Crystal and molecular structure of the tetrahydrally coordinated

structure of the tetrahydrally coordinated complex dibromo[cis-endo-N,N-di(4-methylbenzylidene)-meso-2,3-butanediamine]nickel(II). William D. Horr...
0 downloads 0 Views 1MB Size
Inorganic Chemistry, Vola10, No. 3, 1971 547

STRUCTURE OF Ni [CZOHZ~NZIB~Z

indication of variations in the electronic structures of sulfur-containing ligands than differences in the metalsulfur bond lengths. I n our opinion, the similarity of Ni-S distances in the two structures may be ascribed to the smallness of the variation of the electronic effects with respect to the experimental standard deviations.

As mentioned above the Ni-S distances are equal, within experimental error, in Ni(dtpi)z.2py and Ni(dtp)z.2py, while a significant difference has been observed on the two adducts from both optical spectra and calculations. This leads to the conclusion that the position in the spectrochemical series is a more sensitive

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, THEPENNSYLVANIA STATE UNIVERSITY, UKIVERSITY PARK,PENNSYLVANIA 16802

The Crystal and Molecular Structure of the Tetrahedrally Coordinated Complex bu tanediamine ]nickel(11) Dibromo [~is-endo-N,N'-di(4-methylbenzylidene)~rneso-2,3BY DONALD L. JOHNSTON,' WAYNE L. ROHRBAUGH,

AND

WILLIAM DEW. HORROCKS, JR.*

Received August 6, 1970 The crystal structure of Ni[C~oHzaN~lBrz where CzoHzaNz is the bidentate imine ligand formed in the Schiff base reaction of 4methylbenzaldehyde with mesa-2,3-butanediamine has been determined from three-dimensional single-crystal X-ray diffraction data collected by counter methods. The structure has been refined by full-matrix least-squares method to a conventional R factor of 0.065 and a weighted R factor of 0.059 based on 1273 reflections for which Iobsd > a(1). The compound crystallized in the monoclinic space group Cc with cell constants a = 15.584 (3) b, b = 11.325 (3) d, c = 14.135 (4)b, and = 122.53 (1)". The density calculated for z = 4 is 1.6132 g/cma while the observed density is 1.60 (2) g/cm3. The structure consists of discrete molecules in which the coordination polyhedron about the nickel is a highly distorted tetrahedron with Br-Ni-Br and N-Ni-N angles of 138.8 (1) and 85.0 (7)", respectively. The average Ni-Br distance is 2.359 (4) d and the average Ni-N distance is 1.96 (2) b. The tolyl groups are cis-endo with respect to the nickel atom and the aliphatic chain is puckered in the gauche configuration with one axial and one equatorial methyl substituent.

Introduction A recent series of pmr investigation^^-^ in these laboratories of paramagetic Schiff base complexes of type 1 sought to establish, among other things, a criterion of

1, R1, & = H, CH,, aryl Ra, Rb = H, CH3

X =halogen stereochemistry based on the observed aryl proton isotropic nmr shift behavior. For complexes synthesized from benzaldehyde derivatives (B ; RI= aryl, RZ= H) the aryl proton resonances exhibit the ortho, meta, para alternation of shifts generally ascribed to the a-spin delocalization, while those derived from acetophenones (Ap; R1 = CHS, RZ= aryl) show a shift behavior ascribable t o a-spin delocalization in the aryl moiety. The complexes prepared from benzophenone derivatives (Bp; R1 = Rz = aryl) exhibit aryl proton nmr spectra corresponding to a superposition of those of the B and Ap complexes, indicating magnetic inequiva(1) Petroleum Research Fund predoctoral fellow, 1969-1970. (2) I. Bertini, D. L. Johnston, and W. D e w . Horrocks, Jr., Chem. Commun., 1471 (1969). (3) I. Bertini, D.L. Johnston, and W. Dew. Horrocks, Jr., Inovg. Chem., 9,693,698 (1970). (4) D. L. Johnston, I. Bertini, and W. D e w . Horrocks, Jr., ibid., in press.

lence of the aryl groups with one showing a- and the other r-type delocalization. It was argued a t the time3 that a steric interaction between the endo aryl groups (RI in 1) and the coordinated halogen atoms would probably prevent their becoming coplanar with the Ni-N=C moiety and hence that a-spin delocalization behavior would occur for such endo aryl groups. On the other hand, it was thought that an exo-situated aryl group (Rz)might be reasonably free of steric restraint and could conjugate with the imino a system, resulting in a predominant rdelocalization pattern. The present structural investigation on a B derivative, R1 = tolyl, RZ= H, was carried out to test this hypothesis and to put the pmr assignments on a firm basis. Another structural feature of interest in the complex chosen for study, dibromo [cis-endo-N,N'-di(4-methylbenzylidene)-meso-2,3-butanediamine]nickel(II),2, lies

H\"

2

in the geometry of the 2,3-butanediamine (bn) chelate ring. Fairly large differences in isotropic shifts were observed for the bn ring methyl resonances between meso and racemic forms of this complex.2 For a puck-

548 Inorganic Chemistry, Vol. 10, No. 3, 1971

JOHNSTON,

ered chelate chain one methyl must be axial and one equatorial for the meso complex while in a racemic form both methyl groups can occupy identical stereochemical configurations. In the absence of a planar-tetrahedral equilibriums the meso-racemic shift difference must be due to a difference in the effective electron-nuclear hyperfine interaction constants for the two molecules, This can arise through differences in dipolar and/or Fermi contact interactions. In either case, a significant difference in the geometric position of the methyl groups (axial or equatorial) is required to explain the results. For dipolar shifts, differences in methyl group geometric factors6 are needed to account for shift differences. Furthermore it has recently been shown7thqt Fermi contact shifts in chelate ring substituents depend on stereochemical disposition. Since the nitrogen donor atoms in the present complex are formally sp2 hybridized, the degree of puckering of the chelate ring was of some interest. Finally, while a number of X-ray structure determinations have been reported for complexes derived from 1,2-diaminoethane (en) and 1,2-diaminopropane (pn), the present structure represents the first determination involving a bn derivative.

ROHRBAUGH, AND HORROCKS

atom would be required to lie a t a special position of either 2 or 1 symmetry, both of which are rejected on chemical grounds (the coordination sphere can have a t best CzUsymmetry and meso-bn cannot possess a CZaxis). Space group Cc ( CS4,no. 9 ) was therefore chosen; this choice is supported by the statistical distribution of unitary structure factors (E's)~and the successful refinement of the structure. Collection and Reduction of Intensity Data.-The intensity data were collected a t 20' by the 8-28 scan technique using zirconium-filtered (at the source) Mo Kn (A 0.71069 A ) radiation a t a scaq rate (20) of l"/min. The scans covered a range of 1.25" on each side of the calculated peak position and 15-sec stationary background counts were taken a t each end of the scan range. The net intensity, I , was calculated as I = S - a(B, Bz)and the square of the standard deviation of the intensity was taken as where S i s the total = S a2(B1 Bt) accumulated scan count, CY is the ratio of the scan time to total background time, B1 and BZare the initial and final background counts, and d is the empirical constant here taken as 0.04. Three check reflections were recorded every 105 measurements throughout the data collection. These remained reasonably constant except for a decrease on restarting about halfway through the data set. A scaling factor of 1.083 was applied to (955) and all subsequently measured reflections (the data were collected in the order indicated by Table I). This brought the check reflections ipto agreement with random variations in I of +1,3'% a t I = 194,000, 4 ~ 1 . 9 7a t~ I = 80,000, and 4 ~ 6 . 0 7a t~I = 8000counts. A total of 1876 independent reflections were measured (not including space group extinctions h01, 1 # 2n, all of which had I < u(I) and were deleted from the data set). A strip chart Experimental Section record and preliminary copper radiation data indicated that seven Preliminary Crystal Data.-The preparation and elemental of the most intense reflections had exceeded the counter capacity. have ~ ) Bbeen ~ Z previously r e p ~ r t e d . ~ analysis of N ~ ( C Z ~ H Z ~ N These were remeasured along with twelve other reflections of Violet crystals of the compound were grown by slow evaporation lower intensity using lower kilovolt and milliampere levels and of a chloroform solution under a controlled stream of dry nitrogen. were entered in the data set with a scaling factor so obtained. Preliminary Weissenberg photographs on the hkO, hkl, and hk2 The 1, 1, - 1 reflection apparently suffers from beam stop interlayers (Cu KCYradiation) showed systematic extinctions: hkl, ference 20 < 6" (see Table I ) as did -1, 1, 0, and 1, 1, 0, but h k # 2n, and h01,l # 2n, indicating space group Cc or C2/c. these latter two were entered with a scaling from preliminary copA crystal having irregular shape but roughly approximating an per radiation data. A total of 1273 reflections had I 2 a(1) and ellipsoid of dimensions 0.15 X 0.25 X 0.37 mm was chosen for were used in the final refinement. cell dimension and intensity measurements. The crystal was Observed structure factors, on an arbitrary scale, were obmounted on a glass fiber with the [ -2, 0, 41 direction in the polarization (@), and absorptained by applying Lorentz (L), monoclinic cell parallel to the spindle axis (9)of the four-circle tion ( A ) corrections to the measured intensities: Food - [ I / Syntex computer-controlled automatic diffractometer equipped ALp]'Iz. The standard deviation of an observed structure factor with a scintillation counter and pulse-height analyzer. Unit was computed by u ( F ) = 0.5a(I)[IALp]-'/a for reflections with cell dimensions were determined from a least-squares analysis8 I 2 3u(I) and o ( F ) = 0.5~(1)[3u(I)ALp] -l/z for reflections with of 11 carefully centered, high 20 reflections measyred a t 20' using I < 3u(I). Rotation of p a t x = 90' for the reflection (-6, 0, 12) nickel-filtezed (at the X-ray source) copper radiation (Cu KCYI, between 80 and 100 an a relative scale. showed a variation of 11/2 X 1.54051 A ) . The results, with standard deviations of the lea?t Application of an absorption correction (gv0 = 49.4 cm-l) resignificant figur: given in parentheses, are a = 15.584 (3) A , duced this variation to between 90 and 100. Transmission b = 11.325 (3) A, c = 14.135 (4) A, p = 122.53 (l)', and V = factors A varied between 0.43 and 0.59 for the entire data set. 2103.5 (4) A3. The density calculated for four molecules per Solution and Refinement of the Structure .-A three-dimenunit cell (2 = 4) is 1.613 (2) g/cm3. The density found by sional Patterson synthesis8 based on preliminary copper radiaflotation in a mixture of carbon tetrachloride and methyl iodide tion data located the positions of the nickel and the two bromine was 1.60 (2) g/cm3. With 2 = 4, in space group C2/c the nickel atoms. The x and z nickel atom coordinates were arbitrarily (5) I n systems involving a planar Ft tetrahedral equilibrium isotropic specified as 0.0 and 0.25, respectively, t o fix the origin. Three shift differences have been attributed largely t o the difference in the free cycles of least-squares refinement of these three atoms0 yielded energy changes AAG for the mesa a n d racemic species involved in this equiresiduals10 Ai = 0.276 and RZ = 0.344. Of the highest 50 peaks librium: cf. R . H. Holm, A c c o m t r Chem. Res., 2, 307 (1969), andreferences from a three-dimensional Fourier synthesis phased on the above therein. (6) H. M . IvlcConnell a n d R. E. Robertson, J . Chem. P h y s . , 29, 1361 result, 22 appropriately spaced ones were subjected to two cycles (1958); G.N.L a M a r , ibid., 48,1085 (1965). of least-squares refinement with isotropic temperature factors (7) K. I. Zamaraev, Yu. h-. Molin, a n d G. I . Skubevskaya, J . Stvucl. under the assumption that they were all carbon atoms. The Chem., 7, 740 (1966); F. F.-L. H a gnd C. N. Reilley, Anal. Chem., 41, 1835 nickel and bromine parameters were held fixed during this proc(1969); F.F.-L. Ho a n d C. N. Reilley, ibid., 42,600 (1970); L. E.Erickson, S . R. Watkins, a n d C. N. Reilley, Inoug. Chem., 9, 1139 (1970); L. E. ess. Of the 22 "carbon atoms," 12 appeared to be refining satisErickson, F. F.-L. Ho, a n d C . N. Reilley, ibid., 9, 1148 (1970). factorily as judged by the magnitudes of their temperature (8) Programs used for computations on a n I B M 360-67: refinement of factors ( B 5 6). These were retained and were refined for an cell dimensions-Hope's CELDIM; conversion of papertape output to I B M

+

+

+

+

+

cards-Stanko's P T A P E ; absorption a n d L p corrections-Prewitt's ACAC; Patterson function and Fourier synthesis-Zalkin's FORDAP; least-squares refinement-the Brown University version of ORFLS; interatomic distance a n d angle computation-Zalkin's DISTAN; position of hydrogen atomsZalkin's HFINDR; unitary structure factors (E's)-Dewar's PAM%; calculation of least-squares planes-Chu's LSPLAN; preparation of Table I-Zalkin's List.

(9) Scattering factors for neutral nickel, bromine, carbon, a n d nitrogen were taken from the "International Tables for X - R a y Crystallography," Val. 111,Kynoch Press, Birmingham, England, 1962, p 201 ff. (10) R1 = Z/jFol - ] F , I / / Z I F o l ; RZ = [ Z w ( l F o /- J F o ( ) 2 / Z ~ F , * l l l z , w h e r e The function minimized in all least-squares refinements was w = a(Fo)-*, Bw(lFol IFcl)2.

-

Inorganic Chemistry, VoZ. 10,No. 3, 1971 549

STRUCTURE OF Ni [C20H24N2]Br2

TABLE I CALCULATED STRUCTURE FACTORS FOR Ni(CzoHzaNz)Br2a

OBSERVEDAND

" '01

It&

n.

K.LI

0

I ? 70 L 199 I ? ? b 00 6 5 ?

12 1.

11

-11 -11 -13 -11

b

1.

r

ti.

-5

62

02

-3

40

-3 -1

-1 1 1

19

11 SP

L2 ?* I3 LO

5 I

9

9

21

?n

9

19

IV

11 13 7.

I7

I4

3"

I.

n

-15 -13 -11

Ik 71 n

1'. 7" 1".

-9

9

9.

% ? 5? 76 ?5 -3 In 34 -I 12" I 2 1 -7 -5

I 1 2 1 121 1b ?*

?R 2%

51

I1

*

I

I3

71

I5 K,L= -1h

lb 7, 4

-14 -12

77

-.-.

-10

n

-6

72 71

9 h*

71 lb 0

>*

I 2.

3)

11

25 1)

36

-11

I?

39 26

59

A0

19

-8 -6

32

-6

3b 76 I 2

-2

5.

2 9.

?k 21

n

b2

91 59 $4

43 +I

0

6

2.

LO

3,. 0

35

Cl 5.

5,

57

-2

b2

0

10

2

45

43 48 45

4

53

51

b

I2 22

73

0 9. 1. 1 '14 - I ? 0 11. 32 10 16 -11 1 5. 5 0 -1, 36 -11 50 5 1

23

59

IS. IS

5I 21

7-

45

n

10

9

17

I4 I8

14 10 K.L. -13 -13

4

3, 0

?* 0 7.

'1

8. 22

72 12

24

50

4q

-11 -9 -7 -5 -3

zn

-1 1 3

11

12

?n $5

in I2 53 I4 23

5 7 0

I1

21 12

13

12 12

I?

71

n.

46 15

n

48 13 I ? 11 r9 0'1 5 0 50 41 $7

2 k b

41 16

I2

I*

5n 81 I5 II

bb 20

49

70

15 5,

I6

-I5 -13

I2

-11

30

L* 5. 37

-9

16 30 21 '18

K.L.

7

-7

-5 -3 -1 I

3 5 7 9

I1 13 15

I 5 I6 19

?9 ?9 I9

32

111.

0

19 29 30

I7 I3

Ih 76 31 78 19 31

?I 18

3 2

50 31

50

32

33 ?I 19

13 b I9 I 2 1 19 I1 2 5 23 8. I2 7 ? I4 I 3 I.L. I, 0 -13 I3 5 -11 i n in

I.

1

I1

-1

17 25

I

b I

I

I?

z*

IO*

I*.

1

74

>.

5 7

I5

a

Ih I.

9

2

3.

n

n,

I?.

n

n 3

-.

I 9.

*

b. 1. I T

I* I7 7.

I.

I. 9.

1.

7 I*. . 1

-I -5 -3

30 I.

10

39

16

-1

ZS

79

a

1 . 5.

I

32 PI

1

35

I Ut

5

15

12

?

?

9

I2 0 5

91

1 I. I 1 l6 b. I , IL3S ? -1b -1, lI b3 - 1 2 8. -1" 6 .

2. 2 I.

10 IO* 78 2. I4 I 7

6.

-8

44

-6

-*

33 26 31

44 (3

2

53 I1

32 56 I1

? 35

3.

12 K.L. -15

b* -11 -11 -9 3. -7 2 -5 13. 13

-1

-1 1 3 5 9

11

P I K.1. 1 7 -14

9 9. 9. ? I3 12, 7 , 3 16 16

0 70

29 53 11 11 64 29 2)

-12 I 3 -10 b -I 4 9 -b ?3 -4 25 I O6. . -2 36 0 bl I9 ? 2 I1

I1

10 K.1-13 -11 -9 3. -? b* I.

2

.. 41

5L 13 V

05 30

I7 Ib 9,

9

8. 49 23

2) 38 b2 12 I8

I5

-3

1.

I5

-I

34

37

I1 21 20 21

I4

I 3

5

? b* 11. K t L .

0 I9 27

I9 20 I9

0

10

10. I1

3 7. be 9, I3 19

2. 3. -12 1 -10 n b* -I -4 13 2 16 I I. -4

50

6

I

13

b

5

13

8

13 9 I 8 I O

I2 l? I2

-5 -3 -1

20 5

I 1

I'

LO

33

35

25 IO*

-2 0

I2 8 5

9

2.

-+

2

9. 8 6. 9 11. 9, 6

LO

13.

-I -5 -3 -1

LO

13 2 I O * KtL. 2. -7 11. -5 20 -3 3. -1 10. K t L l 9. - 1 b

I3

9

LB I

11 11. 13 9

5

3 5

11 b 10.

K,L. -10

-.

01

16

-6

IO*

-2

16

P

5.

6

-5 -3 -1 1

40 30

+O

-8

99

96

*o

5b b? 4b

31

- 9I

K.1-I

41 54

-1I

62 *b

-15 -13

U.L.

43 -11 20 -9 -I b + I 49 8 I5 I* -5 b 8. -1 10 K.1. 1, 6 -1 -I? 2 7. I -15 26 I? 3 I 1 20 21 5 -11 19 2 1 7 b3 bb 9 - 79 5 9 5 8 K,L* -5 58 59 - 1 b -3 3 8 42 - 1 4 -1 8 1 82 - 1 2 3b 3 1 -IO 23 21 -8 42 19

-

2 48 2

The asterisks indicate data not used in the refinement.

LO KvL-11 15 -13 -11

-

0 2

6 6 11. I 38 11 b 3. 8 I 2 16. K.L. LO 4. - I ? I9 1 3 -15 ? 10. - I 3 12. 6 -11 0 .5 -9 ? -I 1, 0 3 0 -5 19 2 0 -3

21 54

5? 44

55 42

34 25 12

34 25

l?

18

0

31 k* 39

11, 20

3, 50

2, 5 15

15 b

lo.

19 +2 63 I9 ? 82

5 ? KqL.

31 27 28 33 b 2.

-16

IO

6

5

8

11

50

9.

n,i-

51 LO 13.

I2 8 1, 22 22 I 7 l b I,

31

(13

2C

-b

21

30 61

30 63

-6

2C

-2

11 22 ?? I7 7.

16 19 19

11 22 18

8 I? I?

L,ll

I,

1,

I 7

-15

4

7.

-I>

0

I).

IO I I

-13

9

I. 16

-11

I 20

>5

72 12

38 21 12

., 13 18 I1

le

0

7

9

I5 4.

-5

24 I5

- 13

1%

0

I" w I5 IR 49 2. b

L2

35 17

50

1*

73 R

4

IO 5. 0 1P

?b

26

-11

I4

-9

ib

I3 I?

-I -5 -1 -1

11 34 12 30

12 3?

33 37 70

19

21

34

-? -5 -1 -1 1 3 KvL-14

-12 -10

8 12,

I-1.

2. lk.

-14

I? 2 , P 4. 9 8. I

-I2

Ih

19

0

,2

-10 -8

10

30

Ib 12 22

7 K.L. -I3 -11 -9 -?

27

-lb

.*

LO 3b

-6

,3 lb 9 I11. 7

-2 0

29 1

18 15 21 31 9.

2 6 4

2L

75

II22

15

I. 8

-6

I,l. -I5 -13 -11

23

:: :: ::.

-+

-.

2s

-11

31

11. 11. 22

i n9

-8

2h

11 29

I4 0 35

0 b 6,

I1 19

10 2'

-6

9

-2

13 11 27

-+

I2 I, 6

n 5

9

-5 -3

n

- I1

5. K , l . 6. -12 -10 -8

11.

7b 12 15

.

12

-b -2

-+ 0

9.

I.L. -11

5. 9

-9

22I.

-7 -3 -1

10

-1

I2

ill.

20

-6

21 33 10

-b K.1.

21 7.

-11 -1¶

21

-13 -11

I3

-9

10 13.

-7

*

-b

28

-5

..

8. I5

2, IO

10 5.

I.

6

2.

-?

16

7.

-5

22

-3

12

3.

-13 -11 -9

-?

-L

I3

l b

13

22 lt 'i 18 I S 5.

F I 8

1' IC. 70 LC

I1

K.1-11

I1

-5

25

1b 11 I2

11

n

-12

8.

I 1

1,.

-10 -8

C. lb 2t 3c ?2

I2 I4 25 29

-? 1,L.

21 51 5 2t 28 I9

1'1 23

-6

-L -15

-I3 -11 7 1 -t 2b -T 77 -5 2C -3 I , 12 -1 1 3 I 2 K.L. 16 I 3 - 1 1

+I

+I

I?

31 14 2t

32

-n

8

-b

8. 26

29 25

?I

I1

l?

31

75 2 4 21 2 , 12 e 8. 19 1 8 19 I8 1 4 11 I 3 11 20 22 1c 15 11 15 13 I 4 1 b 14 3, I 2

I ? 13 I 1 11. 16

-12 -10

-2

KrL. -15 -13

-11 -q

-I -5 -3 n.1. -1. -12 -10 -8 -b -4

K.L. -I3

-11

13

8 .?,

I3

.

- 1 24 -10 -8

14

'1

7 21

-6

I5

-2

2b

8.

4.

8 13 I.b I1 8. I5 1 3 LO, 10 1 6 13 2. 5 10 12. 1. 11 7 I3 16

-7

I? 11 11. 10 11 I9

-1 I

¶.

1.1.

q

-1b

2, 10

IO 11

1b I1 22

-16

2b

20

be 22 13 29

-I

29 11.

-7

23

K 4 -

lb 28

-l+



-12

I1

11 13.

I,

13 I O b*

14 9

4,

b.

12

I1 1. 9

LO.

11 13 16

16

12 16

I3 12

1b 5.

14*

11

I4

0

11.

20

I? 40

IO 12.

bq 14 I2 It

I?

13

0 I* 1, I 5 I2 90 14 9 10 8* 11 9. 5 5. 2,

b

I2

-*

,

8. I,.

l? I.

-10

-12 C 40 -10 -14 -0 I 7. -12 22 -b 2 1 -IO ? K,L. -I I ¶ - e 16 I* -10 -I -b 11 L O 14 15 6.L. -2 -11 0 11 ¶ . -9 I r l . I 7, 12 -1) e a* -11 4 7. -9 9 101 K.L.

Ib I2 9

23 -I 0 ¶, I2 3 9. - b LO i e 15 -4 1 1 3. 19 15 KrL. 25 -13 I 2 2, I C IO. -I1 I t I1 l ¶ I9 -7 0 27 2. 1. - ¶ I1 I1 K.L. 1, I 9 1. I1

R.L. -15 -13 - 1- v1

ir

9 3. ?I28

4 29

c

- 53

23 I2

I2

LO

ir

-5 I.L. -10

I -b 12 K.L. I 8 -13 9 -11 1. - 9

4.

Ib

12

13 I O I 11 3. I3

5. 1. I7

11

4 I 41

I1

¶.

I?

lb lb 12 1 4 * 2 . I4 I2 10. I 1 13. I ? 16

0

11

5.

16 I 7

I 5 9

1 K.L. It - 1 6

6.

20 22 2. 8 3. 21 21 I O 14. 1, 1 4 I 4 15 0 8. 26 23 I S 19

-I

8,

I?

21

21

-9

II

0 9

20 23

I5 I?

-1 - 3I -

be

21 0 . I1

-.

-I

17 8

?

-7

KoL. -1.

..

1. 13 I? l b

-9

10. 10

V

7.

IO 0 I+

26 7.

e, 11

1k

I2

-12 -10

-4

%.La

1 83

bt 2> 17

I?

I1 I8 5.

- 1- 9 1

7 21 17 13

zn

c

2 0. *,L. 10. - I 5 11. - 1 3

-5 -3 -1 I 1

30 I4

-2

5

-8 -6

-. -e

-6

l? 5 1 13 5 +. 0 5. 8 11. L O IO. 0 8.

2L

-1c -8

6.

-8

I4 IC

-10

e

c

-3 120 - I 10 1 I b t K.L* 15 - l b 9. - 1 4 29 - 1 2

2'

I3 7.

*I

25

R I -11

37

-1 K.1.

1;' 15 8. 1. 16

-11 -15

-7

9.

- 7 I O I 2 * -5 1. I6 -3 19 16

I:,

C

10.

-9

3 , I3 23 21

18

-2

-11 -13 - 1- 91

K.1. -11

I5

-I2

-,

19 22 3I.1

1

si;.

3. 2 111 K.L. IO

20 I3

t:I 1 I:11.

-I

15 Ib 23 25

15

23

5.

n

5.

23

c I1

I3

-7

20

I, I 1

-9

-8 -6

-I3

1

-13

I1

-L

9

9

-11

1L

16

I1

10.

37

I2 77

20

I1 I 8 1% 16 t b.

e

IL

25

-17 9 * - l I

IS

2

R 19

-8 -6

-1k

7.

IC

c

-IC -12 -10

II

-G

-1c

P

-11

t,

-t

11.

11.

62 20 4.

IC

-8

41

7

2. 12 I5

15 2s

11.

-?

1

-IO

31

74

I.

14

It K , L =

13,

t I2

-12

in

10

I1

II 16 2t

9

-6

-e

I?

11

7 0 2 1

-3 -I 1

2L

9 8 39 1, 19

n

I1

-11 -1 -7 -5

in

12 4,

12

3

12

?2

4

5

2

-3 K,L. -1t -11 -12

3.

*2

..

c

73 -5 9. -? 10 31 IO -1 .a* I.1. 0 21 I8 -12 0 b* - I C 37 0 s* - e 33 -e 3 1 32 -4 15 Ib -2 30 18 I5 K 1 1 1 29 -5 -? 13 12 0 st - 5

U,L. -I5

in.

35

K I L5. -16 -14 -17 -10 -8 -6

+.

19 9

2b

I 3

9.

11.

6 KIL= -I? -15

83 32 36

-I

25

I 2z

l? 15

-L

0 73 19 6

-2

47

-2

51

6

14

-8

11. 8 I3

16

-8 -6

14 14

50

-IC

30 30

29 35 9

rl

3, .5

-4 -2 0 2 L

58 31 22

'5

31 31

-0

-12

65 6,

? 51 8

2.

2

47

-4

-16

31

7

0

I2

I-

11.

I.

le

I3

in.

15 18

2 , I3 1, 15

21

-12

-2

6

I,L.

Pa -15

-1,

Ilt

-1' -15 -13 - 1- 9 1

C

3.

10.

9 IO* 11. kt o 1, 9 25 2h 7

66 65

L l l i -16

9. 15

12.

L , L5 i

I\* KIL-

I1 L , 11

8. 6.

20

0

10

I3

-in

13. 7.

9

?O

r

I2

12

77,

7

5

-1 1

I5

14

-1h

2c

I*

-1 I

I5

KsL=

IR

X,L= -1.

72

11 b8 20 21

?.

I

3

39 16 11 11 I.

3

28 13

0

59

-3

13 b8 25 20

-1

1q

-1 I

?

28 11

8

--6 4 -2

-7 -7 -5

-5

11.

53

9.

I 1 11. 0, B

-12 -10 -8 -6

9

- 1v7 L i I 31. K -15 7 -11 il -11 16

?2

c

-5 -3

I7

1

Ik

-14

2. ? b It 3' 31 I 3

-1I 3

9. ?

11

b

32 20 5? +3

13 11

?i

P.

9

L 3. 5 n -I? 1 5 8 I5 -15 11 -11 -9 7, 15 1. 73 I. -1 12 1 2 1 19 -11 IO I1 l b b 2b 2 7 -9 I 5 4I 43 -5 -1 I5 11 29 30 I 7 LO. -1 41 10 4 1 K i L ? -5 39 11 3, -I I2 32 34 - 1 7 I 1 12. 1 -3 I1 12 48 48 -I5 27 2b -1 L9 234 0 1 12 3 0 61 58 - I 3 I9 I 8 I 31 b2 b 3 - 1 1 35 I* I I I 11 KsL- b, 21 I9 -9 15 1 7 ¶ 2 50 -1. 3 I 3 13 -7 b 5 bb 7 10 I. -12 10 2b 2b -5 2 1 2 3 I r b 4. 8 -10 I9 10 13. - 3 43 45 -16 0 2. -1 I3 ? 100 - 1 50 5 1 -14 25 2 b -b 7b 3, b 1 24 22 - 1 2 I5 I4 11 0 5. 3 33 32 - I O 2 b I? - 2 33 I1 80 5 11 23 0 11 19 2 1 7 2. 71 2 71 2 3 21 K.L. 7 4, -4 za 2. 4 I1 23 22 -1b I. I2 -2 13 1 3 K.L. 7. 30 30 -11 20 I 1 0 40 I?- 1 13 2I1 30 39 - 1 2 b b* 2 2 5 12 1 2 3 2b -10 12 I2 -9 31 -0 3 3 31 13 b 11 4 31 29 4 2. -7 2 30 3b -b 21 2 5 RrL. 5. I 7- b 2. 31 33 2 7 -1s I 3 11 -3 lb ? 7. - 2 1 7 15 -13 36 3 7 -1 29 I ¶ . 0 40 I9 -11 11 10 I Ib I ¶ I8 2 I1 1 1 -9 22 -7 51 23 1. b 4 I 5 I6 55 n.1.3 b0. l b I2 b 18 I 6 -s 4* H - I 2 I b I 1 8 8 5 11. -3 28 2 8 -19 11 30 39 R.1¶I 7 -1 I I. -8 22 I4

-.

-7 - ¶3 -1 I 5 1

4 30 1

-6 -8

I1 Ib

KiL-

24

IO

-1k -12 -10

6

11 10 ?

21

21

b 2. I9 212. 1

2

-2 0

/I 22

0

20 lb

25 1). 5 19

-1b I4 10 12

5

20 8

12. 18 I3 I 3 15

23

1

K.L-6

8

1, I O

16

-6

- 20 2 4

12 11 16

-9

-8

-.

l11. o.

15

-11

I.

3.

-12 -10 -6 -8

B

-6

-2 0

5

-3 -I

IO.

I.

-3

IO*

IP 8 20

12

2

I>

9 P P

-7

G4

-n

I . ?.

1,

-9

lk IO

-1' -12

8

KlL.

-15

-I? -I1

I?

w - i n

7

-c

II

-7

io

0

-0

23

-0

3

4

-1

*q

I ,

-11

4 I1

7

b

I"

F. IT ,I 22 2c 27

8.

76

9.

I,

3.

be ?. 12 3. 3.

5

+e

R

26

0

II IO.

0

I1

0

).-I6

9.

28

-I 2h -5 33 -3 2, K,L* 10 - 1 0 ?O

-1 -5

-9

"R.

7.

18 I.

13 11 19 19 14 11 22 10,

-11

I, 17,

5

In.

I5

22

2e

5.

22 21

-1

IO.

6.

-14

K.L-10 -8

?

I?

-1b

I I

21

19

-I3

n

,'I

9 5

21 30

-15

I 5I , 11 22

16

6 K.1.

4

8, 9

I5 I3

3.