Column liquid chromatography: equipment and instrumentation

Robert E. Synovec, Edward L. Johnson, Leslie K. Moore, and Curtiss N. Renn. Anal. ... J. A. Lott , M. K. Gupta , N. McBride , W. E. Katzin , R. E. Sco...
3 downloads 0 Views 3MB Size
Anal. Chem. 1990, 62, 414R-422R (180) Burton, D.; Sepenlak, M.; Maskarinec, M. J . Chromtogr. S d . 1987, 2 5 , 514-518. (181) Nishl, H.; Tsumagari, N.; Terabe, S . Anal. Chem. 1989, 67 (21), 2434-2439. (182) Nlshi, H.; Tsumagari. N.; Kakimoto, T.; Terabe, S. J. Chromtogr. 1989, 465.331-343. (183) Nlshi, H.; Tsumagari, N.; Kakimoto, T.; Terabe, S . J. Chrometogr. 1989. 477, 259-270. (184) Griest, W.; Maskarinec, M.; Row, K. Sep. Sci. Technol. 1988, 2 3 , 1905-1914. (185) FuJiwara, S.;Iwase, S.; Honda, S. J . Chromtogr. 1988, 447, 133-140. (186) Otsuka, K.; Terabe, S.; Ando, T. J . Chromtogr. 1985. 348, 39-47. (187) Otsuka, K.; Terabe. S.; Ando, T. Nippon K8g8ku Kaishi 1988, 7 , 950-955. (188) Nakagawa, T.; Oda, Y.; Shibukawa, A.; Fukuda, H.: Tanaka, H. Chem. pylenn. Bull. 1988, 3 6 , 1622-1625.

(189) Nakagawa, T.; ode,Y.; Shlbukawa. A.; Fukuda, H.; Tanaka, H. Chem. mrm. Bun. isas, 3 7 , 707-711. (190) W i n e s , M. M.; Reijenga, J. C.; Trieiing, R. 0.;Van Thiei, M. J. S.; Everaerts. F. M. J. Chromtogr. 1989, 470 (I),105-121. (191) Otsuka, K.; Terabe, S.; Ando, T. J. ChrCMletogr. 1987. 396, 350-354. (192) Gebauer, P.; Demi, M.; Bocek, P.; Janak, J. J . Chromtogr. 1983, 267, 455-457. (193)Aguilar, M.; Huang, X.; &re, R. J. Chromtogr. 1989, 480, 427-432. (194) Wright, B. W.; Ross, G. A.; Smith, R. D. Energy Fuels 1989, 3 (3), 428-430. (195) HOW, S.;Suruki, K.; Kakehi, K. And. Bbchem. 1989, 777 (l), 62-66. (196) Waibroehl, Y.; Jorgenson, J. W. Anal. Chem. 1988, 58, 479-481. (197) Fanaii, S. J . Chfomtogr. 1989, 470(1),123-129. (198) Cohen, A.; Terabe, S.; Smith, J.; Karger, B. Anel. Chem. 1987,59, 1021-1027. (199) Saltoh, T.; Hoshino, H.; Yotsuyanagi, T. J. Chromtogr. 1989, 469, 175-181. (200) Nishl, H.; Fukayama, T.; Matsuo, M.; Terabi, S . J . Microcolumn Sep. 1889, 7 , 234-241. (201) Fanail, S . J. Chromtogr. 1989, 474 (a),441-446.

(202)Terabe, S.;Ozaki, H.; Otsuka, K.; Ando, T. J. Ch-mw.1985, 332. 211-217. (203) Karger. B. Netwe 1989, 339, 641-642. (204) Firestone, M.; Michaud, J.-P.; Carter, R.; Thormann, W. J . Chrometogr. 1987, 407, 363-368. (205) Green, J.; Jorgenson. J. J . C h r m t o g r . 1989, 478, 63-70. (206) Stover, F.: Haymore, 6.; McBeath, R. J . C h m t o g r . 1889. 470, 241-250. (207) Bushey. M.; Jorgenson, J. J. Chromtogr. 1989. 480, 301-310. (208) Bruin, G.;Chang, J.; Kuhiman, R.; Zegers. K.; Kraak, J.; Poppe, H. J. Chrometcgr. 1989, 471, 429-436. (209)Bruin, G.; Huisden, R.; Kraak, J.; Poppe, H. J . C h r m t o g r . 1989, 480, 339-350. (210) Ludi. H.; Gasman, E.; (irossenbacher, H.; Marki, W. Anal. Chlm. Acta 1988, 273, 215-219. (211) Paimieri, R.; Kalbag, S.;Osbome. J. J . Cell Bbl. 1988, 107. 21b. (212) Frenz, J.; Wu. S.-L.; Hancock, W. J. Chromtogr. 1989, 460, 379-392. (213) Nielsen, R.; Riggin. R.; Rickard, E. J. Chromtogr. 1989, 480. 393-402. (214) Hjerten, S.;Zhu, M. J . Chromtogr. 1985, 346, 265-270. (215) Guzmn, N. A.; Hernandez. L. Tech. Roteln chem.; Hugli, Tony E., Ed.; Academic: San Diego, CA, 1989;pp 456-467. (216) Nielsen, R. G.;Sittampalam, G. S.;Rickard, E. C. Anal. B M m . 1989, 777 (l),20-26. (217) Zhu. A.; Chen, Y. J. Chromtogr. 1989. 470, 251-260. (218) VanOrmann, B. 6.; McIntire, G. L. J. Mlcrocol. Sep. 1989, 1, 289-293. (219)Edmonds, C. G.;LOO,J. A.; Barkraga, C. J.; Wseth, H. R.; Smith, R. D. J. Chrometogr.,Volume Date 1988 1989, 474 (I),21-37. (220) Bocek, P.; Deml, M.; Pospichal, J.; Sudor, J. J . Chromtogr. 1989, 470 (l), 309-312. (221) Kilar, F.; Hjerten, S. J . Chromtogr. 1989, 480, 351-358. (222) Rohiicek, V.; Deyl, 2. J. Chromtogr. 1989, 494, 87-99. (223)Chen, A.; Zhu, M.; Hansen, D.; Burd. S. J . CellBbl. 1988, 107, 241a. (224) Cohen, A.; Karger, B. J. C h m t o g r . 1987, 397, 409-417. (225) Cohen, A.; Nagarian, D.; Smith, J.; Karger, B. J . Chromtogr. 1988, 458,323-333.

Gas Chromatography Ray E. Clement*

Ontario Ministry of the Environment, Laboratory Services Branch, 125 Resources Rd. (P.O.Box 213), Rexdale, Ontario, Canada M9W 5L1

Francis I. Onuska National Water Research Institute, Canada Centre for Inland Waters, Burlington, Ontario, Canada L9R 4A6

Gary A. Eiceman Department of Chemistry, New Mexico State University, Las Cruces, New Mexico 88003

Herbert H.HilI, Jr. Department of Chemistry 4630, Washington State University, Pullman, Washington 99164

INTRODUCTION This review of the fundamental developments in gas chromatography (GC) covers 1988 and 1989. Since the principal means of literature review was the biweekly Chemical Abstracts Service CA Selects for GC, publications appearing in late 1987 are also included, while si nificant papers published in late 1989 may not be. The refated technique of gas chromatography-mass spectrometry (GC/MS) is also covered in this review. As we enter a new decade, it is striking to compare the field of gas chromatography today with 10 years ago. Advances in the manufacture of flexible, fused silica wall-coated open 414R

0003-2700/90/0362-414R$09.50/0

tubular. wlumns have allowed the use of high-resolution GC to be widespread and relatively inexpensive. Manufacturers of sophisticated, computerized detectors now claim picogram and even femtogram detection of analytes. New plasma emission detectors are making GC methods more attractive for those interested in trace metals and organometallics. Previously esoteric techniques such as pyrolysis GC, inverse GC, and SFC are in routine use for practical applications. Looking ahead, we can predict that significant advances will be made in multidimensional, multihypenated techniques. Increased use of chromatographic data for a wide range of applications will continue. Structure-retention correlations will increase the use of GC data for compound identification, 0 1990 American Chemical Society

GAS CHROMATOGRAPHY Ray E. Ciemml is a Resaarch Scientist with the Ontario Minlstry of the Environment. Labratory Services Branch. and Associate Executive Director of the Canadian Institute lor Research in Atmospheric Chemistry (CIRAC). He graduated with his Ph.0. from the University of WaterloD in 1981. h.. Clement has taught undergraduate courses on GC techniques and instrumentation. and has coauthored lhe book Basic Gas Chmatography /Mass Spectromelw: principles and Techniqms. His principal research areas involve the uses 01 GC and GCIMS lor the analysis 01 Umanaca levels 01 toxic organics in the environment, specifically lor the chlchated dibenz-pdioxins and dibenrofurans. He has authwed Some 80 p u b iications in this area and Currently serves an the editorial board of Chemosphere. As a member of CIRAC. Or. Clement is also interested in atmor pheric research including global warming and the long-range tranSpDR Of toxic organics.

Frsnclr 1. Onutka is a Research Scientist at the National Water Research Institute in Burlington. Ontario. He received his Dip. Eng. diploma from Slovak Technical University, Bratislava. his M.S. degree from Czech Technological University. Prague. and his Ph.0. from Pwkyne University. Bmo. For the last 13 years he has headed a gas c h ~ matcgraphy and GC/MS laboratory at the Analytical Methods Division. Canada Centre far inland Waters. His research interests are in envionmental organic trace anaiytical Chemistry. including development 01 instrumentation and methodology with an emphasis an toxk orqanic wllutants in water. sed!! ment, fish, a n i wildilfe. Onuska currently serves on the Advisory Board of lhe Joornel of H@h Resolutian Chromatography and Chromatography Comrn"niCBti0N.

Gary A. E k m a n is an Assmiate Relessor 01 Chemistry at New Mexico State University in Las Cruces. NM. He received his h.0. degree in 1978 at the University of Colorado and was a postdoctoraI fellow at the University of Waterloo. Ontario. from 1978 to 1980. In 1987-1988 he was a Senior Research Fellow at the US Army Chemical R e search. Development and Engineering Center at Aberdeen Proving Gd.. MD. He has been on the lacuity at New Mexico State Univmity since 1980. His research interests include the development of selective chromatographic phases. use of GCIMS for environmental research. and the development of ion mobility spectrometry as a chemical sensor. precess monitor. and Chromatographic detector. He also has interests in atmospheric pressure ion-molecule chemistry exemplified by the electron capture detector. He regularly teaches Separations chemistry and electronics at the graduate level and quantitative mdysis at lhe undergraduate level. Eiceman currently serves on the advisory board lor Crifical Reviews in Anstytical Chemisfty. Herbert H. HIII, Jr.. is a Relessor 01 Chem istry at Washington State University where he directs an actbe research program in lhe development of inshumentatbr lor trace organic analysis. His research interests include gas chramatogaphy. supB(CTlica1 fiuld chromatography. ion mobility spectromehy. ambient pressure ioniz8tion sources. and mass spectrometry He received his B.S. degree in 1970 from Rhodes College in , Memphis. TN. his M.S. degree in 1973 from the University 01 Missouri. Columbia, MO ' and his Ph.0. degree in 1975 from Dalhousie University. Halifax. NOW Scotia. Canada. In 1975 he was a PoJtdoctoral fellow at the ! University 01 Waterlw. Ontario, and in 1983-1984 he was a visiting prafessor at Kyoto . ,% s-revU in Kvoto. Jaoan. He has been on the faCultY at Wash-

,

\*

especially when combined with other spectroscopic data such as MS and FTIR. In spite of the impressive developments in gas chromatography over the past 10 years, current challenges in many important areas such as the environment

require equally impressive advances over the next decade.

COLUMN THEORY AND TECHNIOUES Column theory was a large and richly diverse offering encompassing discussions on statistical moments, the validity of McReynolds' constants, and treatment of peak overlap. An extensive review of retention indices in honor of the 30th anniversary of Kovats' system was presented (AZ). The death of M. Golay, the pioneer of capillary columns, was noted (A2). Considerable attention was given to retention indexes (RI) with special emphasis on calculating RI in nonisothermal conditions (A3, A4) or at extrapolated temperatures (A5). Others reported the precalculation of RIs for alkylhenzenes (A6) and the relationship between molecular structure and retention rules ( A n . Several investigators also addressed the concept of statistical moments. Various treatments of moments were compared and improvements suggested (A8),and Fourier methods were applied to reduce limitations in moment analysis for inverse GC (A9). Discussions on moment analysis were given for normal (AIO) and inverse GC (AIZ). The balance of reports under column theory had no prime constituent and instead was comprised of an array of investigations receiving a single citation. However, all were concerned with some aspect of column properties exclusive of packing of stationary phase; the general theme was refinement and detailed critique of existing principles. These included the effect of flow rate on V, (A12) and the role of temperature on separations (AZ3). The issue of void volumes was reexamined, and new evidence suggests even more caution in obtaining such measurements (AZ4). The effects of sample size on RIs was described (A15), and the influence of cosolvents on capacity factors was demonstrated (A16, AZ7). Poole and Poole reviewed the solvent properties of liquid phases (A18). Importance was given to errors that arise in physicochemical measurements with GC (AZ9) and to the precision of interlaboratory determinations of relative retention and molar heats of solution (A20). These were 1-2% and 0.4-0.8 kcal/mol, respectively. Several described the effects of surfaces and interfaces for columns on retention of peak shape. Aldehydes and ketones interacted with the silica surface in fused silica capillary columns (A21) and the contribution to plate heights from interfacial resistance was reported for capillary columns (A22). Others distinguished between adsorption versus partition on a Carhowax capillary column (A23). Overlapping peaks continues to draw interest as demonstrated by two fresh approaches (A24, A%). Related to this is preparation of a model for the movement of solute through a column and the rapid coalescing of peaks as described by the model (A26). The effects of pressure and flow in the form of multidimensional van Deemter curves (A27) and flow patterns inside capillaries (A281 suggest optimum column parameters have not been achieved. A series of miscellaneous advances included an adaptation of zone refinement for GC to enhance resolution (A29),a peak distance number method for reporting resolution (A30), a model to predict log P (octanol water) from GLC measurements (A31),estimates of samp e complexity (A32),and the determination of partition coefficients in mixed phases (A33). The McReynolds' constants were examined for ambiguities in determination (A%) and challenged for validity with a given set of solutes (A35).

i

LIQUID PHASES Through the 1980%the subject of liquid phases in GC had been very actively explored and was dominated by the development and characterization of new phases based principally on liquid crystals and chiral phases. The most noticeable aspect of the recent literature is the dramatic decrease in activity in the preparation of new liquid phases in comparison to those years. In addition, initiatives have been absent to extend the temperature stability of these and other liquid phases to temperatures in excess of 300 "C as was common in years covered in prior biennial reviews. Certainly, each of these issues was addressed to a degree in the past few years, and the surprises were in the low number and lack of diversity of articles. ANALYTICAL CHEMISTRY, VOL. 62, NO. 12. JUNE 15. 1990 * 415R

GAS CHROMATOGRAPHY

The topic of chiral stationary phases centered largely on cyclodextrins (B1, B2) was explored as was the concept of enantiomeric resolution of carboxylic esters with chiral nickel complexes (B3). Some new undertakings in liquid crystals were reported (B4,B5). The role of polysilioxanes as liquid phases persists as relevant to capillary columns; noteworthy is the report from Nawrocke and Aue on the bonding of gas- hase cyclic organosilcones (B6),and the use of sirarylene siloxane copolymers (B7)and m m m o hic polysilioxanes (B8. Methods for determining the 1iquia)- hase loadin in capillary columns thro h di estion meth& were descri%ed (B9),and the issue of%e rofe of surface coverage of liquid phases in silica capillary columns was examined through modification of the silica surface (B10). Some attempts to improve liquid-phase stability for new and old phases were confi ured around the use of highly fluorinated hases (B11)an%the immobilization of castorwax (BIZ). Fra& addressed the means to improve selectivity and stability of chiral phases (B13). A review of mixed liquid phases (B14) was given. Liquid phases were modified with salts to improve selectivity (B15).

P

SOLID SUPPORTS AND ADSORPTION Advances in the topic of solid supports and adsorbents can be categorized as theoretical treatments of adsorption, devel0 ment of new materials,and descriptions of practices that fur& er improve basic studies of adsorbents. As in past years, the number of basic ph sicochemical investigations and theoretical models was ecipsed by reports on modified materials and techniques for exploring adsorbent properties. Those articles considered theoretical in emphasis were comprised largely of studies of surfaces as influenced by prior derivatization reactions in which exposure to solvents (Cl), hydrocarbons are grafted to silica (C2-C4), and adsorptive behavior with volatile solvent coatings (C5). Others have measured the free energies of silane-covered supports (C6). Significantly, Martire has proposed a unified theory of adsorption for chromatography with homogeneous (C7)and heterogeneous (C8) surfaces. Reports on other fundamental investigations include second virial coefficient for Ar in a zeolite (C9),solute-alkylammonium salt interactions (CIO), hydro en bondin with silica surfaces (CIl),adsorption on coate(B carbon (421,and probing bond vibrations for adsorbates by GSC (C13). New adsorbent materials fell largely under the realm of slightly modified materials in which additions to or reactions on existing, well-known materials provided special pro rties unlike the original material. Macroporous styrene rvinyl benzenes in the form of Porapak Q was the sub’ect of several reports (C14-C16). Metal chelates were added to materials (C17-C19) to impart chemical behavior of specific metal interactions with the mechanical stability of existing adsorbents. Only three reports in which retentive properties of modified materials were described for clays and zeolites, once a very active area (C20-C22). The GSC adsorptive behavior of tungsten selenide was explored (C23). More practical aspects of supports and adsorbents were addressed in the role of surface coverage on adsorption (C24) and in a demonstration of rogrammed surface adsor tion (C2.5).Equations that descri& adsorption of alkanes on #enax (C26) and breakthrough volumes (C27) were given. The sorption properties of macro rous methacrylate copolymers were considered (C28). A c e method to measure surface deactivation (C29) and the use of GSC for surface characterizations (C30)were also discussed.

SORPTION PROCESSES AND SOLVENTS The dominant emphasis in sorption processes and solvents during the past few years has been the establishment of structure-retention models; this comprised over 40% of all citations in this category. Also receiving considerable attention were the measurement of activity coefficients and discussion of retention schemes. The above three areas provided over three-quarters of all reports in sorption processes and solvents. This pattern has been roughly constant during the last two biennal reviews. Voelkel used dispersive forces as a measure of polarit of surfactants as stationary phases ( 0 1 ) . Others lookeB to 416R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

measure se arations or heats of solution for chiral separations governed ty a sin le substituent (02),stereoisomers in and shape-s ific interactions with branciied paraffii phenyl groups in polymers ( 0 4 ) . O t E s found that soluteph\;liyl (stationary phase) interactions were -0.1 to -1.7 kcal/mol(05). The role of hydrogen bondin via inter- and intramolecular interactions in retention was iiustrated ( 0 6 ) . Chen found that two terms described the acceptor-donor . heats of solvation interactions at interfaces (07)*-complex in binary systems were reported (08). The structure-retention relationship between hal enated and biphenyls was evaluated based on molecular surface retention times were predicted for all 209 PCBs (010, 011). The alkylbenzene or alkylaromatic systems were widely explored regarding retention and structure. The methyl grou was found to be a significant influence on retention wit[ different heteroatoms (012),while the nonlinear additivity of sorption was discussed for methylaromatics ( 0 1 3 ) . Neighboring group reduced retention in alkylphenols (014), which were explored for structure-retention by others (015). A quantitative model for alkylbenzenes employed vapor pressure and over 25 predictors (016). Heber er selected among 150 uations in correlating retention of a&ylbemnes with physic2and topological parameters (Dl7). Substituent entropy constants factored into relative retention (018). Alkylquinolines were correlated with retention through molecular connectivity indices (019). Retention of alkylbenzenes was considered relevant to structures (020). The shapes of molecule and orientation on liquid crystals and significance for separations was described (021, 0 2 2 ) . Factor analysis was employed for solute-solvent interactions (023) The . influence of column temperature, solute size, and stationary phase loading in measuring thermodynamic and dispersive forces was considered (024). The basic significance of retention indices (RI) as described below contrasts with earlier aspects of RI values as considered earlier in Column Theory. The effects of rimary and secondary environments on RI without thermdpamic data were . et al. addressed the significance of RI described (025)Poole standards in McReynolds’ constants (026). Retention of alkanes was predicted b using the slope of plot for retention time versus carbon n u d e r (027). Other aspects of retention indices were considered (028-031). In the category of activity coefficients and polymer interactions, the study of pol er-polymer interactions by GC was demonstrated (032). E e r w i s e , measurements of activity coefficients were given for a variety of systems (033-036). Notable is the pro osed alternative methods suggested by Laub ( 0 3 7 , 0 3 8 ) . n other developments, mass loading was found to be solute and stationary-phase specific (039);attempts were made to predict QSAR via GC (040);a classification scheme for phases was proposed as a variant of Kovats (041);and Martire roposed a unified molecular theory for GLC (042). Rapid $termination of partition coefficients was described (043).

(b),

&,

f

WALL-COATED OPEN TUBULAR COLUMNS Advances in wall-coated open tubular columns (WCOT) and porous layer open tubular columns (PLOT) in the 19808 have focused on improvements in bonding procedures, especially in more polar phase reproducibility and the develo ment of selective bonded phases for specific applications. 7! here has been more interest in the limited optimization of columns, with decreased length and/or internal diameters and further studies on widebore open tubular columns. New inert column deactivation procedures as well as new designs in column hardware continue to be developed. The past two years have produced important rogress toward unified capillary chromatography as descriLd by Ishii (El). Different separations could be carried out by changing the column temperature and the pressure by using a single system. Liao (E2) derived equations without k’ values that allow calculation of late numbers, resolving power, and minimum time for an$ysis. With these equations it is possible to select and optimize column operating conditions. New developments of hi hspeed GC have resulted in the complete redesign of microchp GC instrumentation (E3). The dual-channel GC package is compact and consumes minimal amounts of carrier as and electricity. The effect of open tubular column (OT8) characteristics on the minimum analyte concentration and the

GAS CHROMATOGRAPHY

minimum detectable amount versus the stationary phase film thickness was studied by Noy and Cramers (E4). As a general guideline for OTC GC regarding values of minimum analyte concentration and the minimum detectable amount, the use of thin-film OTCs is preferred. Ettre and Hinshaw (E5) disputed a number of inaccuracies in the paper of Zhan as related to the van Deemter equation and the equation %at relates the gas-phase diffusion coefficients with temperature and pressure. Van Es (E6) discussed existing theoretical models for axial turbulent dispersion in OTCs. Comparison with theoretical models shows that the plate hei ht increased eatly with increasin solute capacity factor. &his effect is %e mainly to mobile-pL mass transfer. Therefore,the gain in analytical speed is limited to low capacity factors. Pouwelse ( E n recommended the use of retention gaps coated with a very thin polar film of CP wax 52 for the introduction of large volumes of polar solvents in on-column in'ection mode. Gao and Zhang described deactivation of O+Cs using methylhydrosiloxane and dynamic coating (E&?).Nawrocki (E9) studied the structure of an or anic layer bonded to the silica surface after treatment wit! hexamethylcyclotrisilazane, hexamethyldisilazane, and their mixtures. Etzwiler (EIO) described a computerized system for micropreparative enrichment of analytes from a mixture being separated on an OTC. The enrichment rocedure is based on a repetitive absorption of eluting anapytes after separation from an OTC, by suckiq them through an absorption tube mounted at the outlet splitter. This technique can be applied for sample recove after analysis by nondestructive elucidation methods or by xemical microreactions without loss. A large share of the literature focused on preparation of cross-linked stationary phases in fused silica capillaries (EII-E21).While many of the included articles might be considered as improvements, we felt that either the novelty of the approach or the empirical observations reported may provide some insights into fundamental processes for those researchers with a primary interest in their preparation. Mathews (EI2)described reparation of OTCs containing the poly(ary1ether sulfone) Pk179, which is thermostable up to 380 "C. Arrendale and Martin (E161 showed that moderately polar OV-1701-vinylsiloxane can be used as a surface deactivation ent. Schmid and Mueller (EI9)described preparation any evaluation of OV-240-OH coated glass OTCs for isomer specific determination of 01 chlorinated dibenzo-pdioxins and dibenzofurans. The were persilylated with 13-bis(3- an0 ropy1)tetramethyldisiloxane and coated with dV-240-&. 8olumn performance is shown to be superior to cyano ropy1 columns such as SP-2330. The high-temof these columns opens the wa for the analysis perature of high-boiling-point compounds. Blum and 6amasceno (E20) confirmed previous findings using hydroxyl-terminated POlysiloxane stationary phases for high-temperature GC separations u to 420 "C. David (E29)prepared hydroxy-terminated anopropy1)silicones containing a high cyanopropyl content. Bomberg and Roeraade (E211 developed a technique for coatin OTCs with a very thick film (up to 100 pm) of cr-linkei stationary phase. mese columns can be employed as enrichment traps in air pollution studies. Use of small diameter OTCs for ultrahi h-resolution HRGC has been studied by Hyver (E22)andby Cartoni (E23). As a result improved sensitivity and a considerable decrease in the time of analysis are achieved over those obtained with the largediameter columns, in spite of some instrumental difficulties. Various as ects of the use of wide-bore OTC columns were discussed &24-E26), which included the evaluation of the catalytic activity, resolution, selectivity, analysis time, and efficiency of the columns. Bemgaard (E27) described siloxan-ilarene copolymers as stationary phases for O W HRGC. Discussion of porous layer open tubular columns (PLOT) received only light attention in the literature. Recently their revival is evident from number of articles (E28,E30-E34). Reviews (E28, E31) describe PLOT columns as OTCs that are coated with a porous layer of a solid adsorbent instead of a stationary liquid phase. Preparation of PLOT columns with carbon molecular sieve as the stationary phase has been described (E30). The column can be used to separate permanent gases at subambient temperature. Russo (E32) investigated the nature of solid supports used as precoating in the preparation of PLOT columns. A hi her efficiency was obtained with the caolin precoating. De ieeuw (E33)coated

8Tb

Lt

?

his PLOT columns with a 10-30-pm layer of a porous polymer based on styrene-divinylbenzene. The inertness of the polymer allows the elution of a range of apolar compounds and tolerates even water injections. Lageason and Newman employed packed microbore columns usin 10-pm HPLC packing materials as supports for various l i q d pha~ea (34). This type of column is characterized by a very short gas hold-up time, leading to possibilities for relatively fast separations. A number of pa rs describing methods for preparing OTCs with cross-linke8echiral stationary phases were published (E%, E36). The silanes may be selected from vinyl-, epoxy-, amino-, and methacryl-modified trimethoxysilanes. They are used in enantiomer separations.

ant::

INSTRUMENTATION AND DETECTORS Major areas of research and development in instrumentation during the past two years occurred in the areas of injection method for the quantitative introduction of samples into capillary columns, multidimensional chromatography with gas, supercritical fluid, and li uid chromatographs serving as a fit-stage separation stepLfore high-resolution capillary gas chromatography (HRGC). As in the past, developments and investigations of detector technologies dominated the fundamental studies conducted during this review period. Of particular interest were the papers on the electron-capture mechanism and on the use of plasma emission detectors. Investi ations in the area of GC instrumentation can be separatefinto two major areas, injection methods and detection methods. Little new in oven design, data handling, or instrument control was reported. Injection method investigations fell into three categories: introduction from other chromatographs, introduction from extractions, and direct introduction methods. Detection methods fell into two primary categories (ionization detection and optical detection) with some interest in electrochemical detection methods.

Sample Introduction In this review, multidimensional chromatography is treated as an introduction method since the sample is introduced into a HRGC column from a pre-separation column. In-line pre-separation methods included planar chromatography (PC-GC), liquid column chromato raphy (LC-GC), supercritical fluid chromatograph (SF8-GC), and gas chromatography (GC-GC). With G& coupled to GCs, techni ues such as heart cutting, back-flushing, cold tra pin , an8 selective sample introduction were employed an8evafmted for the separation and identification of compounds in complex mixtures (F1474). Most attention, however, was on interfacing LC to GC (F5-FB). The primary advantage of LC-GC is to decrease sample cleanup and preparation time. The LC is used for group separation, while the GC is used for component separation. Review papers provide descriptions of LC-GC interfaces and discuss the power of this two-dimensionaltechnique (F9,FIO). A related method of introducing sample into a gas chromato raph, SFC-GC was described and appears to have considerabe potential (FII). Laser desorption was proposed as a method to interface thin-layer chromatography with GC (FI2). The fragmentation pattern from the laser desorption provided a GC fingerprint for identification of the sample. Gas and liquid sampling and switching systems are critical to the proper operation of many chromatographic coupling methods (FI3, FI6). In addition to using these systems for multidimensionalchromatography,extraction systems can be directly interfaced to as chromatographs. The primary advantage of direct intrAuction from extraction methods is that it reduces sample loss and analysis time. The newest of the extraction introduction methods for GC is supercritical fluid extraction (SFE). Reviews and descriptions of SFE systems have been reported (FI7-Fl9). In addition to SFE, more traditional introduction methods such as purge and trap and thermal desorption have been interface to the GC. Modifications of the standard pur e and trap methods were investigated to reduce loss of vofatiles (F20-F25). A unique approach to the purge and trap method was described in which the headspace volatiles were tra ped in water that was simultaneously bein extracted wit1 dichloromethane (F26). With this metho$ much larger quanANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

417R

GAS CHROMATOGRAPHY

tities of volatiles could be trapped for analysif). In othFr work, adjustment of sam le H was used to obtmn selectivity for basic compounds ( $ 2 8 and cryofocusing was used to compensate for the slow transfer from the trap to the GC column (F28). Membrane focusin was evaluated for volatile compounds as a replacement or cryofocusing (F29).

P

Thermal desor tion of traps was also investigated to optimize transfer eflciency (F&F3I). One of the most promising uses of thermal desorption is as an injection method for fast capillary chromatography. In one approach a metal capillary cold trap is used to thermally focus the sample va r, after which resistive heating the metal capillary is useB"to inject the sample into the column (F32). Thermally modulated sources were also investigated as injection methods for fast chromatography (F33-F34). More traditional methods such as on-column (F35-F38), split and splitless (F39-F43) injections were evaluated for sam le ca acity, and several reviews were published (F44, F45f Ef?ects of column temperature and sample volume (F46), injection hold time (F47),and solvent effect (8'4.8)were evaluated with respect to resolution. Temperature-programmable injectors were investigated for molecular weight discrimination and quantitative measurement (3'49, F50). Reroducibility of automatic and robotic injections of gases and {quids was documented (F51, F52). Detectors

During the past two years there has been tremendous interest in l a m a atomic emission spectrometry as a detection method k r GC. By monitoring selected emission lines, selective detection can be achieved for a wide variety of elements in compounds separated by GC. Other methods of detection that have received significant attention include the electron-capture detection, photometric detection, and electrochemical detection. Reviews of detectors (GI-G4) and related topics have included chemometric detection methods (G5), requirements for HRGC (G6),and general detection criteria (G7). In this section detector are divided into four categories: ionization detectors, optical detectors, electrochemical detectors, and other detectors. Ionization Detectors. The most common of the ionization detectors is the flame ionization detector. By pretreatment of the sample the flame has been investigated as an oxygen selective detector (HI, H2). Related to the FID is the alkali bead detector for or anonitrogen compounds. In a spectroscopic investigation of the mechanisms, it was found that alkali atoms are lost from the bead not by evaporation but by an exchange with hydrogen (H3). Detection limits of a photoionization detector were improved by reducing background current by dosing the carrier gas flow with a small amount of a low ionization potential organic compound (H4). A hotoionization detector with a 40-pL cell was investigated For use with capillary columns (H5) while photoionization detection was combined with hydride generation GC for the ultrasensitive determination of arsenic, selenium, tin, and Photoionization was also antimony in aqueous solutions (H6). investigated for the detection of trace impurities in high-purity oxygen (Ha.Helium ionization detector in which secondary electrons created for the ionization of He excite He atoms to a metastable energy level can be used for the ultratrace analysis of hi h-purit ases (H8). Volumes as small as 50 p L can be use$ in the g&um ionization detector, but careful attention must be paid to operating parameters (H9). The most active area of research in ionization detectors for GC was with the electron ca ture detector. Investigations of the "space char e" effect ingcated that complete removal of eledrons from tke detector by the vol e ulse may not occur (HIOj. H ercoulometric response o t e detector was investigatedyy electron oscillation and found to be caused by increased cation-electron recombination in the plasma region (HII). Advantages of the addition of electrodes to the electron-capture detector were discussed (HI2, H13), and the development of a non-radioactivepulsed mode detector was described (H14). Parametric effects on the pulsed electroncapture detector demonstrated nonlinearity of the detector H16). Chan ing response factors by in some cases (H15, dynamically adjusting parameters iuring detection provides qualitative information (HI7).Reduction of sulfur-containing

?g

418R

ANALYTICAL CHEMISTRY, VOL. 62,

NO. 12, JUNE 15,

1990

compounds with Fz to SFs prior to detection enabled the electron-capture detector to be used as a sensitive method for sulfur detection (H18). Optical Detectors. The most novel optical detector was based on the phenomenon of light emission from an electron-capture detector. This photometric detector produced luminescence derived solely from the decay of q i (11).The detector can be operated as a general detector by monitoring the quenching of background luminescence. Studies on the more traditional flame photometric detector investigated the effects of hydrocarbon quenchin (12),the response of ruthenium (13)and iron (141,and probems associated with sulfur detection (15). Chemiluminescence was also used for sulfur detection by reacting producte of a hydrogen flame with ozone in a low-pressure zone (16). Surface-catalyzed chemiluminescence reactions were also reported for nitrates in air (17), using superconducting oxygen-deficient perovskite to catalyze redox reactions between organic molecules and NOz (18,19). Also, the photoluminescence property of some semiconductors can be used as the basis for chromatographicdetection (IIO), and fluorescence spectrometry was reported after HRGC ( I l l ) . Molecular emissions in low-pressureelectrical discharges were investigated for GC detection but found to have too lugh detection limits for practical application (112). Supersonic jet fluorometry shows promise for low-pressuredetection in GC as well as liquid and SFC (113). Infrared emissions were monitored from flames for GC detection. The carbon dioxide emission band at 4.3 pm was found to be proportional to the amount of organic compound introduced into the flame (114). IR detectors were more commonly used in the absorption mode rather than the emission mode. Fourier-transform infrared spectrometr both off line and on line was described and evaluated for 8 C detection. One interface trapped GC eluates on a rotatin liquid nitrogen cooled mirrored collector (1151,another on a k S e window (1161,and another by matrix isolation in frozen Ar (117). On-column detection by FTIR demonstrated nanogram detection limits (118),while widebore capillary columns were found necessary to achieve the desired peak volume to match the light pipe volume (119). Increased temperature of the light ipe was found to decrease the signal-to-noise ratio (120). L o t h e r investigation of light pipes in FTIR compared stopped-flow detection with dynamic capillary detection using a double lightpipe s tem (121). In a comparative study, the use of ca illary G&ith FTIR was found to be within 4 % of the AO8S official method for the quantitation of transunsaturation in fatty acid methyl esters (122).

Other optical absorption detectors studied durin this review period include a far-UV absorbance detection 823) and atomic absorption spectrometry. Atomic absorption following GC was primarily used for metal speciation. Hydride generation of Pb, Hg, Se, and As was used to enhance sensitivity and to permit GC separation (124-126). 4-Nitrophenylenediamine derivative proved useful for Se separation and detection by GC-AA (127). By far, the most intense activity in detector research over the past two years has been in atomic emission. Interfacin capillary GC with atomic emission spectrometry provide! multielement capability with high selectivities and wide dynamic ranges (128).Emission methods have been studied for the selective detection of sulfur (129-133), chlorine (130, 133-1361, bromine (130,133,135,136),fluorine (137),carbon (130, 135, 136, 138), hydrogen (130, 1381, nitrogen (1381, phosphorus (139),oxygen (138,140,141),and mercury (142, 143) containing compounds after GC. With the near-IR portion of the s ectrum, a radio-frequency plasma detector was used for mtftielement selective detection (144). A simple filter-modulated integrated fiber o tical s stem was investigated for reducing calibration nee& of G 8 (I&), and when used in coniunction with mass spedrometw. plasma emission spectromeiry could be used fo; molecular- f6rmula determination after HRGC (146). Electrochemical Detectors. The Hall electrolytic conductivity detector has for some time been the most r p u l a r of the electrochemical detection methods used in G Factorial optimization of flows in the Hall detector have recently been reported ( J l ) . Other electrochemical detectors include the use of a gas electrode for the selective detection of nitrogen compounds (J2) and solid-state voltammetry with polymer electrolyte plasticization for better diffusion coefficients (J3).

GAS CHROMATOGRAPHY

Ultramicroelectrode sensors were investigated for conductivity measurements (J4). The surface separation between the working ultramicroelectrode and the secondary electrode provided the medium for ionic conduction (J5).Water in the carrier as is often a problem for electrochemical detection. M e t h d s for avoiding these difficulties are discussed (JS). Other Detectors. Several detection methods that do not neatly fit into the categories listed above such as the thermal conductivity detector and radioactive detectors are reviewed in this section along with various miscellaneous instrument and operation designs. For the thermal conductivity detector the correction factor for cyclopentadiene was reported to be 0.736 rather than the 0.97 value that has been used in the past (K1).For the radioactive detectors, a synchronized accumulating radioisotopedetedor was constructed that consisted of seven gas-flow ro ortional counters each with an inner volume of 10 mL k 2 7 . By use of a purse gas added to the effluent, a detector for tritium- and carbon-14-labeled compounds was adopted for HRGC ( K 3 ) . Novel detection methods included an on-line gas electron diffraction detector in which electron diffraction patterns from GC effluents were made visible on a hosphor screen (K4) and the selective detection of aldehyfes and ketones with a HgO reduction gas detector (K5). A nonselective dielectrometric detector was also reported for use with ca illary columns (K6). Several general studies reyated to instrumentation and detector were reported. uantitation problems associated with the miniaturization of C was investigated (K7), and the redesign of a microchip gas chromatograph was reported (K8). Multiplex GC was described for use with a miniaturized GC system (K9).Finally, new methods for making fused silica connections were reported (KIO).

8

GAS CHROMATOGRAPHY-MASS SPECTROMETRY While GC-MS applications continue to grow in number, fundamental improvements to the methodology are few. Reviews on the use of GC-MS for multicom onent analysis ( L l ) ,the identification of alkylbenzenes (L2f measurement of vitamin D metabolites in human serum (L3), and the characterization of unsaturated aliphatic compounds (L4) illustrate the wide applicability of this powerful technique. A new cross-bore open-s lit interface has been developed that uses a flow at right ang es to the sample stream (L5).Efficiency of this interface was reported to be 100%. A constant linear velocity splitter was developed for multidetector GC-MS application (L6). It is fabricated by the bundling of highly uniform capillaries and permits simultaneous monitoring of GC effluent by several detectors. GC Fourier transform MS was investigated by Grossmann et al. (L7).They employed an external ion source and used the GC/FT-MS for routine analysis. It is expected that much more work will be performed in coming years to develop the GC/FT-MS technique, because of its tremendous potential for complex mixture analysis. Recent improvements in the sensitivity of Fourier transform infrared spectrometers have also made them complementar to GC-MS for trace analysis. Fu‘iwara et al. reported t i e development of an open-split Gd/MS/FTIR interface that enabled a portion of the sample to be split to an on-line radioactivity detector (L8).Other hyphenated techniques included multidimensional GC connected to a tri le- uadrupole mass spectrometer (L9). The GC-GC/ Mg-MI system allowed direct transfer, back-flushing, heart-cutting, intermediate cold-trapping, trace enrichment, and selective sample introduction. A new approach to extracting single-component mass spectra from poorly separated L11). GC peaks was described by Ghosh and Andere g (LIO, They developed “differential mass spectra” y! successive subtraction of pairs of raw mass s ectra, and found that GC corn onents that have an elution Zifference of only one scan can [e resolved. Another a proach to resolving overla ping GC-MS data was described\y Windig and co-workers k 1 2 ) . They used a rapid self-modeling curve-resolution method for time-resolved mass spectra. Allan and Roboz used multiple-channel selected ion monitoring to evaluate instrument performance (L13). Their approach is based on ra id sequential monitoring of the lockmass, the analyte, a n i additional channels set at slight1 differing masses above and below the exact mass of the andyte. By using this method, they

P

could confirm the exact mass of the analyte, evaluate the purity of the monitored peak, confirm the mass resolution, and check the performance of the lockmass.

QUALITATIVE AND QUANTITATIVE ANALYSIS A decade ago, quantitative analysis by using GC was a major research topic. With the development of inexpensive and sophisticated computers and software, few papers are now published in this area. A review b Novak has summarized the current state of quantitative 6 C analysis (MI). Much more work has been performed on the use of GC data for qualitative compound identification. Current developments in this area were reviewed by Blomberg (M2). The use of GC and reaction GC for structure determination of complex molecules such as insect pheromones has also been reviewed (M3). A new technique that shows promise for use in structure determination is on-line gas electron diffraction of GC effluents (M4). Most studies involving the use of GC data for qualitative analysis dealt with various retention index schemes and structure-retention relationships. These topics have already been partially addressed in the sections on Column Theory and Techniques and Sorption Processes and Solvents. Recent developments in the Kovats retention index system have been Kaliszan has reviewed in detail the extensively covered (M5). field of quantitative structure-chromatographic retention Others have examined structure-retention relationships (MS). relationshipsfor N-substituted amides of aliphatic acids (M7), cycloalkenes and cycloalkadienes (M8), drugs (M9), and pyrazines (MIO).

MISCELLANEOUS Other reviews have examined the history, recent advances, and potential of gas chromatogra hy (NI-N4). Reviews of retention mechanisms in GLC (&), GSC (N6),and mixed retention mechanisms (N7)have also appeared. Reviews on cold in‘edion various techniques included GC resolution (AB), methods (N9),and hot vaporizin injectors (N10). The 2nd edition of Grob’s book on classicafsplit and splitless injection Katsanos reviewed the in capillary GC was published (N11). theoretical and practical aspects of flow perturbation GC (N121, while Middleditch and co-workers discussed the problems and prospects of trace analysis of volatile polar organics (N13). The GC of metal diketonates has also been extensively reviewed ( N I 4 ) . Detailed treatment of the characterization of polymers using inverse GC was given by DiPaola-Baranyi (N15)and in the proceedings of a recent symposium (N16). One area that received considerable recent attention is temperature programming (NI 7-N21). Gemmel and coworkers studied consecutive gradients in supercritical chromatography (NI7, N18). SFC allows gradients of pressure, temperature, and eluent composition, which allows the separation to be tuned for specific anal es. Repka introduced a new procedure to optimize the G column peak ca acity by focusing on the temperature-programming con8tions (NI9). A general equation describing the influence of temperature program rate and initial temperature on the holdup time for linear programming in GC was presented (N20),and fair agreement between theoretical predicted and actual retention times for a range of compounds was obtained in another investigation (N21). Other new developments included a new index of performance for GC or LC peak separation (N22),a new means of usin GC for sim le, straightforward surface characterization $N23), ande!t development of a new instrumental technique called kinetic headspace GC (N24).

e

LITERATURE CITED COLUMN THEORY AND TECHNIQUES (Al) Tarjan, G.; Nyiredy, S.;Gycf, M.; Takacs, J. M. J . Chfomatogr. 1989, 472(1), 1-92. (A2) Horvath, C. J . Chfomatogr. 1989, 479(1), 1-3. (A3) Zenkevich. I. G.; Ioffe,B. V. J . Chromatogy. 1988. 439(2), 185-94. (A4) Chem. B.; Guo, X.; Peng, S. Chromatogrephle 1987, 23(12), 888-92. (A5) Hawkes, S. J. Anal. Chem. 1980, 61(1). 88-90. (A6) Dimov, N.; Mekenyan, 0. Anal. Chim. Acta 1988, 212(1-2), 317-23. (A7) Robbat, A.; Xyrafas, G.; Marshall, D. Anal. Chem. 1988, BO. 982-5. (AB) Dixon, A. G.; Ma, Y. H. Chem. Eng. Sci. 1988. 43(6), 1297-302. ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

419R

GAS CHROMATOGRAPHY (A9) Pawkch. 0.A.; Bric, J. R.; Laurence, R. L. M a c r W u & s 1988, 27(6), 1685-98. (A101 Le, V. C.; Thang, J. C.; Trieu, a. D. Z . phys. Chem. 1987. 266(6), 1146-52; CA 108119478e. ( A l l ) Wang, J. Y.; Charlet, G. Macromo&cubs 1989,22(9), 3781-8. (A121 Tyagi, 0. S.; Deshpande, D. D. J. Appl. Powm. Sci. 1987,34(7), 2377-88. (A13) Castelb, G.; Qeerblon, T. C. J. Chromatogr. 1988, 437(1). 33-45. (A14) Rathor, M. N.; Buffham, B. A.; Mason, G. J. Chromatogr. 1988, 445(1), 37-48. (A151 Wang, T.; Sun, Y. HRC CC, J. Hi$h Resdut. Chromatqr. Chromatogr. Commun. 1987, 70(11), 603-6. (A161 Strasbwg, R.; Fritz, J. S. J. High Resdut. Chromarogr. Chromatogr. Commun. 1988. 77(7). 534-6. (A17) &ob. K.; k+l&ler,'E. J. Resolut. chrometog*. Chromarcgr.Commun. 1988, 7 7(8), 560-5. (AM) Poole, C. F.; Poole, S. K. Chem. Rev. 1988,69(2). 377-95. (A191 Comor, J. J.; Kopecni, M. M. Mater. Sci. Forum 1988, 25-26, 303-23. -. (A20) Korol, A. N.; Yarpovetski, L. Y. Zh. Anal. Khlm. 1888,43(5),883-6; CA 110:68765v. (A211 Anthony, i.J.; Holland, R. A.; Heffner, S. A. J. High Resoiut. Chromatogr. Chromatcgr.Commun. 1888, 11(2), 167-72. (A22) Bemgaard, A. K.; Blomberg, L. G.; Coknsjoe, A. L. Anal. Chem. 1989, 67(19), 2185-71. (A23) Sandra, P.; Davld. F.; Turner, K. A.; McNalr, H. M.; Brownstein, A. D. J . ChrOmetOgr. 1989. 477(1). 63-71. (A24) Grimalt, J.; Iturriaga, H.; Olive, J. Anal. Chim. Acta 1987, 207, 193-205. (A25) Davis, J. M. J. Chromatogr. 1988,449(1), 41-52. (A26) Lln, B.; Lhr, B.; Koppenhoefer, G. Anal. Chem. 1988,60(19), 2135-7. (A27) Spence, J. W.; Allison, J. J. Chromatogr. Scl. 1989, 27(9). 553-6. (A28) Van Es, A.; Rijks. J.; Cramers, C. J. Chromatogr. 1989, 477(1), 39-47. (A291 Fuggerth, E. Anal. Chem. 1989, 67(14), 1478-85. (A30) Zhang. J. Sepu 1987, 5(6), 394-6; CA 108:123816b. (A31) Papp, 0.;Szasz. G.; Hermecz, 1, Acta Pharm. Hung. 1988. 58(3), 121-8; CA 11013947d. (A32) Coppi, S.; Betti, A.; Dondi, F. Anal. Chim. Acta 1988, 272(1-2), 165-70. (A33) Fernandez-Sanchez, E.; Fernandez-Torres, A.; Garcla-Dominguez. J. A.; Garcia-Munoz, J.; Menendez, V.; Molera, M. J.; Santiuste, J. M.; Pertb erra-Rimade, E. J. Chromtogr. 1987,470(1), 13-29. 887252. (A341 Kersten, G. R.; Poole, C. F.; Furton, K. G. J. Chromerogr. 1987,477, 43-59. (A35) Poole, S. K.; Kersten, B. R.; Pomaville, R. M.; Poole, C. F. LC-GC 1988,6(5),400-1, 404-5, 408, 410, 412.

___

LIQUID PHASES (Bl) Koenig, W. A.; Lutz, S.; Colber, C.; Schmidt, N.; Wenx, 0.; Von der Bey, E. J. Redut. chromatogr. Chromatogr. Commun. 1988, 77(9), 621-5. (82) Koenb, W. A.; Lutz, S.; Mischnlckluebbecker, T.; Brassat, B.; Wenz, G.J . chrometogr. 1988,447(1), 193-7. (83) Schwlg, V.; Ossig. A.; Llnk, R. J. High Resoiut. Chromarogr. Chromatogr. COmmun. 1988, 77(1), 89-93. (84) Matlsova, E.; Kraus, G.; Kraus, A. J . Chromatogr. 1988, 439(2). 381-5. (85) Mazur, J.; Witklewicz, 2.; Dabrowski, R. J. C b m t o g r . 1988. 455, 323-6. (86) Nawrocke, J.; Aue, W. A. J. Chromatogr. 1988, 456(2), 337-45. (87) B e r n a r d , A.; Blombsrg, L.; Lymann, hi.; Claude, S.; Tabacchi, R. J. Hlgh Resolur . Chromatcgr . Chromatogr Commun . 1988, 7 7 (12), 881-90. (Be) Janinl, G. M.; Muschik, G. M.; Issaq, H. J.; Laub, R. J. Anal. Chem. 1988,60(1l), 1119-24. (B9) Floyde, T. R.; Sallani, N., Jr.; Hartwick, R. A. J. Chromtogr. 1988, 452, 43-50. (B10) Paptrw, E.; &lard, H.; Rahmain, Y.; Legrand, A. P.; Facchini, L.; Horn mel, H. Chnxne-apM 1987,23(9), 639-47. (B11) POmaVllle, R. M.; Poole. C. F. Anal. Chim. Act8 1987, 200(1), 151-69. (812) Horka, M.; Janak, K.; Kahle, V.; Tesarik, K. J. High Resoiur. Chromatogr. chrometogr. Commun. 1887, 70(12), 678-9. (813) Frank, H. J. HI@ Resdut. Clwonurtogr. Chromatogr. Commun. 1988, 77(11), 787-792. (B14) Prlce, 0. J.. Adv. Chromatog. ( N . Y . ) 1989,26,113-83. (B15) Bsrexkin, V. F.; Viktorova, E. N.; Gavrichev. V. S. J. Chromatogr. 1988,456(2), 551-6.

.

SOLID SUPPORTS AND ADSORPTION (c1) TodorOvlC, M.; Kopecnl, M. M.; Cornor, J. J.; h u b , R. J. J . Clmmatogr. 1988,442, 105-110. (C2) Balard, J.; Sldqu, M.; Paperer. E.; Donnet, J. B.; Tuel, A,; Hommel, J.; Legrad, A. P. Chromatographla 1988,25(8). 707-11. (C3) Balard. J.; Sldqu, M.; Paperer, E.; Donnet, J. B.; Tuet, A,; Hommei, J.; Legrad, A. P. chrometoorephla 1988, 25(8), 712-16. (C4) SMqu, M.; Balard. J.; Paplrer, E.; Tuel, A.; Hommel, H.; Legrand. A. P. Chmatographia 1888,27(7-8) 311-15. (C5) Kopecnl, M. M.;Todorovic, G.; Comor, J. J.; Laub, R. J. Chromatographis 1988,26, 408-12. (C6) Veiazquez, A.: Leonard, J.; Cote, J. E. Chromatographie 1988, 27(9-101, 455-60. (C7) Marthe, D. E. J. Chromatogr. 1988,452. 17-30. (C8) Martire, D. E. J. Ll9. Chromatoq. 1989. 72(3), 479.

420R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

(C9) Rybolt. T. R. J. Tenn. Acad. Sci. 1888. 63(1). 5-10. (C10) POmaville, R. M.; P ~ l e C. , F. Anal. chem.1988, 60(11). 1103-6. (C11) Nikitin, Y. S.; Ro, R. T.; Shonla. N. K. J. Chrometogr. 1988, 446, 55-63. (C12) Gawtlova, T. B.; Vlasenko. E. V.; Petsev, N.; Topalova, I.; Dlmitrov. Kh.; Ivanov, S. J. Chromatogr. 1988,454, 73-81. (C13) Reznkov, S. A.; Sklorov, R. 1. Zh. F k . Khhn. 1988,62(11), 3080-91; CA 110:102264. (C14) Martire, D. E. J. Llq. Chrometogr. 1887, 70(8-9). 1569-88. (C15) Horwood, J. F.; Urbach, G. E. J. Chromatogr. 1988. 437(1), 283-43. ( C W De Zwuw, J.; De Nils. R. C. M.; Buyten, J. C.; Prwne, J. A,; Mohnke, M. J. High Resolut. Chromatogr. Chromatogr. Comnwn. 1988, 77(2), 162. (C17) Wenzel, T. J.; Yarmabff, L. W.; St. Cry. L. Y.; OMeara, L. J. Sonetell, M.; Bauer, R. W. J. Chromatogr. 1987,396,51-64. (CIS) Wenzel, T. J.; Bonasia, P. J.; Brewttt, T. J. Chromatog. 1889,463(1), 171-6. (C19) Maslowska, J.; Baxylak, G. Poi. J. Chem. 1988,62(4-6), 331-42; CA 111:84909. (C20) Tarasevich. Y. I.; Nikulichev. Y. G.;Bonderenko, S. V.; Nkitlna, N. S.; Mysak, A. E.; Zhukova, A. 1. Nefteperereb. Neftekhim. ( K h ) 1987,32, 54-9; CA 108:48460a. (C21) Chukwunenye, C.; McAtw, J. L., Jr. J. Chromatogr.1987,470(1). 121-8. (C22) Komarov. V. S.; Gorank. A. I.Vestsi Adad. Nevuk ESSR. Ser. Khim. &VI&, 1988, (5),6-10; CA 110:82872. (C23) Qavriiova, T. B.; Kiselev, A. V.; Roshchina. T. M. Koibkfn. Sh. 1988, 5016). 1078-82: CA 110:102334 (C24 'DjordjeviciN.M.; L&b,R.j. Anal. Chem. 1988. 60(2), 124-30. (C25) Hung, L. B.; Parcher, J. F. Shores, J. C.; Ward, E. H. Anal. Chem. 1988, 60( 1l), 1090-6. (C26) Vejrosta, J.; Mlkesova, M.; Drozd, J. J. C h m t o g r . 1989, 464(2), 394-9. (C27) Cap, L.; Havlichy, T. Acta Univ. Palacki, olomuc. F8C. Rerun, Net. l988*97, 165-75; CA lll:16656Ot. (C28) Hrad, J.; Svec, F.; Platonova, N. P.; Belyakova, L. D.; Marwsek, V. J. Chromatogr . 1989. 469, 143-52. (C29) Pekov, G.; Petsev, N.; Obretenova, R. J. Chromatogr. 1988,457, 377-82. (C30) Anthony. L. J.; Holland, R. A. J . Chromatogr. 1989,477(2), 291-304. SORPTION PROCESSESAND SOLVENTS

(Dl) Voalkel, A. J. Chromatogr. 1988,435(1), 29-41. (D2) Feibush, B. J. Chromatogr. 1988,436(3), 517-19. (D3) Pitzer. E. W. J. Chromatogr. Sci. 1988. 26(5), 223-7. (D4) Ito, M. M.; Kato, J.; Takagi, S.; Nakashiro, E.; Sato, T.; Yamada, Y.; Saito, H.; Namlkl, T.; Takamura. I.: et al. J. Am. Chem. Soc. 1988, 770(15), 5147-52. (05) Kato, J.; Suzuki, T.; Takagi, S.; Endo, T. J. Chem. Soc. Chem. Commun. 1989,507-9. 0 6 ) Haken, J. K.; Abraham, F. J. Chromtogr. 1988,440,329-32. (D7) Chen, F. Macromolecules 1988,27(6), 1640-3. (DE) &ushova, E. I. Zh.Fir. Khh. 1989,63(6), 1678-61; CA 111:141739. (D9) Hoefler, F.; Melzer. H.; Moechel. H. J. Robertson, L. W.; Anklam, E. J. Agric. Food Chem. 1888,36(5),961-5. (D10) Devlilers, J. Fresenius' J. Anal. Chem. 1988,332(1), 61-2. (D11) Hassan. M. N.; Jws, P. C. Anal. Chem. 1988, 60(10), 976-82. (D12) Grlgoc'eva, D. N.; Oolovnya, R. V. Zh. Anal. Khlm. 1988.43(4), 7059; CA 109:182787. (D13) Samusenko, A. L.; Oolovnya, R. V. Chromatographis 1988. 25(6). 531-5. (D14) Engewald, E.; Billing, U.; Topalova, I.; Petsev, N. J. Chromatogr. 1888,446, 71-7. (D15) Nabivach, V. M.; Buryan, P.; Macak, J. Zh. Anal. Khlm. 1988,43(7), 1288-93. (D16) Dimov, N.; Mekenyan. 0. Anal. Chim. Acta 1988,272(1-2), 317-23. (D17) I-leberger, K. Chromatographis 1988,25(8), 725-30. (D16) Hsiu, S. L.; Kawaki, H.; Yokoyama, K.; Takai, H.; Sasaki, Y. Chem. Pharm. Euil. 1988, 36(11), 4474-7. (D19) Nabivach, V. M. Zh. F l . . Khlm. 1988, 62(8), 2152-7; CA 1113126144d. 0 2 0 ) Engelwald, W.; Topalova, I.; Petsev, N.; Dimitrov, Kh. Chromatographis 1987,23(8), 561-5. (D21) Coca. J.; Wina. I.;Langer, S. H. Liq. Crust. 1989,4(2), 175-80. (D22) Sobk, L.; Ostrovsky, 1. J. Chromatogr. 1988,446. 339-46. (023) Shindo, Y.; Fujiqara, H.; Sasaki, Y. Chem. Pharm. Bull. 1989. 37(6), 1556-60. (D24) V d k e i , A. J. Chromatogr. 1988,457, 73-84. (D25) Tekler, V.; Tarjan, G.; Takacs. J.M. J. Chromatogr. 1987, 406, 131-8. 0 2 6 ) Poole, C. F.; Poole, S. K.; PomavUle, R. M.; Kersten. B. R. J. High Resolut. Chromarogr. Chromatogr. Commun. 1987, 70(12), 670-1. (D27) Hawkes, S.J. Chromatograph& 1988. 25(4), 313-18. (D28) Zenkevich, I. G.; Ioffe,B. V. J. Chromatogr. 1988,439(2), 185-94. (D29) Belyaev, N. F.; Vigdergauz, M. S. Zh. Anal. Khlm. 1988, 43(5), 86772; CA 109:182793. (D30) SaM, A. S. J. High Resoiut. Chromatogr. Chromatogr. Commun. 1888, 77(9), 678-80. (031) Laub, R. J.; Purneil, J.H. J. H e Resoiut. Chromamgr. Chromatogr. Commun. 1988, 17(9), 649-60. (D32) Galin. J.; Mashko, L. € w . Pofym J. 1987,23(12), 923-7. (D33) Lu, H.; Fu. H.; Jia, Y. J. Chem. Thennodyn. 1988,20(1). 119-23. 0 3 4 ) Juang. M.; Morgan, G. K.: Arnold, D. W. J. Chem. Eng. Data 1989, 34(2), 161-5. (D35) Knoop. C.; Tiegs, D.; Gmehling, J. J . Chem. f n g . Data 1989. 34(2), 240-7.

GAS CHROMATOGRAPHY

(038 Itwki, H.; Shigeta, H.; Terasawa, S. Chromatogmphie 1989, 27(7-8),

359-83. (D37) h u b , R. J. MI.crust. LN. C w t . 1988, 757, 369-85. (D38) h u b , R. J.; Tyagi, 0. S. Po!vm. Meter. Scl. Eng. 1988, 58. 681-6. (D39) (3hlbOn, R. T.; Poppe, H.; Kraak, J. C.; Duysters. P. P. E. Chromatogxephle 1989. 27(1-2), 60-6. (D40) Sasaki, Y.; Fuji, S.; Takagi, T.; Kawaki, H. Chem. f i r m . Bull. 1989, 37(6), 1554-5. (041) Evans, M. B.; Haken, J. K. J. Chromatogr. 1987, 406, 105-15. (D42) Martlre, D.E. J. Chfomatogr. 1989, 471, 71-80. (D43) hitart, R.; Puigdemont, A.; Arboix. M. J. Chromatogr. 1989. 497(2), 271-80. WALLCOATED OPEN TUBULAR COLUMNS (El) Ishli, D.; Niwa, T.; Ohta, K.; Takeuchl, T. J. High Resdut. Chromatogr. C2rOnmtogr. Commun.1988, 77, 800-801. (E2) b o , X. Xbei -e Xueyaun Xuebeo 1988, 47-53. (E31 Lee, 0.; Ray, C.; Siemers, R.; b e . R. Am. Lab. 1989, 21, 110-119. (E4) M y , T.; c l a w s , C. J. H@h Resdut. Chromatogr. Chromatogr. CommUn. 1988, 17, 264-270. (E5) Ewe, L.; Hlnshaw, J. V. J. High Resdut. Chromatogr. Chromatogr. Commun. 1888, 7 7 , 207. (E8) Van Es, A.; Rijks, J.; Cramers, C. J. Chromatogr. 1989, 477, 39-47. (E7) Pouwelse, A.; De Jong, D.; Van den Berg, J. H. M. J. High Resolut. Chnrmew. chrometog*. Commun. 1988. 17, 607-609. (E81 Qao, Y.; Zhang, 0. Fenxl Hunxue 1988, 76. 388-368. (ES) NaWodti, J. chrometoorephle 1988. 25, 404-408. (ElO) Etzweller, F. J. Hkgh Resdut. Chromatogr. Chromatogr. Commun. 1988, 1 1 , 449-458. ( E l l ) Zeng, Zh.; Wu, C.; Zhou, X. Sepu 1988, 6, 200-205. (€12) Methews, R. G. J. Chfvmatogr. Sci. 1989, 27, 47-49. (E13) Welsch, T. J . High Resdut. C h r m t o g r . Chromatogr. Commun. 1988, 17, 471-479. (E14) Bystrkky, L. Czech. Pat. CS 257,478. Feb 1989. 3 pp. (E15) BysMoky, L.; Fakes, P.; Kozankova, J. Chem. Usty 1988, 82, 92-97. (EM) A r r d l e , R. F.; Martin, R. M. J. Hlgh Resdut. Chromatop. Chromatog*. Commun. 1988, 1 7 , 157-161. (E17) Wooky, C. L.; Tarbet, B. J.; Markkles, K. E.; Bradshaw, J. S.; Lee, M. L. J. HI& Resolut. Chromatogr. Chromatogr. Common. 1988, 7 7 , i13-1ia. . .- . . -. (E18) Triska, J.; Knobloch, P.; Vodicka, L. Chem. Listy 1988, 82, 1090-1093. (El9) Schmid, P.: Mueiler. M. D. J. High Resolut. Chromatogr. Chromatogr. COnWnM. 1987, 70, 548-552. (E20) Blum, W.; Damasceno, L. J. High Resdut. Chromatogr. Chromatogr. CommM. 1887, 10, 472-476. (E21) Blomberg, S.; Roerade J. J. Hlgh Resolut. Chromatogr. Chromatogr. COIWUtn. 1988, 7 7 , 457-461. (E22) Hyver, K. J. J. High Resdut. Chromatogr. Chromatogr. Commun. 1988, 7 1, 89-72. (E23) Cartoni, 0. P.; Neri, E.; Russo, M. V. J. Chfomatogr. 1989, 475, 145-151. (E24) &ob, K.; French, P. Am. Lab. 1988, 20, 19-23. (E25) Befezkin, V. 0. Zevod. Lab. 1988. 54. 1-11. (E281 Qaespard, 0. Inf. Chlm. 1987, 287, 201-207. (E27) bWaard, A.; Blomberg, L.; Lymann, M.; Claude, S.; Tabacchi, R. J. m & S O h I t .M t o g r . C h r m t o g r . Commun. 1988, 7 7 , 881-890. (E28) SChak, H. Labor-Ra~k1989, 73,60-67. (E291 Davld, F.; Sandra, P.: Diricks. G. J. High Resolut. Chmmatogr. Chromaw.comrma?.1988, 77, 258-283. (E30) Yaw, H.; Lu, W. F e n x l m x u e 1988, 76,175-178. (E31) Befezkin, V. 0.; Vokov, S.M. Chem. Rev. 1989, 89, 287-308. (E32) Russo, M. V.; doretti, G.; Liberti, A.; Ubaldi, A. Anal. Chlm. (Rome) 1988, 78, 481-495. (E33) De Zeeuw, J.; De Nijs. R. C. M.; Buijten, J. C.; Peene, J. A,; Mohnke, M. Am. Lab. 1987, 79. 84-87. (E34) Legesson, V.; Newman, J. M. J. High Resolut. Chromatogr. Chromatog*. CommW. 1988, 1 7 , 577-583. (E39 Fabian, G. German (East) DD 288,741 Nov 17, 1987, 4 pp. (E38) Janini, G. M., Muschik. G. M., Issaq H. J., Laub, R. J. Anal. Chem. 1988, BO, 119-1124. INSTRUMENTATION AND DETECTORS

SMlPl. lntroductlon (F1) Berezkin, V. 0.; Popova, T. P.; Korolev, A. A.; Shiryaeva, V. E.; Vasin, L. S.; Upavskii, V. N. J. H@I R e W . Chrometogr. Chromatogr.CommUn. 1988, 77(1), 42-8. (F2) Claude, S. G.; Tabacchi, R. J. High Resdut. Chromatogr. Chromatogr. COmmun. 1988. 71(2). 187-90. (F3) Repka, D.; Krupcik, J.; Benicka, E.; Leclercq, P. A.; Rijks, J. A. J. Cbf?kYtog. 1989, 463(2), 244-51. (F4) KOPCZynski. S. L. J . chrometog*. 1989, 463(2), 253-80. (F5) lhquet. D.: Dewaele, C.; Venele, M. J. Res&. Chromatogr. chrome-. c4mmun.1988, 17(3), 252-6. (F8) Hakkimn, V. M. A.; Virdainen, M. M.; Riekkoia, M. L. J . Hkgh Resolut. Cbf?kYm chrome-. . Conwnun. 1988, 77(2), 214-16. (F7) Duqwt, D.; Dewaele, C.; Verzele, M.; McKinley. S. J. High Resolut. -tog*. -tog*. COmmun. 1988, 77(11), 824-9. (F8) lhqwt, D.; Dewade, C. Comm. Ev.Commun&s 1988, EUR 11350, &g. ARcropoCM. Aqunt. En-.. 14-21. (FS) &Ob, K. Trends A M I . Chem. 1989, 8(5), 162-6. (F10) Rldtkda. M. L. J . chrometog*. 1989, 473(2). 315-23. (F11) hvks, I.L.; Raynor, M. W.; KHhinJi,J. P.; Bartle, K. D.; Williams, P. T.; Andrew, G. E. Anal. Chem. 1988, 60(ll), 683A-702A. (F12) Zhu, J.; Yeung, E. S. Anal. & e m . 1989, 67(17), 1906-10.

(F13) Mueiler, F.; Mueiier, H.; Straub, H. J. Chromatogr. 1989. 477(1), 25-38. (F14) Adams. S. T. J. High Resdut. Chromatogr. Chromatog. Commun. 1988, 71(1), 85-9. (F15) Hilling, P. A.; Dawes, P. A.; David, W. J. High Resolut. Chromatogr. Chromatog. Commun. 1888, 71(4). 353-7. (FIB) Marsman, J. H.; Panneman, H. J.; Beenackers, A. A. J. Chromatog. 1989, 483, 111-20. (F17) Yamauchi, Y.; Saito, M. Jan. Fudo. Seiensu 1989. 28(9), 46-53. (F18) Nielen. M. W. F.; Sanderson, J. T.; Frei. R. W.; Brinkman, U. A. T. J. Chromatogr. 1989, 474(2), 388-95. (F19) King, Jerry W. J. Chromatogr. Sci. 1989, 27(7), 355-64. (F20) Cochran, J. W.; Yates, M. V.; Henson, J. M. J. Microbial. Me1988. 8(6),347-54. (F21) Long, J. W.; Snyder, R. W.; Spalik, J. J. Chromatogr. 1888, 450(3), 394-8. (F22) Mosesman, N. H.; Betz, W. R.; Corman, S. D. LC-GC 1988, 6(4), 328-36. (F23) Douse, J. M. F. J. Chromatogr. 1989, 464(1), 178-85. (F24) Venema, A. J. High Resolut. Chromatow. Chromatogr. Common. lS88, 71(1), 128-31. (F25) Karpe, P.; Persin, M.; Durand, G. Analusis 1988, 77(1-2), 50-8. (F28) Umano, K.; Shibamoto, T. D e v . Food Sic. 1988. 78 (Flavors Fragrances), 981-98. (F27) Kuo, M. C.; Zhang, Y.; Hartman, T. G.; Rosen, R. T.; Ho, C. T. J. Agric. Food Chem. 1989, 37(4), 1020-2. (F28) Washaii. J. W.; Wampler, T. P. Am. Lab. (FairfieM, Conn.) 1988, 20(7), 70, 72-4. (F29) Lanzerstorfer, C.; Puxbaum. H. Anal. Lett. 1989, 22(5), 1375-87. (F30) Thompson, C. V.; Jenkins, R. A.; Higgins, C. E. Environ. Sci. Technol. 1889, 23(4), 429-35. (F31) Pankow, J. F.; Ligocki, M. P.; Rosen, M. E.; Isabelle, L. M.; Hart, K. M. Anal. Chem. 1988. 60(1), 40-7. (F32) Lanning, L. A.; Sacks, R. D.; Mouradian, R. F.; Levine, S. P.; Foulke, J. A. Anal. Chem. 1988, 60(18). 1994-6. (F33) Mitra, S.; Phillips, J. B. J. Chromatogr. Sci. 1988, 26(12), 820-3. (F34) Mitra, S.; Phillips, J. B. Rev. Sci. Instrum. 1988. 59 (8, part I), 1427-8. (F35) Schmid. R. W.; Wolf, C. Chromatographie 1888, 27(5-6). (F36) Bicchi. C.; Frattini, C.; Nano, 0. M.; D'Amato, A. J. High Resolut. Chromatogr. Chromatogr. Commun. 1988, 77(1), 58-60. (F37) Morabito, P. L.; Hiller, J. F.; McCabe, T. J. High Resoiut. Chromatogr. Chrometogr. Commun. 1989, 72(5), 347-9. (F38) SilViS. P. H. LC-GC 1888, 7(7), 562, 564, 568, 568-9. (F39) Van Es, A.; Janssen, J.; Cramers, C.; Rijks, J. J. High Resolut. Chromatogr. Chromatogr. Commun. 1988, 77(12), 852-7. (F40) Hinshaw, J. V. LC-GC 1989, 7(1), 26-31. (F41) &ob, K. J. Assoc. Off. Anal. Chem. 1988, 77(4), 78A-78A. (F42) @Ob, K.; Biderman, M.; Li, 2. J. Chromatogr. 1988. 448(3), 387-90. (F43) Grob. K.; Biedermann, M. J. High Resolut. Chromatogr. Chromatogr. Commun. 1989, 12(2), 89-95. (F44) Traitler, H. J. Am. Oilchem. SOC. 1988, 65(7), 119-23. (F45) Hinshaw, J. V. J. Chromatogr. Sci. 1988, 26(4), 142-5. (F48) Sung, N. J.; Johnson, S. I.; Zlatkis, A.; Middleditch, B. S. J. High Resolut. Chromatogr. Chromatogr. Commun. 1989, 77(5), 409-10. (F47) Gaiiegos, E. J.; Moidowan, J. M. Prepr.-Am. Chem. Soc., Div. Pet. Chem. 1889, 37(1), 159-69. (F48) Ghaoui, L. J. High Resoiut. Chromatogr. Chromatogr. Commun. 1088. 71k51. 410-13. (F49j--&rg,'.i: R. -J. High Resolut. Chromatogr. Chromatogr. Commun. 1989. 72(3). 133-7. (F50) R&o:'G.; Herraiz, M.; Herraiz, T.; Loyola, E. J. Chromatogr. 1888, 438(2), 243-51. (F51) Marsman, J. H.; Panneman, H. J.; Beenachers, A. A. C. M. Chmmatofl8phie 1988. 26. 383-6. (F52) Wass, J. C.; Packham, N. J. C. LC-GC 1988, 6(5),420-3. Detecton (Gl) Hoevermann, W. Nachr. Chem. Tech. Lab. 1888, 36, 150-63. (G2) Shlyakhov, A. F. Zavod. Lab. 1989, 55(2), 1-12. (G3) Johnston, M. V. Trends Anal. Chem. 1988, 7(3), 94-8. (G4) Andrawes, F.; Greenhouse, S. J. Chromatogr. Sci. 1988, 26(4), 153-9. (G5) Varmuza, K. Trends Anal. Chem. 1988. 7(2), 50-3. (G6) Noij, T.; Rijks, J. A.; Van Es. A. J.; Cramers, C. A. J. High Resdut. Chromatogr. Chromatogr. Commun. 1988, 71(12), 862-9. (G7) De Ruig, W. G.; Stephany. R. W.; Dijkstra, G. J. Assoc. Off. Ana/. Chem. 1989, 72(3), 487-90.

IONIZATION DETECTORS (HI) Steinmueiler, D. Am. Lab. ( F e m M , Conn.) 1888, 27(3), 120-5. (H2) Verga, G. R.; Sironi, A.; Schneider. W.; Frohne, J. C. J. High Resdut. Chromatogr. Chromatogr. Commun. 1988, 77(3). 248-52. (H3) Van de Weiier. P.; Zwerver. B. H.; Lynch, Roderick, J. Anal. Chem. . 1988, 60(14), 3380-7. (H4) Bonderenko, 1. V.; Budovich, V. L.; Bykhovskii, M. Ya. Zavod. Lab. 1080. 55(11. 11-13. (H5)iVan Es: A.;Crakrs, C.; Rijks, J. J. High Resdut. Chromatogr. Chromatogr. Commun. 1989, 72(5), 303-7. (H6) Vien, S. H.; Fry, R. C. Anal. Chem. 1988. 80(5), 465-72. (H7) Ogino, H.; Aomura, Y.; Komuro. M.; Kobayashi, T. Anal. Chem. 1989, 67 (20), 2237-40. (Ha) Steinmueller, D.; Straub, H. Labor Praxls 1988, 73(5), 418, 418-19. (H9) Carpio, R. A.; Lindt, E. Semlcond. Int. 1988. 72(6). 164-7. (H10) h s a , J.; Sliwka, I. Chromatogr8phie 1989, 27(9-lo), 499-508. ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

421 R

GAS CHROMATO(jRAPHY ( t i l l ) McMehon, A. W.; Aue, W. A. hikmchh. Acta 1988, 3(1-6), 11-26. (H12) R O W , J.; Lase. J. J . chrome-. 1989. 465(2), 215-26. (H13) Budovich, V. L.; Ol'shanskaya, E. Ya.; Rotin, V. A. Zavw'. Lab. 1989, 56(3), 23-6. (H14) WentworVI. W. E.; Limero, T.; Battern, C. F.; Chen, E. C. M. J . Chromat@. 1988, 44(1). 45-62. (H15) Rotockl, P.; Drozdowlcz, B. Chrometographh 1989, 27(1-2). 71-6. (H16) Rotockl, P.; Drozdowlcz, B. J . Chrmtog. 1988, 446. 329-37. (H17) Haas, J. W., 111; Buchanan, M. V.; Wise, M. B. J. Chromatogr. Sci. 1988, 26(2), 49-54. (HIE) Johnson, J. E.; Lovelock, J. E. Anal. Chem. 1988, 60(8),812-16.

Optical Dotectorr Tang, Y. 2.; AM, W. A. J . Chrmtcgr. 1988. 457, 149-58. Llu, B. H.;Fu. P. R. chrometogephle 1989, 27(3-4), 159-63. Sun, X. Y.; Am, W. A. Can. J . Chem. 1989, 67(5), 897-901. Sun, X. Y.; Aue, W. A. J . C h r m t o g r . 1989, 467(1), 75-84. (15) Driscdl, J. N.; Berger, A. W. J . Chromatog. 1988, 468, 303-8. (IS) Bonnet, R. L.; Stsdman, D. H. Anal. Chem. 1989, 67(11), 1268-1271. (17) Flocks, F.; Volz, A.; Kley, D. Ber. Kernforschungsam&p Juelich 1988, JueC2217, 78 pp, (18) McNamara, E. A.; Montzka. S. A.; Barkley, R. M.; Sievers, R. E. J . Chnxnetogr. 1988, 452, 75-83. (19) Montrka. S. A.; Barkley, R. M.; Sievers, R. E. S. Afr. J. Chem. 1989, 42(2), 81-6. (110) Llsensky, G. C.; Meyer, G. J.; Ellls, A. B. Anal. Chem. 1988, 60(22), 2531-4. ( I l l ) Bagherl, H.; Creaser, C. S. Anal. Appl. Spectrosc. 1888, 388-91. (112) Yu, T.; Wlnefwdner, J. D. Spectrosc. Lett. 1988. 27(5), 465-76. (113) Imasaka, T.; Tamka, K.; Ishibashi, N. Anal. Sci. 1988, 4(1), 31-5. (114) Hudson, M. K.; Busch, K. W. Anal. Chem. 1988, 60(19), 2110-15. (115) Brown, R. S.; Wklns, C. L. Anal. Chem. 1988, 60(14), 1483-8. (118) hefner, A. M.;Notion, K. L.; Orltfims. P. R.; Bourne, S.; Curbelo, R. Anal. Chem. 1988, 60(21), 2441-4. (117) Holbway, T. T.; FaMess, B. J.; FreMline, C. E.; Klmbai, H. E.; Kloepfer, R. D.; Wwey, C. J.; Jonoby, L. A.; Palmer, H. G. Appl. Spectrosc. 1988, 42(2). 359-69. ( I 18) ' Venema, A. J HI@ Resolut Chromatogr Chromatogr . Commun , 1988. 77(11). 843-5. (119) Cwk,'B.'W.: Cleary, M. Ana&st(London)1988, 773(8). 1171-4. (120) Lu, X.; zhang, L.; G.; che,X. fenxlHuexoe 1988, 76(6), 562-5. (121) Kalaslnsky. V. F.; Whltehead, K. G.; Kenton, R. C.; Kalasinsky, K. S. SpeCtrOSC. 1988, 42(1), 56-60. (122) Lanser, A. C.; Emken, E. A. J. Am. Oil Chem. SOC. 1988, 65(9), 1483-7. (123) Drlscoll, J. N.; Duffy, M.; Pappas, S. J. Chromatogr. 1988, 447(1), 63-7 1. (124) Forster, I?.C.; Howard, A. G. Anal. Rm. (London) 1989, 26(1), 34-6. (125) Harrkt. M.; Burns. D. T.; Glockllna. F. Stmc. Publ. R . SOC. Chem. 1988, 68, 243-57. (126) Ebdon, L.: HIII, S.; Walton, A. P.; Ward, R. W. Analyst (London) 1988, 7. 7318\. .- ,- 1159-85 . .- - - -. (127) Wolf, W. R.; LaCrolx, D. E. Mlcronub-. Anal. 1988, 4(2), 129-43. (128) Flror. R. L. Am. Lab(faM8kl, Conn.) 1989, 27(5), 40, 42, 44, 46-6. (129) Skelton, R. J., Jr.; Chang, H. C. K.; Farnsworth, P. B.; Markldes, K. E.; Lee, M. L. Anal. Chem. 1989, 67(20), 2292-8. (130) Bradter, M.; Buscher, W.; Faust, M.; Winter, F.; Cammann, K. GIT fachz. Lab. 1989, 33(3), 166, 168-9. (131) Sklarew, D. S.; Olsen, K. B.; Evans, J. C. Chromatographia 1988, 27( 1-2). 44-8. (132) Rlvkre, B.; Mermet, J. M.; Deruaz, D. J. Anal. At. Spectrom. 1889, 4(6), 519-23. (133) LauzOn, C.; Tran, K. C.; Hubert, J. J. Anal. At. Spectrom. 1988, 3(6), 901-5. (134) McAteer, P. J.; Ryerson, T. B.; Argentlne, M. D.; Ware, M. L.; Rice, G. W. Apple Spe~trcgc.1988, 42(4), 586-8. (135) Ihlla. M. P.; Wen, P.C. J . Chromatogr. 1988, 438(1), 35-43. (136) Muewer, H.; Cemmenn, K. J . Anal. At. Spectmm. 1988. 3(6), 907-13. (137) MH, J. H.; Nerayamn. B. A.; Doom, J. P.; McCormlck, J. P. J . HI@ Resdut. Chrmtcgr. cluomatogr. Commun. 1988, 77(5),368-74. (138) Sullivan. J. J.; auknby, 8. D. J . High Resdut. Chrmtogr. Chromatw.Cwnmun. 1989, 72(5),282-6. (139) Yang. G.; Ye, A.; Xu, H.; Ll, G.; Bu, J.; Jln, Q. Gaodeng Xuexiao HuaxW ) X W O 1988, 9(l), 27-30. (140) Mdley, C.; Camahan, J. W. Anal. Chem. 1988, 60(9), 858-63. (141) @Ode, S. R.: Khbrough, I . K. J . Anal. At. Spectrom. 1988, 3(6), 9 15- 18. (142) Costenro, R. B.; Barry, E. F. Anal. Chem. 1988, 60(8).826-9. (143) Coshnzo, R. 8.; Bany. E. F. Appl. Spectrosc. 1988, 42(8), 1387-93. (144) Skelton. R. J. Jr.; Markides, K. E.; Famsworth, P. B.; Lee, M. L.; Yang, F. J. J . Resolut. chrometogr. Chromatogr. Commun. 1988. 77(1). 75-81. (145) hmmann, K.; Muelier, H. fresenlus' 2.Anal. Chem. 1988, 337(3-4), 336-41. (146) Hooker, D. 8.; Dezwaan, J. Anal. Chem. 1889, 67(19), 2207-11. (11) (12) (13) (14)

.

.

.

-

.

(.

Ekctrochomkal Dotoclon ( J l ) Ramus, T. L.; Thomas, L. C. J . C h r m t o g r . 1989, 473(1), 27-35. (J2) SeO. Y. BwrseklK. 1988, 37(1), T5-TlO. (J3) Percher, J. F.; Barbour, C. J.; Murray, R. W. Anal. Chem. 1988, 67(6), 584-9. (J4) Brine, R.; Pons. S. J . Electroanai. Chem. Interfaclal Electrochem. 1989. 264(1-2), 121-30. (J5) Brlna. R.; Pons, S.; Fleischmann, M. J. Electroanel. Chem. Interfacial Electrochem. 1988, 244(1-2), 81-90,

422R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

(J6) Krlchmar, S. 1.; Etimtsev, V. P. Vopr. Khlm. Khlm. T&hnol. 1988, 87, 45-7. Other Detectors Tong, 0.Sepu 1988, 6(6). 375-6. Akira, K.; Baba, S. J . Chromatogr. 1989, 489(2), 255-62. Matucha, M. Chromatographia 1989. 27(11-12), 552-8. Ewbank, J. D.; Paul, D. W.; Schaefer, L.; Slam, K.; Monts, D. L.; Faust, W. L. Rev. Sci. Inshum. 1888, 59(7), 1144-7. (K5) O'Hara, D.; Singh, H. B. Atmos. Environ. 1988, 22(11), 2613-15. (K6) Krylov, V. A.; Krasotskil, S. G.; Gershteln, L. 1. Vys&och/st. Veshcheshra 1889, 7 , 140-6. (K7) Schomburg, G.; Behlau, H.;Haeusig. U.; Hoening, B.; Roeder, W. J . HI@ Resolut. Chromtogr. Chromatogr. Commun. 1989, 12(3), 142-8. (K8) Lee, G.; Ray, C.; Slemers, R.; Moore, R. Am. Lab. (faMteM, Conn.) 1989, 27(2), 110, 112-14, 116, 118-19. (K9) Vecchi, M.; Walther, W. J . High Resolut. Chromatogr. Chromatogr. Commun. 1988, 77(4). 337-8. (K10) Schilling, B.; &ob. K.; Plchler, P.; Dubs, R.; Brechbuehler, B. J. Chromatog/. 1988, 435(1), 204-9. (Kl) (K2) (K3) (K4)

GAS CHROMATOGRAPHY-MASS SPECTROMETRY

(Ll) Evershed. R. P. Mass Spectrom. 1887, 9, 196-263. (L2) Matisova, E. J. Chromatogr. 1988. 438(2), 131-44. (L3) Coldwell, R. D.; Porteous, C. E.; Trafford, D. J. H.;Makin, H. L. J. SterOMS 1987, 49(1-3). 155-96. (L4) Hogge, L. R.; Mlllar, J. G. A&. Chromatogr. 1987. 27, 299-351. (L5) Bourne, S.; Croasmun, W. R. Anal. Chem. 1988. 60(19), 2172-4. (L6) Ragliine, T. V.; Troskosky, J. A.; Hartwick, R. A. J . Chromatogr. 1987, 409, 205-12. (L7) Grossmann, P.; Caravattl. P.; Duetsch, St.; Allemann. M.; Kellerhals. H. P. Lab. fract. 1987, 36(11), 63-5. (LE) Fujiwara, H.; Solsten, R. T.; Wratten. S. J. Spectroscopy 1987, ,?(lo), 24-9. (L9) Claude, S. G.; Tabacchi, R. J. Hlgh Resolut. Chromatogr. Chromato@. Commun. 1988, 77(2), 187-90. (L10) Ghosh, A.; Anderegg. R. J. Anal. Chem. 1989, 67(1), 73-7. (L11) Ghosh, A.; Anderegg. R. J. Anai. Chem. 1989, 67(18), 2118-21. (L12) Windig, W.; Liebman. S. A.; Wasserman, M. 8.; Snyder, A. P. Anal. Chem. 1988. 60(15), 1503-10. (L13j Allan, A. R.; Roboz, J. RapMCommun. Mass Spectrom. 1988, 2(11), 246-9. OUALITATIVE AND OUANTITATIVE ANALYSIS (Ml) Novak, J. Chromatogr. Sci. 1988, 47. 277 pp. (M2) Blomberg, L. 0. A&. Chromtogr. 1987, 26, 229-76. (M3) AttygaUe, A. B.; Morgan, E. D. Angew. Chem. 1988, 700(4), 475-94. (M4) Ewbank. J. D.; Paul, D. W.; Schaefer, L.; S i m , K.;Monts, D.L.; Faust, W. L. Rev. Sci. Inshum. 1988, 59(7). 1144-7. (M5) Evans, M. 8.; Haken, J. K. J. Chromatogr. 1988, 472(1), 93-127. (M6) Kallszan, R. Chem. Anal. ( N . Y . ) 1987, 93. 303 pp, (M7) Krawcryk, W.; Plotrowskl, G. T. J. Chromatogr. 1989, 463(2), 297-304. (ME) Engewald, W.; Billing, U.; Welsch, T.; Haufe, G. ChromatogrspMa 1987, 23(8), 590-4. (M9) Rohrbaugh, R. H.; Jurs, P. C. Anal. Chem. 1888, 60(20). 2249-53. (M10) Stanton, D. T.; Jurs, P. C. Anal. Chem. 1989, 61(13), 1328-32. MISCELLANEOUS ( N l j Hanrahan. J. M.; OBbriel, M. K.; Wllllams, R. J.; McDonnell, M. E. I n Gu& Mater. Charact. Chem. Anal.; Sibllla, J. P., Ed.; VCH New York, 1988; pp 61-84. (N2) Pauschmann, H. GITFachz. Lab. 1988, 32(4), 374-8. (N3) Desty. D. H. J. Chromtogr. Sci. 1987, 25(12), 552-63. (N4) P O OC. ~ F.; Poole, S. K. Anal. Chim. Acta 1989. 276(1-2), 109-45. (N5) Novak, J. Chromatogr. Scl. 1887, 38, 103-55. (N6) Rudzlnski, W. Chromatogr. Sci. 1987, 38, 157-87. (N7) Joensson, J. A.; Mathlasson, L. Chromatogr. Sci. 1987, 38, 189-243. (NE) Ssndra, P. J. H@ Resohd. Chromatog. Chromatogr. Commun. 1989, 72(2). 82-6. (N9) Matter, L.; Poeck, M. GITFachz. Lab. 1987, 37(11), 1031-2, 1034-6. 1038-9. (N10) Matter, L.; Poeck, M. GIT-Suppl. 1987, 3, 81-2, 84-6. (N11) @ob, K. Classical Split and Splitless In,ktbn in Cap&ty Chrometography, 2nd ed.;Dr. Alfred Huethig Verlag: Heidelberg, FRG, 1988. (N12) Katsanos, N. A. Chromatogr. Scl. 1988, 42, 304 pp. (N13) Middleditch, B. S.; Zlatkis, A.; Schwa&, A. D. J . C h r m t o g r . Sci. 1888, 26(4), 150-2. (N14) Robards, K.; Patsalkles. E.; D1111, S. J . Chromatog. 1887. 477, 1-41. (N15) DiPaola-Baranyi, G. Polym. Mater. Sci. Eng. 1988. 58, 735-40. (N16) Lloyd, D. R.; Ward, T. C.; Schrelber, H. P., Ed. ACS Symposium Series 391: Inverse Gas Chromatography: Characferlzetkm of porvmerS and Other Material; American Chemical Society: Washington, D.C., 1989. (N17) Gemmel, B.; Schmitr, F. P.; Klesper, E. J. Chromatogr. 1988, 455, 17-27. (N18) Gemmel, B.; Schmitr. F. P., Klesper, E. J . HI@ Resolut. Chromatogr. Chromatog/. Cmmun. 1988, 77(12), 901-3. (N19) Repka, D.; Krupck, J.; Brunovska, A.; Leclercq, P. A,; Rljks, J. A. J . ChrOmatW. 1989, 463(2), 235-42. (N20) Qdomya, R. V.; Svetlova, N. I. Chvmatcgaphia 1988, 25(6), 493-6. (N21) Akporhonor, E. E.; Le Vent, S.; Taylor, D. R. J . C h r o m e t ~1989, . 463(2), 271-80. (N22) El Fallah, M. 2.; Martin, M. Chromatogmphh 1987, 2 4 , 115-22. (N23) Anthony, L. J.; Holland, R. A. J . Chrometogr. 1989, 477(2), 291-304. (N24) Tavss, E. A.; Wlet, S. G.; Robinson, R. S.; Santalucla, J.; Canoll, D. L. J. Chromatcgr. 1988, 438(2), 273-80.