24 A New Polyester Matrix Resin System for Carbon Fibers ROBERT
EDELMAN
and P A U L E. M c M A H O N
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
Celanese Research Company, 86 Morris Avenue, Summit, N J 07901
E p o x y resins a r e t h e p r i m a r y matrix materials u s e d in carbon fiber c o m p o s i t e s t o d a y . P r e p r e g s y s t e m s made with t h e s e resins a r e used in recreation and a e r o s p a c e applications. The e p o x i e s w e r e c h o s e n for their good handling characteristics as well as their good a m b i e n t and e l e v a t e d t e m p e r a t u r e c o m p o s i t e properties. H o w e v e r , epoxy resin s y s t e m s h a v e certain deficiencies in t h a t t h e p r e p r e g materials must b e k e p t refrigerated resulting in limited o u t t i m e . C o s t is also higher t h a n other available thermoset materials and c u r e t i m e is often l o n g . In the a e r o s p a c e industry, these deficiencies have been tolerated when high levels of p e r f o r m a n c e that c o u l d b e achieved only with epoxy materials, were desired for certain applications. However, a s additional applications for composites are considered, w h e r e l o w e r property levels are acceptable, it is likely t h a t other t y p e s of prepreg c o u l d b e u s e d in place of t h e epoxy s y s tems currently available, particularly t h e "250°F" curing epoxy systems. Polyester r e s i n prepregs s h o u l d b e considered as a pot e n t i a l a l t e r n a t i v e t o t h e s e e p o x y m a t e r i a l s , s i n c e t h e y do n o t have t h e i r n e g a t i v e f e a t u r e s . Most p o l y e s t e r systems t h a t a r e used today c o n t a i n g l a s s r e i n f o r c e m e n t and u s e s t y r e n e a s t h e r e a c t i v e monomer. S t y r e n e i s t h e most f r e q u e n t l y u s e d monomer s i n c e i t p r o v i d e s good a m b i e n t t e m p e r a t u r e p r o p e r t i e s a t low c o s t . Elevated temperature propert i e s (100 C and a b o v e ) a r e f r e q u e n t l y p o o r . S t y r e n e does have a s i g n i f i c a n t d r a w b a c k i n t h a t i t i s q u i t e v o l a t i l e a t room t e m p e r a t u r e l e a d i n g t o environmental c o n t r o l problems. In addition, s t y r e n e monomer u n d e r g o e s v e r y h i g h s h r i n k a g e and e x o t h e r m i n g o n c u r e n e c e s s i t a t i n g t h e use o f e x t e n s i v e f i l l e r a d d i t i o n t o m i n i m i z e w a r p a g e and c r a c k i n g . (1,2) T h i s u s e o f f i l l e r s f r e q u e n t l y r e s u l t s i n a d i s t i n c t l o w e r i n g o f t h e p r o p e r t i e s o f t h e system. I t i s obvious then that a s i g n i f i c a n t l y d i f f e r e n t p o l y e s t e r r e s i n s y s t e m must b e c o n s i d e r e d a s a p o s s i b l e r e p l a c e m e n t f o r a n epoxy m a t e r i a l . There are commercially a v a i l a b l e m a t e r i a l s t h a t a p p e a r t o meet t h e n e c e s s a r y r e q u i r e m e n t s . A f o r m u l a t i o n t h a t c o n t a i n s d i a l l y l p h t h a l a t e monomer and a h i g h p e r f o r m a n c e u n s a t 0-8412-0567-1/80/47-132-317$05.00/0 © 1980 A m e r i c a n C h e m i c a l Society
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
318
RESINS F O R A E R O S P A C E
TABLE I PROPERTIES OF D I A L L Y L ORTHOPHTHALATE (DAP) Ο II
C-OCH -CH==CH 2
2
•C-OCH - C H = C H „ Ο VAPOR PRESSURE
LOW
(0.1 T o r r a t 90 C)
11.8%
( S t y r e n e = 17%)
AT ROOM TEMPERATURE VOLUME SHRINKAGE V e r y l o n g a t t e m p e r a t u r e s up t o 82°C GELATION TIME Rapid a t temperatures greater than 149°C (1-2 m i n u t e s a t 177°C when catalyzed) EXOTHERM DURING CURE
LOW
(93°C)
Comparable s t y r e n e system t o 204°C
exotherms
THERMAL RESISTANCE
V e r y good a t t e m p e r a t u r e s up t o 121 C
MOISTURE RESISTANCE
V e r y good a t t e m p e r a t u r e s up t o 95°C
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
24.
E D E L M A N AND M^MAHON
Matrix
for Carbon
319
Fibers
u r a t e d p o l y e s t e r produces an unexpectedly h i g h l e v e l o f composite mechanical properties. D i a l l y l p h t h a l a t e i s a commonly a v a i l a b l e p r o d u c t t h a t i s used i n c r i t i c a l e l e c t r i c a l / e l e c t r o n i c a p p l i c a t i o n s r e q u i r i n g h i g h r e l i a b i l i t y under l o n g - t e r m a d v e r s e environmental conditions. (3) The r e a s o n s why d i a l l y l p h t h a l a t e was c h o s e n c a n b e s e e n i n T a b l e I w h i c h shows t h e e x c e l l e n t b a l a n c e o f p h y s i c a l and c h e m i c a l p r o p e r t i e s o f t h e m a t e r i a l . The v a p o r p r e s s u r e o f t h e monomer i s l o w c o n t r i b u t i n g t o r e d u c e d environmental hazards. Shrinkage o f the m a t e r i a l i s the lowest o f t h e commonly a v a i l a b l e monomers. T h i s t e n d s t o r e s u l t i n lower warpage i n the f i n a l p a r t . Gel time behavior i s i d e a l f o r a prepreg r e s i n . A t t e m p e r a t u r e s up t o 82°C v i r t u a l l y no c u r e w i l l occur i n the catalyzed m a t e r i a l . This important property removes t h e need f o r r e f r i g e r a t i o n w h i c h i s a n e c e s s a r y f e a t u r e w i t h t h e u s e o f epoxy p r e p r e g s . T h i s p a r t i c u l a r mode o f b e havior i s r e l a t e d t o the a c t i v i t y l e v e l o f the s t a b l e a l l y l radical. A t lower temperatures, d e s p i t e the a v a i l a b i l i t y o f f r e e r a d i c a l s from an i n i t i a t o r , t h e r e a c t i o n r a t e o f t h e a l l y l i e s p e c i e s i s s i m p l y t o o s l u g g i s h f o r s i g n i f i c a n t advancement t o occur. Thus, i t i s necessary t o use h i g h e r temperature i n i t i a t o r s t o c a t a l y z e a l l y l i c systems. I n a d d i t i o n , the exothermic h e a t r e l e a s e d d u r i n g t h e c u r e c y c l e i s low compared to o t h e r monomers, r e s u l t i n g i n s i g n i f i c a n t l y l e s s c r a c k i n g i n the cured p a r t . (4) F i n a l l y , p h y s i c a l p r o p e r t i e s s u c h a s t h e r m a l and m o i s t u r e r e s i s t a n c e a r e good b e c a u s e o f t h e t i g h t c r o s s l i n k e d n e t w o r k t h a t c a n b e d e v e l o p e d b y t h e d i f u n c t i o n a l monomer. E s t e r l i n k ages a r e n o t r e a d i l y a v a i l a b l e f o r a t t a c k b y w a t e r b e c a u s e o f the l a t t e r feature. R e s u l t s and D i s c u s s i o n A c a r b o n f i b e r p r e p r e g was p r e p a r e d f r o m a p o l y e s t e r m a t r i x r e s i n s y s t e m f o r m u l a t e d w i t h d i a l l y l p h t h a l a t e and a h i g h p e r formance u n s a t u r a t e d p o l y e s t e r . An i n i t i a l s e t o f room t e m p e r a t u r e c o m p o s i t e p r o p e r t i e s was o b t a i n e d by m o l d i n g the p r e p r e g i n a compression mold u s i n g a 177°C p r e s s . Time i n t h e m o l d was f i f t e e n m i n u t e s a t a p r e s s u r e o f 500 p s i (3.5 MPa). T h e d a t a o b t a i n e d a r e shown i n T a b l e I I . The f i b e r used i n a l l o f t h e w o r k d i s c u s s e d i s C e l a n e s e s Celion 6000 c a r b o n f i b e r . For purposes o f comparison, key p r o p e r t i e s w e r e o b t a i n e d o n some p r e p r e g s p r e p a r e d f r o m commerc i a l l y a v a i l a b l e s t y r e n e - p o l y e s t e r , v i n y l e s t e r as w e l l as an epoxy p r o d u c t . The v a l u e s o b t a i n e d a r e shown i n T a b l e I I I . I t i s apparent t h a t i n the key area o f i n t e r l a m i n a r shear s t r e n g t h , t h e d i a l l y l p h t h a l a t e s y s t e m and t h e epoxy m a t e r i a l a r e v i r t u a l ly identical. T h e o t h e r two m a t e r i a l s a r e d i s t i n c t l y i n f e r i o r . However, f l e x and t e n s i l e p r o p e r t i e s a r e q u i t e s i m i l a r f o r most o f t h e m a t e r i a l s examined. F i b e r volumes o b t a i n e d w i t h t h e v i n y l e s t e r s y s t e m w e r e q u i t e l o w and t h i s r e s u l t e d i n a r e d u c t i o n o f t e n s i l e and f l e x p r o p e r t i e s . Unfortunately, the 1
320
RESINS FOR
AEROSPACE
TABLE I I
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
MECHANICAL PROPERTIES OF CELION -, 6000/DAP-POLYESTER COMPOSITES (22°C)
Tensile
Strength, K s i
(MPa)
Modulus, M s i
(GPa)
% Elongation
222 20.3
(1531) ( 140)
1.1
Strength, K s i
(MPa)
273
(1882)
Flex (Modulus, M s i
I n t e r l a m i n a r Shear
Strength, Psi
Strength, K s i Compressive
| Modulus, M s i
(GPa)
(MPa)
(MPa) (GPa)
% Elongation
Transverse Tensile
13,600
151 17.7
(122)
(
93.8)
(1041) ( 122)
1.6
Strength, P s i
(MPa)
Modulus, M s i
(GPa)
% Elongation
17.7
5,100 1.3
( 35.2) (
8.96)
0.39
1
C o m p r e s s i o n m o l d e d c u r e a t 177 C, 500 P s i ( 3 . 5 MPa) f o r f i f t e e n minutes.
2
T e n s i l e and f l e x v a l u e s n o r m a l i z e d t o 62% f i b e r
(excluding transverse tensile) are volume.
2
Elongation
Modulus,
(GPa)
20.8
303
1.1
T e n s i l e and f l e x p r o p e r t i e s n o r m a l i z e d
49.6% f i b e r v o l u m e .
53.8% f i b e r volume.
2.
3.
4.
4
13,400
17.7
272
(92.4)
(122)
(1875)
(139)
20.2 1.1
(1517)
220
14,000
19.3
287
1.1
20.0
221
M
ester.
(96.5)
(133)
(1979)
(138)
(1524)
EPOXY
250°F"
t o 62% f i b e r volume f o r a l l systems e x c e p t v i n y l
C o m p r e s s i o n m o l d e d a t 177 °C 500 P s i (3.5 MPa)
(56.3)
(117)
(1544)
3
DAP POLYESTER
f o r f i f t e e n minutes.
16.9
224
(71.4) 8,170
(143)
(2089)
(125)
18.2 1.1
(1434)
VINYL ESTER
6000 COMPOSITES (22°C)
208
1.
Strength, P s i (MPa) 10,350
Msi
S t r e n g t h , K s i (MPa)
%
(139)
(GPa)
20.1
Msi
Modulus,
I n t e r l a m i n a r Shear
Flex
Tensile
(1579)
229
S t r e n g t h , K s i (MPa)
STYRENE POLYESTER
COMPARATIVE MECHANICAL PROPERTIES OF CELION
TABLE I I I
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
53.8% f i b e r volume.
8,200
3
(39.4)
239
F l e x s t r e n g t h n o r m a l i z e d t o 62% f i b e r volume f o r a l l systems except v i n y l
5,720
(1013)
2
(45.9)
147
ester.
(56.5)
(1648)
,f
n
(76.5)
(1993)
250°F EPOXY
11,100
289
(82°C)
DAP POLYESTER
C o m p r e s s i o n mold c u r e d a t 177 C, 500 P s i (3.5 MPa) f o r f i f t e e n m i n u t e s .
6,600
I n t e r l a m i n a r S h e a r S t r e n g t h , P s i (MPa)
(1110)
VINYL ESTER
1
161
F l e x S t r e n g t h , K s i (MPa)'
STYRENE POLYESTER
COMPARATIVE MECHANICAL PROPERTIES OF CELION 6000 COMPOSITES
TABLE I V
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
24.
E D E L M A N AND M ° M A H O N
Matrix
for Carbon
Fibers
323
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
p o l y e s t e r used i n t h e s t y r e n e and d i a l l y l p h t h a l a t e s y s t e m s i s n o t t h e same. The p o l y e s t e r i n t h e f o r m e r s y s t e m c o n t a i n s s i g n i f i c a n t l e v e l s o f a d i p i c a c i d w h i c h would tend t o have an a d v e r s e a f f e c t o n f l e x and s h e a r s t r e n g t h , p a r t i c u l a r l y a t e l e vated temperatures. I n T a b l e I V , we s e e a c o m p a r i s o n o f k e y p r o p e r t i e s a t e l e vated temperatures. H e r e , t h e f l e x and s h e a r s t r e n g t h s show a g r e a t e r s p r e a d o f v a l u e s b e t w e e n t h e D A P / p o l y e s t e r s y s t e m and t h e epoxy. Out Time Of T h e D A P - P o l y e s t e r S y s t e m . C a r b o n f i b e r p r e p r e g p r e p a r e d w i t h t h e D A P - P o l y e s t e r s y s t e m was s t o r e d i n a p o l y e t h y l e n e b a g a t room t e m p e r a t u r e f o r a s e v e n and a h a l f month period. A t t h e end o f t h i s p e r i o d t h e p r e p r e g h a d a d e q u a t e t a c k and drape. P a n e l s prepared from t h e m a t e r i a l u s i n g a s h o r t c u r e c y c l e o f two m i n u t e s a t 163°C i n a c o m p r e s s i o n m o l d f o l l o w e d b y a f r e e s t a n d i n g f i f t e e n m i n u t e p o s t c u r e a t 177°C gave v e r y good m e c h a n i c a l p r o p e r t i e s . T h e s e a r e shown i n T a b l e V. The epoxy p r e p r e g s y s t e m used i n t h i s w o r k f o r comp a r a t i v e p u r p o s e s h a s a maximum o u t t i m e o f o n e month. D A P - P o l y e s t e r S h o r t C u r e C y c l e s . The p r e v i o u s d a t a r e l a t i n g t o t h e new p o l y e s t e r p r e p r e g was g e n e r a t e d u s i n g a f i f t e e n m i n u t e c o m p r e s s i o n m o l d i n g c u r e c y c l e a t 177°C a n d 500 p s i (3.5 MPa). I n T a b l e V I , c o m p o s i t e p r o p e r t i e s a r e shown a s a f u n c t i o n o f cure cycle. The t o p row shows t h e p r o p e r t i e s o b tained using a long cure cycle. The n e x t two rows show t h a t a two t o f i v e m i n u t e c u r e a t t e m p e r a t u r e s o f 138-163°C f o l l o w e d by a s h o r t " o f f t h e t o o l " p o s t c u r e r e s u l t s i n v i r t u a l l y o p t i mum p r o p e r t i e s . T h e l a s t two rows i n d i c a t e t h a t a s h o r t c u r e o f one o r two m i n u t e s a t 177°C w i t h o u t a n y p o s t c u r e g i v e s q u i t e acceptable properties. DAP-Polyester Temperature Performance. I n a separate set of e x p e r i m e n t s , t h e performance o f C e l i o n 6000/DAP-polyester c o m p o s i t e s was c h a r a c t e r i z e d a s a f u n c t i o n o f t e m p e r a t u r e ( t h e l o n g e r c u r e c y c l e was e m p l o y e d ) . I t c a n be seen (Table V I I ) t h a t t h e s h e a r s t r e n g t h a t 82°C i s r e d u c e d t o 6 0 % o f i t s a m b i e n t value. However, t h e h i g h i n i t i a l v a l u e s t i l l k e e p s t h i s parame t e r r e a s o n a b l e a t 82°C. A t 121°C, a f u r t h e r d e c r e a s e i n s h e a r s t r e n g t h h a s o c c u r r e d and t h e f l e x s t r e n g t h h a s a l s o d e c a y e d t o 60% o f i t s i n i t i a l l e v e l . I n a new f o r m u l a t i o n t h a t we h a v e r e c e n t l y e v a l u a t e d , e l e v a t e d t e m p e r a t u r e p e r f o r m a n c e h a s b e e n i m p r o v e d compared t o t h e o r i g i n a l system. I n T a b l e V I I I , p r o p e r t i e s a r e shown a s a f u n c t i o n o f p o s t c u r e t i m e and t e m p e r a t u r e . A short cure cycle o f two m i n u t e s f o l l o w e d b y b r i e f f r e e s t a n d i n g p o s t c u r e s o f f i v e and t w e n t y m i n u t e s a t 177°C r e s u l t i n h i g h l e v e l s o f f l e x and shear p r o p e r t i e s . In T a b l e I X , p r o p e r t i e s o b t a i n e d as a f u n c t i o n o f tempera-
324
RESINS F O R
AEROSPACE
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
TABLE V
COMPOSITE MECHANICAL PROPERTIES OF CELION 6000/DAP-POLYESTER AFTER 7% MONTHS OF ROOM TEMPERATURE AGING'
INTERLAMINAR SHEAR STRENGTH
TEST TEMPERATURE
FLEXURAL STRENGTH MODULUS
(°C)
K S I (MPa)
MSI (GPa)
P S I (MPa)
22
294 (2027)
20.6 (142)
13,400
(92.4)
82
270 (1862)
—
9,900
(68.3)
121
198 (1365)
—
6,800
(46.9)
1
F l e x v a l u e s a r e n o r m a l i z e d t o 6 2 % f r o m 56.9%.
2
Samples w e r e c o m p r e s s i o n m o l d c u r e d a t 163°C and 500 P S I (3.5 MPa) f o r two m i n u t e s . P o s t c u r e was done f r e e s t a n d i n g a t 177 C f o r f i f t e e n m i n u t e s .
3
P r e p r e g was k e p t i n a p o l y e t h y l e n e b a g d u r i n g t h i s
period.
12,900(88.9)
12,800(88.3)
17.9(123) 18.3(126)
18.0(124)
17.7(122)
281(1937) 274(1889)
276(1903)
263(1813)
22 22
22
22
F I V E MINUTES AT 325°F
NONE F I F T E E N MINUTES AT 350°F
NONE
NONE
AND 500 P S I (3.5 MPa)
F I V E MINUTES AT 138°C AND 500 P S I (3.5 M P )
TWO MINUTES AT 177°C AND 500 P S I (3.5 MPa)
ONE MINUTE AT 177°C AND 500 P S I (3.5 MPa)
Flex values normalized
t o 62% f i b e r volume.
12,500(86.2) 13,300(91.7)
17.4(120) 16.2(112) 17.7(122)
262(1806) 287(1979) 247(1703)
22 82 22
NONE
TWO MINUTES AT 163°C
1
12,900(88.9) 8,300(57.2) 13,200(91.0)
17.7(122)
273(1882)
22
NONE
FIFTEEN MINUTES AT 177°C AND 500 P S I (3.5 MPa)
a
13,600(93.8)
MODULUS MSI (GPa)
STRENGTH KSI(MPa)
POST CURE
INTERLAMINAR SHEAR STRENGTH P S I (MPa)
COMPRESSION MOLD CURE CYCLE
FLEX
TABLE V I 6000/DAP-POLYESTER COMPOSITE PROPERTIES AS A FUNCTION OF CURE CYCLE TEST TEMPERATURE (°C)
CELION
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
RESINS F O R
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
326
AEROSPACE
TABLE V I I
PROPERTIES OF CELION 6000/DAP-POLYESTER COMPOSITES AS A FUNCTION OF TEMPERATURE
TEST TEMPERATURE (°C)
STRENGTH K s i (MPa)
MODULUS M s i (GPa)
INTERLAMINAR SHEAR STRENGTH P s i (MPa)
22
247 (1703)
17.6 ( 1 2 1 )
13,400 (92.4)
82
240 (1655)
15.9 (110)
8,200 (56.5)
121
155 (1069)
16.3 (113)
5,000 (34.5)
FLEX
1
C u r e d a t 177°C, 500 p s i (3.5 MPa) f o r f i f t e e n m i n u t e s .
2
Flex values normalized
t o 62% f i b e r
volume.
Flex values normalized
P o s t c u r e i s d o n e f r e e s t a n d i n g a t 177°C.
(2)
(3)
t o 62% f i b e r volume.
C o m p r e s s i o n m o l d c u r e d a t 163°C, 500 p s i ( 3 . 5 M P a ) f o r two m i n u t e s .
12,800(88.3) 9,300(64.1) 8,000(55.2)
19.2(132) 19.0(131) 18.7(129)
250(1724) 206(1420) 182(1255)
22 82 121
20
(1)
12,700(87.6) 9,400(64.8) 7,200(49.6)
11,000(75.8) 4,800(33.1) 3,100(21.4)
Inter laminar Shear Strengt P s i (MPa)
19.2(132) 18.8(130) 18.2(125)
Modulus M s i (GPa)
258(1779) 192(1324) 184(1269)
2
22 82 121
Strength K s i (MPa)
Flex
5
Test Temperature (°C)
1
22 82 121
ο
6000/DAP-POLYESTER COMPOSITE PROPERTIES AS A FUNCTION OF POST CURE T I M E
0
Post Cure Time (min. )
CELION
TABLE V I I I
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
RESINS FOR
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
328
AEROSPACE
TABLE I X COMPARATIVE COMPOSITE PROPERTIES OF CELION 6000/DAP-POLYESTER AND CELION 6000/EPOXY TEST TEMPERATURE (°C)
FLEXURAL"
DAP POLYESTER
"250°F" EPOXY
STRENGTH
22
258(1779)
284(1958)
K S I (MPa)
121
184(1269)
142(979)
22
19.2(132)
19.8(137)
121
18.2(125)
MODULUS MSI (GPa)
INTERLAMINAR SHEAR STRENGTH
22
12,700(87.6)
14,100(97.2)
121
7,200(49.6)
7,300(50.3)
P S I (MPa)
(1)
C o m p r e s s i o n m o l d c u r e d a t 163°C, 500 P S I ( 3 . 5 MPa) f o r two minutes f o l l o w e d by a f i v e minute f r e e s t a n d i n g post cure a t 177°C.
(2)
C o m p r e s s i o n m o l d c u r e d a t 154°C, 500 P S I (3.5 MPa) f o r f i f t e e n minutes. No p o s t c u r e was done.
(3)
F l e x v a l u e s a r e n o r m a l i z e d t o 62%.
24.
E D E L M A N AND M ° M A H O N
Matrix
for Carbon
329
Fibers
ff
fl
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
t u r e a r e compared w i t h t h o s e o b t a i n e d u s i n g a 250°F curing epoxy s y s t e m . T h e p o l y e s t e r a n d epoxy p r e p r e g m a t e r i a l s o f f e r s i m i l a r performance. The c o m p o s i t e s p r e p a r e d f r o m t h e D A P - P o l y e s t e r s y s t e m c a n be u s e d a t t e m p e r a t u r e s a s h i g h a s 150°C f o r s h o r t e x c u r s i o n s . An e x t e n d e d p o s t c u r e o f a t l e a s t two h o u r s s h o u l d b e done i f t h i s l e v e l o f temperature w i l l be experienced. A l o n g e r post c u r e o f about f i v e h o u r s i s p r e f e r r e d . I n T a b l e X, ambient a n d 150°C p r o p e r t i e s a r e compared a f t e r a two h o u r p o s t c u r e . M o i s t u r e R e s i s t a n c e o f t h e D A P - P o l y e s t e r System. A n o t h e r s e t o f s a m p l e s h a s b e e n used t o c h e c k J^he m o i s t u r e s e n s i t i v i t y of the mechanical properties o f C e l i o n 6 0 0 0 / D A P - P o l y e s t e r composites. The r e s u l t s o b t a i n e d a r e s u m m a r i z e d i n T a b l e X I , w h e r e i n t h e e x c e l l e n t r e t e n t i o n o f d r y "as i s " p r o p e r t i e s i s seen a f t e r a 24 h o u r s o a k i n 71°C w a t e r . F l e x and s h e a r s t r e n g t h s a r e r e g a r d e d a s t h e k e y p r o p e r t i e s s i n c e t h e y a r e most s e n s i t i v e t o changes a t t h e i n t e r f a c e . Vacuum B a g - A u t o c l a v e M o l d i n g O f The D A P - P o l y e s t e r P r e p r e g . F o r a e r o s p a c e a p p l i c a t i o n s , t h e p r e f e r r e d t e c h n i q u e used t o p r e p a r e c o m p o s i t e p a r t s w o u l d b e vacuum b a g a u t o c l a v e m o l d i n g . A p o l y e s t e r p r e p r e g c o n t a i n i n g t h e new f o r m u l a t i o n r e f e r r e d t o a b o v e was u s e d i n t h i s w o r k . P a n e l s w e r e p r e p a r e d u s i n g a t o t a l cure c y c l e o f seventy minutes. The l a y up was c o n s o l i d a t e d u s i n g a vacuum b a g u n d e r 7-14 K P a (2-4 i n . Hg) vacuum f o r f i f t e e n m i n u t e s a t room t e m p e r a t u r e . T h e b a g was t h e n p l a c e d i n an a u t o c l a v e , and a p r e s s u r e o f 85 p s i ( 0 . 5 9 MPa) was a p p l i e d . Vacuum was m a i n t a i n e d t h r o u g h o u t t h e e n t i r e c u r e . H e a t i n g was done a t a r a t e o f 2.2°C/minute u n t i l a t e m p e r a t u r e o f 65.6°C was r e a c h e d . D w e l l t i m e a t t h i s t e m p e r a t u r e was t e n m i n u t e s . H e a t i n g was t h e n c o n t i n u e d a t a r a t e o f 3.9°C/minute u n t i l a t e m p e r a t u r e o f 163°C was r e a c h e d . D w e l l t i m e a t t h i s t e m p e r a t u r e was f i f t e e n m i n u t e s . The p a r t was t h e n q u i c k l y c o o l e d u n d e r f u l l p r e s s u r e and vacuum. The c u r e c y c l e u s e d i s shown g r a p h i c a l l y i n F i g u r e 1. C o m p o s i t e p r o p e r t i e s o b t a i n e d o n t h e p a n e l s a r e shown i n T a b l e X I I . I t s h o u l d b e m e n t i o n e d t h a t i t i s v e r y l i k e l y t h a t a s t r a i g h t up c u r e c y c l e c o u l d a l s o b e u s e d w i t h t h i s system. Conclusions The p r o p e r t i e s shown f o r t h e c o m p o s i t e s made f r o m t h e DAPP o l y e s t e r carbon f i b e r p r e p r e g system a r e s i m i l a r t o those obt a i n e d w i t h a 250°F c u r i n g epoxy s y s t e m . The m a t e r i a l c a n b e c u r e d r a p i d l y u s i n g c o m p r e s s i o n m o l d i n g p r o c e d u r e s o r b y vacuum bag a u t o c l a v e m o l d i n g . T h e r m a l and m o i s t u r e r e s i s t a n c e a r e v e r y good. C o s t o f t h e r e s i n s y s t e m i s l o w and r e f r i g e r a t i o n i s n o t n e c e s s a r y . Out t i m e o f t h e p r o d u c t i s i n e x c e s s o f s i x months. P r e p r e g h a n d l e a b i l i t y i s e x c e l l e n t a s e v i d e n c e d b y ff
ff
RESINS FOR
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
330
AEROSPACE
TABLE X COMPOSITE MECHANICAL PROPERTIES OF CELION 6000/DAP-POLYESTER AFTER EXTENDED POST CURE
TEST TEMPERATURE (°C) STRENGTH
22
K S I (MPa)
150
292(2013) 107(738)
FLEXURAL MODULUS MSI(GPa) INTERLAMINAR SHEAR STRENGTH P S I (MPa)
are normalized
22
20.2(139)
150
17.4(120)
22
13,200(91.0)
150
4,500(31.0)
(1)
Flex values
t o 6 2 % f r o m 53.5%.
(2)
Samples w e r e c o m p r e s s i o n m o l d c u r e d a t 163°C, 500 P S I (3.5 M P a ) f o r two m i n u t e s . P o s t c u r e was f r e e s t a n d i n g i n a 177°C c i r c u l a t i n g a i r o v e n f o r two h o u r s .
(3)
Three p o i n t modulus v a l u e s . Flexural strength a r e f o u r p o i n t measurements.
values
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
24.
E D E L M A N AND M M A H O N C
Matrix
for
Carbon
331
Fibers
TABLE X I EFFECT OF MOISTURE ON MECHANICAL PROPERTIES OF CELION 6000/DAP-POLYESTER COMPOSITES
SAMPLE CONDITIONING
TEST TEMPERATURE (°C)
FLEX STRENGTH K s i (MPa)
MODULUS Msi(GPa)
INTERLAMINAR SHEAR STRENGTH P s i (MPa)
22
263(1813)
18.3(126)
13,700(94.5)
82
240(1655)
15.7(109)
8,300(57.2)
22
272(1875)
17.7(122)
13,200(91.0)
82
248(1710)
16.6(114)
7,300(50.3)
CONTROL
AGED 24 HOURS IN 160°F WATER TESTED WET
(1)
C o m p r e s s i o n m o l d c u r e d a t 177°C, 500 p s i (3.5MPa) f o r f i f t e e n minutes.
(2)
F l e x v a l u e s n o r m a l i z e d t o 62% f i b e r volume.
RESINS F O R
332
AEROSPACE
170
140
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
>110
80
S H
50
Apply 7-14 KPa (2-4 in.) .Vacuum
20
Apply 0.59 MPa(85psi)
1
10
1
i
20
30
ι
1
40
50
1—
60
70
80
90
TIME, MINUTES Figure I.
Cure cycle for DAP polyester
TABLE X I I MECHANICAL PROPERTIES OF CELION 6000/DAP-POLYESTER COMPOSITES - VACUUM BAG AUTOCLAVE MOLDED
FLEX
INTERLAMINAR SHEAR STRENGTH PSI(MPa)
TEST TEMPERATURE
STRENGTH KSI(MPa)
MODULUS MSI(GPa)
22
259(1786)
18.4(127)
12,500(86.2)
82
228(1572)
16.6(114)
9,300(64.1)
(1)
Flex values normalized
t o 62% f i b e r volume.
24.
E D E L M A N AND M M A H O N C
Matrix
for Carbon
Fibers
333
good t a c k and d r a p e a b i l i t y . Environmental hazards are minimal b e c a u s e o f t h e a b s e n c e o f v o l a t i l e monomers. F o r t h e s e r e a s o n s t h e m a t e r i a l s h o u l d be c o n s i d e r e d f o r c e r t a i n a p p l i c a t i o n s where e p o x i e s a r e now c u r r e n t l y b e i n g u s e d .
Resins for Aerospace Downloaded from pubs.acs.org by FUDAN UNIV on 11/19/16. For personal use only.
A c k n o w l e d gment s We w o u l d l i k e t o a c k n o w l e d g e t h e e x t r e m e l y v a l u a b l e a s s i s t a n c e o f H e c t o r Z a b a l e t a who f a b r i c a t e d t h e p a n e l s used i n t h i s work. R a y S t e e l e a b l y a s s i s t e d i n t h i s e f f o r t . H o w e l l P e t e r s o n and V a l S t a n t o n p r e p a r e d a l l o f t h e p r e p r e g materials. P h y s i c a l t e s t i n g measurements w e r e c a r r i e d o u t b y G e o r g e B r e n n , S t a n U r b a n s k i and J o e Cabanas. D i c k D z e j a k a s s i s t e d i n f o r m u l a t i o n p r e p a r a t i o n and i n o b t a i n i n g v i s c o s i t y data.
Literature Cited 1. 2. lishing 3. 4.
B o e n i g , H. V., " U n s a t u r a t e d Polyesters," Elsevier Publish ing Co., New Y o r k , N.Y., 1964, p. 1 4 0 . R a e c h Jr., Η., "Allylic R e s i n s and Monomers," Reinhold Pub Corporation, New Y o r k , N.Y., 1965, p. 28. Thomas, J. L. in "Modern Plastics Encyclopedia," Volume 5 5 , McGraw Hill and Co., New Y o r k , N.Y., 1978-79, p. 9. R a e c h Jr., Η., "Allylic R e s i n s and Monomers," Reinhold Pub lishing Corporation, New Y o r k , N.Y., 1965, p. 7.
RECEIVED January 8, 1980.