Crystallographic Data. 193. Tetrahydroalstonine

H. A. Rose. Anal. Chem. , 1960, 32 (10), pp 1371–1372. DOI: 10.1021/ ... B. J. Gudzinowicz and R. H. Campbell. Analytical Chemistry 1961 33 (11), 15...
1 downloads 0 Views 204KB Size
Reaction Time. Optimum reaction time was determined b y analyzing a series of Chenopodium oil samples which were treated with hydrogen bromide reagent for varying time periods u p t o a maximum of 60 hours. T h e d a t a in Table I1 indicate t h a t t h e reaction is complete after 20 hours. Twenty-four hours vias selected as a convenient time period foi this procedure.

Whereas the National Formulary method requires a sample weight of 2.5 grams, the proposed method requires 0.5 gram for a series of three determinations. Table I shows that comparable results are obtained. The only disadvantage of the proposed method is the 24-hour waiting period.

500

VI I-

O

?

400

-A

I

300

ACKNOWLEDGMENT /

2

Table II.

Ascaridol Content as Function of Reaction Time

Time. Hr.

Recovery,

%

2 5 10

47.46 57.06 61.17

15 20 30 45 60

63.25

65,10 64,83 64.95

65,39

Standard Procedure. For comparntive purposes, oil sanil)lcs were analyzed according t o thc iodometric method of the Xational Formulary ( 1 ) . Results arc reportid in Tahle I. DISCUSSION

The proposed method for the determination of ascaridol in chenopo-

193.

,

I 4

ML. 0.1

/

1

,

1

6

N

SODIUM

8

I

1

1

1

1 0 1 2

ACETATE

Figure 1 . Titration of excess hydrogen bromide with 0.1 N sodium acetate solution

The authors thank Fritzsche Brothers, Inc., New York 11, N. Y., for financial support in this project. LITERATURE CITED

( 1) American Pharmaceutical Association,

dium oil is a simple and accurate one. Since the reaction is slow, residual titration is employed. The reaction mixture develops a dark brown color, making visual titration impossible. Excess hydrogen bromide is therefore determined by potcntiomrtric titration. The titration i n ~ o l ~ ea bstrong acid-b:isc system and :I \harp break is obserwd in the titration c u r w (Figuw 1). -1blank is run with racli wries of three determinations to c0rrec.t for cha1igi.s in normality of the hydrogen bromide reagent. Thr. hyrlrogcn bromide solution should l ~ cstorcd in a tightly stoppered container and should be colorleas or very faiiitlv pale yrllmv.

Was!,ington, D. C., “Sational Formulary, 10th ed., p. 148, 1955. (2) Blake, h4. I., J. Am. P h a m . Assoc., Sci. Ed. 46, 163 (1957);( (3) Duncan, D. R., Inorganic Syntheses,” Vol. 1, p. 151, PvIcGraw-Hill, New York. 1939. (4) Durbetaki, A. J.. XYAL. CHEJI. 28, 2000 (1956). ( 5 ) Nelson, E. K., J . A m . P h a m Assoc., Scz. Ed. 10,836 (1921). ( 6 ) I’ag~t,H , Analyst 51, 170 (1926). hfARTIN I. B L A K E Chemistrj- Division Argonne National Laboratory Lemont, Ill. RICHARD E. O J N ~ : ~ ~ ~ , School of Pharmacy North Dakota Agricultural College Fargo, N. D.

Tetrahydroalstonine

HARRY A. ROSE, Eli Lilly and Co., Indianapolis 6, Ind.

been discussed by Elderfield and Gray (1).

Structural Formula ETRAHYDROALSTONIXE is derived T f r o m the alkaloid alstonine b y reduction with hydrogen over platinum. The chemistry of these compounds has

Thc x-ray powder diffraction data were obtained using a camera 114.6 nim. in diameter and chromium radiation with vanadium filter. A wave length value of 2.2896 A. was used in the calculations. The indrxing was done on the basis of a single crystal rotation pattern around the c axis.

CRYSTAL MORPHOLOGY Crystal System. Orthorhombic. Form and Habit. Blades elongated parallel to c and lying on 010.

Axial Ratio. a : b : c = 0.2399:l: 0.1997. Cleavage. Good, parallel to 001. x - R . 4 ~DIFFRACTION DATA = 8.18 A , , Cell Dimensions. 60 = 33.10 A., CO = 6.81 A. Formula Weights per Cell. 4. Formula Weight. 352.4. Density. 1.245 grams per CC: (flotation), 1.244 grams per cc. (x-ray). OPTICALPROPERTIES Refractive Indices (5893 A,, 25’ C,). a = 1.586, p = 1.608, y = 1.64 (est.). Optic Axial Angle. 2V = 80’ (est.). Optic Axial Plane. 001. Acute Bisectrix. y. Optic Sign. Positive. Orientation. y = b. VOL. 32, NO. 10, SEPTEMBER 1960

1371

ACKNOWLEDGMENT

X-Ray Powder Diffraction Data on Tetrahydroalstonine Z/Il hkl d (Calcd.) d 1/11 hkl d (Calcd.) 0.27 020 17.05 4.98 1.00 121 5.00 4.72 0.53 131 4.75 0.07 040 8.52 4.46 0.07 141 4.46 0.27 110 7.94 4.27 0.07 080 4.26 0.66 120 7.38 1.15 0.27 151 4.15 0.07 130 8.64 0.27 210 4.013 4.06 3.97 0.07 220 3.97 0.20 o%l 8.32 3.86 0.07 230 3.85 0.07 140 5.90 3.57 0.13 171 3.57 0.07 060 5.68 3.43 0.07 221 3.43 0.07 150 5.24 3.35 O.!JE ' 3 .1 3.35 . - ^. 0.20 111 5.17 3.24 U.UI 241 6.24

d

17.16 8.46 8.00 7.36 6.63 6.27 5.91 5.68 5.22 5.17

cs-138

Slit

Concn. g / 1 0 0 ml length mm

Component

,

Accuracy

,

%

Range

%

Formula

-i

I,

Pts.

1 1 (mm) o ,";r

I0.172p

I

1

CRYSTALLOGRAPHIC data for publication in this section should be sent to W. C. McCrone, 501 E& 32nd St., Chicago 16, Ill.

1

I

benzene

,

0*070F

I

Component No.'

1

~

1

Name n-Propyl alcohol sec-Butyl -l--hel UlCVllVl

1

-

0°5

Formula CIH~OH

___ ,

CdH90H

___

1

%

~

I- ~

1

j

Accuracy

Range ,

I

---

Calculation:

Inverse matriGraphical-

Relative Absorbances-Anolyficol ComponentlA

0-100 , f l

mm

'-10,Ilp 10.145 0.032p

I---

0-100

k 1.5

Material Purify.

Successive approxMatrix:

12.07F

13.28~

1.321

0.094 0.547 0.145

0.027 0.266 0.090 0.018 0.014 1 ; 788 n.n2s 1.394 _.___ _ . _- _

n.n73

'1 j 1 , ~

.-

1.0 0.041~ 1.0 ~ _ _ ._1.0 13.35~ 0.304 0.056~ 1.0 12.27

1.0 1.0 -

Cell Windows: NaCl Absorbance Measurement. Calculation:

Base line -

Inverse matrix-Graphical---

-

P o i n t X

Successive approx-

Relative Absorbances-Analyfical Mofrix: Component/A

1

1

These d a t a represent standard publication and submission is open to anyone in accordance With regulations of ANALYTICAL CHEmsTRy. T h e Coblentz Society is acting a s a n aid t o the journal.

Instrument: Perkin-Elmer M o d e l 21, NaCl prism Sample Phase: Solution In carbon disulfide

I

99.EYc.

ANALYTICAL CHEMISTRY

'-0.223

.-

1.0 1.0

P o f n t X

Commenfs: The accuracy quoted i s attainable, i f corrections a r e I made for apparent deviations from the Beer-Lambert law. For example, the absorptivity o f ethylbenzene a t an absorbance level o f 0.300 i s +1 .E% I larger than that measured a t 0.400-at an absorbance level of 0.700, the absorptivity is 2.7y0 smaller than when measured a t an absorbance level of 0.400.

1372

_ _ _1.0 1.0 -

._

1

12.56~

0.018 n -.n.34 -- -

(mm)

A A or

0.03op

-- - , 0-100 f l

3 I Isopropyl C 3 H 7 0 H

i

14.84~10.592 0.111p

14.37~ 0.420 .. ._.

8.1.

Concn. gllifer length

-

I

Base line--

h orv

% -

Instrument: Perkin-Elmer M a d e l I 12, NaCl prism Sample Phase: Solution in carbon disulfide Cell Windows: NaCI Absorbance Measurement:

_-

Slit

I

1 1.005

*

CS-139 _______

-

0-100 1 f 0 . 4 1 13.28 10.800

lj Llclerfield, R. C.,Gray, A. P., J . Ory. Chern. 16, 506 (1951).

D e E. NICHOLSON Humble Oil 8 Reflnlng Co., Baytown, l e x .

2

1,2-Diethylbenzene

,

I

A or v 8.1.

-1- 0-100,f0.4 1 _ 12.56 _

1,3-Diethylbenzene

3

I

0-100 10.4 114.37 2.000

CsHio 2

LITERATURE CITED

- 1

D. E. NICHOLSON, Humble Oil 8 Reflning Co., k y t o w n , Tex.

-I

The author thanks Norbert Neuss of these laboratories for supplying the crystals from which these data were obtained.

2

3

4 5 Maferiol Purity:

9.53~ 10. l l p

12.271

13,35/.t 14.84~

0.0258 0.0819 0.0075 0.0059 0.0037

0.0086 0.0119 0.0457 0.0017 0.0015

0.0026 0.0077 0.0095 0.0339 0.0017

0.1515 0.0163 0.0192 0.0055 0,0068 99

0.0103 0.0125 0.0165 0.0095 0.8617

+ 'X.

T o standardize procedure, A ~ A I . Y T I C CHEMISTRY AL requests t h a t material he sent in quintuplicate t o t h e chairman of the review committee: D. E. Nicholson, Research and Development Division, Humble 011 & Refining Co., P. 0. Box 3950, Baytown, Tex.