potential within 5 min after immersion in molten Al or Mo (D324). A galvanic sensor without applied external voltage was described for the trace detection of hydrogen sulfide in aqueous media (D325). A semiconductor gas sensor based on In2O3 was exploited for detecting ethyl acetate (D326). A method for correcting short-term fatigue in an electrochemical fuel cell sensor provides a reliable means of detecting the concentration of the range of gases in a variety of gas mixtures (D327). Ambient temperature oxygen sensors based on insulating materialdispersed PbSnF4 layers in a cell, Ag|Ag6I4WO4|PbSnF4|, were discussed (D328). The electrochemical properties of metalloporphyrin-clay complex-modified electrode systems were investigated as oxygen sensors (D329). A high-temperature oxygen sensor (YSZ) with a porous Pt layer on the cathode operates on the principle of an electrochemical pump (D330). Fuel cell-type

ceramic-carbon oxygen sensors composed of a hydrophobically modified silicate network and a dispersion of carbon powder and inert or cobalt porphyrin catalyst modifier provide a fast dynamic response (D331). Results have been presented for the simultaneous measurement of the concentrations of the inhalation anesthetic halothane and oxygen in gas streams with compounds in a clinically important range (D332). (4) Biosensors. The effects of both electrode material and polymer configuration on the performance of the electrochemical sensor based on immobilized enzyme electrode have been studied on surfaces of glassy carbon, platinum, and gold rotating-disk electrodes (D333). A study of electrical double-layer effects in the pretreatment of two-electrode cells for enzyme electrodes was described for a two-electrode cell (D334). Studies of the electrochemical characteristics of H2O2 microarray electrodes, and as the building elements for biosensors, were conducted (D335). Bilayer electrodes, where the H2O2-producing enzyme and the redox-epoxy-horseradish peroxidase (HRP) network are not electrically connected, extend the range of amperometric biosensors based on directly redox-epoxy-wired enzymes to enzymes that are difficult to connect electrically to redox polymer networks and whose preferred or only cosubstrate is oxygen (D336). Local detection of photoelectrochemically produced H2O2 with a “wired” HRP microsensor was demonstrated (D337). A novel chronopotentiometric detection method based on the correlation of the potential change in the selected section of the relaxation curve with the concentration of the species to be measured was developed with NADH as a model compound (D338). Permeation of solutes through an electropolymerized ultrathin poly(o-phenylenediamine) film used as an enzyme-entrapping membrane was studied by cyclic and rotating-disk electrode voltammetry (D339). It was shown that the sensitivity of multilayer enzyme electrodes can be controlled by the number of enzyme layers assembled onto the electrode (D340). Artificial electron donors for nitrate and nitrite reductases usable as mediators have been selected and characterized by electrochemical methods (D341). The detection of cyanide, chlorophenols, atrazine, dithiocarbamate, and carbamate pesticides was described, utilizing an amperometric biosensor constructed by the electropolymerization of a pyrrole amphiphilic monomer-tyrosinase coating (D342). Characterization results of mediated and nonmediated oxidase enzyme-based glassy carbon electrodes compared favorably with the classical platinumenzyme probe (D343). Chemically modified electrodes incorporating biological components, such as enzymes, in a polymer-modified matrix that couples a bioreaction with electrochemical detection were extensively discussed (D344). The suitability of catalytic materials (catalytic carbon powders, platinized materials), membranes, and fabrication technologies for the construction of amperometric biosensors was elaborated (D345). Signal stability of amperometric biosensors for long-term measurements such as consumption of substrate in the bulk solution and for the release of electrochemically active products from the enzyme layer was studied (D346). Immobilization of enzymes into Nafion membranes by suspending the enzyme in a water-ethanol mixture with a high (>90%) ethanol content, followed by mixing with the dissolved Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

191R

polyelectrolyte, was proposed (D347). Highly selective electrochemical detection of dopamine using interdigitated array electrodes modified with Nafion/polyester ionomer layered film was reported (D348). Preliminary investigation of a bioelectrochemical sensor for the detection of phenol vapors that is based on ionically conducting films incorporating a biological redox catalyst was reported (D349). Amperometric glutathione electrodes based on hydrogen peroxide or Clark-type oxygen electrodes, coupled with a novel enzyme glutathione oxidase, have been assembled and analytically evaluated (D350). Bienzymic electrodes for maltose were evaluated (D351). Needle-type biosensors for rapid measurement and detection of sugars in fruits with low detection limits were fabricated and combined with a conventional three-electrode system (D352). An enzyme microsensor with osmium complex and porous carbon was developed for measuring uric acid (D353). The use of recombinantory DNA technology in the design of a highly specific heroin sensor has been described (D354).The use of bacterial luciferase enables specific detection of heroin, which opens a possibility for the development of a biosensor for illicit drugs (D355). A fully active monolayer enzyme electrode derivatized by antigen-antibody attachment was described and tested (D356). The concept and first results for a multivalent amperometric immunosensor system that is based on silicon technology and focuses on site-specific immobilization of streptavidin on silica and reduction of nonspecific binding of proteins were shown (D357). Steady-state kinetics of the functioning of organometallic amperometric membrane biosensors has been modeled (D358). A model describing aspects of the transient and steady-state behavior of toxicity monitoring biosensors, which incorporate living microbial cells immobilized in a thin layer between an amperometric electrode and a porous membrane, was presented (D359). The electrochemical properties of carbon fiber microelectrodes were investigated in view of their application for the construction of amperometric biosensors based on oxidase enzymes (D360). Preparation and amperometric response of carbon and platinum dual-cylinder microelectrodes were evaluated (D361). The detection of hydrogen peroxide produced by the enzymatic reaction of ATP with glycerol and the subsequent oxidation of glycerol 3-phosphate was carried out with a platinum-dispersed carbon paste electrode (D362). A hydrogen peroxide sensing electrode prepared by incorporating cobalt(II) octaethoxyphthalocyanine [CoPc(OEt)8] into a carbon paste oxidizes hydrogen peroxide at lower potentials than a CP electrode with unsubstituted cobalt phthalocyanine (D363). Peroxidase-incorporated conducting polymer electrodes were examined as hydrogen peroxide sensors in acetonitrile (D364). The behavior of HRP in different reversed micellar systems has been studied (D365). The application of redox enzymes as biocatalysts for amperometric sensing of antigen-antibody interactions at the electrode surface makes the electrode insensitive to microscopic pinhole defects in the monolayer assembly (D366). 192R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

The rate of electron transfer from the substrate-reduced enzyme to the redox polyelectrolyte depends on the “tightness” of the complex (D367). Direct electron transfer between enzymes and electrode surface was demonstrated for monolayer-immobilized enzymes catalyzing the reduction of H2O2 (D368, D369). The electron pathway, which has a maximum electron coupling between the active site and the surface of the enzyme, was verified experimentally (D370). A new, highly sensitive enzyme sensor was developed for the detection of inorganic phosphate using maltose phosphorylase, acid phosphatase, glucose oxidase, and mutarotase enzymes coimmobilized on a regenerated cellulose (D371). The detection of organophosphate and carbamate pesticides using amperometric biosensors based on immobilized cholinesterases (ChE) was investigated (D372). Tungsten sensor that does not amalgamate with Hg found an application for indirect detection of organic thiols and proteins in buffered solutions (D373). An amperometric internal enzyme gas sensing probe arrangement provides an excellent selectivity for hydrogen peroxide over ionic species in solution that cannot penetrate the gas-permeable barrier (D374). Electrical communication between electrodes and enzymes mediated by redox hydrogels has been discussed in terms of different redox mediators covalently attached to the polymer backbone (D375). A nonleaking amperometric biosensor based on high molecular ferrocene derivatives has been claimed (D376, D377). The application of ferrocene-containing dendrimers as mediators in amperometric biosensors shows that these sensors respond rapidly to the addition of glucose (D378). Benzoic acid determination through competitive inhibition of mediated bioelectrocatalysis of oxygen was described (D379). A prototype amperometric fructose biosensor based on membranebound fructose dehydrogenase and the coenzyme ubiquinone-6 immobilized in a membrane mimetic layer on a gold electrode has been constructed and tested (D380). Correlation between permselectivity and chemical structure of overoxidized polypyrrole membranes used in electroproduced enzyme biosensors was determined (D381). Data acquisition, signal processing, and modeling using an integrated artificial neural network applied to amperometric detection of the polypyrrole formate biosensor were examined (D382). An electrochemically stimulated release of ATP from a poly(pyrrole ATP) film-modified Pt electrode was presented (D383). CONDUCTOMETRIC SENSORS Sensors in this group rely on changes of electric conductivity of a film or a bulk material, whose conductivity is affected by the analyte presence. On a few occasions, the sensor measures the analyte conductivity directly. The most predominant materials used in these sensors will be examined first. The methods of numerical processing of the analytical signal will be next, followed by certain phenomena or properties which lend themselves for the purpose of sensing. Specific analytes or purposes are not treated systematically here. Only an eclectic choice of examples is given, mentioning either the very prevalent or the quite unusual. Selective Materials. Thin films are used mostly as gas sensors due to their surface conductivity change following surface

chemisorption. They can be tailored for specific purposes (D384, D385). The films are thin to achieve sufficient sensitivity and response time. Due to oxygen chemisorption, CdS thin films can be used as oxygen sensors (D386). Surface adsorption on SnO2 film deposited on alumina resulted in a highly sensitive and selective H2S gas sensor (D387, D388). Pure Au thin metal film can sense H2S because its resistivity changes dramatically upon exposure (D389). Catalytically active Pt, Pd, and Ru are often used to dope metal oxides to prepare sensors for H2 (D390). Thick-film sensors rely on the bulk resistance of their active material. For example a film (40 µm) of porous MnWO4 works as a humidity sensor (D391). Pd films (D392) or oriented MoS2 (D393) were used to sense hydrogen, BaTiO3 can sense CO2 (D394), tin oxide can detect CO at room temperature (D395), and gallium oxide can sense reducing gases (D396). The effect of thickness on H2 sensitivity of SnO2 nanoparticle-based thick film was studied (D397). Zeolites (D398) were used, for example, as a coating of planar interdigital capacitive sensor for hydrocarbons (D399). Diamond films are very attractive for their high-temperature stability. They were used to prepare hydrogen (D256, D400) or NO2, HCl, and O3 sensors (D401). A fullerene (C60) was used to construct a sensor for monitoring hydrogen and humidity (D402) or NH3, amines, and organic vapors (D403). Oxides doped with copper or copper oxide are very sensitive to gas containing H2S (D404D406). For room-temperature operation, copper phthalocyanine (Pc) was employed to detect sulfur compounds in diesel exhaust gas (D407) or NO2 (D408-D410). A metalloporphyrin-clay complex with cobalt produced an oxygen sensor (D329). A hydrogen sensor based Cu-Pc with palladium admixture was prepared (D411). Polymer composite films can change conductivity upon exposure to vapors, an effect that is typically used in humidity sensors (D412). Semiconducting Ga2O3 thin film can detect CH4 (D413). p-Type semiconducting cuprates of Tm or Yb formulated as Ln2Cu2O5 (Ln ) Tm, Yb) respond to NO2, while the n-type cuprate of Tb does not (D414). A p-type semiconductor sensor based on Cr2-yTiyO3+x reacted to hydrogen sulfide (D415). A Pd/ZnO/pSi heterojunction was the essence of a hydrogen sensor (D416). Similarly, a film of SnO2 doped with Pd was used (D417). A Schottky barrier diode based on a planar polymer (poly(3octylthiophene)) was used to sense nitric oxide and ammonia (D418). A double Schottky diode gas sensor with two films, Au and Pd, in parallel was reported for phosphine and hydrogen (D419). Illumination can enhance the sensitivity of some of the sensor materials because many are semiconductive (D420). Films illuminated with UV light may become sensitive to oxygen and reducing gases such as CO (D421). Solid solutions based on the rutile structure offer the possibility of independently varying the cation composition and dopant density, e.g., for CO (D422). The best known protonic solid electrolyte HUO2‚PO4‚4H2O prepared from uranyl nitrate and H3PO4 was used as a hydrogen sensor (D423). Polymetallorotaxanes have been proposed as possible sensor material for transition metal ions, e.g., Zn2+ (D424). A new structure can be also created by patterning. Silica overlayer over tin oxide has sieving properties. It was prepared by CVD on a template of preadsorbed benzoate anion (D425). Latex spheres (60-nm diameter) were used as a masking material

during evaporation of a gold film. Openings left after liftoff of the spheres were suitable in size to immobilize antibodies or enzymes which can act as specific recognition elements (D20). Polymers, either conductive themselves or with a modifier, are also often used. A WO3-impregnated thin poly(vinyl alcohol) film across two closely spaced microelectrodes was employed as a CO2 sensor (D426). Some conducting polymers can be prepared with high sensitivity, e.g., polypyrrole toluenesulfonate-doped film (D427). Micrometer tower structures of polypyrrole can be grown, perhaps providing sensor material with new properties (D428). Polypyrrole can detect volatile amines (D429), or when doped with ClO4- and tosylate, it can be made into a sensor for NH3 (D430). A novel sensing format for the detection of toxic vapors uses thin films of polypyrrole or polyaniline coated onto poly(ethylene terephthalate) or nylon threads woven into a fabric mesh. The resistivity of these materials responds to several toxic gases including dimethyl methylphosphonate, NH3, and NO2 (D431). New sensing materials can be prepared through LB films. A low-conducting LB film, based on tetracyanoquinodimethane (TCNQ) and tetrathiofulvalene (TTF) derivatives exhibits sensitivity toward nitrogen dioxide (D432). Other such films were developed to sense methanol and ethanol (D433), odors (D434), Cl2 (D435), or toluene (D433). Electrochromic LB films of lutetium bisphthalocyanine were sensitive to electron donor and electron acceptor gases and to tobacco smoke (D437). Selfassembled bilayer lipid membranes on a metal support with hemoglobin allow rapid detection of carbon dioxide in aqueous solutions (D438). A charge-transfer system can be used as an active component of conductive sensors. Tetrathiafulvalene salts and oxanol dye have been investigated for use as gas sensors for SO2, H2S, NO2, Cl2, CH4, and O2 (D439). Versatile devices can be constructed by micromachining, for example, by integrating heating on a single lithographic chip (D440) for CO (D441). Integration of a sensor and attendant electronics is desirable and is in some cases possible (D442). Measurement Methods. Resistance measured from dc current is typical. Often the measurement is done with ac current (impedance), which also allows one to obtain changes in capacitive impedance (reactance) (D443). Zeolite layers change capacitance in response to the presence of combustion gases (D398-D444). A pH detector based on capacitive structure was designed (D445). Changes in permittivity of oxide mixtures was used in a sensor for various gases, such as NOx (D446, D447), H2S (D406), CO2 (D448), SO2 (D449), butane or ammonia (D444), other organic combustible gases (D450), or aroma sensing in meats (D451). Discrimination between conductivity and capacitance through impedance can extend the use of sensing materials. Conducting polymer poly(N-(2-pyridyl)pyrrole) (D452) or zeolites (D444) demonstrated the possibility to discriminate between capacitance, conductance, resistance, and dissipation factor as a function of frequency. A frequency spectrum technique proved useful in monitoring the cure level of polymers (D443). A capacitive immunosensor, consisting of an antibody layer fixed onto the top of an oxide was also described (D453). Capacitance and resistance changes of interdigitated electrodes were used to characterize directly some liquids (D454). Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

193R

Frequency spectrum analysis of impedance can be used to measure capacitance (vide supra), but it is also used to follow noncapacitive properties such as ionic, electronic, contact, or diffusional (Warburg) impedance (D443, D455). Impedance sensors were described for NO2 and tobacco smoke (D456), odor detection (D434) or determination of water in an oil-in-water emulsion (D457). A Li-doped ZnO film responds to humidity by change of dielectric relaxation (D458). CuO/ZnO semiconductor heterocontact gave a distinct ac response to CO and H2 when a different dc bias was superimposed (D459). In other work, CO and H2 were distinguished using CuO/ZnO/Zn with Na-added pn heterocontact. Each gas shows minimum reactance at a different frequency (D460), and the selectivity can be improved by dc bias (D461). Epoxy cure can be monitored by a method known as frequency-dependent electromagnetic sensing (FDEMS) (D462). Hall coefficient measurements for doped sensors based on tin dioxide were used to sense a reducing or an oxidizing atmosphere (D463). Intelligent materials are a frequent theme (D464). Gas sensing using an integrated sensor pair based on semiconducting oxide with narrow and wide gaps allows some differentiation (D465). Heterocontacts of La2CuO4/ZnO are usable as humidity sensors. Their response is dependent on the tuning bias potential. They also have a self-cleaning mechanism (D466). Intelligent materials for humidity are Au/ZnO Schottky barriers, sol-gel processed TiO2/K, or ceramic La2CuO4/ZnO p-n heterocontacts. The intelligent functions of these systems are based on the multiphase interaction of materials having different properties, such as p-type/ n-type semiconducting oxides, metal/ceramic, and conductor/ insulator (D467). A selective sensor based on temperature switching was designed. At 700 °C, the sensitivity toward other reducing gases and H2O diminishes, whereas conductance sensitivity due to CH4 increases (D468). A similar idea using doped SnO2 film distinguishes between CO and CH4 (D469). Sinusoidal voltage was applied to the heater of a SnO2 semiconductor gas sensor. Nonlinear response ensued which was evaluated by FFT and analysis for smart sensing (D470). Numerical procedures became practical with the advent of omnipresent computers. A thin-film sensor in conjunction with a neural network pattern was used for recognition of trimethylamine and dimethylamine gases as an indicator of food quality (D471, D472) or as gas sensor for CH3SH, (CH3)3N, C2H5OH, and CO (D473). Odor sensing of sulfur compounds for stomatological purposes was reported (D474). Tin oxide is good material for combustible gases and an artificial neural network (ANN) can improve selectivity (D475). Frequency analysis is used in the nonlinear response from the sinusoidal temperature change of a SnO2 gas sensor. FFT allows discrimination between hydrocarbon gases and aromatic vapors (D474, D476)). Fuzzy logic can handle the temperature dependence of gas sensors to counteract nonlinearities in responses (D477). Examples of Measured Analytes. Humidity is very often a parameter for which mixed oxides conductivity sensors are used (D478, D479) although it can also be an unwanted interference. A gas sensor for ethanol and acetone vapors, insensitive to humidity, can be based on sintered bismuth tungstate (D480). A humidity sensor was constructed using a composite film derived from poly(o-phenylenediamine) and poly(vinyl alcohol) (D481). 194R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

Conductive polyethylene as a sensitive layer for gas detection reversible (CO2, O2), nonreversible (NO2), or partially reversible to humidity was reported (D482). Conductivity caused by wetness was used to detect moisture in food starch (D483). A humidity sensor was prepared using potassium hexagonal tungsten bronze synthesized from peroxopolytungstic acid and its resistivity change mechanism was investigated (D484). Reports on development of a multichannel aroma sensor are quite frequent. They can be based on LB films (D434), conducting polymers, or metal oxides. A simple semiconductor system was used to evaluate the efficiency of deodorants by sensing ammonia, acetaldehyde, hydrogen sulfide, and methylmercaptan (D485). A significant issue is monitoring freshness of meat (D486, D487). For example, ethyl acetate, which appears in the first stages of bacterial putrefaction (D326), trimethylamine, dimethylamine, and NH3 (D471, D472) are all being detected. Similarly, a multigas sensor detection of boar taint, an unpleasant cooking odor exhibited by heating pork and mainly due to androstenone and skatol, was introduced (D488), as well as devices monitoring quality and ripeness of fruit (D489-D491). Consomme` soup alone received three references, sensing acetone (D492), capronaldehyde (D492), and 2-methylpyrazine (D493). Arrays of several (six and more) aroma detectors able to characterize more complex smells are called electronic noses (D494). Often the results are enhanced by such algorithmic methods as narrow-band filtering (D495), the use of neural network processing (D471, D472, D496), or evaluation of intentionally induced nonlinear response by fast Fourier transformation (D474). A convenient way to monitor the curing of an epoxy or a thermoset is very desirable in the plastics industry. Conductivity sensing is one of the means (D497, D498); another is capacitance (D443) or impedance (D462). Thermodynamically justified measurement of pH is done potentiometrically. Some detectors using conductivity respond to acidity, although not directly to the proton activity. Hydrogels, which swell and change conductivity, were used as pH sensors (D499), as were liquid membranes and polymers (D500) or the conducting polymer polypyrrole (D501). A capacitive pH detector was also described (D445). Resistance of a proton-conducting electrolyte such as HUO2PO4‚4H2O and PVA-H3PO4 changes with H+ (D502), and at fixed H+ it also senses H2 pressure (D423). Some sensors require high temperature for operation and may therefore be suitable for applications in metallurgy or glass making. An example is an oxygen sensor based on Y2O3-stabilized zirconia used in glass melts (D503) or a sensor based on sodiumalumina used to monitor the sodium level in Al alloys (D504). Direct detection of antibody-antigen binding on silicon dioxide or silicon nitride substrate plated with thin layer of platinum was reported (D505). A conductive polyaniline antigen immunosensor was also described (D506). A process to structure gold electrodes with nanometer-sized dimensions for biosensor applications has been developed. Impedance measurements at various frequencies allow one to detect antibody-antigen binding (D507, D508). Immunosensing for methamphetamine in human urine was reported (D509). A urease biosensor for heavy metal ions was developed based on their toxicity toward urease. The enzyme can be reactivated by EDTA (D510). Another system uses urease

immobilized in porous glass. It relies on conductivity resulting from hydrolysis of urea to charged products (D511, D512). Ethanol was detected using a whole yeast cell-based conductometric sensor (D513). A simple conductivity sensor can measure solution resistance in a gap between two electrodes. In others, chemical principles are involved. Zinc oxide or tin oxide, doped with platinum microcrystals, was useful for determining traces of hydrogen in liquid hydrocarbons, e.g., transformer oil (D514). Aqueous ozone can be measured by an In2O3 thin-film semiconductor ozone gas sensor (D515). Polymer benzo[15]crown-5 complexes as sensor materials were used to detect benzene in air and ethanol and dichloromethane in water (D516). A possible thick-film sensor distinguishing chirality based on Cd2Sb2O6.8 was reported. An unusual feature is its stereoselective response to limonene (orange oil) and pinene (pine oil) (D517). OPTICAL SENSORS Reviews. General fiber-optic sensors (E1, E2), Raman fiberoptic probes (E3), and integrated optical sensors (E4) have been reviewed. An extensive review containing over 700 references covers the subject of fluorescence modulation by recognition events. Optical sensors have found many applications in the biomedical (E5) and environmental (E6-E9) fields. Plasmon resonance is often included among optical sensors although it is predominantly a benchtop optical technique. For the reviews of this subject see refs E10 and E11. Quantitative optical spectroscopy of tissues lies on the fringe of this review of direct chemical sensors (E12). Apparently, the term “optical nose” does not have the same appeal as the “electronic nose” but the idea is the same (E13-E15)sa chemometric evaluation of multiple signal from the optical sensing array. Optodes for heavy metal ions, their performance, and applications have been reviewed (E16). As with every sensing device, the two most interesting factors are the sensing principle or phenomenon and the cleverness to choose a modifier, which renders a particular property to the sensor. A separate issue is the type of analytes detectable. Unless they are for some reason unusual, this chapter does not mention them. Various Measurement Modes. Surface plasmon resonance is a technique that has found its way into a number of applications in sensors. The plasmon resonance concept is sometimes confused with evanescent waves. Distinction is given in ref E17. The bulk sensor, which relies on a metal-coated Kretschmann prism, has the needed geometry to allow the surface plasmon to interact with the analyte on the opposite side of the metal film. For example, detection for NO2 (E18), hydrogen via a palladium film (E19), morphine (E20), or biological systems in which an immunological principle is involved (E21, E22) have been reported. More convenient experimentally but less well tuned for the surface plasmon generation are planar waveguides (E23E27). The surface plasmon resonance depends on three experimental variables: the incident beam angle, the incident beam wavelength, and the refractive index near the surface along which plasmons propagate. The latter parameter is usually the analytical signal. The Kretschmann prism arrangement and monochromatic light give the best SPR results, but it typically mandates a bulky mechanical arrangement to measure the resonance angle. Polychromatic light at a fixed angle is an alternative arrangement, in

which spectroscopic analysis of the throughput gives information about the surface refractive index (SPR). Texas Instruments introduced a compact single-chip design with polychromatic light source and angle deflection measured by a solid-state detector array. The device available as TISPR-1 has the dimensions of a true sensor. A more or less constant incident angle can be achieved if a segment of an optical guide coated with thin metal film is used. The spectrum of the light exiting the fiber can provide the analytical signal related to the refractive index of the fiber surface. With recent miniaturization of spectrometers built on a board that fits into a PC, the method enters the sensor arena. Therefore, sensors based on optical fibers have appeared. Organic solvents were detected (E28, E29), and a humidity sensor constructed with a coating of Nafion fluoropolymer was reported (E30-E32). The shape of the fibers (e.g., U-shaped (E33)) is crucial for proper performance, and tapered (E34) or conical fibers are the key to improved performance. The gradual change in the taper cross section results in distributed phase matching between the fiber mode and the surface plasmon wave, permitting the plasmon wave to be excited over a wide spectral range (E35). Holography. The concept of using a hologram as the interactive element in a biosensor was presented. A reflection hologram in gelatin has been applied to the detection of the enzyme trypsin (E36). Swelling due to water in solvent was the basis of a holographic gelatin grating sensor (E37). An ellipsometer from an optical fiber was constructed for applications in thinfilm sensor systems (E38). Interferometry. A two-wave interferometer sensor was realized in integrated optics. Spatially distributed interference fringes give complete images of light absorption and phase variation in the interferometer (E39). Intensity modulation can be used in the Mach-Zender interferometer in which coherent light passing along two paths is compared. In sensor application, the propagation in one channel is influenced by analyte interacting with the surface of the light guide (E40, E41). Several such devices were used as sensors for atrazine and other pesticides (E42-E44). Another use was in immunosensing (E45). A novel type of interferometric fiber-optic sensor based on a curved section of a buffered single mode optical fiber was described (E46). Interference occurs between the core guided mode and the “whispering gallery” mode guided within the fiber buffer. The fiber buffer coating thus serves as the sensing element. Capillary optical sensors are promising because in addition to the properties of the optical fiber they can serve as a sample cavity of well-defined volume and are suitable for direct sampling (E47). Sensors are often conveniently integrated in one device, e.g., for measuring pH, oxygen, and carbon dioxide. The pH and the CO2 sensor can be based on the color change of a pH-sensitive dye and the oxygen sensor on fluorescence quenching (E48). Artificial Neural Network. The response range of an optical fiber such as a pH sensor can be sometimes enhanced algorithmically, by the use of ANN (E49). ANN was used to handle the output from a multilayer pH sensor at several wavelengths (E50), and water pollutants were characterized by fluorescent sensors with the help of neural network and pattern recognition schemes (E51). An algorithmic approach to signal processing was used to extend the linear operational range of an optical-fiber humidity Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

195R

sensor (E52). A multichannel optically based chemosensor using ANN was constructed for odor sensing (E13). Birefringence as an optical phenomenon was also used in sensor construction (E53). The pockel cell is a device in which an applied electric field causes birefringence. Bismuth germanate (Bi4Ge3O12) is one such electrooptical material (E54). The possibility to use ZnS:Mn and ZnS:Cu luminophores was also presented (E55). The glucose sensor, a polarimeter of a kind, was developed with this device, based on its optical rotation (E56). Reflectance. An optical-fiber reflectance sensor for pH was described (E57). A reflectance sensor based on a micromirror with a palladium layer was constructed for hydrogen. The mechanism consists of reversible microblistering of the film and its changes in optical constants upon hydriding (E58). A reflectance probe for uranyl was constructed by immobilizing Arsenazo III on a cotton substrate (E59). The resonant mirror biosensor uses the evanescent wave associated with a dielectric resonant structure to detect reactions occurring in a sensing layer, deposited within a few hundred nanometers of the device surface (E60). A resonant photoacoustic spectrophone was used for elemental carbon mass monitoring (E61), and photoacoustic detection of trace gases with an optical microphone was reported (E62). A sensor based on secondharmonic generation at the surface of an ionophore-incorporating poly(vinyl chloride) liquid membrane has been described (E63). Fluorescent photoinduced electron-transfer (PET) sensors were described in a few instances (E64): a saccharide sensor based on the interaction of boronic acid and amine (E65), a pH “on-off” sensor with pyridine (E66) or anthracene (E67) receptors, or a calcium sensor (E68). Direct fluorescence and luminescence for sensing are quite common. A Ru(bpy)32+ luminescent probe incorporated into Nafion film was described as an oxygen sensor (E69), and a calcium probe using hydrophobically associated calcein was reported (E70). The total internal reflection fluorescence (TIRF) immunosensor was also described (E71). Immunosensors are often based on fluorescence (E72). Chemically generated luminescence using tris(2,2′-bipyridine)ruthenium(III) was also used for sensing hydrazine (E73). Cyclodiene insecticides (chlordane, heptachlor, aldrin, etc.) can be sensed fluorometrically through fluorescein derivative-bovine serum albumin conjugates (E74). Some fluorescent or luminescent sensors use the decay time measurements as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for various sensors. Recognition can be performed by different functional groups that are necessary for selective interaction with the analyte (E75, E76). For example, NH3 (E77), Zn(II) (E78), Cu(II) (E79), other 3d metal ions (E80) as well as organics (methanol) (E81) can be detected. Concentration of an analyte can be also deduced from its ability to quench fluorescence of a fluorophore. Herbicide was detected by quenching a chlorophyll fluorescence biosensor (E82), and plant tissue was used as a pyruvate sensor (E83). Oxygen sensors based on luminescence quenching using interactions of pyrene with polymer support were described (E84). The widely used polar plasticizer NPOE is found to act itself as a dynamic quencher of the luminescence of certain indicators, and thus, 2-cyanophenyl alkyl ethers are more suitable to use with fluorescent indicators in sensor manufacture (E85). 196R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

Swelling was a basis for some optical sensors (E86). Swelling of a polymer over a mirror system was used as a new principle for measuring ionic strength (E87). A fiber optical sensor for water in organic solvents used a bead of an anion-exchange resin, which swelled continuously with the activity of water. The bead size changes were coupled to movement of a reflecting diaphragm (E88, E89). Reflectance changes due to aminated polymer swelling were used to measure pH changes (E90). Raman. An etched silver foil was used as an effective sensor for surface-enhanced Raman scattering analysis of acridine, 9-aminoacridine, and quinacrine (E91). Another use was to follow the progress of polymer resin curing (E92). Selective Materials. Calixarene derivatives are an example of a new material useful in optical sensing. They are used to build supramolecular structures (E93-E95). Such structures can be tailored to be ion or molecule selective and carry a chromophore. A primary amine-selective optode membrane based on a lipophilic hexaester of calix[6]arene was constructed (E96). A sodiumselective optode was made based on calix[4]arene (E97, E98). A uranyl ion-sensitive chromoionophore based in calix[6]arene was made (E99) as well as a pH luminescent sensor (E100). Lipophilic calixarene ionophores were used in the design of sodium-selective optode membranes (E101). Calix[4]arenes with anthracene moieties are sensitive to Li+, Na+, and K+ (E102, E103). In general, any type of supramolecular structure may be useful for sensor development (E104). For example, molecular imprinting with exactly adapted cavities in polyurethane film was used for solvent vapor sensing (E105) or sarin and soman were detected by luminescence of Eu3+ embedded in a functionality-imprinted copolymer (E106). Sol-gels are excellent matrixes for entrapment of optical probes. Not only are the dyes kept in place but often they better resist photobleaching (E107-E111). For example, proteins, such as copper-zinc superoxide dismutase, cytochrome c, myoglobin, Hb, and bacteriorhodopsin, were encapsulated (E112). Another useful class of compounds are the “property” sensitive dyes. They usually change fluorescence as a function of potential (potential sensitive dyes, PSD), lipophilicity, etc. A membrane responsive to nitrite was developed with the PSD rhodamine B octadecyl ester perchlorate. On exposure to nitrite its fluorescence intensity increases (E113). A smilar idea was used in building a membrane containing valinomycin, sensitive to K+ (E114). PSD are valuable in both anion- and cation-sensitive polymer membranes. In particular, nitrate-, nitrite-, K-, and Hg-sensitive membranes were developed (E115). Optical methods allow chiral discrimination. Results were reported for odor perception distinguishing between enantiomers of, limonene (E116). Chiral discrimination of D- and L-monosaccharides using a designed receptor molecule that acts as a sensor by virtue of its fluorescent response to binding of the guest species was described (E117). A film of (N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine)manganese(III) chloride adsorbed onto an n-type CdSe single-crystal substrate is stereoselective, coupling the complexation chemistry of the film to the band gap photoluminescence intensity of the underlying semiconductor (E118). Examples of Optical Sensing. Humidity. A fiber-optic humidity sensor was based on the reversible pink/blue color

change of CoCl2 during hydration and dehydration (E119). Another type was a luminescence lifetime-based sensor that utilizes the Langmuir-Blodgett technique of depositing Pt- and Pd-porphyrins (E120). Aroma. Odor sensing is in the forefront of analytical interest, and several optical sensors were also described. A chemiluminescence gas sensor made of Al2O3 emits luminescence during catalytic oxidation of a combustible odor vapor (E121). Novel types are based upon the immobilization of a chemiluminescent reagent between a miniature photomultiplier tube and a Teflon diffusion membrane (E122). Taste and flavor monitoring was done with a fluorescent optical probe detecting certain sulfurcontaining compounds in the vapors from the hams (E123). Polymer Cure. Precise monitoring of the state of cure of polymers is in significant industrial demand. A fiber-optic sensor based on the principle of Fresnel reflection was built for intelligent control of composite manufacturing (E124). In situ core monitoring of diamine cured epoxy by fiber-optic fluorometry using extrinsic reactive fluorophore was reported (E125, E126). Often refractive index changes are used for such a task (E127, E128), but even Raman spectroscopy was used (E92). Acidity. Optical acidity sensors convey the pH changes of their environment, although the true H+ activity measurement must be done potentiometrically. Immobilized dyes are excellent colorimetric sensors (E129, E130), often embedded in sol-gel (E131, E132). The silica sol-gel system can handle high (1-11 mol/L) acidity (E133) and so can Nafion film, which coated with cresol red served as a HNO3 sensor in the 0.1-10 mol/L range (E134). Other possibility is to use fluorescence (E135, E136) or even reflectance caused by swelling of aminated polymers (E90). Acidity sensing can be also used indirectly, for example, for CO2 (E137). Ion-radical sensors are rare. One for hydroxyl radical using nitrophenol as the sensitive-reagent phase was described (E138). Biosensor. A biosensor built upon Escherichia coli, genetically engineered with a mercury(II)-sensitive promoter was used for the detection of mercury (E139, E140). A fluorescent oxacyanine dye (DiOC16(3)) as an optical transducer was used for the same purpose (E141). Mercury(II) and cadmium(II) were detected through a complexing porphyrin derivative (E142), and Cd(II) was detected with a sensor constructed via the incorporation of 8-hydroxyquinoline-5-sulfonic acid into silica films prepared by the sol-gel method (E143). A fiber-optic biosensor array is described for the simultaneous analysis of multiple DNA sequences (E144). CONCLUSIONS The vitality of the chemical sensing field can be seen from the growing number of published papers. Even if we allow for mislabeling of sensing systems (assays) for true chemical sensors and for duplicated reporting of results, the growth is overwhelming. So much so that the future reviews in this series should focus entirely on the “reviews of reviews” and thus become “a mother of all reviews”. The fact that data can be retrieved from the commercially available sensor databases quite readily makes a detail review of such a broad field almost redundant. It is relevant to ask the question, why this apparently unbridled growth? The partial answer lies in the fact that many authors

operate in the “write-only mode”, which results in unnecessary replication of effort. It is also clear that the number of papers describing sensing of individual species far exceeds the number of the species themselves. This is true not only for glucose, hydrogen, pH, and other all-time favorites but even for more exotic analytes. The reason lies in the variety of applications that impose specific and unique requirements on the figures of merit (or performance characteristics) of the individual sensors. From this point of view, it is imperative to publish the performance limitations as well as the salient features of every new sensor. The relative distribution of different types of chemical sensors (by transduction principles) is about the same as it was when we wrote the 1994 review. The electrochemical sensors again represent the largest group (49%) by far (Table 1) followed by optical and mass sensors. Although still the smallest group (3% of total), the large relative increase of papers dealing with thermal sensors (+435%) is interesting. It is due to the renewed interest in pellistors and in new pyroelectric materials. This table, however, does not reflect some very important new trends that have emerged. More and more authors extract other physical and chemical parameters from these devices than just a “calibration curve” or a “response”. Thus, frequently, chemical sensors become an integral tool of diverse scientific studies. This may account for the large fraction of sensor papers being published in the journals not dedicated to sensors or even analytical chemistry. Another major development is the increasing emphasis on multivariate analysis, i.e., extraction of data from sensor arrays and higher order chemical sensors. The higherorder (multiparameter) sensing somewhat complicates the statistics because a paper dealing with, for example, combined sensing using optical and mass transduction is counted in both optical and mass categories. Some new selective materials figure prominently in this review, e.g., calixarenes, DNA, cyclodextrins, dendrimers, and other supramolecular materials. There are even hints of using the combinatorial chemistry approach in design and optimization of selective materials for sensing arrays. Materials problems related to packaging of chemical sensors are also being rationally addressed but not as much as would be needed. In our opinion, these two materials issues will experience the above average growth. Many new exciting sensors have appeared on the market. Jirˇ ı´ Janata received his Ph.D. in analytical chemistry from the Charles University, Prague, in 1965. After postdoctoral studies at the University of Michigan he joined the Corporate Laboratory of ICI in England and in 1976 moved to the University of Utah where he was in the Department of Bioengineering and in the Department of Materials Science and Engineering, respectively. In 1991 he joined the Pacific Northwest National Laboratory as Associate Director of Environmental Molecular Sciences Laboratory. He left in 1997 for Georgia Institute of Technology where he now holds Eminent Scholar Chair in the School of Chemistry and Biochemistry. His main interests include chemical sensors, electroanalytical and interfacial chemistry, and environmental chemistry. Mira Josowicz received her Ph.D. in electrochemistry from the Technical University, Munich, in 1978. She was a Research Fellow at University of Bundeswehr, Munich, until 1983 and then an Alexander von Humboldt Feodor Lynnen Fellow at the University of Utah until 1986. She returned to University of Bundeswehr, Munich, where she remained until 1992, when she became staff scientist in the Materials Sciences Department of the Pacific Northwest National Laboratory. Since 1997 she has held a position of Senior Research Specialist in the School of Chemistry and Biochemistry at the Georgia Institute of Technology.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

197R

Petr Vany´ sek received his undergraduate degree from the Department of Natural Sciences at the Charles University in Prague (Czechoslovakia) in 1976 and a doctorate in natural sciences in 1977. He received the Ph.D. degree in physical chemistry from the Heyrovsky Institute of Physical Chemistry and Electrochemisty of the Czechoslovak Academy of Sciences in Prague in 1982. In 1982-84 he worked as a research associate for an electrochemistry group at the University of North Carolina at Chapel Hill and during academic year 1984-1985 he was a faculty-in-residence at the University of New Hampshire. In 1985 he joined the faculty of the Chemistry Department of Northern Illinois University. He is currently the Chairman of the Sensor Division of the Electrochemical Society. Mike DeVaney received his B.S. in mathematics from the University of Washington, where his Russian language skills helped pay for his education. Before coming to the Pacific Northwest Laboratory in 1987, Mike worked as a life insurance actuary, and as a mathematician and computer scientist for the Naval Undersea Warfare Engineering Station. At PNNL, Mike is currently a computer scientist in the Nuclear Safeguards Program, a nuclear nonproliferation effort under the Comprehensive Threat Reduction agreement. He assists Russia and other states of the Former Soviet Union to develop automated systems for Nuclear Material Protection, Control, and Accounting.

LITERATURE CITED (A1) Janata, J.; Josowicz, M.; DeVaney, D. M. Anal. Chem. 1994, 66(12), 207R-28R. (A2) Taylor, R. F., Schultz, J. S., Eds. Handbook of Chemical and Biological Sensors; Inst. Phys.: Bristol, 1996. (A3) Valcarcel, M., Luque de Castro, M. D. Techniques and Instrumentation in Analytical Chemistry; Flow-Through (Bio)Chemical Sensors 16; Elsevier: Amsterdam, 1994. (A4) Goepel, W., Hesse, J., Zemel, J. N., Eds. Sensors; VCH: Weinheim, 1995. (A5) Buerk, D. G. Biosensors: Theory and Applications, Technomic: Lancaster, 1993. (A6) Aizawa, M. Biosensors; Japanese Standards Assoc.: Tokyo, 1993. (A7) Karube, I., Tamiya, E., Eds. Bioelectronics: Biosensors and Biochips; Asakura Publishing Co. Ltd.: Tokyo, 1994. (A8) Eggins, B. R.; Ed. Biosensors: An Introduction; Wiley: Chichester, 1996. (A9) Cunningham, A. J., Ed. An Introduction to Bioanalytical Sensors: Techniques in Analytical Chemistry; Wiley: Chichester, 1996. (A10) Scheller, F. W., Schubert, F., Fedrowitz, J., Eds. Frontiers in Biosensorics I: Fundamental Aspects; Birkhaeuser: Basel, 1997. (A11) Sberveglieri, G., Ed. Gas Sensors: Principles, Operation, and Developments; Kluwer: Dordrecht, 1992. (A12) Kupriyanov, L. Y., Ed. Semiconductor Sensors in PhysicoChemical Studies: Handbook of Sensors and Actuators 4; Elsevier: Amsterdam, 1996. (A13) Mizutani, F. Chem. Sens. 1993, 9(3), 86-92. (A14) Scheller, F. W.; Wollenberger, U.; Pfeiffer, D.; Schubert, F. Adv. Mol. Cell Biol. 1996, 15B (Biochemical Technology), 353-63. (A15) Hasebe, Y. Chem. Sens. 1995, 11(2), 53-63. (A16) 6Hall, E. A. H.; Gooding, J. J.; Hall, C. E. Mikrochim. Acta 1995, 121(1-4), 119-45. (A17) Liu, Y.; Yu, T. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1997, C37(3), 459-500. (A18) Ruzgas, T.; Csoeregi, E.; Emmneus, J.; Gorton, L.; MarkoVarga, G. Anal. Chim. Acta 1996, 330(2-3), 123-138. (A19) Luong, J. H. T.; Nguyen, A. L.; Guilbault, G. G. Adv. Biochem. Eng./Biotechnol. 1993, 50 (Measurement and Control), 85115. (A20) Lobo, M. J.; Miranda, A. J.; Tunon, P. Electroanalysis 1997, 9(3), 191-202. (A21) Katakis, I.; Dominguez, E. Mikrochim. Acta 1997, 126(1-2), 11-32. (A22) Pantano, P.; Kuhr, W. G. Electroanalysis 1995, 7(5), 405-16. (A23) Schuhmann, W. Mikrochim. Acta 1995, 121(1-4), 1-29. (A24) Elmgren, M.; Lindquist, S.-E. Curr. Top. Electrochem. 1994, 3(2), 479-91. (A25) Bartlett, P. N.; Cooper, J. M. J. Electroanal. Chem. 1993, 362(1-2), 1-12. (A26) Katakis, I.; Heller, A. EXS 1997, 80 (Frontiers in Biosensorics I), 229-41. (A27) Crumbliss, A. L.; Stonehuerner, J.; Henkens, R. W.; O’Daly, J. P.; Zhao, J. New J. Chem. 1994, 18(3), 327-39. (A28) Parthasarathy, R.; Martin, C. R. Nature (London) 1994, 369(6478), 298-301. (A29) Hellinga, H. W. Design of metalloproteins. In Protein Engineering. Principles and Practice; Cleland, J. L., Craik, C. S., Eds.; Wiley-Liss: New York, 1996; pp 369-98. (A30) Iwuoha, E. I.; Smyth, M. R. Biosens. Bioelectron. 1997, 12(1), 53-75. (A31) Diaz-Garcia, M. E.; Valencia-Gonzalez, M. J. Talanta 1995, 42(11), 1763-73. (A32) Ghindilis, A. L.; Atanasov, P.; Wilkins, E. Electroanalysis 1997, 9(9), 661-74. 198R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(A33) Alegret, S. Analyst (Cambridge, U.K.) 1996, 121(12), 17518. (A34) Freitag, R. Immunoanalysis and immunosensors. In Biosensors in Analytical Biotechnology; Freitag, R., Ed.; Academic Press: San Diego, 1996; pp 99-127. (A35) Sadana, A. J. Colloid Interface Sci. 1997, 190(1), 232-40. (A36) Sadana, A. Biotechnol. Prog. 1995, 11(1), 50-7. (A37) Sadana, A.; Suturia, M. Appl. Biochem. Biotechnol. 1997, 62(2/ 3), 275-90. (A38) Lu, B.; Smyth, M. R.; O’Kennedy, R. Analyst (Cambridge, U.K.) 1996, 121(3), 29R-32R. (A39) Regenmortel, M. H. V. V. Biomed. Pept., Proteins Nucleic Acids 1995, 1(3), 109-16. (A40) Schramm, W.; Paek, S. H.; Voss, G. Immunomethods 1993, 3(2), 93-103. (A41) Martin, M. T. Drug Discovery Today 1996, 1(6), 239-47. (A42) Dal Monte, M.; Centini, M.; Anselmi, C.; Pelosi, P. Chem. Senses 1993, 18(6), 713-21. (A43) Felicioli, A.; Ferraro, F.; Ganni, M.; Garibotti, M.; Navarrini, A.; Pes, D.; Pelosi, P. Life Chem. Rep. 1994, 11(2), 347-55. (A44) Stayton, P. S.; Shimoboji, T.; Long, C.; Chilkoti, A.; Chen, G.; Harris, J. M.; Hoffman, A. S. Nature (London) 1995, 378(6556), 472-4. (A45) Dickert, F. L.; Reif, H.; Stathopulos, H. J. Mol. Model. [Electronic Publication] 1996, 2(10), 410-6. (A46) Kooyman, R. P. H.; Lechuga, L. M. Immunosensors based on total internal reflectance. In Handbook of Biosensors and Electronic Noses; Kress-Rogers, E., Ed.; CRC: Boca Raton, FL, 1997; pp 169-96. (A47) Morgan, C. L.; Newman, D. J.; Price, C. P. Clin. Chem. (Washington, D.C.) 1996, 42(2), 193-209. (A48) Skladal, P. Electroanalysis 1997, 9(10), 737-45. (A49) Bourdillon, C.; Demaille, C.; Moiroux, J.; Saveant, J.-M. Acc. Chem. Res. 1996, 29(11), 529-35. (A50) Titball, R. W.; Squirrell, D. J. Probes for nucleic acids and biosensors. In Handbook of Biosensors and Electronic Noses; Kress-Rogers, E., Ed.; CRC: Boca Raton, FL, 1997; pp 91109. (A51) Yang, M.; McGovern, M. E.; Thompson, M. Anal. Chim. Acta 1997, 346(3), 259-75. (A52) Beattie, K. L.; Beattie, W. G.; Meng, L.; Turner, S. L.; CoralVazquez, R.; Smith, D. D.; McIntyre, P. M.; Dao, D. D. Clin. Chem. (Washington, D.C.) 1995, 41(5), 700-6. (A53) Zhai, J.; Hong, C.; Yang, R. Biotechnol. Adv. 1997, 15(1), 4358. (A54) James, T. D.; Sandanayake Samankumara, K. R. A.; Shinkai, S. Angew. Chem., Int. Ed. Engl. 1996, 35(17), 1911-22. (A55) Raba, J.; Mottola, H. A. Crit. Rev. Anal. Chem. 1995, 25(1), 1-42. (A56) Thevenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Sens. Actuators, B 1996, B30(1), 81. (A57) Kashiwayanagi, M.; Shoji, T.; Kurihara, K. Supramol. Chem. 1993, 1(2), 119-27. (A58) Lockhart, J. C. In Chemical Sensors: Comprehensive Supramolecular Chemistry; Gokel, G. W., Ed.; Elsevier: Oxford, 1996; Vol. 1, pp 605-634. (A59) Brzozka, Z. In Potentiometric sensors [in supramolecular technology]; Reinhoudt, D. N., Ed.; Comprehensive Supramolecular Chemistry 10; Elsevier: Oxford, 1996; pp 187-212. (A60) Van Veggel, F. C. J. M. In Mass sensors [in supramolecular technology]; Reinhoudt, D. N., Ed.; Comprehensive Supramolecular Chemistry 10; Elsevier: Oxford, 1996; pp 171-85. (A61) Dickert, F. L.; Haunschild, A. Adv. Mater. (Weinheim, Fed. Repub. Ger.) 1993, 5(12), 887-95. (A62) Jones, C.; Patel, A.; Griffin, S.; Martin, J.; Young, P.; O’Donnell, K.; Silverman, C.; Porter, T.; Chaiken, I. J. Chromatogr., A 1995, 707(1), 3-22. (A63) Reinhoudt, D. N. Recl. Trav. Chim. Pays-Bas 1996, 115(2), 109-18. (A64) Grate, J. W.; Patrash, S. J.; Abraham, M. H.; Du, C. M. Anal. Chem. 1996, 68(5), 913-7. (A65) Zhou, R.; Josse, F.; Gopel, W.; Oeztuerk, Z. Z.; Bekaroglu, O. Appl. Organomet. Chem. 1996, 10(8), 557-77. (A66) Schmittel, M.; Ammon, H.; Woehrle, C. Chem. Ber. 1995, 128(8), 845-50. (A67) Diamond, D.; McKervey, M. A. Chem. Soc. Rev. 1996, 25(1), 15-24. (A68) O’Connor, K. M.; Arrigan, D. W. M.; Svehla, G. Electroanalysis 1995, 7(3), 205-15. (A69) Boehmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34(7), 71345. (A70) Mosbach, K. Trends Biochem. Sci. 1994, 19(1), 9-14. (A71) Ansell, R. J.; Kriz, D.; Mosbach, K. Curr. Opin. Biotechnol. 1996, 7(1), 89-94. (A72) Wulff, G. EXS 1997, 80 (Frontiers in Biosensorics I), 13-26. (A73) Dickert, F. L.; Thierer, S. Adv. Mater. (Weinheim, Ger.) 1996, 8(12), 987-90. (A74) Levy, D. In Preparation and characterization of composite materials: Organic molecules in inorganic hosts, Insulating Materials in Optoelectronics; Agullo-Lopez, F., Ed.; World Scientific: Singapore, 1995; pp 55-91. (A75) Cespedes, F.; Martinez-Fabregas, E.; Alegret, S. TrAC, Trends Anal. Chem. 1996, 15(7), 296-304.

(A76) (A77) (A78) (A79) (A80) (A81)

(A82) (A83) (A84) (A85) (A86) (A87) (A88)

(A89) (A90) (A91) (A92) (A93) (A94) (A95) (A96) (A97) (A98) (A99) (A100) (A101)

(A102) (A103) (A104) (A105)

(A106) (A107) (A108) (A109) (A110)

(A111) (A112) (A113) (A114) (A115) (A116) (A117) (A118) (A119) (A120)

Cook, M. J. J. Mater. Chem. 1996, 6(5), 677-89. Piguet, C. Chimia 1996, 50(4), 144-153. Mandler, D.; Turyan, I. Electroanalysis 1996, 8(3), 207-13. Ottova, A.; Tvarozek, V.; Racek, J.; Sabo, J.; Ziegler, W.; Hianik, T.; Tien, H. T. Supramol. Sci. 1997, 4(1-2), 101-12. Ottova, A. L.; Ti Tien, H. Bioelectrochem. Bioenerg. 1997, 42(2), 141-52. Vandenberg, E. T.; Brown, R. S.; Krull, U. J. Immobilization of proteins for biosensor development. In Immobilized Biosystems: Theory and Practical Applications; Veliky, I. A.; Mclean, R. J. C., Eds.; Blackie: Glasgow, 1994; pp 129-231. Safinya, C. R. Colloids Surf., A 1997, 128(1-3), 183-95. Terfort, A.; Bowden, N.; Whitesides, G. M. Nature (London) 1997, 386(6621), 162-4. Hammond, P. T. Polym. Mater. Sci. Eng. 1995, 73, 308-9. Kooyman, R. P. H.; van den Heuvel, D. J.; Drijfhout, J. W.; Welling, G. W. Thin Solid Films 1994, 244(1-2), 913-6. Lednev, I. K.; Petty, M. C. Adv. Mater. (Weinheim, Ger.) 1996, 8(8), 615-30. Tien, H. T. Adv. Chem. Ser. 1994, 235 (Biomembrane Electrochemistry), 513-29. Zhou, R.; Geckeler, K. E.; Goepel, W. Functional polymers for chemical sensors. In Desk Reference of Functionalized Polymers; Arshady, R., Ed.; American Chemical Society: Washington, 1997; pp 601-20. Lyons, M. E. Analyst (Cambridge, U.K.) 1994, 119(5), 80526. Josowicz, M.; Janata, J. Electroactive polymers in chemical sensors. In Applications of Electroactive Polymers; Scrosati, B., Ws.; Chapman & Hall: London, 1993; pp 310-343. Josowicz, M. Analyst (Cambridge, U.K.) 1995, 120(4), 101924. Trojanowicz, M.; Krawczyk, V.; Krawczynski, T.; Alexander, P. W. Chem. Anal. (Warsaw) 1997, 42(2), 199-213. Deshpande, M. V.; Amalnerkar, D. P. Prog. Polym. Sci. 1993, 18(4), 623-49. Bedioui, F.; Devynck, J.; Bied-Charreton, C. Acc. Chem. Res. 1995, 28(1), 30-6. Demarne, V.; Sanjines, R. Thin film semiconducting metal oxide gas sensors. In Gas Sensors; Sberveglieri, G., Ed.; Kluwer: Dordrecht, 1992; pp 89-116. Kohl, D. Oxidic semiconductor gas sensors. In Gas Sensors; Sberveglieri, G., Ed.; Kluwer: Dordrecht, 1992; pp 43-88. Lantto, V. Semiconductor gas sensors based on tin dioxide thick films. In Gas Sensors; Sberveglieri, G., Ed.; Kluwer: Dordrecht, 1992; pp 117-67. Goepel, W.; Schierbaum, K. D. Sens. Actuators, B 1995, B26(1-3), 1-12. Shuk, P.; Wiemhoefer, H.-D.; Guth, U.; Goepel, W.; Greenblatt, M. Solid State Ionics 1996, 89(3, 4), 179-96. Singh, K.; Bhoga, S. S. Bull. Electrochem. 1996, 12(11-12), 633-42. Schoonman, J. Defect chemistry in solid-state electrochemistry. In CRC Handbook of Solid State Electrochemistry; Gellings, P. J.; Bouwmeester, H. J. M., Eds.; CRC: Boca Raton, FL, 1997; pp 161-194. Vandrish, G. Key Eng. Mater. 1996, 122-4, 185-224. Lundstroem, I. Sens. Actuators, A 1996, A56(1-2), 75-82. Kreuer, K.-D. Chem. Mater. 1996, 8(3), 610-41. Chandra, S. Solid-state proton conductors and their applications. In Handbook of Solid State Batteries and Capacitors; Munshi, M. Z. A., Ed.; World Scientific: Singapore, 1995; pp 579-600. Wolfbeis, O. S.; Reisfeld, R.; Oehme, I. Struct. Bonding (Berlin) 1996, 85 (Optical and Electronic Phenomena in Sol-Gel Glasses and Modern Application), 51-98. Avnir, D.; Braun, S.; Lev, O.; Ottolenghi, M. Chem. Mater. 1994, 6(10), 1605-14. Lin, J.; Brown, C. W. TrAC, Trends Anal. Chem. 1997, 16(4), 200-11. Wise, B. M.; Janata, J. Encyclopedia of Energy Technology and the Environment; J. Wiley & Sons: New York 1995; pp 124758. Hoffheins, B. Solid state, resistive gas sensors. In Handbook of Chemical and Biological Sensors; Taylor, R. F.; Schultz, J. S., Eds.; Institute of Physics Publishing: Bristol, U.K., 1996; pp 371-397. Cammann, K. Sens. Actuators, B 1995, B25(1-3), 769-72. Burns, J. A.; Whitesides, G. M. Chem. Rev. (Washington, D.C.) 1993, 93(8), 2583-601. Di Natale, C.; Davide, F. A. M.; D′Amico, A.; Goepel, W.; Weimar, U. Sens. Actuators, B 1994, 19(1-3), 654-7. Broten, G. S.; Wood, H. C. Meas. Sci. Technol. 1993, 4(10), 1096-105. Wang, Z.; Hwang, J.-N.; Kowalski, B. R. Anal. Chem. 1995, 67(9), 1497-504. Wise, B. M. Process Control Qual. 1993, 5(2-3), 73-85. Williams, D. E.; Pratt, K. F. E. J. Chem. Soc., Faraday Trans. 1995, 91(13), 1961-6. Diamond, D. Electroanalysis (N.Y.) 1993, 5(9-10), 795-802. Niwa, O. Electroanalysis 1995, 7(7), 606-13. Semancik, S.; Cavicchi, R. E.; Kreider, K. G.; Suehle, J. S.; Chaparala, P. Sens. Actuators, B 1996, B34(1-3), 209-12.

(A121) Ishida, H.; Suetsugu, K.; Nakamoto, T.; Moriizumi, T. Sens. Actuators, A 1994, A45(2), 153-7. (A122) Ishida, H.; Kagawa, Y.; Nakamoto, T.; Moriizumi, T. Sens. Actuators, B 1996, B33(1-3), 115-21. (A123) Bartlett, P. N.; Elliott, J. M.; Gardner, J. W. Ann. Chim. (Rome) 1997, 87(1-2), 33-44. (A124) Kress-Rogers, E. Biosensors and electronic noses for practical applications. In Handbook of Biosensors and Electronic Noses; Kress-Rogers, E., Ed.; CRC: Boca Raton, 1997; pp 3-39. (A125) Reddy, S. M.; Vadgama, P. M. Membranes to improve amperometric sensor characteristics. In Handbook of Biosensors and Electronic Noses; Kress-Rogers, E., Ed.; CRC: Boca Raton, 1997; pp 111-35. (A126) Kalman, E.-L.; Winquist, F.; Lundstroem, I. Atmos. Environ. 1997, 31(11), 1715-9. (A127) Toko, K. Rev. Heteroat. Chem. 1996, 14, 245-70. (A128) Saunders: B. W.; Thiel, D. V.; Mackay-Sim, A. Analyst (Cambridge, U.K.) 1995, 120(4), 1013-8. (A129) Xing, W.-L.; He, X.-W. Chem. Lett. 1996, (12), 1065-6. (A130) Bordieu, C.; Rebiere, D.; Pistre, J.; Planade, R. Sens. Actuators, B 1996, B35(1-3), 52-59. (A131) Endres, H.-E.; Goettler, W.; Jander, H. D.; Drost, S.; Sberveglieri, G.; Faglia, G.; Perego, C. Sens. Actuators, B 1995, B25(1-3), 785-9. (A132) Cavicchi, R. E.; Suehle, J. S.; Kreider, K. G.; Gaitan, M.; Chaparala, P. IEEE Electron Device Lett. 1995, 16(6), 286-8. (A133) Schweizer-Berberich, M.; Goeppert, J.; Hierlemann, A.; Mitrovics, J.; Weimar, U.; Rosenstiel, W.; Goepel, W. Sens. Actuators, B 1995, B27(1-3), 232-6. (A134) Bruschi, P.; Nannini, A.; Neri, B. Sens. Actuators, B 1995, B25(1-3), 429-32. (A135) Kubota, L. T.; Kleinke, M. U.; Mello, C.; Bueno, M. I.; de Oliveira Neto, G. Chem. Phys. Lett. 1997, 264(6), 662-666. (A136) Eggins, B.; McAteer, G. Educ. Chem. 1997, 34(1), 20-21. (A137) Goepel, W. Sens. Actuators, A 1996, A56(1-2), 83-102. (A138) Stussi, E.; Cella, S.; Serra, G. Stoppato Venier, G. Mater. Sci. Eng., C 1996, C4(1), 27-33. (A139) Gillen, G.; Wight, S.; Bennett, J.; Tarlov, M. J. Appl. Phys. Lett. 1994, 65(5), 534-6. (A140) Wittstock, G.; Hesse, R.; Schuhmann, W. Electroanalysis 1997, 9(10), 746-50. (A141) Tender, L. M.; Worley, R. L.; Fan, H.; Lopez, G. P. Langmuir 1996, 12(23), 5515-8. (A142) Tejedor, P.; Briones, F. Appl. Phys. Lett. 1994, 64(7), 936-8. (A143) Morales, P.; Pavone, A.; Sperandei, M.; Leter, G.; Mosiello, L.; Nencini, L.; Grifoni, L.; Santucci, S. Mater. Sci. Eng., C 1995, C2(3), 173-9. (A144) Izquierdo, R.; Hanus, F.; Lang, Th.; Ivanov, D.; Meunier, M.; Laude, L.; Currie, J. F.; Yelon, A. Appl. Surf. Sci. 1996, 968, 855-8. (A145) Lecours, A.; Caron, M.; Ciureanu, P.; Turcotte, G.; Ivanov, D.; Yelon, A.; Currie, J. F., Appl. Surf. Sci. 1996, 96-8, 341-6. (A146) Strike, D. J.; Arquint, P.; de Rooij, N. F.; Koudelka-Hep, M. Chimia 1993, 47(6), 241-4. (A147) Morgan, H.; Pritchard D. J.; Cooper, J. M. Biosens. Bioelectron. 1995, 10(9/10), 841-6. (A148) Bratov, A.; Munoz, J.; Dominguez, C.; Bartroli, J. Adv. Sci. Technol. 1995, 4 (New Horizons for Materials), 457-64. (A149) Ichimura, K. Heterog. Chem. Rev. 1996, 3(4), 419-41. (A150) Richardson, R. R., Jr; Miller, J. A.; Reichert, W. M. Biomaterials 1993, 14(8), 627-35. (A151) Pum, D.; Sara, M.; Sleytr, U. B. Two-dimensional (glyco)protein crystals as patterning elements and immobilization matrixes for the development of biosensors. In Immobilised Macromolecules; Sleytr, U. B., Ed.; Springer: London, 1993; pp 141-60. (A152) Pum, D.; Stangl, G.; Sponer, C.; Fallmann, W.; Sleytr, U. B. Colloids Surf., B 1997, 8(3), 157-62. (A153) Sigrist, H.; Collioud, A.; Clemence, J.-F.; Gao, H.; Luginbuehl, R.; Saenger, M.; Sundarababu, G. Opt. Eng. (Bellingham, Wash.) 1995, 34(8), 2339-48. (A154) Chrisey, L. A.; O’Ferrall, C. E.; Spargo, B. J.; Dulcey, C. S.; Calvert, J. M. Nucleic Acids Res. 1996, 24(15), 3040-7. (A155) Di Fabrizio, E.; Gentili, M.; Morales, P.; Pilloton, R.; Mela, J.; Santucci, S.; Sese, A. Appl. Phys. Lett. 1996, 69(21), 3280-2. (A156) Stein, T.; Gerisch, G. Anal. Biochem. 1996, 237(2), 252-9. (A157) Glazier, S. A.; McCurley, M. F. BioPharm (Eugene, Oreg.) 1995, 8(5), 38-40, 42, 44, 46, 48, 50. (A158) Kauffmann, J.-M.; Guilbault, G. G. Biosensors. In Analysis of Addictive and Misused Drugs; Adamovics, J. A., Ed.; Dekker: New York, 1995; pp 21-40. (A159) Matthews, D. J. Annu. Rep. Med. Chem. 1995, 30, 275-83. (A160) Meadows, D. Adv. Drug Delivery Rev. 1996, 21(3), 179-89. (A161) Wagner, G. Food Sci. Technol. (N.Y.) 1994, 60 (Food Biosensor Analysis), 219-52. (A162) Wang, J. Anal. Chem. 1995, 67(12), 487R-92R. (A163) Barzana, E. Adv. Biochem. Eng./Biotechnol. 1996, 53 (Downstream Processing Biosurfactants/Carotenoids), 1-15. (A164) Luebbers, D. W. Adv. Exp. Med. Biol. 1996, 388 (Oxygen Transport to Tissue XVII), 13-34. (A165) Seiyama, T.; Nakahara, T.; Takeuchi, T. Stud. Environ. Sci. 1994, 59 (Environmental Oriented Electrochemistry), 23372.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

199R

(A166) Dietrich, A. M.; Jensen, J. N.; da Costa, W. F. Water Environ. Res. 1996, 68(4), 391-406. (A167) Koochaki, Z.; Cumming, R. H.; Rowell, F. J.; Stewart, I. W. Process Biochem. (Oxford) 1995, 30(7), 589-97. (A168) Paddle, B. M. Biosens. Bioelectron. 1996, 11(11), 1079-113. (A169) Nieuwenhuizen, M. S. Detection of clandestine explosives. In Organic Energetic Compounds; Marinkas, P. L., Ed.; Nova Science Publishers: Commack, 1996; pp 251-87. (A170) Fernando De Andrade, J. An. Assoc. Bras. Quim. 1996, 45(2), 51-65. (A171) Skladal, P. Food Technol. Biotechnol. 1996, 34(1), 43-9. THERMAL SENSORS (B1) Meijer, G. C. M.; van Herwaarden, A. W., Eds. Thermal sensors; Inst. Phys.: Bristol, U.K., 1994. (B2) Kohl, D. Semiconductor and calorimetric sensor devices and arrays. In Handbook of Biosensors and Electronic Noses; KressRogers, E., Ed.; CRC: Boca Raton, 1997; pp 533-61. (B3) Mandelis, A.; Christofides, C. Chem. Anal. (N.Y.) 1993, 125, 253-308. (B4) Brehmer, L.; Kaminorz, Y.; Dietel, R.; Grasnick, G.; Herkner, G. EXS 1997, 80 (Frontiers in Biosensorics I), 155-65. (B5) Wuebbenhorst, M.; Van Turnhout, J.; Alili, L. Ferroelectrics 1995, 165(1-2), 153-69. (B6) Danielsson, B.; Xie, B. EXS 1997, 81 (Frontiers in Biosensorics II), 71-85. (B7) Garcia, J. A.; Dorojkine, L. M.; Mandelis, A.; Wallace, J. S. Int. J. Hydrogen Energy 1996, 21(9), 761-4. (B8) Aigner, R.; Auerbach, F.; Huber, P.; Mueller, R.; Scheller, G. Sens. Actuators, B 1994, 18(1-3), 143-7. (B9) Towe, B. C.; Guilbeau, E. J. Biosens. Bioelectron. 1996, 11(3), 247-52. (B10) Pollak-Diener, G.; Obermeier, E. Sens. Actuators, B 1993, 13(1-3), 345-7. (B11) Debeda, H.; Rebiere, D.; Pistre, J.; Menil, F. Sens. Actuators, B 1995, B27(1-3), 297-300. (B12) Gall, M. Sens. Actuators, B 1993, 16(1-3), 260-4. (B13) Rumpler, W.; Liess, H. D. Ferroelectrics 1995, 165(1-2), 20513. (B14) Christofides, C.; Mandelis, A. J. Phys. IV 1994, 4 (8th International Topical Meeting on Photoacoustic and Photothermal Phenomena, 1994), 511-3. (B15) Munidasa, M.; Mandelis, A.; Katz, A.; Do, D. V.; Luong, V. K. Rev. Sci. Instrum. 1994, 65 (6), 1983-7. (B16) Capan, R.; Batty, S. V.; Richardson, T.; Lacey, D.; Holder, S. J.; Majid, W. H. A. Thin Solid Films 1996, 284-5, 915-8. (B17) Hetrick, R. E.; Schamp, A. L. Combust. Sci. Technol. 1994, 96(1-3), 23-31. (B18) Papadopoulos, C. A.; Vlachos, D. S.; Avaritsiotis, J. N. Sens. Actuators, B 1996, B34(1-3), 524-7. (B19) Lerchner, J.; Seidel, J.; Wolf, G.; Weber, E. Sens. Actuators, B 1996, B32(1), 71-5. (B20) Koehler, J. M.; Kessler, E.; Steinhage, G.; Gruendig, B.; Cammann, K. Mikrochim. Acta 1995, 120(1-4), 309-19. (B21) Lozinski, A.; Wang, F.; Uusimaki, A.; Leppavuori, S. Meas. Sci. Technol. 1997, 8(1), 33-7. (B22) Petty, M.; Tsibouklis, J.; Holland, J.; Petty, M. C.; Feast, W. J.; Richards, R. Ferroelectr., Lett. Sect. 1993, 15(2), 45-8. (B23) Trofimenko, N. E.; Baran, S. V.; Masherova, N. P. Sens. Actuators, B 1996, B30(3), 191-3. MASS SENSORS (C1) Grate, J. W.; Martin, S. J.; White, R. M. Anal. Chem. 1993, 65(21), 940A. (C2) Grate, J. W.; Frye, G. C. Acoustic wave sensors. In Sensor Update; Baltes, H. P., Goepel, W., Hesse, J., Eds.; VCH: Weinheim, 1996; Vol. 2, pp 37-83. (C3) Suleiman, A. A.; Guilbault, G. G. Stud. Environ. Sci. 1994, 59 (Environmental Oriented Electrochemistry), 273-303. (C4) Bodenhoefer, K.; Hierlemann, A.; Noetzel, G.; Weimar, U.; Goepel, W. Anal. Chem. 1996, 68 (13), 2210-8. (C5) Enderlein, J.; Chilla, E.; Froehlich, H.-J. Sens. Actuators, A 1994, 42 (1-3), 472-5. (C6) Wang, Z.; Cheeke, J. D. N.; Jen, C. K. Appl. Phys. Lett. 1994, 64(22), 2940-2. (C7) Yao, S.; Chen, K.; Liu, D.; Nie, L. Anal. Chim. Acta 1994, 294(3), 311-18. (C8) Rodahl, M.; Hoeoek, F.; Kasemo, B. Anal. Chem. 1996, 68(13), 2219-2227. (C9) Shen, D.; Huang, M.; Nie, L.; Yao, S. J. Electroanal. Chem. 1994, 371(1-2), 117-25. (C10) Lucklum, R.; Behling, C.; Cernosek, R. W.; Martin, S. J. J. Phys. D: Appl. Phys. 1997, 30(3), 346-6. (C11) Dahint, R.; Grunze, M.; Josse, F.; Renken, J. Anal. Chem. 1994, 66(18), 2888-92. (C12) Yang, M.; Thompson, M. Anal. Chim. Acta 1993, 282(3), 50515. (C13) Zhu, Z.; Wu, J.; Li, J.; Zhou, W. Sens. Actuators, A 1995, A49(1-2), 79-84. (C14) Kovacs, G.; Vellekoop, M. J.; Haueis, R.; Lubking, G. W.; Venema, A. Sens. Actuators, A 1994, 43(1-3), 38-43. 200R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(C15) Su, H.; Chong, S.; Thompson, M. Langmuir 1996, 12(9), 2247-55. (C16) Rickert, J.; Brecht, A.; Goepel, W. Anal. Chem. 1997, 69(7), 1441-8. (C17) Mecea, V. M.; Carlsson, J. O.; Bucur, R. V. Sens. Actuators, A 1996, A53(1-3), 371-8. (C18) Shen, D.-Z.; Kang, Q.; Hu, J.-T. Chin. J. Chem. 1996, 14(3), 235-243. (C19) Xing, W.-L.; He, X.-W. Chem. Lett. 1996, (12), 1065-6. (C20) Bordieu, C.; Rebiere, D.; Pistre, J.; Planade, R. Sens. Actuators, B 1996, B35(1-3), 52-59. (C21) Barko, G.; Papp, B.; Hlavay, J. Talanta 1995, 42(3), 475-82. (C22) Cao, Z.; Lin, H.-G.; Wang, B.-F.; Wang, K.-M.; Yu, R.-Q. Microchem. J. 1995, 52(2), 174-80. (C23) Zellers, E. T.; Batterman, S. A.; Han, M.; Patrash, S. J. Anal. Chem. 1995, 67(6), 1092-106. (C24) Grate, J. W.; Abraham, M. H.; Du, C. M.; McGill, R. A.; Shuely, W. J. Langmuir 1995, 11(6), 2125-30. (C25) Slater, J. M.; Paynter, J. Analyst (Cambridge, U.K.) 1994, 119(2), 191-5. (C26) Dickert, F.L.; Reif, M.; Reif, H. Fresenius’ J. Anal. Chem. 1995, 352(7-8), 620-4. (C27) Schierbaum, K.-D.; Gerlach, A.; Goepel, W.; Mueller, W. M.; Voegtle, F.; Dominik, A.; Roth, H. J. Fresenius’ J. Anal. Chem. 1994, 349(5), 372-9. (C28) Dickert, F. L.; Baeumler, U. P. A.; Stathopulos, H. Anal. Chem. 1997, 69(6), 1000-5. (C29) Dermody, D. L.; Crooks, R. M.; Kim, T. J. Am. Chem. Soc. 1996, 118(47), 11912-7. (C30) Moore, L. W.; Springer, K. N.; Shi, J. X.; Yang, X.; Swanson, B. I.; Li, D.Q. Adv. Mater. (Weinheim, Ger.) 1995, 7(8), 72931. (C31) Dickert, F. L.; Haunschild, A.; Kuschow, V.; Reif, M.; Stathopulos, H. Anal. Chem. 1996, 68(6), 1058-61. (C32) Wells, M.; Crooks, R. M. J. Am. Chem. Soc. 1996, 118(16), 3988-9. (C33) Thomas, R. C.; Yang, H. C.; DiRubio, C. R.; Ricco, A. J.; Crooks, R. M. Langmuir 1996, 12(9), 2239-46. (C34) Xu, H.; Matsuda, T.; Nakamoto, T.; Morizumi, T. Jpn. J. Appl. Phys., Part 1 1995, 34(7B), 3914-9. (C35) Kim, S. R.; Choi, S. A.; Kim, J. D.; Kim, K. J.; Lee, C.; Rhee, S. B. Synth. Met. 1995, 71(1-3), 2027-8. (C36) Yan, Y.; Bein, T. J. Am. Chem. Soc. 1995, 117(40), 9990-4. (C37) Oyama, N.; Takada, K.; Tatsuma, T.; Naoi, K.; Okajima, T.; Ohsaka, T. Sens. Actuators, B 1993, 13(1-3), 372-5. (C38) Hoyt, A. E.; Ricco, A. J.; Yang, H. C.; Crooks, R. M. J. Am. Chem. Soc. 1995, 117(33), 8672-3. (C39) May, I. P.; Byfield, M. P.; Lindstrom, M.; Wunsche, L. F. Chirality 1997, 9(3), 225-32. (C40) Bodenhoefer, K.; Hierlemann, A.; Juza, M.; Schurig, V.; Goepel, W. Anal. Chem. 1997, 69(19), 4017-31. (C41) Brousseau, L. C., III; Mallouk, T. E. Anal. Chem. 1997, 69(4), 679-687. (C42) Welsch, W.; Klein, C.; von Schickfus, M.; Hunklinger, S. Anal. Chem. 1996, 68(13), 2000-4. (C43) Cohen, Y.; Levi, S.; Rubin, S.; Willner, I. J. Electroanal. Chem. 1996, 417(1-2), 65-75. (C44) Fawcett, N. C.; Evans, J. A.; Craven, R. D.; Zhang, P.; Harvey, K.; Towery, R. B. Polym. Mater. Sci. Eng. 1997, 76, 461-2. (C45) Caruso, F.; Rodda, E.; Furlong, D. N.; Niikura, K.; Okahata, Y. Anal. Chem. 1997, 69(11), 2043-2049. (C46) Su, H.; Thompson, M. Biosens. Bioelectron. 1995, 10(3/4), 329-40. (C47) Shana, Z. A.; Josse, F. Anal. Chem. 1994, 66(13), 1955-64. (C48) Galipeau, D. W.; Vetelino, J. F.; Feger, C. J. Adhes. Sci. Technol. 1993, 7(12), 1335-45. (C49) Zellers, E. T.; Han, M. Anal. Chem. 1996, 68(14), 2409-18. (C50) Grate, J. W.; McGill, R. A. Anal. Chem. 1995, 67(21), 40159. (C51) Vig, J. R.; Filler, R. L.; Kim, Y. J. Microelectromech. Syst. 1996, 5(2), 138-40. (C52) Hayward, G. L.; Chu, G. Z. Anal. Chim. Acta 1994, 288(3), 179-85. (C53) Yao, S.; Chen, K.; Nie, L. Anal. Chim. Acta 1994, 289(1), 4755. (C54) Chen. J.-H.; Si, S.-H.; Nie, L.-H.; Yao, S.-Z. Electrochim. Acta 1997, 42(4), 689-695. (C55) Gruyters, M.; Mitrelias, T.; King, D. A. Appl. Phys. A: Mater. Sci. Process. 1995, A61(3), 243-51. (C56) Kunugi, Y.; Nigorikawa, K.; Harima, Y.; Yamashita, K. J. Chem. Soc., Chem. Commun. 1994, (7), 873-4. (C57) Xie, Q.; Shen, D.; Nie, L.; Yao, S. Electrochim. Acta 1993, 38(15), 2277-80. (C58) Hillman, A. R.; Bandey, H. L.; Gonsalves, M.; Bruckenstein, S.; Pater, E. Ann. Chim. (Rome) 1997, 87(3-4), 177-86. (C59) Vellekoop, M. J.; Lubking, G. W.; Sarro, P. M.; Venema, A. Sens. Actuators, A 1994, 44(3), 249-63. (C60) Dunham, G. C.; Benson, N. H.; Petelenz, D.; Janata, J. Anal. Chem. 1995, 67(2), 267-72. (C61) Mecea, V. M. Sens. Actuators, A 1994, 42(1-3), 630-7. (C62) Ferrari, V.; Marioli, D.; Taroni, A. Meas. Sci. Technol. 1997, 8(1), 42-8.

(C63) Thundat, T.; Chen, G. Y.; Warmack, R. J.; Allison, D. P.; Wachter, E. A. Anal. Chem. 1995, 67(3), 519-21. (C64) Walton, P. W.; O’Flaherty, M. R.; Butler, M. E.; Compton, P. Biosens. Bioelectron. 1993, 8(9-10), 401-7. (C65) Moriizumi, T.; Saitoh, A.; Nomura, T. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1994, 247, 331-9. (C66) Saitou, A.; Nomura, T.; Moriizumi, T. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1995, 267, 387-92. ELECTROCHEMICAL SENSORS (D1) Fabry, P.; Siebert, E. Electrochemical sensors. In The CRC Handbook of Solid State Electrochemistry; Gellings, P. J., Bouwmeester, H. J. M., Eds.; CRC: Boca Raton, 1997; pp 329369. (D2) Kas, J.; Marek, M.; Stastny, M.; Volf, R. Bioelectrochem.: Princ. Pract. 1996, 3 (Experimental Techniques in Bioelectrochemistry), 361-453. (D3) Bioelectrochem. Bioeng. 1997, 42(1) (special issue, Kauffmann, J.-M., Ed.). (D4) Wollenberger, U. Electrochemical biosensors-ways to improve sensor performance. In Biotechnology and Genetic Engineering Reviews; Artech House: Norwood, 1996; Vol. 13, pp 237-266. (D5) Tebbutt, P. Stud. Environ. Sci. 1994, 59 (Environmental Oriented Electrochemistry), 305-43. (D6) Widmer, H. M. Anal. Methods Instrum. 1993, 1(1), 60-72. (D7) Bontempelli, G.; Comisso, N.; Toniolo, R.; Schiavon, G. Electroanalysis 1997, 9(6), 433-43. (D8) Machado, A. A. S. C. Analyst (Cambridge, U.K.) 1994, 119(11), 2263-74. (D9) Cosofret, V. V.; Buck, R. P. Crit. Rev. Anal. Chem. 1993, 24(1), 1-88. (D10) Lee, C. O. Ion-selective microelectrodes: Improving the technique for intracellular application. In Methods of Membrane Transport Research; Schafer, J. A., Eds.; Landes: Austin, 1994; pp 81-112. (D11) Thomas, B.; Scholz, K.; Herzog, K. Freiberg. Forschungsh. C 1996, C465, 7-28. (D12) Bakker, E.; Nagele, M.; Schaller, U.; Pretsch, E. Electroanalysis 1995, 7(9), 817-22. (D13) Nikol’skii, B. P.; Nikol’skaya, E. B. J. Anal. Chem. (Transl. of Zh. Anal. Khim.) 1995, 50(9), 883-7. (D14) Bakker, E. Electroanalysis 1997, 9(1), 7-12. (D15) Vlasov, Y. G. Ann. Chim. (Rome) 1997, 87(3-4), 261-272. (D16) Izquierdo, A.; Luque de Castro, M. D. Electroanalysis 1995, 7(6), 505-19. (D17) Bartsch, R. A.; Ramesh, V.; Bach, R. O.; Shono, T.; Kimura, K. Synthetic ionophores for lithium ions. In Lithium Chemistry; Sapse, A.-M., Schleyer, P. v. R., Eds.; Wiley: New York, 1995; pp 393-476. (D18) Gerlache, M.; Kauffmann, J. M.; Quarin, G.; Vire, J. C.; Bryant, G. A.; Talbot, J. M. Talanta 1996, 43(4), 507-19. (D19) Maistrenko, V. N.; Budnikov, G. K.; Gusakov, V. N. J. Anal. Chem. (Transl. of Zh. Anal. Khim.) 1996, 51(10), 942-8. (D20) Padeste, C.; Kossek, S.; Lehmann, H. W.; Musil, C. R.; Gobrecht, J.; Tiefenauer, L. J. Electrochem. Soc. 1996, 143(12), 3890-5. (D21) Ulakhovich, N. A.; Medyantseva, E. P.; Budnikov, G. K. Zh. Anal. Khim. 1993, 48(6), 980-98. (D22) Gorton, L.; Marko-Varga, G.; Persson, B.; Huan, Z.; Linden, H.; Burestedt, E.; Ghobadi, S.; Smolander, M.; Sahni, S.; Skotheim, T. Adv. Mol. Cell Biol. 1996, 15B (Biochemical Technology), 421-50. (D23) Gilmartin, M. A. T.; Hart, J. P. Analyst (Cambridge, U.K.) 1995, 120(4), 1029-45. (D24) Gorton, L. Electroanalysis 1995, 7(1), 23-45. (D25) Bedioui, F.; Trevin, S.; Devynck, J. Electroanalysis 1996, 8(12), 1085-91. (D26) Svancara, I.; Vytras, K.; Renger, F.; Smyth, M. R. Sb. Ved. Pr.Vys. Sk. Chemickotechnol. Pardubice 1992, 56, 21-57. (D27) Buck, R. P.; Cosofret, V. Pure Appl. Chem. 1993, 65(8), 184958. (D28) Pure Appl. Chem. 1995, 67(3), 507-18. (D29) Covington, A. K. Pure Appl. Chem. 1994, 66(3), 565-9. (D30) Rondinini, S.; Mussini, P. R. J. Membr. Sci. 1996, 111(2), 21726. (D31) Havas, J.; Kecskes, L.; Rohonczy-Boksay, E. Anal. Chim. Acta 1993, 282(2), 283-7. (D32) Kazunori, O.; Naganawa, R.; Radecka, H.; Kataoka, M.; Kimura, E.; Koike, T.; Tohda, K.; Tange, M.; Furuta, H.; et al. Supramol. Chem. 1994, 4(2), 101-3. (D33) Tohda, K.; Umezawa, Y.; Yoshiyagawa, S.; Hashimoto, S.; Kawasaki, M. Anal. Chem. 1995, 67(3), 570-7. (D34) Horvath, V.; Takacs, T.; Horvai, G.; Huszthy, P.; Bradshaw, J. S.; Izatt, R. M. Anal. Lett. 1997, 30(9), 1591-609. (D35) Nahir, T. M.; Buck, R. P. Electrochim. Acta 1993, 38(18), 2691-7. (D36) Wang, H.; Sun, L.; Armstrong, R. D. Electrochim. Acta 1996, 41(9), 1491-1493. (D37) Demoz, A.; Verpoorte, E. M. J.; Harrison, D. J. J. Electroanal. Chem. 1995, 389(1-2), 71-8. (D38) Kim, H. L.; Madou, M.; Hines, J. Polym. Mater. Sci. Eng. 1993, 70, 133-4.

(D39) Davini, E.; Mazzamurao, G.; Piotto, A. P. Gazz. Chim. Ital. 1995, 125(5), 233-8. (D40) Foehr, K. J.; Warchol, W.; Gratzl, M. Methods Enzymol. 1993, 221 (Membrane Fusion Techniques, Pt. B), 149-57. (D41) Siswanta, D.; Hisamoto, H.; Suzuki, K. Trends Anal. Chem. 1995, 14(3), 101-4. (D42) Massobrio, G.; Martinoia, S.; Grattarola, M. Sens. Mater. 1994, 6(2), 101-23. (D43) Massobrio, G.; Martinoia, S. Electron. Lett. 1996, 32(10), 9368. (D44) Walsh, S.; Diamond, D. Talanta 1995, 42(4), 561-72. (D45) Vincze, A.; Horvai, G.; Leermakers, F. A. M. Electroanalysis 1995, 7(9), 877-83. (D46) Vincze, A.; Horvai, G.; Leermakers, F. A. M.; Scheutjens, J. M. H. M. Sens. Actuators, B 1994, 18(1-3), 42-6. (D47) Li, Z.; Li, X.; Petrovic, S.; Harrison, D. J. Anal. Methods Instrum. 1993, 1(1), 30-7. (D48) Luboch, E.; Dvorkin, A. A.; Simonov, Yu. A. J. Inclusion Phenom. Mol. Recognit. Chem. 1995, 20(4), 335-51. (D49) Chan, A. D. C.; Harrison, D. J. Talanta 1994, 41(6), 849-56. (D50) Li, Z.; Li, X.; Petrovic, S.; Harrison, D. J. Anal. Chem. 1996, 68(10), 1717-25. (D51) Deng, G.; Sakaki, T.; Kawahara, Y.; Shinkai, S. Supramol. Chem. 1993, 2(1), 71-6. (D52) Dill, K.; Song, J. H.; Blomdahl, J. A.; Olson, J. D. J. Biochem. Biophys. Methods 1997, 34(2), 161-166. (D53) Dill, K.; Olson, J. D. Glycoconjugate J. 1995, 12(5), 660-3. (D54) Adami, M.; Piras, L.; Lanzi, M.; Fanigliulo, A.; Vakula, S.; Nicolini, C. Sens. Actuators, B 1994, 18(1-3), 178-82. (D55) Ito, Y.; Morimoto, K.; Tsunoda, Y. Sens. Actuators, B 1993, 13(1-3), 348-50. (D56) Pecora, A.; Fortunato, G.; Carluccio, R.; Sacco, S. J. Non-Cryst. Solids 1993, 164-6 (Pt. 2), 793-6. (D57) Sato, T.; Shimizu, M.; Uchida, H.; Katsube, T. Sens. Actuators, B 1994, 20(2-3), 213-6. (D58) Oba, N.; Yoshinobu, T.; Iwasaki, H. Jpn. J. Appl. Phys., Part 2 1996, 35(4A), L460-3. (D59) Gavazzo, P.; Paddeu, S.; Sartore, M.; Nicolini, C. Sens. Actuators, B 1994, 19(1-3), 368-72. (D60) Sasaki, Y.; Kanai, Y.; Uchida, H.; Katsube, T. Sens. Actuators, B 1995, B25(1-3), 819-22. (D61) Fanigliulo, A.; Accossato, P.; Adami, M.; Lanzi, M.; Martinoia, S.; Paddeu, S.; Parodi, M. T.; Rossi, A.; Sartore, M.; et al. Sens. Actuators, B 1996, B32(1), 41-8. (D62) Wang, S.-h.; Xiao, D.; Yu, R.-q. Chem. Res. Chin. Univ. 1993, 9(4), 296-302. (D63) Nicolini, C.; Sartore, M.; Zunino, M; Adami, M. Rev. Sci. Instrum. 1995, 66(8), 4341-6. (D64) Garvin, J. L. Kidney Int. 1993, 44(4), 875-80. (D65) Kakerow, R.; Manoli, Y.; Mokwa, W.; Rospert, M.; Meyer, M.; Drewer, H.; Krause, J.; Cammann, K. Sens. Actuators, A 1994, 43(1-3), 296-301. (D66) Talaie, A.; Romagnoli, J. A. Synth. Met. 1996, 82(3), 231-5. (D67) Lasorsa, B.; Casas, A. Mar. Chem. 1996, 52(3/4), 211-20. (D68) Tierney, M. J.; Kim, H.; Ok, L. Anal. Chem. 1993, 65(23), 3435-40. (D69) Nikol’skaya, E. B.; Yagodina, O. V.; Iskanderov, R. R. J. Anal. Chem. (Transl. of Zh. Anal. Khim.) 1995, 50(12), 1166-70. (D70) Opekar, F. Sens. Actuators, B 1994, B21(2), 131-4. (D71) Radic, N.; Barlic, M. Mikrochim. Acta 1995, 118(3-4), 2217. (D72) Diamond, D.; McEnroe, E.; McCarrick, M.; Lewenstam, A. Electroanalysis (N.Y.) 1994, 6(11/12), 962-71. (D73) Marichev, V. A. Corrosion (Houston) 1996, 52(1), 53-65. (D74) Burnett, R. W.; Covington, A. K.; Fogh-Andersen, N.; Kulpman, W. R.; Maas, A. H. J.; Muller-Plathe, O.; Siggaard-Andersen, O.; Van Kessel, A. L.; Wimberley, P. D.; et al. J. Int. Fed. Clin. Chem. 1994, 6(4), 115-20. (D75) Burnett, R. W.; Covington, A. K.; Fogh-Andersen, N.; Kuelpmann, W. R.; Maas, A. H. J.; Mueller-Plathe, O.; SiggaardAndersen, O.; Van Kessel, A. L.; Wimberley, P. D.; Zijlstra, W. G. Eur. J. Clin. Chem. Clin. Biochem. 1995, 33(4), 24753. (D76) Burnett, R. W.; Covington, A. K.; Fogh-Andersen, N.; Kuelpmann, W. R.; Maas, A. H. J.; Siggaard-Andersen, O.; VanKessel, A.; Wimberley, P. D.; Zijlstra, W. G. J. Int. Fed. Clin. Chem. 1996, 8(2), 52, 54, 56. (D77) Cosofret, V. V.; Lindner, E.; Johnson, T. A.; Neuman, M. R. Talanta 1994, 41(6), 931-8. (D78) Harada, M.; Fuse, A.; Tanaka, Y. NeuroReport 1997, 8(4), 999-1002. (D79) Yang, V. C.; Ma, S.-C.; Liu, D.; Brown, R. B.; Meyerhoff, M. E. ASAIO J. 1993, 39(3), M195-201. (D80) Yun, J.-H.; Fu, B.; Meyerhoff, M. E.; Yang, V. C. ASAIO J. 1994, 40(3), M401-5. (D81) Ambacha, F.; Moges, G.; Chandravanshi, B. S. Mikrochim. Acta 1996, 124(1-2), 63-71. (D82) Mitsubayashi, K.; Suzuki, M.; Tamiya, E.; Karube, I. Anal. Chim. Acta 1994, 289(1), 27-34. (D83) Sawada, S.; Osakai, T.; Senda, M. Anal. Sci. 1995, 11(5), 7338. (D84) Telting-Diaz, M.; Collison, M. E.; Meyerhoff, M. E. Anal. Chem. 1994, 66(4), 576-83.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

201R

(D85) Senda, M. J. Electroanal. Chem. 1994, 378(1-2), 215-20. (D86) Katano, H.; Maeda, K.; Senda, M. Anal. Sci. 1996, 12(1), 616. (D87) Hall, D. G. J. Phys. Chem. 1996, 100(17), 7230-6. (D88) Schaller, U.; Bakker, E.; Pretsch, E. ACH-Models Chem. 1994, 131(6), 739-59. (D89) Horvath, V.; Horvai, G. Anal. Chim. Acta 1993, 282(2), 25964. (D90) Bakker, E.; Meruva, R. K.; Pretsch, E.; Meyerhoff, M. E. Anal. Chem. 1994, 66(19), 3013-20. (D91) Khoshkbarchi, M. K.; Vera, J. H. Fluid Phase Equilib. 1996, 121(1-2), 253-65. (D92) Tendero, M. J. L.; Benito, A.; Martinez-Manez, R.; Soto, J.; Paya, J.; Edwards, A. J.; Raithby, P. R. J. Chem. Soc., Dalton Trans. 1996, (3), 343-51. (D93) Nakamura, T.; Nakamura, Y.; Kojima, T.; Izutsu, K. Bull. Chem. Soc. Jpn. 1990, 63(9), 2615-9. (D94) Verpoorte, E. M. J.; Chan, A. D. C.; Harrison, D. J. Electroanalysis (N.Y.) 1993, 5(9-10), 845-54. (D95) Hulanicki, A.; Michalska, A. Mater. Sci. Forum 1993, 122 (Conducting Polymers: Transport Phenomena), 237-44. (D96) Ahmed, M. A.; Elbeshlawy, M. M. Anal. Lett. 1995, 28(12), 2123-38. (D97) Hopkala, H.; Drozd, J.; Zareba, S. Pharmazie 1997, 52(4), 307-9. (D98) Stefan, R. I. Anal. Chim. Acta 1997, 350(1-2), 105-8. (D99) Fueglein, R.; Brauechle, C.; Hampp, N. Anal. Sci. 1994, 10(6), 959-62. (D100) Sakaki, T.; Harada, T.; Kawahara, Y.; Shinkai, S. J. Inclusion Phenom. Mol. Recognit. Chem. 1994, 17(4), 377-92. (D101) Schaller, U.; Bakker, E.; Pretsch, E. Anal. Chem. 1995, 67(18), 3123-32. (D102) Amin, A. S.; Zareh, M. M. Monatsh. Chem. 1996, 127(11), 1123-1130. (D103) Petrukhin, O. M.; Urusov, Yu. I.; Evsevleeva, L. G.; Borzhitskii, Yu. A. Russ. J. Electrochem. (Transl. of Elektrokhimiya) 1995, 31(2), 113-9. (D104) Odashima, K.; Hashimoto, H.; Umezawa, Y. Mikrochim. Acta 1994, 113(3-6), 223-38. (D105) Zolotov, Y. A.; Pletnev, I. V.; Torocheshnikova, I. I.; Shvedene, N. V.; Nemilova, M. Yu.; Kovalev, V. V.; Shokova, E. A.; Smirnova, S. V. Solvent Extr. Res. Dev. Jpn. 1994, 1, 123-36. (D106) Yamamoto, H.; Shinkai, S. Chem. Lett. 1994, (6), 1115-8. (D107) Shibutani, Y.; Yoshinaga, H.; Yakabe, K.; Shono, T.; Tanaka, M. J. Inclusion Phenom. Mol. Recognit. Chem. 1994, 19(14), 333-42. (D108) Chan, W. H.; Yuan, R. Analyst (Cambridge, U.K.) 1995, 120(4), 1055-8. (D109) Natale, C. D.; Davide, F.; Brunink, J. A. J.; D′Amico, A.; Vlasov, Y. G.; Legin, A. V.; Rudnitskaya, A. M. Sens. Actuators, B 1996, B34(1-3), 539-42. (D110) Kimura, K.; Sunagawa, T.; Yokoyama, M. Chem. Commun. (Cambridge) 1996, (6), 745-6. (D111) Belyustin A. A.; Shultz, M. M. Ber. Bunsen-Ges. 1996, 100(9), 1508-11. (D112) Bakker, E. Anal. Chem. 1997, 69(6), 1061-9. (D113) Lee, K. H.; Cho, D. H.; Jeung, S. S. Bull. Electrochem. 1995, 11(9), 438-41. (D114) Hauser, P. C.; Chiang, D. W. L.; Wright, G. A. Anal. Chim. Acta 1995, 302(2-3), 241-8. (D115) Momma, T.; Komaba, S.; Yamamoto, M.; Osaka, T.; Yamauchi, S. Sens. Actuators, B 1995, B25(1-3), 724-8. (D116) Moriarty, R. M.; Rao, M. S. C.; Tuladhar, S. M.; Gilardi, R.; D’Silva, C.; Williams, G. J. Phys. Org. Chem. 1994, 7(6), 3038. (D117) Bochenska, M.; Gdaniec, M. J. Inclusion Phenom. Mol. Recognit. Chem. 1994, 20(1), 53-71. (D118) Suzuki, K.; Yamada, H.; Sato, K.; Watanabe, K.; Hisamoto, H.; Tobe, Y.; Kobiro, K. Anal. Chem. 1993, 65(23), 3404-10. (D119) Jung, S. O.; Park, S. S.; Kim, B. G.; Kim, J. S. Bull. Korean Chem. Soc. 1995, 16(3), 197-9. (D120) Nassory, N. S.; Karim, N. H. Turk. J. Chem. 1994, 18(2), 12631. (D121) Yoshida, Z.; Aoyagi, H.; Meguro, Y.; Kitatsuji, Y.; Kihara, S. J. Alloys Compd. 1994, 213/214, 324-7. (D122) Casabo, J.; Flor, T.; Romero, M. I.; Teixidor, F.; Perez-Jimenez, C. Anal. Chim. Acta 1994, 294(2), 207-13. (D123) Saleh, M. B. Analyst (Cambridge, U.K.) 1994, 119(10), 22058. (D124) Malinowska, E.; Jurczak, J.; Stankiewicz, T. Electroanalysis (N.Y.) 1993, 5(5-6), 489-92. (D125) Didina, S. E.; Mitnik, L. L.; Koshmina, N. V.; Grekovich, A. L.; Mikhelson, K. N. Sens. Actuators, B 1994, 19(1-3), 3969. (D126) O’Connor, K. M.; Cherry, M.; Svehla, G.; Harris, S. J.; McKervey, M. A. Talanta 1994, 41(7), 1207-17. (D127) Malinowska, E.; Brzozka, Z.; Kasiura, K.; Egberink, R. J. M.; Reinhoudt, D. N. Anal. Chim. Acta 1994, 298(2), 253-8. (D128) Tavakkoli, N.; Shamsipur, M. Anal. Lett. 1996, 29(13), 22692279. (D129) Hasse, W.; Ahlers, B.; Reinbold, J.; Cammann, K. Sens. Actuators, B 1994, 19(1-3), 383-6. 202R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(D130) Rao, G. N.; Srivastava, S.; Srivastava, S. K.; Singh, M. Talanta 1996, 43(10), 1821-5. (D131) Siswanta, D.; Kin, M.; Hisamoto, H.; Suzuki, K. Chem. Lett. 1996, (11), 1011-2. (D132) Jain, A. K.; Gupta, V. K.; Singh, L. P. Indian J. Chem. Technol. 1995, 2(4), 189-92. (D133) Fakhari, A. R.; Ganjali, M. R.; Shamsipur, M. Anal. Chem. 1997, 69(18), 3693-6. (D134) O’Donnell, J.; Li, H.; Rusterholz, B.; Pedrazza, U.; Simon, W. Anal. Chim. Acta 1993, 281(1), 129-34. (D135) van der Wal, P. D.; van den Berg, A.; de Rooij, N. F. Sens. Actuators, B 1994, 18(1-3), 200-7. (D136) Wroblewski, W.; Brzozka, Z. Anal. Chim. Acta 1996, 326(13), 163-8. (D137) Covington, A. K.; Totu, E. Analyst (Cambridge, U.K.) 1996, 121(12), 1811-5. (D138) Suzuki, K.; Watanabe, K.; Matsumoto, Y.; Kobayashi, M.; Sato, S.; Siswanta, D.; Hisamoto, H. Anal. Chem. 1995, 67(2), 32434. (D139) Cazaux, L.; Tisnes, P.; Picard, C.; D’Silva, C.; Williams, G. Analyst (Cambridge, U.K.) 1994, 119(11), 2315-18. (D140) Ghauri, M. S.; Thomas, J. D. R. Analyst (Cambridge, U.K.) 1994, 119(11), 2323-6. (D141) Schindler, J. G.; Herna, K.; Reisinger, E.; Burk, B.; Engisch, R.; Heidrich, J. P.; Buchheister, B. M.; Wortmann, S.; Schindler, M. M.; et al. J. Prakt. Chem./Chem.-Ztg. 1994, 336(7), 575-80. (D142) Li, A.; Zhang, Z.; Wu, Y.; An, H.; Izatt, R. M.; Bradshaw, J. S. J. Inclusion Phenom. Mol. Recognit. Chem. 1993, 15(4), 31727. (D143) Saleh, M. B.; Taha, F.; Aof, G. S. Fresenius’ J. Anal. Chem. 1993, 346(10-11), 919-23. (D144) Campanella, L.; Aiello, L.; Colapicchioni, C.; Tomassetti, M. Analusis 1996, 24(9-10), 387-391. (D145) Shvedene, N. V.; Shishkanova, T. V.; Kamenev, A. I.; Shpigun, O. A. J. Anal. Chem. (Transl. of Zh. Anal. Khim.) 1995, 50(4), 408-13. (D146) Lindino, C. A.; Bulhoes, L. O. S. Anal. Chim. Acta 1996, 33(3), 317-22. (D147) Okada, T.; Hiratani, K.; Sugihara, H.; Koshizaki, N. Sens. Actuators, B 1993, 14(1-3), 563-5. (D148) Jeong, S.-K.; Lee, B.-G.; Kim, K.-J. Bull. Korean Chem. Soc. 1995, 16(6), 553-5. (D149) Cosofret, V. V.; Buck, R. P.; Erdosy, M. Anal. Chem. 1994, 66(21), 3592-9. (D150) Lindner, E.; Cosofret, V. V.; Buck, R. P.; Johnson, T. A.; Ash, R. B.; Neuman, M. R.; Kao, W. J.; Anderson, J. M. Electroanalysis 1995, 7(9), 864-70. (D151) Lexa, J.; Stulik, K. Talanta 1994, 41(2), 301-7. (D152) Carey, C. M.; Riggan, W. B., Jr. Anal. Chem. 1994, 66(21), 3587-91. (D153) Wroblewski, W.; Brzozka, Z.; Rudkevich, D. M.; Reinhoudt, D. N. Sens. Actuators, B 1996, B3(3), 151-5. (D154) Badr, I. H. A.; Meyerhoff, M. E.; Hassan, S. S. M. Anal. Chem. 1995, 67(15), 2613-8. (D155) Liu, D.; Chen, W. C.; Yang, R. H.; Yu, R. Q. Chin. Chem. Lett. 1997, 8(3), 251-4. (D156) Siswanta, D.; Takenaka, J.; Suzuki, T.; Sasakura, H.; Hisamoto, H.; Suzuki, K. Chem. Lett. 1997, (3), 195-6. (D157) Kuznetsova, I. V.; Khmelev, S. S.; Sivanova, O. V. J. Anal. Chem. (Transl. of Zh. Anal. Khim.) 1997, 52(1), 48-51. (D158) Ma, Y. L.; Galal, A.; Zimmer, H.; Mark, H. B., Jr.; Huang, Z. F.; Bishop, P. L. Anal. Chim. Acta 1994, 289(1), 21-6. (D159) Gao, D.; Gu, J.; Yu, R.-Q.; Zheng, G.-D. Anal. Chim. Acta 1995, 302(2-3), 263-8. (D160) Jyo, A.; Minakami, R.; Kanda, Y.; Egawa, H. Sens. Actuators, B 1993, 13(1-3), 200-4. (D161) Hisamoto, H.; Siswanta, D.; Nishihara, H.; Suzuki, K. Anal. Chim. Acta 1995, 304(2), 171-6. (D162) Alcada, M. N. M. P.; Lima, J. L. F. C.; Conceicao, M.; Montenegro, B. S. Farmaco 1994, 49(11), 721-6. (D163) Petrukhin, O. M.; Evsevleeva, L. G.; Urusov, Yu. I.; Borzhitskii, Yu. A.; Tsvetkov, E. N.; Baulin, V. E.; Syundyukova, V. Kh.; Bondarenko, N. A. J. Anal. Chem. (Transl. of Zh. Anal. Khim.) 1995, 50(1), 57-64. (D164) Hulanicki, A.; Michalska, A.; Lewenstam, A. Electroanalysis (N.Y.) 1994, 6(7), 604-5. (D165) Galal, A.; Wang, Z.; Karagoezler, A. E.; Zimmer, H.; Mark, H. B., Jr.; Bishop, P. L. Anal. Chim. Acta 1994, 299(2), 145-63. (D166) Aamrani, F. Z. El; Sastre, A.; Aguilar, M.; Beyer, L.; Florido, A. Anal. Chim. Acta 1996, 329(3), 247-52. (D167) Dumkiewicz, R. Analyst (Cambridge, U.K.) 1994, 119(7), 1619-23. (D168) Ahlers, B.; Cammann, K.; Warzeska, S.; Kraemer, R. Angew. Chem., Int. Ed. Engl. 1996, 35(18), 2141-3. (D169) Goldberg, H. D.; Brown, R. B.; Liu, D. P.; Meyerhoff, M. E. Sens. Actuators, B 1994, B21(3), 171-83. (D170) Pelws, N. Pure Appl. Chem. 1996, 68(10), 1837-41. (D171) Schnakenberg, U.; Lisec, T.; Hintsche, R.; Kuna, I.; Uhlig, A.; Wagner, B. Sens. Actuators, B 1996, B34(1-3), 476-80. (D172) Valdes-Perezgasga, F.; Alegret, S.; Alonso, J.; Bartroli, J. Sens. Actuators, B 1993, 15(1-3), 214-7.

(D173) Wang, J.; Pamidi, P. V. A.; Nascimento, V. B.; Angnes, L. Electroanalysis 1997, 9(9), 689-92. (D174) Bratov, A.; Abramova, N.; Munoz, J.; Dominguez, C.; Alegret, S.; Bartroli, J. Anal. Chem. 1995, 67(19), 3589-95. (D175) Ambrose, T. M.; Meyerhoff, M. E. Electroanalysis 1996, 8(12), 1095-100. (D176) Poghossian, A. S. Sens. Actuators, B 1993, 14(1-3), 653-4. (D177) Knoll, M.; Cammann, K.; Dumschat, C.; Sundermeier, C.; Eshold, J. Sens. Actuators, B 1994, 18(1-3), 51-5. (D178) Park, L.-S.; Hur, Y.-J.; Sohn, B.-K. Sens. Actuators, A 1996, A57(3), 239-243. (D179) Merlos, A.; Cabruja, E.; Esteve, J. Sens. Actuators, B 1995, B24(1-3), 228-31. (D180) Merlos, A.; Esteve, J.; Acero, M. C.; Cane, C.; Bausells, J. Sens. Actuators, B 1995, B27(1-3), 336-40. (D181) Munoz, J.; Bratov, A.; Mas, R.; Abramova, N.; Dominguez, C.; Bartroli, J. J. Electrochem. Soc. 1996, 143(6), 2020-5. (D182) van Hal, R. E. G.; Bergveld, P.; Engbersen, J. F. J.; Reinhoudt, D. N. Sens. Actuators, B 1995, B23(1), 17-26. (D183) Cosofret, V. V.; Erdosy, M.; Johnson, T. A.; Bellinger, D. A.; Buck, R. P.; Ash, R. B.; Neuman, M. R. Anal. Chim. Acta 1995, 314(1-2), 1-11. (D184) Srivastava, S. K.; Tewari, V. K.; Vardhan, H. Sens. Actuators, B 1995, B28(1), 21-4. (D185) Huang, C.-L.; Ren, J.-J.; Xu, D.-F. Talanta 1996, 43(12), 20615. (D186) Alegret, S.; Garcia-Raurich, J.; Ibanez-Porcel, C.; MartinezFabregas, E.; Martorell, D. Quim. Anal. (Barcelona) 1994, 13(4), 176-81. (D187) Lima, J. L. F. C.; Conceicao, M.; Montenegro, B. S. M.; Roque de Silva, A. M. Quim. Anal. (Barcelona) 1992, 11(2, 3 y 4), 67-78. (D188) Shuk, P.; Ramanujachary, K. V.; Greenblatt, M. Solid State Ionics 1996, 86-8 (Pt. 2), 1115-20. (D189) Volkov, V. L.; Gyrdasova, O. I. J. Anal. Chem. (Transl. of Zh. Anal. Khim.) 1995, 50(6), 595-8. (D190) Yang, Y.; Bi, Y.; Liu, M.; Fu, J.; Xi, Z. Microchem. J. 1997, 55(3), 348-50. (D191) Kriksunov, L. B.; Macdonald, D. D.; Millett, P. J. J. Electrochem. Soc. 1994, 141(11), 3002-5. (D192) Rocher, V.; Chovelon, J. M.; Jaffrezic-Renault, N.; Cros, Y.; Birot, D. J. Electrochem. Soc. 1994, 141(2), 535-9. (D193) Niu, M.-N.; Ding, X.-F.; Tong, Q.-Y. Sens. Actuators, B 1996, B37(1-2), 13-7. (D194) Miyahara, Y.; Yamashita, K.; Ozawa, S.; Watanabe, Y. Anal. Chim. Acta 1996, 331(1-2), 85-95. (D195) Shul′ga, A. A.; Netchiporouk, L. I.; Sandrovsky, A. K.; Abalov, A. A.; Frolov, O. S.; Kononenko, Yu. G.; Maupas, H.; Martelet, C. Sens. Actuators, B 1996, B30(2), 101-5. (D196) Cambiaso, A.; Chiarugi, S.; Grattarola, M.; Lorenzelli, L.; Lui, A.; Margesin, B.; Martinoia, S.; Zanini, V.; Zen, M. Sens. Actuators, B 1996, B34(1-3), 245-51. (D197) Gracia, I.; Cane, C.; Lozano, M.; Esteve, J. Sens. Actuators, B 1993, 15(1-3), 218-22. (D198) Bouazizi, A.; Maaref, H.; Hendji, A. M. Nyamsi; JaffrezicRenault, N.; Chevalier, Y. Sens. Mater. 1997, 9(3), 149-61. (D199) Jimenez, C.; Bartroli, J. Electroanalysis 1997, 9(4), 316-9. (D200) Lugtenberg, R. J. W.; Antonisse, M. M. G.; Egberink, R. J. M.; Engbersen, J. F. J.; Reinhoudt, D. N. J. Chem. Soc., Perkin Trans. 2 1996, (9), 1937-41. (D201) Kwon, D.-H.; Cho, B.-W.; Kim, C.-S.; Sohn, B.-K. Sens. Actuators, B 1996, B34(1-3), 441-5. (D202) Moritz, W.; van der Schoot, B. H.; de Rooij, N. F.; van den Vlekkert, H. H.; Ligtenberg, H. C. G. Sens. Actuators, B 1993, 13(1-3), 217-20. (D203) Gorchkov, D. V.; Soldatkin, A. P.; Maupas, H.; Martelet, C.; Jaffrezic-Renault, N. Anal. Chim. Acta 1996, 331(3), 217-3. (D204) Ivnitskii, D. M.; Rishpon, J. Anal. Chim. Acta 1993, 282(3), 517-25. (D205) Uhe, B.; Schuhmann, W.; Janker, G.; Schmidt, H.-L.; Janata, J. Electroanalysis (N.Y.) 1994, 6(7), 543-52. (D206) Jaffrezic-Renault, N.; Martelet, C.; Clechet, P.; Nyamsi Hendji, A.-M.; Shul′ga, A. A.; Dzyadevitch, S. V.; Netchiporuk, L. I.; Soldatkin, A. P. Sens. Mater. 1996, 8(3), 161-7. (D207) Kazanskaya, N.; Kukhtin, A.; Manenkova, M.; Reshetilov, N.; Yarysheva, L.; Arzhakova, O.; Volynskii, A.; Bakeyev, N. Biosens. Bioelectron. 1996, 11(3), 253-61. (D208) Anzai, J.-i.; Sakamura, K.; Hasebe, Y.; Osa, T. Anal. Chim. Acta 1993, 281(3), 543-8. (D209) Walcerz, I.; Koncki, R.; Leszczynska, E.; Glab, S. Anal. Chim. Acta 1995, 315(3), 289-96. (D210) Davies, O. G.; Thomas, J. D. R. Chem. Anal. (Warsaw) 1995, 40(3), 341-50. (D211) Koncki, R.; Kopczewska, E.; Glab, S. Anal. Lett. 1994, 27(3), 475-86. (D212) Grattarola, M.; Martinoia, S.; Massobrio, G.; Bove, M.; Ciccarelli, C. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 1993, 236, 105-12. (D213) Adachi, Y.; Sugawara, M.; Taniguchi, K.; Umezawa, Y. Anal. Chim. Acta 1993, 281(3), 577-84. (D214) Daiho, T.; Kubota, T.; Kanazawa, T. Biochemistry 1993, 32(38), 10021-6.

(D215) Razumas, V.; Kanapieniene, J.; Nylander, T.; Engstroem, S.; Larsson, K. Anal. Chim. Acta 1994, 289(2), 155-62. (D216) Amemiya, S.; Buehlmann, P.; Tohda, K.; Umezawa, Y. Anal. Chim. Acta 1997, 341(2-3), 129-39. (D217) Koncki, R.; Walcerz, I.; Ruckruh, F.; Glab, S. Anal. Chim. Acta 1996, 333(3), 215-22. (D218) Kataky, R.; Parker, D. Analyst (Cambridge, U.K.) 1996, 121(12), 1829-34. (D219) Kataky, R.; Parker, D.; Kelly, P. M. Scand. J. Clin. Lab. Invest. 1995, 55(5), 409-19. (D220) Bates, P. S.; Kataky, R.; Parker, D. Analyst (Cambridge, U.K.) 1994, 119(2), 181-6. (D221) Nguyen, T. P.; Turmine, M.; Lettelier, P.; Gosselet, N. M.; Sebille, B. Pharmazie 1997, 52(3), 216-8. (D222) Mukhopadhyay, S.; Jacob, K. T. J. Electrochem. Soc. 1995, 142(1), 161-5. (D223) Miyazaki, K.; Xu, C. N.; Hieda, M. J. Electrochem. Soc. 1994, 141(4), L35-7. (D224) Wang, D. Y. J. Phys. Chem. Solids 1994, 55(12), 1471-8. (D225) Frade, J. R. Solid State Ionics 1995, 78(1, 2), 87-97. (D226) Baier, G.; Schuele, V.; Vogel, A. Appl. Phys. A 1993, A57(1), 51-6. (D227) Xiang, L. X.; Zhang, Z. S. Sens. Actuators, B 1996, B37(3), 175-7. (D228) Niu, W.; Xu, C.; Su, L. Chin. J. Electron. 1997, 6(1), 73-6. (D229) Costa, A. D. S.; Labrincha, J. A.; Marques, F. M. B. Key Eng. Mater. 1997, 132-6 (Pt. 2, Euro Ceramics V), 1381-4. (D230) Miura, N.; Yan, Y.; Sato, M.; Yao, S.; Nonaka, S.; Shimizu, Y.; Yamazoe, N. Sens. Actuators, B 1995, B24(1-3), 260-5. (D231) Mason, L. W.; Oh, S.; Joseph, J. P. Sens. Actuators, B 1995, B25(1-3), 407-11. (D232) Lee, D.-D.; Choi, S.-D.; Lee, K.-W. Sens. Actuators, B 1995, B25(1-3), 607-9. (D233) Samec, Z.; Opekar, F.; Crijns, G. J. E. F. Electroanalysis 1995, 7(11), 1054-8. (D234) Tan, Y.; Tan, T. C. J. Electrochem. Soc. 1994, 141(2), 461-7. (D235) Lu, G.; Miura, N.; Yamazoe, N. Sens. Actuators, B 1996, B35(1-3), 130-5. (D236) Sata, T. Sens. Actuators, B 1995, B23(1), 63-9. (D237) Brueser, V.; Lawrenz, U.; Jakobs, S.; Moebius, H.-H.; Schoenauer, U. Diffus. Defect Data, Pt. B 1994, 39-40 (Systems with Fast Ionic Transport-IV), 269-72. (D238) Kirchnerova, J.; Bale, C. W.; Skeaff, J. M. Solid State Ionics 1996, 91(3, 4), 257-64. (D239) Sadaoka, Y.; Sakai, Y.; Manabe, T. Sens. Actuators, B 1993, 14(1-3), 532-5. (D240) Dubbe, A.; Wake, M.; Sadaoka, Y. Solid State Ionics 1997, 96(3, 4), 201-8. (D241) Leonhard, V.; Fischer, D.; Erdmann, H.; Ilgenstein, M.; Koeppen, H. Sens. Actuators, B 1993, 14(1-3), 530-1. (D242) Brailsford, A. D.; Yussouff, M.; Logothetis, E. M. Sens. Actuators, B 1996, B34(1-3), 407-11. (D243) Hibino, T.; Masegi, A.; Iwahara, H. Res. Chem. Intermed. 1995, 21(2), 181-91. (D244) Hibino, T.; Iwahara, H. J. Appl. Electrochem. 1994, 24(3), 26870. (D245) Stephen, R.; Vangrunderbeek, J.; Buekenhoudt, A.; Luyten, J.; De Schutter, F. Solid State Ionics 1996, 86-8(Pt. 2), 112530. (D246) Ishihara, T.; Higuchi, M.; Furutani, H.; Fukushima, T.; Nishiguchi, H.; Takita, Y. J. Electrochem. Soc. 1997, 144(5), L1225. (D247) Zhuiykov, S. Int. J. Hydrogen Energy 1996, 21(9), 749-59. (D248) Barker, P. S.; Petty, M. C.; Monkman, A. P.; McMurdo, J.; Cook, M. J.; Pride, R. Thin Solid Films 1996, 284-5, 94-7. (D249) Li, J.; Janata, J.; Josowicz, M. Electroanalysis 1996, 8(8-9), 778-83. (D250) Arbab, A.; Spetz, A.; Lundstroem, I. Sens. Actuators, B 1993, 15(1-3), 19-23. (D251) Flietner, B.; Doll, T.; Lechner, J.; Leu, M.; Eisele, I. Sens. Actuators, B 1994, B22(2), 109-13. (D252) Barker, P. S.; Di Bartolomeo, C.; Monkman, A. P.; Petty, M. C.; Pride, R. Sens. Actuators, B 1995, B25(1-3), 451-3. (D253) Osorio-Saucedo, R.; Luna-Arredondo, E. J.; Calleja-Arriaga, W.; Reyes-Barranca, M. A. Sens. Actuators, B 1996, B37(3), 1239. (D254) Zubkans, J.; Lloyd Spetz, A.; Sundgren, H.; Winquist, F.; Kleperis, J.; Lusis, A.; Lundstroem, I. Thin Solid Films 1995, 268(1-2), 140-3. (D255) Seo, H.; Endoh, T.; Fukuda, H.; Nomura, S. Electron. Lett. 1997, 33(6), 535-6. (D256) Gurbuz, Y.; Kang, W. P.; D.son, J. L.; Kerns, D. V. Sens. Actuators, B 1996, B35(1-3), 68-72. (D257) Filippov, V. I.; Terentjev, A. A.; Yakimov, S. S. Sens. Actuators, B 1995, B28(1), 55-8. (D258) Morita, Y.; Nakamura, K.-i.; Kim, C. Sens. Actuators, B 1996, B33(1-3), 96-9. (D259) Li, J.; Petelenz, D.; Janata, J. Electroanalysis (N.Y.) 1993, 5(910), 791-4. (D260) Yakimov, S. S. Sens. Actuators, B 1993, 14(1-3), 693-4. (D261) Gergintschew, Z.; Foerster, H.; Kositza, J.; Schipanski, D. Sens. Actuators, B 1995, B26(1-3), 170-3.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

203R

(D262) Ji, J. J.; Brungs, M. P. Sci. Technol. Zirconia V, [Int. Conf.], 5th 1992, 1993, 623-30. (D263) Wu, W.; Tang, S.; Hui, S.; Liu, Q. Solid State Ionics 1994, 70-1(1-4), 606-9. (D264) Schettler, H.; Liu, J.; Weppner, W.; Huggins, R. A. Appl. Phys. A 1993, A57(1), 31-5. (D265) Kleitz, M.; Iharada, T.; Abraham, F.; Mairesse, G.; Fouletier, J. Sens. Actuators, B 1993, 13(1-3), 27-30. (D266) Janata, J.; Josowicz, M. Anal. Chem. 1997, 69(9), 293A-6A. (D267) Umezawa, Y.; Odashima, K.; Sugawara, M.; Tohda, K. Molecular recognition at membrane surfaces; detection of bioactive substances; Bioelectroanalysis 2, Symposium; Pungor, E., Ed.; Akademiai Kiado: Budapest, 1993; pp 213-33. (D268) Wang, J.; Chen, Q.; Renschler, C. L.; White, C. Anal. Chem. 1994, 66(13), 1988-92. (D269) Yamato, H.; Koshiba, T.; Ohwa, M.; Wernet, W.; Matsumura, M. Synth. Met. 1997, 87(3), 231-236. (D270) Walcarius, A.; Barbaise, T.; Bessiere, J. Anal. Chim. Acta 1997, 340(1-3), 61-76. (D271) Fang, Y.; Tong, W.; He, P.; Wang, R.; Jin, L. Electroanalysis (N.Y.) 1994, 6(5-6), 481-4. (D272) Fahnenbrock, S.; Klockow, D. Sens. Actuators, B 1994, 19(13), 515-7. (D273) Moussy, F.; Harrison, D. J. Anal. Chem. 1994, 66(5), 674-9. (D274) Parellada, J.; Dominguez, E.; Katakis, I. Polym. Mater. Sci. Eng. 1997, 76, 511-2. (D275) Ortiz, P. I.; Abu Nader, P. R.; Mottola, H. A. Electroanalysis (N.Y.) 1993, 5(2), 165-9. (D276) Tsionsky, M.; Gun, G.; Glezer, V.; Lev, O. Anal. Chem. 1994, 66(10), 1747-53. (D277) Seddon, B. J.; Shao, Y.; Girault, H. H. Electrochim. Acta 1994, 39(16), 2377-86. (D278) Hinkers, H.; Hermes, T.; Sundermeier, C.; Borchardt, M.; Dumschat, C.; Buecher, S.; Buehner, M.; Cammann, K.; Knoll, M. Sens. Actuators, B 1995, B24(1-3), 300-3. (D279) Dong, S.; Guo, Y. Anal. Chem. 1994, 66(22), 3895-9. (D280) Guo, Y.; Dong, S. Anal. Chem. 1997, 69(10), 1904-1908. (D281) Liu, J.-H.; Chung, Y.-C.; Lin, M.-T. J. Appl. Polym. Sci. 1995, 55(10), 1441-9. (D282) Doretti, L.; Gattolin, P.; Lora, S. Anal. Lett. 1994, 27(13), 2455-70. (D283) Strike, D. J.; de Rooij, N. F.; Koudelka-Hep, M. Biosens. Bioelectron. 1995, 10(1/2), 61-6. (D284) Shao, Y.; Mirkin, M. V.; Fish, G.; Kokotov, S.; Palanker, D.; Lewis, A. Anal. Chem. 1997, 69(8), 1627-34. (D285) Seddon, B. J.; Shao, Y.; Girault, H. H. Electrochim. Acta 1994, 39(16), 2377-86. (D286) Sangodkar, H.; Sukeerthi, S.; Srinivasa, R. S.; Lal, R.; Contractor, A. Q. Anal. Chem. 1996, 68(5), 779-83. (D287) Park, J. K.; Yee, H. J.; Kim, S. T. Biosens. Bioelectron. 1995, 10(6/7), 587-94. (D288) Strike, D. J.; van den Berg, A.; de Rooij, N. F.; Koudelka-Hep, M. ACS Symp. Ser. 1994, No. 556 (Diagnostic Biosensor Polymers), 298-306. (D289) Treloar, P. H.; Higson, S. P. J.; Desai, M. A.; Christie, I. M.; Ghosh, S.; Rosenberg, M. F.; Reddy, S. M.; Jones, M. N.; Vadgama, P. M. NATO ASI Ser. Ser. E 1993, 252 (Uses of Immobilized Biological Compounds), 131-40. (D290) Paeschke, M.; Wollenberger, U.; Koehler, C.; Lisec, T.; Schnakenberg, U.; Hintsche, R. Anal. Chim. Acta 1995, 305(1-3), 126-36. (D291) Tucker, R. C.; Danilich, M. J.; Marchant, R. E. Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 1997, 38(1), 1027-8. (D292) Seddon, B. J.; Shao, Y.; Fost, J.; Girault, H. H. Electrochim. Acta 1994, 39(6), 783-91. (D293) Lyons, M. E. G.; Greer, J. C.; Fitzgerald, C. A.; Bannon, T.; Barlett, P. N. Analyst (Cambridge, U.K.) 1996, 121(6), 71531. (D294) Lyons, M. E. G.; Lyons, C. H.; Fitzgerald, C.; Bartlett, P. N. J. Electroanal. Chem. 1994, 365(1-2), 29-34. (D295) Liu, A.; Wang, E. Anal. Chim. Acta 1993, 282(3), 497-503. (D296) Pennarun, G.; Boxall, C.; O’Hare, D. Analyst (Cambridge, U.K.) 1996, 121(12), 1779-88. (D297) Zou, M. Z.; Xu, H. D.; Lu, J.; Ru, Q. H. Chin. Chem. Lett. 1997, 8(3), 247-50. (D298) Chen, B.; Goh, N.-K.; Chia, L.-S. Electrochim. Acta 1997, 42(4), 595-604. (D299) Pariente, F.; Alonso, J. L.; Abruna, H. D. J. Electroanal. Chem. 1994, 379(1-2), 191-7. (D300) Egashira, N.; Kumasako, H.; Kurauchi, Y.; Ohga, K. Anal. Sci. 1994, 10(3), 405-8. (D301) Dobson, D. J.; Saini, S. Anal. Chem. 1997, 69(17), 3532-8. (D302) Uchiyama, S.; Ikarugi, T.; Mori, M.; Kasama, K.; Ishikawa, Y.; Kaneko, M.; Umezawa, A. Electroanalysis (N.Y.) 1993, 5(2), 121-4. (D303) Kawaguchi, T.; Yamauchi, Y.; Maeda, H.; Ohmori, H. Chem. Pharm. Bull. 1993, 41(9), 1601-3. (D304) Cheng, Q.; Brajter-Toth, A. Anal. Chem. 1996, 68(23), 41805. (D305) Cataldi, T. R. I.; Centonze, D.; Guerrieri, A. Anal. Chem. 1995, 67(1), 101-7. (D306) Schweizer-Berberich, P.-M.; Vaihinger, S.; Goepel, W. Sens. Actuators, B 1994, 18(1-3), 282-90. 204R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(D307) Hahn, C. E. W.; McPeak, H.; Bond, A. M. J. Electroanal. Chem. 1995, 393(1-2), 69-74. (D308) Qian, F.; Lu, J.; Zhou, Z.; Cha, C. Sens. Actuators, B 1993, 17(1), 77-83. (D309) Ishiji, T.; Iizima, T.; Takeuchi, T.; Matsuda, H.; Takahashi, K. Denki Kagaku Kogyo Butsuri Kagaku 1993, 61(8), 1019-20. (D310) Palombari, R.; Sebastiani, B. J. Electroanal. Chem. 1993, 356(1-2), 157-62. (D311) Ishibashi, K.; Kashima, T.; Asada, A. Sens. Actuators, B 1993, 13(1-3), 41-4. (D312) Tan, Y.; Tan, T. C. J. Electrochem. Soc. 1995, 142(6), 19239. (D313) Narducci, D.; Facheris, L.; Mari, C. M. Sens. Actuators, B 1995, B25(1-3), 636-8. (D314) McPeak, H.; Hahn, C. E. W. J. Electroanal. Chem. 1997, 427(1-2), 179-188. (D315) Benammar, M.; Maskell, W. C. Appl. Phys. A 1993, A57(1), 45-50. (D316) Kawada, T.; van Hassel, B. A.; Horita, T.; Sakai, N.; Yokokawa, H.; Dokiya, M. Solid State Ionics 1994, 70-1(1-4), 65-71. (D317) Hibino, T.; Iwahara, H. J. Electrochem. Soc. 1994, 141(9), L125-6. (D318) Alberti, G.; Cherubini, F.; Palombari, R. Sens. Actuators, B 1996, B37(3), 131-4. (D319) Opekar, F.; Langmaier, J.; Samec, Z. J. Electroanal. Chem. 1994, 379(1-2), 301-6. (D320) Mayo, N.; Harth, R.; Mor, U.; Marouani, D.; Hayon, J.; Bettelheim, A. Anal. Chim. Acta 1995, 310(1), 139-44. (D321) Dubbe, A.; Wiemhoefer, H.-D.; Sadaoka, Y.; Goepel, W. Sens. Actuators, B 1995, B25(1-3), 600-2. (D322) Ramesh, C.; Shankar, P.; Periaswami, G.; Mathews, C. K. Indira Gandhi Cent. At. Res. Kalpakkam, [Rep.] IGC 1993, IGC-152; Chem. Abstr. 1995, 123, 274468. (D323) Kriksunov, L. B.; Macdonald, D. D. Sens. Actuators, B 1996, B32(1), 57-60. (D324) Zheng, M.; Zhen, X. Metall. Trans. B 1993, 24B(5), 789-94. (D325) Jeroschewski, P.; Haase, K.; Trommer, A.; Gruendler, P. Fresenius’ J. Anal. Chem. 1993, 346(10-11), 930-3. (D326) Funazaki, N.; Hemmi, A.; Ito, S.; Asano, Y.; Yano, Y.; Miura, N. Yamazoe, N. Sens. Actuators, B 1995, B25(1-3), 797800. (D327) Ben Rashed, A. B.; Bull, D. R.; Harris, G. J. Sens. Actuators, B 1995, B24(1-3), 248-51. (D328) Hanamoto, H.; Tsuchiya, K.; Kuwano, J. Sens. Actuators, B 1995, B25(1-3), 438-42. (D329) Yuasa, M.; Nagaiwa, T.; Kato, M.; Sekine, I.; Hayashi, S. J. Electrochem. Soc. 1995, 142(8), 2612-7. (D330) Luo, R.-X.; Liu, E.-H.; Ren, F.-C.; Chen, A.-F.; Liu, C.-c. Sci. China, Ser. A 1994, 37(3), 379-84. (D331) Rabinovich, L.; Gun, J.; Tsionsky, M.; Lev, O. J. Sol-Gel Sci. Technol. 1997, 8(1/2/3), 1077-81. (D332) Mount, A. R.; C., D. J. Electroanal. Chem. 1994, 367(1-2), 175-82. (D333) Kasem, K. K.; Sheets, J.; Koon, N. Ann. Chim. (Rome) 1996, 86(9-10), 449-61. (D334) Higson, S. P. J.; Vadgama, P. Electroanalysis (N.Y.) 1994, 6(5-6), 431-6. (D335) Zhu, J.; Liu, X.; Wu, J.; Lu, D.; Zhang, G. Fresenius’ J. Anal. Chem. 1994, 348(4), 277-80. (D336) O’hara, T. J.; Vreeke, M. S.; Battaglini, F.; Heller, A. Electroanalysis (N.Y.) 1993, 5(9-10), 825-31. (D337) Sakai, H.; Baba, R.; Hashimoto, K.; Fujishima, A.; Heller, A. J. Phys. Chem. 1995, 99(31), 11896-900. (D338) Nagy, A.; Nagy, G.; Feher, Z. Anal. Chim. Acta 1995, 310(2), 241-9. (D339) Centonze, D.; Malitesta, C.; Palmisano, F.; Zambonin, P. G. Electroanalysis (N.Y.) 1994, 6(5-6), 429-9. (D340) Riklin, A.; Willner, I. Anal. Chem. 1995, 67(22), 4118-26. (D341) Strehlitz, B.; Gruendig, B.; Vorlop, K.-D.; Bartholmes, P.; Kotte, H.; Stottmeister, U. Fresenius’ J. Anal. Chem. 1994, 349(89), 676-8. (D342) Besombes, J.-L.; Cosnier, S.; Labbe, P.; Reverdy, G. Anal. Chim. Acta 1995, 311(3), 255-63. (D343) Amine, A.; Kauffman, J. M.; Patriarche, G. J.; Christian, G. D. Talanta 1993, 40(8), 1157-62. (D344) Iwuoha, E. I.; Smyth, M. R. Polymer-based amperometric biosensors. In Electroactive Polymers in Electrochemistry; Lyons, M. E. G., Ed.; Plenum: New York, 1994; Vol. 2, pp 297-328. (D345) Newman, J. D.; White, S. F.; Tothill, I. E.; Turner, A. P. F. Anal. Chem. 1995, 67(24), 4594-9. (D346) Skladal, P. Bioelectrochem. Bioenerg. 1993, 32(2), 145-54. (D347) Karyakin, A. A.; Karyakina, E. E.; Gorton, L.; Bobrova, O. A.; Lukachova, L. V.; Gladilin, A. K.; Levashov, A. V. Anal. Chem. 1996, 68(24), 4335-41. (D348) Niwa, O.; Morita, M.; Tabei, H. Electroanalysis (N.Y.) 1994, 6(3), 237-43. (D349) Saini, S.; Surareungchai, W.; Turner, A. P. F.; Downs, M. E. A. Biosens. Bioelectron. 1995, 10(9/10), 945-57. (D350) Compagnone, D.; Federici, G.; Scarciglia, L.; Palleschi, G. Biosens. Bioelectron. 1993, 8(5), 257-63. (D351) Przybyt, M. Zesz. Nauk.-Politech. Lodz. Technol. Chem. Spozyw. 1996, 56, 71-85; Chem. Abstr. 1997, 126, 290199.

(D352) Haginoya, R.; Yokoyama, K.; Suzuki, M.; Tamiya, E.; Karube, I. Trans. Mater. Res. Soc. Jpn. 1994, 15A (Biomaterials, Organic and Intelligent Materials), 437-40. (D353) Motonaka, J.; Miyata, K.; Faulkner, L. R. Anal. Lett. 1994, 27(1), 1-13. (D354) Rathbone, D. A.; Holt, P.-J.; Bruce, N. C.; Lowe, C. R. Ann. N.Y. Acad. Sci. 1996, 782 (Recombinant DNA Biotechnology III), 534-43. (D355) Rathbone, D. A.; Holt, P.-J.; Lowe, C. R.; Bruce, N. C. Ann. N.Y. Acad. Sci. 1996, 799 (Enzyme Engineering XIII), 906. (D356) Bourdillon, C.; Demaille, C.; Gueris, J.; Moiroux, J.; Saveant, J. M. J. Am. Chem. Soc. 1993, 115(26), 12264-9. (D357) Tiefenauer, L. X.; Kossek, S.; Padeste, C.; Thiebaud, P. Biosens. Bioelectron. 1997, 12(3), 213-23. (D358) Sorochinskii, V. V.; Kurganov, B. I. J. Chem. Biochem. Kinet. 1991, 1(4), 299-303. (D359) Haggett, B. G. D. Analyst (Cambridge, U.K.) 1994, 119(2), 197-201. (D360) Netchiporouk, L. I.; Shul’ga, A. A.; Jaffrezic-Renault, N.; Martelet, C.; Olier, R.; Cespuglio, R. Anal. Chim. Acta 1995, 303(2-3), 275-83. (D361) Seddon, B. J.; Wang, C. F.; Peng, W.; Zhang, X. Electrochim. Acta 1995, 40(4), 455-65. (D362) Katsu, T.; Yang, X.; Rechnitz, G. A. Anal. Lett. 1994, 27(7), 1215-24. (D363) Mizutani, F.; Yabuki, S.; Iijima, S. Electroanalysis 1995, 7(8), 706-9. (D364) Tatsuma, T.; Ariyama, K.; Oyama, N. Anal. Chim. Acta 1996, 318(3), 297-301. (D365) Reviejo, A. J.; Liu, F.; Pingarron, J. M.; Wang, J. J. Electroanal. Chem. 1994, 374(1-2), 133-9. (D366) Blonder, R.; Katz, E.; Cohen, Y.; Itzhak, N.; Riklin, A.; Willner, I. Anal. Chem. 1996, 68(18), 3151-7. (D367) Katakis, I.; Ye, L.; Heller, A. J. Am. Chem. Soc. 1994, 116(8), 3617-8. (D368) Loetzbeyer, T.; Schuhmann, W.; Schmidt, H.-L. Sens. Actuators, B 1996, B33(1-3), 50-4. (D369) de Lumley-Woodyear, T.; Campbell, C. N.; Heller, A. J. Am. Chem. Soc. 1996, 118(23), 5504-5. (D370) Alvarez-Icaza, M.; Kalisz, H. M.; Hecht, H. J.; Aumann, K. D.; Schomburg, D.; Schmid, R. D. Biosens. Bioelectron. 1995, 10(8), 735-42. (D371) Conrath, N.; Gruendig, B.; Huewel, St.; Cammann, K. Anal. Chim. Acta 1995, 309(1-3), 47-52. (D372) Skladal, P.; Pavlik, M.; Fiala, M. Anal. Lett. 1994, 27(1), 2940. (D373) Alexander, P. W.; Hidayat, A.; Hibbert, D. B. Electroanalysis 1995, 7(3), 290-1. (D374) Pan, S.; Arnold, M. A. Anal. Chim. Acta 1993, 283(2), 66371. (D375) Calvo, E. J.; Etchenique, R.; Danilowicz, C.; Diaz, L. Anal. Chem. 1996, 68(23), 4186-93. (D376) Schuhmann, W. Biosens. Bioelectron. 1993, 8(3-4), 191-6. (D377) Hendry, S. P.; Cardosi, M. F.; Turner, A. P. F.; Neuse, E. W. Anal. Chim. Acta 1993, 281(3), 453-9. (D378) Losada, J.; Cuadrado, I.; Moran, M.; Casado, C. M.; Alonso, B.; Barranco, M. Anal. Chim. Acta 1997, 338(3), 191-8. (D379) Smit, M. H.; Rechnitz, G. A. Electroanalysis (N.Y.) 1993, 5(910), 747-51. (D380) Kinnear, K. T.; Monbouquette, H. G. Anal. Chem. 1997, 69(9), 1771-5. (D381) Palmisano, F.; Malitesta, C.; Centonze, D.; Zambonin, P. G. Anal. Chem. 1995, 67(13), 2207-11. (D382) Talaie, A.; Boger, Z.; Romagnoli, J. A.; Adeloju, S. B.; Yuan, Y. J. Synth. Met. 1996, 83(1), 21-6. (D383) Pyo, M.; Maeder, G.; Kennedy, R. T.; Reynolds, J. R. J. Electroanal. Chem. 1994, 368(1-2), 329-32. (D384) McDevitt, J. T.; Jurbergs, D. C.; Haupt, S. G. CHEMTECH 1994, 24(6), 24-30. (D385) Ray, A. K.; Cook, M. J.; Thorpe, S. C.; Mukhopadhyay, S. Phys. Status Solidi A 1993, 140(2), K85-8. (D386) Smyntyna, V.; Golovanov, V.; Kaciulis, S.; Mattogno, G.; Righini, G. Sens. Actuators, B 1995, B25(1-3), 628-30. (D387) Mochida, T.; Kikuchi, K.; Kondo, T.; Ueno, H.; Matsuura, Y. Sens. Actuators, B 1995, B25(1-3), 433-7. (D388) Yoo, D. J.; Tamaki, J.; Park, S. J.; Miura, N.; Yamazoe, N. J. Mater. Sci. Lett. 1995, 14(19), 1391-3. (D389) Fruhberger, B.; Grunze, M.; Dwyer, D. J. J. Phys. Chem. 1994, 98(2), 609-16. (D390) Souteyrand, E.; Nicolas, D.; Queau, E.; Martin, J. R. Sens. Actuators, B 1995, B26(1-3), 174-8. (D391) Qu, W.; Meyer, J.-U. Meas. Sci. Technol. 1997, 8(6), 593600. (D392) Hoffheins, B. S.; Lauf, R. J.; Felten, J. J. Int. J. Microcircuits Electron. Packag. 1995, 18(3), 297-303. (D393) Miremadi, B. K.; Singh, R. C.; Morrison, S. R.; Colbow, K. Appl. Phys. A: Mater. Sci. Process. 1996, A63(3), 271-5. (D394) Haeusler, A.; Meyer, J.-U. Sens. Actuators, B 1996, B34(13), 388-95. (D395) Williams, E. W.; Lawlor, C. M.; Keeling, A. G.; Gould, R. D. Int. J. Electron. 1994, 76(5), 815-20.

(D396) Frank, J.; Fleischer, M.; Meixner, H. Sens. Actuators, B 1996, B34(1-3), 373-7. (D397) Ansari, S. G.; Boroojerdian, P.; Kulkarni, S. K.; Sainkar, S. R.; Karekar, R. N.; Aiyer, R. C. J. Mater. Sci.: Mater. Electron. 1996, 7(4), 267-70. (D398) Plog, C.; Maunz, W.; Kurzweil, P.; Obermeier, E.; Scheibe, C. Sens. Actuators, B 1995, B25(1-3), 403-6. (D399) Alberti, K.; Fetting, F. Sens. Actuators, B 1994, 21(1), 3950. (D400) Kang, W. P.; Gurbuz, Y.; D.son, J. L.; Kerns, D. V. Sens. Actuators, B 1995, B25(1-3), 421-5. (D401) Gi, R. S.; Ishikawa, T.; Tanaka, S.; Kimura, T.; Akiba, Y.; Iida, M. Jpn. J. Appl. Phys., Part 1 1997, 36(4A), 2057-60. (D402) Sberveglieri, G.; Faglia, G.; Perego, C.; Nelli, P.; M.s, R. N.; Virgili, T.; Taliani, C.; Zamboni, R. Synth. Met. 1996, 77(13), 273-5. (D403) Synowczyk, A. W.; Heinze, J. Springer Ser. Solid-State Sci. 1993, 117 (Electronic Properties of Fullerenes), 73-7. (D404) Maekawa, T.; Tamaki, J.; Miura, N.; Yamazoe, N. J. Mater. Chem. 1994, 4(8), 1259-62. (D405) Rumyantseva, M. N.; Labeau, M.; Senateur, J. P.; Delabouglise, G.; Boulova, M. N.; Gaskov, A. M. Mater. Sci. Eng. B 1996, B41(2), 228-34. (D406) Devi, G. Sarala; Manorama, S.; Rao, V. J. J. Electrochem. Soc. 1995, 142(8), 2754-7. (D407) Schuetze, A.; Weber, U.; Zacheja, J.; Kohl, D.; Mokwa, W.; Rospert, M.; Werno, J. Sens. Actuators, A 1993, 37-8(1-6), 751-5. (D408) Travis, J.; Ray, A. K.; Thorpe, S. C.; Cook, M. J.; James, S. A. Meas. Sci. Technol. 1995, 6(7), 988-94. (D409) Chyla, A.; Sworakowski, J.; Szczurek, A.; Brynda, E.; Nespurek, S. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 1993, 230, 1-6. (D410) Nabok, A. V.; Kazantseva, Z. I.; Lavrik, N. V.; Nesterenko, B. A. Int. J. Electron. 1995, 78(1), 129-33. (D411) Uwira, V.; Schuetze, A.; Kohl, D. Sens. Actuators, B 1995, B26(1-3), 153-7. (D412) Godovski, D. Yu.; Koltypin, E. A.; Volkov, A. V.; Moskvina, M. A. Analyst (Cambridge, U.K.) 1993, 118(8), 997-9. (D413) Fleischer, M.; Meixner, H. Sens. Actuators, B 1995, B26(13), 81-4. (D414) Imanaka, N.; Hirota, Y.; Adachi, G.-y. J. Electrochem. Soc. 1995, 142(6), 1950-1. (D415) Dawson, D. H.; Henshaw, G. S.; Williams, D. E. Sens. Actuators, B 1995, B26(1-3), 76-80. (D416) Basu, S.; Dutta, A. Sens. Actuators, B 1994, B22(2), 83-7. (D417) Cha, K. H.; Park, H. C.; Kim, K. H. Sens. Actuators, B 1994, B21(2), 91-6. (D418) Assadi, A.; Spetz, A.; Willander, M.; Svensson, C.; Lundstroem, I.; Inganaes, O. Sens. Actuators, B 1994, 20(1), 71-7. (D419) Toda, K.; Shimizu, T.; Sanemasa, I. Anal. Sci. 1995, 11(2), 317-8. (D420) Collins, G. E.; Armstrong, N. R.; Pankow, J. W.; Oden, C.; Brina, R.; Arbour, C.; Dodelet, J. P. J. Vac. Sci. Technol. A 1993, 11(4, Pt. 1), 1383-91. (D421) Camagni, P.; Faglia, G.; Galinetto, P.; Perego, C.; Samoggia, G.; Sberveglieri, G. Sens. Actuators, B 1996, B31(1-2), 99103. (D422) Henshaw, G. S.; Morris, L.; Gellman, L. J.; Williams, D. E. J. Mater. Chem. 1996, 6(12), 1883-7. (D423) Propopek, M. A.; Walsoe De Reca, N. E. Lat. Am. Appl. Res. 1993, 23(3), 153-62. (D424) Zhu, S. S.; Carroll, P. J.; Swager, T. M. J. Am. Chem. Soc. 1996, 118(36), 8713-4. (D425) Kodakari, N.; Katada, N.; Niwa, M. J. Chem. Soc., Chem. Commun. 1995, (6), 623-4. (D426) Chao, S. Jpn. J. Appl. Phys., Part 2 1993, 32(9B), L1346-8. (D427) Partridge, A. C.; Harris, P.; Andrews, M. K. Analyst (Cambridge, U.K.) 1996, 121(9), 1349-53. (D428) Kranz, C.; Gaub, H. E.; Schuhmann, W. Adv. Mater. (Weinheim, Ger.) 1996, 8(8), 634-7. (D429) de Lacy, C.; Benjamin, P. J.; Evans, P.; Ratcliffe, N. M. Analyst (Cambridge, U.K.) 1996, 121(6), 793-7. (D430) Brie, M.; Turcu, R.; Neamtu, C.; Pruneanu, S. Sens. Actuators, B 1996, B37(3), 119-122. (D431) Collins, G. E.; Buckley, L. J. Synth. Met. 1996, 78(2), 93101. (D432) Perez, H.; Budach, W.; Palacin, S.; Derost, G.; Barraud, A. Sens. Actuators, B 1995, B26(1-3), 140-3. (D433) Milella, E.; Musio, F.; Alba, M. B. Thin Solid Films 1996, 284-5, 908-10. (D434) Akiyama, H.; Toko, K.; Yamafuji, K. Jpn. J. Appl. Phys., Part 1 1996, 35(10), 5516-21. (D435) Rickwood, K. R.; Lovett, D. R.; Lukas, B.; Silver, J. J. Mater. Chem. 1995, 5(5), 725-9. (D436) Reference deleted in proof. (D437) Rodriguez-Mendez, M. L.; Souto, J.; Saja-Gonzalez, J. d.; Saja, J. A. d. Sens. Actuators, B 1996, B31(1-2), 51-5. (D438) Nikolelis, D. P.; Siontorou, C. G. Bioelectrochem. Bioenerg. 1997, 42(1), 71-5. (D439) Hamedelniel, A. E.; Mohamed, H. A.; Hibbert, D. B. Egypt. J. Chem. 1994, 37(2), 109-21. (D440) Mutschall, D.; Obermeier, E. Sens. Actuators, B 1995, B25(13), 412-4.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

205R

(D441) Scheibe, C.; Obermeier, E.; Maunz, W.; Plog, C. Sens. Actuators, B 1995, B25(1-3), 584-7. (D442) Sulz, G.; Kuehner, G.; Reiter, H.; Uptmoor, G.; Schweizer, W.; Loew, H.; Lacher, M.; Steiner, K. Sens. Actuators, B 1993, 16(1-3), 390-5. (D443) McNeil, C. J.; Athey, D.; Ball, M.; Ho, W. O.; Krause, S.; Armstrong, R. D.; Des Wright, J.; Rawson, K. Anal. Chem. 1995, 67(21), 3928-35. (D444) Kurzweil, P.; Maunz, W.; Plog, C. Sens. Actuators, B 1995, B25(1-3), 653-6. (D445) Schoening, M. J.; Tsarouchas, D.; Beckers, L.; Schubert, J.; Zander, W.; Kordos, P.; Lueth, H. Sens. Actuators, B 1996, B35(1-3), 228-33. (D446) Ishihara, T.; Sato, S.; Takita, Y. Sens. Actuators, B 1995, B25(1-3), 392-5. (D447) Khan, S H.; Abdullah, F. Investigation of the effects of flow parameters on electrostatic field distribution in electrical capacitive tomography sensors for flow imaging. In Sensors VI [Proc. Conf. Sens. Their Appl.]; Grattan, K. T. V., Augousti, A. T., Eds.; Inst. Phys.: Bristol, 1993; pp 359-64. (D448) Ishihara, T.; Kometani, K.; Nishi, Y.; Takita, Y. Sens. Actuators, B 1995, B28(1), 49-54. (D449) Lin, J.; Obermeier, E. Sens. Actuators, B 1993, 16(1-3), 31922. (D450) Cornila, C.; Hierlemann, A.; Lenggenhager, R.; Malcovati, P.; Baltes, H.; Noetzel, G.; Weimar, U.; Goepel, W. Sens. Actuators, B 1995, B25(1-3), 357-61. (D451) Vernat-Rossi, V.; Garcia, C.; Talon, R.; Denoyer, C.; Berdague, J.-L. Sens. Actuators, B 1996, B37(1-2), 43-8. (D452) Amrani, M. E. H.; Persaud, K. C.; Payne, P. A. Meas. Sci. Technol. 1995, 6(10), 1500-7. (D453) Saby, C.; Jaffrezic-Renault, N.; Martelet, C.; Colin, B.; Charles, M.-H.; Delair, T.; Mandrand, B. Sens. Actuators, B 1993, 16(1-3), 458-62. (D454) Hofmann, T.; Schroeder, K.; Zacheja, J.; Binder, J. Sens. Actuators, B 1996, B37(1-2), 37-42. (D455) Endres, H.-E.; Drost, S.; Hutter, F. Sens. Actuators, B 1994, B22(1), 7-11. (D456) Souto, J.; Rodriguez-Mendez, M. L.; de Saja-Gonzalez, J.; de Saja, J. A. Thin Solid Films 1996, 284-5, 888-90. (D457) Garcia-Golding, F.; Giallorenzo, M.; Moreno, N.; Chang, V. Sens. Actuators, A 1995, A47(1-3), 337-41. (D458) Costa, M. E. V.; Mantas, P. Q.; Baptista, J. L. Sens. Actuators, B 1995, B27(1-3), 312-4. (D459) Hikita, K.; Miyayama, M.; Yanagida, H. J. Am. Ceram. Soc. 1995, 78(4), 865-73. (D460) Hikita, K.; Miyayama, M.; Yanagida, H. J. Ceram. Soc. Jpn. 1994, 102(Sept), 810-7. (D461) Hikita, K.; Miyayama, M. J. Am. Ceram. Soc. 1994, 77(7), 1961-4. (D462) Kranbuehl, D. E.; Hood, D. K.; Rogozinski, J.; Barksdale, R.; Loos, A. C.; McRae, D. MD (Am. Soc. Mech. Eng.) 1995, 69 (Proceedings of the ASME Materials Division, 1995; Vol. 2), 1017-46. (D463) Gutierrez, F. J.; Ares, L.; Robla, J. I.; Getino, J. M.; Horrillo, M. C.; Sayago, I.; de Agapito, J. A. Sens. Actuators, B 1993, 15(1-3), 98-104. (D464) Hodgson, A. J.; Wallace, G. G. Trans. Mater. Res. Soc. Jpn. 1994, 15A (Biomaterials, Organic and Intelligent Materials), 681-4. (D465) Gardner, J. W. Sens. Actuators, B 1995, B27(1-3), 261-6. (D466) Traversa, E.; Bearzotti, A.; Miyayama, M.; Yanagida, H. J. Mater. Res. 1995, 10(9), 2286-94. (D467) Traversa, E. Design of ceramic materials for chemical sensors with intelligentproperties. In Polym. Other Adv. Mater. [Proc. Int. Conf. Front. Polym. Adv. Mater.]; Prasad, P. N.; Mark, J. E.; Tung, J. F., Eds.; Plenum: New York, 1995; pp 719-725. (D468) Fleischer, M.; Meixner, H. Sens. Actuators, B 1995, B25(13), 544-7. (D469) Tournier, G.; Pijolat, C.; Lalauze, R.; Patissier, B. Sens. Actuators, B 1995, B26(1-3), 24-8. (D470) Nakata, S.; Kaneda, Y.; Akakabe, S.; Yoshikawa, K. Electron. Magn. Biol. Med. Rev. Res. Pap. World Congr. San Franscisco; San Francisco Press: San Francisco, 1993; pp 203-5. (D471) Nanto, H.; Tsubakino, S.; Kawai, T.; Ikeda, M.; Kitagawa, S.; Habara, M. J. Mater. Sci. 1994, 29(24), 6529-32. (D472) Takao, Y.; Nakanishi, M.; Kawaguchi, T.; Shimizu, Y.; Egashira, M. Sens. Actuators, B 1995, B25(1-3), 375-9. (D473) Hong, H.-K.; Shin, H. W.; Park, H. S.; Yun, D. H.; Kwon, C. H.; Lee, K.; Kim, S.-T.; Moriizumi, T. Sens. Actuators, B 1996, B33(1-3), 68-71. (D474) Shimura, M.; Yasuno, Y.; Iwakura, M.; Shimada, Y.; Sakai, S.; Suzuki, K.; Sakamoto, S. J. Periodontol. 1996, 67(4), 396402. (D475) Hawk, R. M.; Narayanaswamy, A. J. Vac. Sci. Technol., A 1995, 13(3, Pt. 1), 996-1000. (D476) Nakata, S.; Akakabe, S.; Nakasuji, M.; Yoshikawa, K. Anal. Chem. 1996, 68(13), 2067-72. (D477) Jonda, S.; Fleischer, M.; Meixner, H. Sens. Actuators, B 1996, B34(1-3), 396-400. (D478) Joo, J. W.; Lee, J.-H.; Park, S. J. Sens. Mater. 1995, 7(5), 37182. 206R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(D479) Hellmich, W.; Bosch-v. Braunmuehl, Ch.; Mueller, G.; Sberveglieri, G.; Berti, M.; Perego, C. Thin Solid Films 1995, 263(2), 231-7. (D480) Hu, X.; Zhang, W.; Zhang, G. Rare Met. (Beijing) 1995, 14(3), 179-84. (D481) Ogura, K.; Shiigi, H.; Nakayama, M. J. Electrochem. Soc. 1996, 143(9), 2925-30. (D482) Jouve, C.; Jullien, D.; Remaki, B. Sens. Actuators, B 1995, B28(1), 75-80. (D483) Brzezinski, S.; Palka, A. Drying Technol. 1994, 12(5), 113144. (D484) Tsuyumoto, I.; Kudo, T. Mater. Res. Bull. 1996, 31(1), 1728. (D485) Fujimoto, C.; Hayakawa, Y.; Ono, A. Sens. Actuators, B 1996, B32(3), 191-4. (D486) Rossi, V.; Garcia, C.; Talon, R.; Denoyer, C.; Berdague, J. L. Colloq.-Inst. Natl. Rech. Agron. 1995, 75 (Bioflavour 95), 859. (D487) Kato, Y.; Murakawa, T.; Nishida, K.; Kitagawa, M.; Higuchi, T.; Higuchi, T.; Endo, J. J. Air Waste Manage. Assoc. 1996, 46(3), 260-6. (D488) Bourrounet, B.; Talou, T.; Gaset, A. Sens. Actuators, B 1995, B27(1-3), 250-4. (D489) Benady, M.; Simon, J. E.; Charles, D. J.; Miles, G. E. Trans. ASAE 1995, 38(1), 251-7. (D490) Simon, J. E.; Hetzroni, A.; Bordelon, B.; Miles, G. E.; Charles, D. J. J. Food Sci. 1996, 61(5), 967-9, 972. (D491) Iiyama, S.; Ezaki, S.; Toko, K.; Matsuno, T.; Yamafuji, K. Sens. Actuators, B 1995, B24(1-3), 75-9. (D492) Anno, Y.; Maekawa, T.; Tamaki, J.; Asano, Y.; Hayashi, K.; Miura, N.; Yamazoe, N. Sens. Actuators, B 1995, B25(1-3), 623-7. (D493) Anno, Y.; Maekawa, T.; Tamaki, J.; Asano, Y.; Hayashi, K.; Miura, N.; Yamazoe, N. Sens. Mater. 1993, 5(3), 135-42. (D494) Neaves, P. I.; Hatfield, J. V. Sens. Actuators, B 1995, B27(13), 223-31. (D495) Shurmer, H. V.; Corcoran, P.; James, M. K. Sens. Actuators, B 1993, 16(1-3), 256-9. (D496) Brezmes, J.; Ferreras, B.; Llobet, E.; Vilanova, X.; Correig, X. Anal. Chim. Acta 1997, 348(1-3), 503-9. (D497) Wuebbenhorst, M.; Van Turnhout, J.; Alili, L. Ferroelectrics 1995, 165(1-2), 153-69. (D498) Stephan, F.; Boiteux, G.; Seytre, G.; Ulanski, J. Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 1995, 36(1), 771-2. (D499) Lesho, M. J.; Sheppard, N. F., Jr. Polym. Mater. Sci. Eng. 1994, 71, 779-80. (D500) Nakashima, N.; Taguchi, T. ACS Symp. Ser. 1994, No. 561 (Interfacial Design and Chemical Sensing), 145-54. (D501) Ge, H.; Lin, Y. Sens. Actuators, B 1994, 21(1), 57-63. (D502) Zerroual, L.; Telli, L. Sens. Actuators, B 1995, B25(1-3), 7413. (D503) Liu, Q. Solid State Ionics 1996, 86-8(Pt. 2), 1037-43. (D504) Doughty, G.; Fray, D. J.; Van Der Poorten, C.; DeKeyser, J. Solid State Ionics 1996, 86-8(Pt. 1), 193-6. (D505) Hardeman, S.; Nelson, T.; Beirne, D.; DeSilva, M.; Hesketh, P. J.; Maclay, G. J.; Gendel, S. M. Sens. Actuators, B 1995, B24(1-3), 98-102. (D506) Sergeyeva, T. A.; Lavrik, N. V.; Piletsky, S. A.; Rachkov, A. E.; El’skaya, A. V. Sens. Actuators, B 1996, B34(1-3), 283-8. (D507) Souteyrand, E.; Martin, J. R.; Martelet, C. Sens. Actuators, B 1994, 20(1), 63-9. (D508) DeSilva, M. S.; Zhang, Y.; Hesketh, P. J.; Maclay, G. J.; Gendel, S. M.; Stetter, J. R. Biosens. Bioelectron. 1995, 10(8), 67582. (D509) Yagiuda, K.; Hemmi, A.; Ito, S.; Asano, Y.; Fushinuki, Y.; Chen, C.-Y.; Karube, I. Biosens. Bioelectron. 1996, 11(8), 703-7. (D510) Zhylyak, G. A.; Dzyadevich, S. V.; Korpan, Y. I.; Soldatkin, A. P.; El’skaya, A. V. Sens. Actuators, B 1995, B24(1-3), 1458. (D511) Thavarungkul, P.; Kanatharana, P. J. Sci. Soc. Thailand 1994, 20(1), 23-30; Chem. Abstr. 199 122, 204176. (D512) Sheppard, N. F., Jr.; Mears, D. J.; Guiseppi-Elie, A. Biosens. Bioelectron. 1996, 11(10), 967-79. (D513) Korpan, Y. I.; Dzyadevich, S. V.; Zharova, V. P.; Elskaya, A. V. Ukr. Biokhim. Zh. 1994, 66(1), 78-82; Chem. Abstr. 199 122, 29991. (D514) Zav’yalova, L. M. J. Anal. Chem. (Transl. of Zh. Anal. Khim.) 1996, 51(3), 317-20. (D515) Takada, T.; Tanjou, H.; Saito, T.; Harada, K. Sens. Actuators, B 1995, B25(1-3), 548-51. (D516) Dickert, F. L.; Zeltner, D. Angew. Chem. 1989, 101(6), 8334. (D517) Hitch, T. J. A. R.; Honeybourne, C. L. J. Mater. Chem. 1996, 6(3), 285-8. OPTICAL SENSORS (E1) Boisde, G. E., Harmer, A., Eds. Chemical and Biochemical Sensing with Optical Fibers and Waveguides; Artech House: Norwood, MA, 1996. (E2) Blum, L. J., Ed. Bio- and Chemi-Luminescent Sensors; World Sci: Singapore, 1997. (E3) Lewis, I. R.; Griffiths, P. R. Appl. Spectrosc. 1996, 50(10), 12A30A.

(E4) Parriaux, O. Integrated optics sensors. In Advances in Integrated Optics [Proceedings of International School in Quantum Electronics Course], 18th; Martellucci, S., Chester, A. N., Bertolotti, M., Eds.; Plenum: New York, 1993; pp 227-42. (E5) Mignani, A. G.; Baldini, F. Rep. Prog. Phys. 1996, 59(1), 1-28. (E6) Rogers, K. R.; Poziomek, E. J. Chemosphere 1996, 33(6), 1151-74. (E7) Narayanaswamy, R. Sci. Total Environ. 1993, 135(1-3), 10313. (E8) Camara, C.; Perez-Conde, C.; Moreno-Bondi, M. C.; Rivas, C. Tech. Instrum. Anal. Chem. 1995, 17, 165-93. (E9) Righini, G. C.; Mignani, A. G. Optical metrology and sensing. In Perspectives in Optoelectronics; Jha, S. S., Ed.; World Scientific: Singapore, 1995; pp 781-823. (E10) Malmqvist, M. A surface plasmon resonance biosensor for characterization of biospecific interactions. In Nanofabricated Biosystems; Hoch, H. C., Jelinski, L. W., Craighead, H. G., Eds.; Cambridge University Press: Cambridge, 1996; pp 103-22. (E11) Lortat-Jacob, H.; Ricard-Blum, S. Use of plasmon resonance (BIAcore) for the analysis of ligand-receptor interactions. In Visualization of Receptors; Morel, G., Ed.; CRC: Boca Raton, 1997; pp 161-80. (E12) Richards-Kortum, R.; Sevick-Muraca, E. Annu. Rev. Phys. Chem. 1996, 47, 555-606. (E13) White, J.; Kauer, J. S.; Dickinson, T. A.; Walt, D. R. Anal. Chem. 1996, 68(13), 2191-202. (E14) Bronk, K. S.; Walt, D. R. Anal. Chem. 1994, 66(20), 351920. (E15) Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R. Nature (London) 1996, 382(6593), 697-700. (E16) Oehme, I.; Wolfbeis, O. S. Mikrochim. Acta 1997, 126(3/4), 177-92. (E17) Srivastava, R.; Bao, C.; Gomez-Reino, C. Sens. Actuators, A 1996, A51(2-3), 165-71. (E18) Ashwell, G. J.; Roberts, M. P. S. Electron. Lett. 1996, 32(22), 2089-91. (E19) Chadwick, B.; Tann, J.; Brungs, M.; Gal, M. Sens. Actuators, B 1994, 17(3), 215-20. (E20) Miura, N.; Ogata, K.; Sakai, G.; Uda, T.; Yamazoe, N. Chem. Lett. 1997, (8), 713-4. (E21) Karlsson, R.; Jendeberg, L.; Nilsson, B.; Nilsson, J.; Nygren, P.-A. J. Immunol. Methods 1995, 183(1), 43-9. (E22) Geddes, N. J.; Martin, A. S.; Caruso, F.; Urquhart, R. S.; Furlong, D. N.; Sambles, J. R.; Than, K. A.; Edgar, J. A. J. Immunol. Methods 1994, 175(2), 149-60. (E23) Karlsen, S. R.; Johnston, K. S.; Yee, S. S.; Jung, C. C. Sens. Actuators, B 1996, B32(2), 137-41. (E24) Homola, J. Sens. Actuators, B 1995, B29(1-3), 401-5. (E25) Harris, R. D.; Wilkinson, J. S. Sens. Actuators, B 1995, B29(13), 261-7. (E26) Homola, J.; Yee, S. S. Sens. Actuators, B 1996, B37(3), 14550. (E27) Yang, L.; Saavedra, S. S. Anal. Chem. 1995, 67(8), 1307-14. (E28) Niggemann, M.; Katerkamp, A.; Pellmann, M.; Bolsmann, P.; Reinbold, J.; Cammann, K. Sens. Actuators, B 1996, B34(13), 328-33. (E29) Alonso, R.; Villuendas, F.; Tornos, J.; Pelayo, J. Sens. Actuators, A 1993, 37-8(1-6), 187-92. (E30) Weiss, M. N.; Srivastava, R.; Groger, H. Electron. Lett. 1996, 32(9), 842-3. (E31) Ronot-Trioli, C.; Trouillet, A.; Veillas, C.; El-Shaikh, A.; Gagnaire, H. Anal. Chim. Acta 1996, 319(1-2), 121-7. (E32) Katerkamp, A.; Bolsmann, P.; Niggemann, M.; Pellmann, M.; Cammann, K. Mikrochim. Acta 1995, 119(1-2), 63-72. (E33) Gupta, B. D.; Dodeja, H.; Tomar, A. K. Opt. Quantum Electron. 1996, 28(11), 1629-39. (E34) Hale, Z. M.; Payne, F. P. Anal. Chim. Acta 1994, 293(1-2), 49-54. (E35) Tubb, A. J. C.; Payne, F. P.; Millington, R.; Lowe, C. R. Electron. Lett. 1995, 31(20), 1770-1. (E36) Millington, R. B.; Mayes, A. G.; Blyth, J.; Lowe, C. R. Sens. Actuators, B 1996, B33(1-3), 55-9. (E37) Blyth, J.; Millington, R. B.; Mayes, A. G.; Frears, E. R.; Lowe, C. R. Anal. Chem. 1996, 68(7), 1089-94. (E38) Chitaree, R.; Weir, K.; Murphy, V.; Palmer, A. W.; Grattan, K. T. V.; MacCraith, B. D. Sens. Actuators, A 1995, A50(1-2), 45-53. (E39) Duport, I. S.; Helmers, H.; Greco, P.; Wagner, R.; Rimet, R. Sens. Mater. 1996, 8(4), 193-8. (E40) Gauglitz, G.; Ingenhoff, J. Fresenius’ J. Anal. Chem. 1994, 349(5), 355-9. (E41) Zappe, H. P.; Arnot, H. E. G.; Kunz, R. E. Sens. Mater. 1994, 6(5), 261-70. (E42) Brecht, A.; Piehler, J.; Lang, G.; Gauglitz, G. Anal. Chim. Acta 1995, 311(3), 289-99. (E43) Schipper, E. F.; Kooyman, R. P. H.; Heideman, R. G.; Greve, J. Sens. Actuators, B 1995, B24(1-3), 90-3. (E44) Lechuga, L. M.; Lenferink, A. T. M.; Kooyman, R. P. H.; Greve, J. Sens. Actuators, B 1995, B25(1-3), 762-5. (E45) Schipper, E. F.; Bergevoet, A. J. H.; Kooyman, R. P. H.; Greve, J. Anal. Chim. Acta 1997, 341(2-3), 171-6. (E46) Haran, F. M.; Barton, J. S.; Kidd, S. R.; Jones, J. D. C. Meas. Sci. Technol. 1994, 5(5), 526-30.

(E47) Weigl, B. H.; Wolfbeis, O. S. Anal. Chem. 1994, 66(20), 33237. (E48) Weigl, B. H.; Holobar, A.; Trettnak, W.; Klimant, I.; Kraus, H.; O’Leary, P.; Wolfbeis, O. S. J. Biotechnol. 1994, 32(2), 12738. (E49) Taib, M. N.; Andres, R.; Narayanaswamy, R. Anal. Chim. Acta 1996, 330(1), 31-40. (E50) Taib, M. N.; Narayanaswamy, R. Sens. Actuators, B 1997, B39(1-3), 365-70. (E51) Yatsenko, V. J. Chromatogr. A 1996, 722(1 + 2), 233-43. (E52) Brook, T. E.; Taib, M. N.; Narayanaswamy, R. Sens. Actuators, B 1997, B39(1-3), 272-6. (E53) Gauthier, R. C.; Turgeon, S. Opt. Laser Technol. 1993, 25(6), 377-81. (E54) Kamada, O.; Kakishita, K. Jpn. J. Appl. Phys., Part 1 1993, 32(9B), 4288-91. (E55) Pustelny, T. J. Technol. Phys. (Warsaw) 1996, 37(2), 251-9. (E56) King, T. W.; Cote, G. L.; McNichols, R.; Goetz, M. J., Jr. Opt. Eng. (Bellingham, Wash.) 1994, 33(8), 2746-53. (E57) Alabbas, S. H.; Ashworth, D. C.; Bezzaa, B.; Momin, S. A.; Narayanaswamy, R. Sens. Actuators, A 1996, A51(2-3), 12934. (E58) Butler, M. A. Sens. Actuators, B 1994, B22(2), 155-63. (E59) Baylor, L. C.; Buchanan, B. R. Appl. Spectrosc. 1995, 49(5), 679-81. (E60) Cush, R.; Cronin, J. M.; Stewart, W. J.; Maule, C. H.; Molloy, J.; Goddard, N. J. Biosens. Bioelectron. 1993, 8(7-8), 34754. (E61) Petzold, A.; Niessner, R. Appl. Phys. Lett. 1995, 66(10), 12857. (E62) Breguet, J.; Pellaux, J. P.; Gisin, N. Sens. Actuators, A 1995, A48(1), 29-35. (E63) Yoshiyagawa, S.; Tohda, K.; Umezawa, Y.; Hashimoto, S.; Kawasaki, M. Anal. Sci. 1993, 9(5), 715-8. (E64) Bissell, R. A.; Bryan, A. J.; Prasanna de Silva, A.; McCoy, C. P. J. Chem. Soc., Chem. Commun. 1994, (4), 405-7. (E65) James, T. D.; Sandanayake, K. R. A. S.; Iguchi, R.; Shinkai, S. J. Am. Chem. Soc. 1995, 117(35), 8982-7. (E66) de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, M. J. Chem. Soc., Perkin Trans. 2 1995, (4), 685-90. (E67) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Lynch, P. L. M. New J. Chem. 1996, 20(7-8), 871-80. (E68) Prasanna de Silva, A.; Gunaratne, H. Q. N.; Kane, A. T. M.; Maguire, G. E. M. Chem. Lett. 1995, (2), 125-6. (E69) Ishiji, T.; Kudo, K.; Kaneko, M. Sens. Actuators, B 1994, 22(3), 205-10. (E70) Wang, Y.; Baten, J. M.; McMaughan, S. P.; Bobbitt, D. R. Microchem. J. 1994, 50(3), 385-96. (E71) Domenici, C.; Schirone, A.; Celebre, M.; Ahluwalia, A.; De Rossi, D. Biosens. Bioelectron. 1995, 10(3/4), 371-8. (E72) Wortberg, M.; Orban, M.; Renneberg, R.; Cammann, K. Fluorimetric immunosensors. In Handbook of Biosensors and Electronic Noses; Kress-Rogers, E., Ed.; CRC: Boca Raton, 1997; pp 369-405. (E73) Collins, G. E. Sens. Actuators, B 1996, B35(1-3), 202-6. (E74) Brummel, K. E.; Wright, J.; Eldefrawi, M. E. J. Agric. Food Chem. 1997, 45(8), 3292-8. (E75) Draxler, S.; Lippitsch, M. E. Appl. Opt. 1996, 35(21), 411723. (E76) Chang, Q.; Sipior, J.; Lakowicz, J. R.; Rao, G. Anal. Biochem. 1995, 232(1), 92-7. (E77) Draxler, S.; Lippitsch, M. E. Anal. Chem. 1996, 68(5), 7537. (E78) Thompson, R. B.; Patchan, M. W. J. Fluoresc. 1995, 5(2), 12330. (E79) Birch, D. J. S.; Rolinski, O. J.; Hatrick, D. Rev. Sci. Instrum. 1996, 67(8), 2732-7. (E80) Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Perotti, A.; Taglietti, A.; Sacchi, D. Chem.-Eur. J. 1996, 2(1), 75-82 (published in Angew. Chem., Int. Ed. Engl. 1996, 35, 1). (E81) Chang, Q.; Lakowicz, J. R.; Rao, G. Analyst (Cambridge, U.K.) 1997, 122(2), 173-7. (E82) Merz, D.; Geyer, M.; Moss, D. A.; Ache, H.-J. Fresenius’ J. Anal. Chem. 1996, 354(3), 299-305. (E83) He, X.; Rechnitz, G. A. Anal. Chim. Acta 1995, 316(1), 5763. (E84) Xu, W.; Schmidt, R.; Whaley, M.; Demas, J. N.; DeGraff, B. A.; Karikari, E. K.; Famer, B. A. Anal. Chem. 1995, 67(18), 3172-80. (E85) Papkovsky, D. B.; Mohr, G. J.; Wolfbeis, O. S. Anal. Chim. Acta 1997, 337(2), 201-205. (E86) McCurley, M. F. Biosens. Bioelectron. 1994, 9(7), 527-33. (E87) Aussenegg, F. R.; Brunner, H.; Leitner, A.; Lobmaier, Ch.; Schalkhammer, Th.; Pittner, F. Sens. Actuators, B 1995, B29(1-3), 204-9. (E88) Bai, M.; Seitz, W. R. Talanta 1994, 41(6), 993-9. (E89) Shakhsher, Z.; Seitz, W. R.; Legg, K. D. Anal. Chem. 1994, 66(10), 1731-5. (E90) Zhang, Z.; Shakhsher, Z.; Seitz, W. R. Mikrochim. Acta 1995, 121(1-4), 41-50. (E91) Ruperez, A.; Laserna, J. J. Analusis 1995, 23(2), 91-3. (E92) Lyon, R. E.; Chike, K. E.; Angel, S. M. J. Appl. Polym. Sci. 1994, 53(13), 1805-12.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

207R

(E93) Schierbaum, K. D. Sens. Actuators, B 1994, 18(1-3), 71-6. (E94) Dickert, F. L.; Baeumler, U. P. A.; Zwissler, G. K. Synth. Met. 1993, 61(1-2), 47-52. (E95) Ueno, A. Modified cyclodextrins as supramolecular sensors of molecular recognition. In New Functional Materials; Tsuruta, T., Ed.; Elsevier: Amsterdam, 1993; Vol. C, pp 521-6. (E96) Chan, W. H.; Lee, A. W. M.; Wang, K. Analyst (Cambridge, U.K.) 1994, 119(12), 2809-12. (E97) Shortreed, M.; Bakker, E.; Kopelman, R. Anal. Chem. 1996, 68(15), 2656-62. (E98) Toth, K.; Lan, B. T. T.; Jeney, J.; Horvath, B. I.; Grun, A.; Agai, B.; Toke, L. Talanta 1994, 41(6), 1041-9. (E99) Kubo, Y.; Maeda, S.-y.; Nakamura, M.; Tokita, S. J. Chem. Soc. Chem. Commun. 1994, (14), 1725-6. (E100) Grigg, R.; Holmes, J. M.; Jones, S. K.; Norbert, W. D. J. A. J. Chem. Soc., Chem. Commun. 1994, (2), 185-7. (E101) Chan, W. H.; Lee, A. W. M.; Lee, C. M.; Yau, K. W.; Wang, K. Analyst (Cambridge, U.K.) 1995, 120(7), 1963-7. (E102) Perez-Jimenez, C.; Harris, S. J.; Diamond, D. J. Mater. Chem. 1994, 4(1), 145-51. (E103) Kubinyi, M.; Mohammed-Ziegler, I.; Grofcsik, A.; Bitter, I.; Jones, W. J. J. Mol. Struct. 1997, 408-9, 543-6. (E104) Fabbrizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 24(3), 197202. (E105) Dickert, F. L.; Thierer, S. Adv. Mater. (Weinheim, Ger.) 1996, 8(12), 987-90. (E106) Jenkins, A. L.; Uy, O. M.; Murray, G. M. Anal. Commun. 1997, 34(8), 221-4. (E107) MacCraith, B. D.; McDonagh, C.; O’Keeffe, G.; Butler, T.; O’Kelly, B.; McGilp, J. F. J. Sol-Gel Sci. Technol. 1994, 2(1/ 2/3), 661-5. (E108) Blyth, D. J.; Poynter, Sarah J.; Russell, D. A. Analyst (Cambridge, U.K.) 1996, 121(12), 1975-8. (E109) Turniansky, A.; Avnir, D.; Bronshtein, A.; Aharonson, N.; Altstein, M. J. Sol-Gel Sci. Technol. 1996, 7(1/2), 135-43. (E110) Chen, Z.; Samuelson, L. A.; Akkara, J.; Kaplan, D. L.; Gao, H.; Kumar, J.; Marx, K. A.; Tripathy, S. K. Chem. Mater. 1995, 7(10), 1779-83. (E111) Badini, G. E.; Grattan, K. T. V.; Tseung, A. C. C. Rev. Sci. Instrum. 1995, 66(8), 4034-40. (E112) Zink, J. I.; Yamanaka, S. A.; Ellerby, L. M.; Valentine, J. S.; Nishida, F.; Dunn, B. J. Sol-Gel Sci. Technol. 1994, 2(1/2/3), 791-5. (E113) Mohr, G. J.; Wolfbeis, O. S. Analyst (Cambridge, U.K.) 1996, 121(10), 1489-94. (E114) Murkovic, I.; Lobnik, A.; Mohr, G. J.; Wolfbeis, O. S. Anal. Chim. Acta 1996, 334(1-2), 125-32. (E115) Mohr, G. J.; Lehmann, F.; Ostereich, R.; Murkovic, I.; Wolfbeis, O. S. Fresenius’ J. Anal. Chem. 1997, 357(3), 284-91. (E116) Bodenhoefer, K.; Hierlemann, A.; Seemann, J.; Gauglitz, G.; Christian, B.; Koppenhoefer, B.; Goepel, W. Anal. Chem. 1997, 69(15), 3058-68. (E117) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Nature (London) 1995, 374(6520), 345-7. (E118) Moore, D. E.; Meeker, K.; Ellis, A. B. J. Am. Chem. Soc. 1996, 118(51), 12997-3001.

208R

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(E119) Kharaz, A.; Jones, B. E. Sens. Actuators, A 1995, A47(1-3), 491-3. (E120) Papkovsky, D. B.; Ponomarev, G. V.; Chernov, S. F.; Ovchinnikov, A. N.; Kurochkin, I. N. Sens. Actuators, B 1994, B22(1), 57-61. (E121) Nakagawa, M.; Kawabata, S.; Nishiyama, K.; Utsunomiya, K.; Yamamoto, I.; Wada, T.; Yamashita, Y.; Yamashita, N. Sens. Actuators, B 1996, B34(1-3), 334-8. (E122) Collins, G. E.; Rose-Pehrsson, S. L. Sens. Actuators, B 1996, B34(1-3), 317-22. (E123) Choi, M. F.; Hawkins, P. Sens. Actuators, B 1997, B39(1-3), 390-4. (E124) Liu, Y. M.; Ganesh, C.; Steele, J. P. H.; Jones, J. E. J. Compos. Mater. 1997, 31(1), 87-102. (E125) Dang, W.; Sung, N.-H. Polym. Eng. Sci. 1994, 34(9), 707-15. (E126) Paik, H. J.; Sung, N.-H. Polym. Mater. Sci. Eng. 1996, 75, 3856. (E127) Lam, K.-Y.; Afromowitz, M. A. Appl. Opt. 1995, 34(25), 56358. (E128) Lam, K.-Y.; Afromowitz, M. A. Appl. Opt. 1995, 34(25), 563944. (E129) Mohr, G. J.; Wolfbeis, O. S. Anal. Chim. Acta 1994, 292(12), 41-8. (E130) Igarashi, S.; Kuwae, K.; Yotsuyanagi, T. Anal. Sci. 1994, 10(5), 821-2. (E131) Badini, G. E.; Grattan, K. T. V.; Tseung, A. C. C. Analyst (Cambridge, U.K.) 1995, 120(4), 1025-8. (E132) Samuel, J.; Strinkovski, A.; Shalom, S.; Lieberman, K.; Ottolenghi, M.; Avnir, D.; Lewis, A. Mater. Lett. 1994, 21(5, 6), 431-4. (E133) Allain, L. R.; Sorasaenee, K.; Xue, Z. Anal. Chem. 1997, 69(15), 3076-80. (E134) Kuhn, K. J.; Dyke, J. T. Anal. Chem. 1996, 68(17), 2890-6. (E135) Draxler, S.; Lippitsch, M. E. Sens. Actuators, B 1995, B29(13), 199-203. (E136) Wallace, P. A.; Campbell, M.; Yang, Y.; Holmes-Smith, A. S.; Uttamlal, M. J. Lumin. 1997, 72-4, 1017-9. (E137) Weigl, B. H.; Holobar, A.; Rodriguez, N. V.; Wolfbeis, O. S. Anal. Chim. Acta 1993, 282(2), 335-43. (E138) Naughton, D. P.; Grootveld, M.; Blake, D. R.; Guestrin, H. R.; Narayanaswamy, R. Biosens. Bioelectron. 1993, 8(6), 325-9. (E139) Tescione, L.; Belfort, G. Biotechnol. Bioeng. 1993, 42(8), 94552. (E140) Selifonova, O.; Burlage, R.; Barkay, T. Appl. Environ. Microbiol. 1993, 59(9), 3083-90. (E141) Murkovic, I.; Wolfbeis, O. S. Sens. Actuators, B 1997, B39(13), 246-51. (E142) Radloff, D.; Matern, C.; Plaschke, M.; Simon, D.; Reichert, J.; Ache, H. J. Sens. Actuators, B 1996, B35(1-3), 207-11. (E143) Reisfeld, R.; Shamrakov, D. Sens. Mater. 1996, 8(7), 439-43. (E144) Ferguson, J. A.; Boles, T. C.; Adams, C. P.; Walt, D. R. Nat. Biotechnol. 1996, 14(13), 1681-4.

A1980010W