Adhesives from Renewable Resources - American Chemical Society

ADHESIVES FROM RENEWABLE RESOURCES. 20 billion lbs. (44%) excess. Milk. Cheese. Whey: 46 billion lbs. in the U.S.. (5% lactose, 1% proteins and traces...
5 downloads 10 Views 926KB Size
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

Chapter 28 Thermosetting Adhesive Resins from Whey and Whey Byproducts T i t o Viswanathan Department of Chemistry University of Arkansas at Little Rock Little Rock, A R 72204

The disposal of whey and whey byproducts derived from the cheese industry represents a serious economic and enviromental problem due to the high biological oxygen demand of lactose-the major con­ stituent of whey solids. Maillard and caramelization reactions asso­ ciated with the thermal degradation and polymerization of the milk sugar can be exploited to convert lactose in whey to a thermosetting resin that can serve as an adhesive for binding solid lignocellulosic materials. The resin synthesis may be accomplished in one step using a batch reaction (Phase I) or prepared more readily using a continuous plugflow reaction with a two-step synthesis (Phase II). Resins have been shown to perform well as adhesives for sawdust and/or rice hull reinforced boards. Preliminary thermal studies in­ dicate an exothermic polymerization occurring at around 200 ° C for the Phase I resin preparation. A waste d i s p o s a l p r o b l e m o f significant p r o p o r t i o n s exists because o f t h e 23 b i l l i o n p o u n d s o f excess whey p r o d u c e d i n t h e U n i t e d States each year as a b y p r o d u c t o f the cheese i n d u s t r y (1). T h e n u t r i t i o u s proteins present i n w h e y m a y b e separated b y u l t r a f i l t r a t i o n , r e s u l t i n g i n large v o l u m e s o f u l t r a f i l t r a t e or " p e r m e a t e , " consisting o f 5 % lactose a n d traces o f i n o r g a n i c s a l t s . T h i s per­ meate s t r e a m is essentially useless a n d exacerbates t h e d i s p o s a l p r o b l e m due t o i t s h i g h b i o l o g i c a l oxygen d e m a n d (25,000 m g / L ) m a i n l y o w i n g t o lactose. I n a d d i t i o n , salt whey ( r e s u l t i n g f r o m pressing cheese c u r d after s a l t i n g ) r e p ­ resents a p a r t i c u l a r l y difficult d i s p o s a l p r o b l e m due t o t h e added presence o f s o d i u m chloride. T h e generation o f excess whey permeate i n t h e U n i t e d States is d e p i c t e d i n F i g u r e 1. T y p i c a l c o m p o s i t i o n o f wheys a n d permeates i s s h o w n i n T a b l e I . T a b l e I I shows t h e a m o u n t o f t o t a l whey solids available for use throughout the world. 0097-6156/89Λ)385-0395$06.00/0 ° 1989 American Chemical Society

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

396

ADHESIVES FROM RENEWABLE RESOURCES

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

Milk

Cheese

Whey: 46 billion lbs. in the U.S. (5% lactose, 1% proteins and traces of salts)

26 billion lbs. (56%) used as food additives, cattle feed, etc.

20 billion lbs. (44%) excess

Pollution Problem!

Ultrafiltration

19 billion lbs. (Whey Permeate)

220 million lbs. of protein (Sold as a 35% concentrate)

I drying process 1.1 billion lbs. of dry permeate F i g u r e 1. G e n e r a t i o n o f w h e y a n d w h e y p e r m e a t e f r o m t h e cheese i n d u s t r y i n the U n i t e d S t a t e s . Reprinted with permission from ref. 17. Copyright 1987 Technomic Publishing.

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

28.

Adhesive Resins from Whey and Whey Byproducts

viSWANATHAN

397

T o a large e x t e n t , the u t i l i z a t i o n of w h e y a n d w h e y b y p r o d u c t s ( i n c l u d i n g salt w h e y a n d w h e y permeate) is a p r o b l e m of u t i l i z i n g the m i l k sugar, lactose. Since the excess lactose p r o d u c e d i n the U n i t e d States each year a m o u n t s to m o r e t h a n a b i l l i o n p o u n d s , one m u s t consider i t s use i n large v o l u m e p r o d u c t s . O n e s u c h p r o d u c t is lactose-based p o l y e t h e r - p o l y o l used i n the m a n u f a c t u r e of l o w - d e n s i t y r i g i d p o l y u r e t h a n e foams (2).

T a b l e I . T y p i c a l C o m p o s i t i o n (%)

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

Component

Fluid Sweet W h e y

pH T o t a l solids Moisture Fat Total protein Lactose Ash Lactic acid S o d i u m choride SOURCE:

5.9-6.3 6.35 93.7 0.5 0.8 4.85 0.5 0.05

of W h e y s a n d P e r m e a t e Fluid

Acid Whey

Salt Whey

Whey Permeate

4.4-4.6 6.5 93.5 0.04

5.2 10.7 89.26 0.04

4.5-5.8 6.1 94.2

0.75 4.90 0.8 0.4

0.7 4.35 5.25

0.1

-

4.7

-

4.9 0.7 0.4

Reprinted from ref. 13. Copyright 1984 American Chemical Society.

Table II. A m o u n t of T o t a l W h e y Solids A v a i l a b l e for Use W o r l d w i d e i n 1981 [ T h o u s a n d T o n s (18)} Country EEC Other Western Europe Canada USA Australia Japan New Zealand Czechoslavakia Hungary Poland USSR O t h e r countries Total world

Whey Solids

1

Production

2141 322 104 1144 80 40 53 66 25 176 411 1499 6065

W h e y solids c a l c u l a t e d u s i n g 10 l b w h e y / l b of cheese m a d e t i m e s 6 % t o t a l solids. 1

SOURCE:

Reprinted with permission from ref. 18. Copyright 1984

Dairy Science Association.

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

American

398

ADHESIVES F R O M RENEWABLE RESOURCES

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

A n o t h e r p r o b l e m o f a seemingly u n r e l a t e d n a t u r e is the f o r m a l d e h y d e e m i s s i o n f r o m b u i l d i n g b o a r d s t h a t are c u r r e n t l y m a n u f a c t u r e d u s i n g u r e a - f o r m a l d e hyde adhesive resins. F o r m a l d e h y d e has been i m p l i c a t e d as a carcinogen a n d c a n also cause severe u p p e r r e s p i r a t o r y p r o b l e m s a n d contact d e r m a t i t i s i n some i n d i v i d u a l s (3-5). T h e use o f formaldehyde-free adhesive resins f r o m w h e y a n d w h e y b y p r o d ucts for m a n u f a c t u r i n g c o n s t r u c t i o n - q u a l i t y b o a r d s c o u l d resolve these p r o b l e m s s i m u l t a n e o u s l y . T h e d e m a n d for formaldehyde-based t h e r m o s e t t i n g adhesive resins i n the U n i t e d States was e s t i m a t e d t o be 1.9 b i l l i o n p o u n d s i n 1983 (6). T h e a n t i c i p a t e d r e q u i r e m e n t for resins a n d the p o t e n t i a l a v a i l a b i l i t y of r a w m a terials f r o m w h e y are a f o r t u i t o u s c o m b i n a t i o n . R e s e a r c h b y others has established the f e a s i b i l i t y o f u s i n g sugars a n d starches for b i n d i n g w o o d . S u c h uses have been investigated b y S t o f k o ( 7 - 0 ) , U s m a n i a n d S a l y e r (10), G i b b o n s a n d C h i a n g (11), a n d G i b b o n s a n d W o n d o l o w s k i (12), a m o n g others. T h e w o r k o f G i b b o n s i n c o l l a b o r a t i o n w i t h C h i a n g (11) a n d W o n d o l o w s k i (12) has dealt w i t h the p a r t i a l replacement of f o r m a l d e h y d e i n resins by sugars or starches. Because of the fluid n a t u r e o f the a v a i l a b l e r a w m a t e r i a l a n d the desire t o prepare resin s o l u t i o n s w i t h h i g h solids content, a s l i g h t l y different a p p r o a c h is r e q u i r e d f r o m t h a t e m p l o y e d i n the use o f starches or cellulose as resin ingredients. I n the a u t h o r ' s research, a m m o n i u m n i t r a t e was used t o c a t a l y z e t r a n s f o r m a t i o n o f lactose t o p o l y m e r i c c o m p o u n d s . T h e a m o u n t of a m m o n i u m n i t r a t e was kept at 8 % ( w / w o f final s o l u t i o n ) because t h i s a m o u n t was sufficient t o p r o d u c e a final p H o f 2 t o 3 w h i l e y i e l d i n g a n i n s o l u b l e p o l y m e r (13). (Lower p H values w o u l d be d e t r i m e n t a l t o s t r e n g t h r e t e n t i o n over a p e r i o d o f t i m e ) . T a i l o r i n g o f the resin was possible b y a d d i n g condensing agents s u c h as u r e a a n d / o r p h e n o l to p r o d u c e c o n c e n t r a t e d s o l u t i o n s of v a r i a b l e v i s c o s i t y a n d p H . ( T h e a d d i t i o n o f these crosslinkers, however, resulted i n increased cure t i m e for resin p r e p a r a t i o n ) . M i n o r a m o u n t s of copper salts (e.g., C u C b or CUSO4) were a d d e d t o the r e a c t i o n m i x t u r e d u r i n g resin synthesis t o c a t a l y z e M a i l l a r d b r o w n i n g reactions, w h i c h are k n o w n t o result i n h i g h m o l e c u l a r weight heteroc y c l i c p o l y m e r s . F i g u r e 2 shows the proposed r e a c t i o n p a t h w a y s for synthesis o f w h e y - b a s e d resins. E v e n t h o u g h the s t r u c t u r a l aspects o f the p o l y m e r s have not been w o r k e d o u t due t o the m a n y possible r e a c t i o n p r o d u c t s , i t is safe t o propose a general l i n e a r s t r u c t u r e w i t h a large n u m b e r o f c a r b o n y l s due t o the o x i d a t i o n o f - C - O H groups i n a n o x i d i z i n g HNO3 e n v i r o n m e n t . Size e x c l u s i o n c h r o m a t o g r a p h y o f the m e t h a n o l - i n s o l u b l e b u t water-soluble w h e y - r e s i n f r a c t i o n i n d i c a t e s a m o l e c u l a r weight i n the range o f 10,000 t o 80,000 [in c o m p a r i s o n t o proteins o f k n o w n m o l e c u l a r weight used as s t a n d a r d s (14)]- T h i s m o l e c u l a r weight is consistent w i t h the c o n s t i t u e n t s i n cane sugar refiner's final molasses (15) t h a t are k n o w n t o result f r o m advanced M a i l l a r d b r o w n i n g reactions, a m o n g others. In a recent s t u d y , a two-step m e t h o d was used t o m a k e w h e y permeate resin (16,17). T h e process consisted o f i n j e c t i o n o f gaseous a m m o n i a i n t o a r e a c t i o n

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

viswANATHAN

Adhesive Resins from Whey and Whey Byproducts

399

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

28.

F i g u r e 2. P r o p o s e d r e a c t i o n p a t h w a y s for t h e synthesis o f w h e y - b a s e d resins. A m m o n i a gas m a y be used i n a two-step r e a c t i o n scheme. S t r u c t u r e s o f p o l y m e r s s h o w n here are h y p o t h e t i c a l . Reprinted from ref. 13. Copyright 1984 American Chemical Society.

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

400

ADHESIVES F R O M R E N E W A B L ERESOURCES

m i x t u r e c o n t a i n i n g d e g r a d a t i o n p r o d u c t s of w h e y solids p r o d u c e d b y s u l f u r i c a c i d at h i g h t e m p e r a t u r e a n d pressure i n a n enclosed P a r r reactor. T h e first step consists of a c i d - c a t a l y z e d h y d r o l y s i s a n d d e h y d r a t i o n of sugars at p H 0.5 a n d h i g h t e m p e r a t u r e s . F i g u r e 3 shows the f o r m a t i o n of the m e t h a n o l - i n s o l u b l e p r o d u c t ( M I P ) as the r e a c t i o n progresses. T h e M I P p o r t i o n of the r e a c t i o n was d e t e r m i n e d b y w i t h d r a w i n g a l i q u o t s of the r e a c t i o n m i x t u r e (1.25 g), m i x i n g w i t h 100 m L of m e t h a n o l , filtering, a n d d r y i n g . T h e value of a p p r o x i m a t e l y 5 0 % M I P o b t a i n e d for t i m e zero is p r o b a b l y due t o i m m e d i a t e h y d r o l y s i s of lactose t o galactose a n d glucose o n a d d i t i o n of a c i d . O v e r t i m e , d e h y d r a t i o n of the monosaccharides s h o u l d t a k e place, p r o d u c i n g m e t h a n o l - s o l u b l e p r o d u c t s such as h y d r o x y m e t h y l f u r f u r a l d e h y d e . T h i s i n t u r n w o u l d l e a d to a decrease i n m e t h a n o l - i n s o l u b l e f r a c t i o n . If the r e a c t i o n is c o n t i n u e d , the M I P f a l l s to a m i n i m u m value a n d is t h e n followed b y a n increase i n the value, i n d i c a t i n g form a t i o n of higher m o l e c u l a r weight p r o d u c t s t h a t t e n d t o be generally i n s o l u b l e in methanol. A t the p o i n t where the M I P is at a m i n i m u m , i n j e c t i o n of a m m o n i a gas results i n a steep increase i n the a m o u n t of h i g h - m o l e c u l a r - w e i g h t m a t e r i a l s w i t h a c o n c u r r e n t rise i n p H value. B o t h these processes are h i g h l y desirable. A m m o n i a is a d d e d u n t i l the desired p H value is o b t a i n e d ( « 3.5 t o 4.0). A t t h i s p o i n t , the resin p r e p a r a t i o n is a viscous e m u l s i o n of d a r k b r o w n color. T h e advantage of t h i s m e t h o d of resin p r e p a r a t i o n is its a d a p t a b i l i t y t o continuous plug-flow r e a c t i o n , u n l i k e the P h a s e I r e s i n , w h i c h is m o r e s u i t e d t o b a t c h r e a c t i o n . T a b l e I I I shows the properties of p a r t i c l e b o a r d s p r e p a r e d w i t h P h a s e I w h e y permeate-based r e s i n . T a b l e I V shows the properties of r i c e - h u l l - r e i n f o r c e d b u i l d i n g b o a r d s u s i n g P h a s e II r e s i n . L o w - q u a l i t y b o a r d s are p r e p a r e d w i t h rice h u l l s , b u t t h e i r q u a l i t i e s m a y be i m p r o v e d b y u s i n g g r o u n d h u l l s or a d d i n g sawdust t o the f o r m u l a t i o n . A l t h o u g h whey-based resins have been f o u n d to be excellent adhesives for b i n d i n g s o l i d lignocellulosic m a t e r i a l s , these resins t e n d t o require higher cure t e m p e r a t u r e s a n d longer cure t i m e s as c o m p a r e d to f o r m a l d e h y d e - b a s e d resins. T h i s chapter describes p r e l i m i n a r y i n v e s t i g a t i o n i n t o the t h e r m o s e t t i n g p r o cess o f one w h e y - b a s e d resin p r e p a r a t i o n u s i n g differential s c a n n i n g c a l o r i m e t r y (DSC). Experimental

Methodology

A M e t t l e r T A 3000 s y s t e m c o n s i s t i n g o f a T C 1 0 A T A processor a n d a D S C 20 m e a s u r i n g cell was used t o investigate the c u r i n g r e a c t i o n of the whey-based resin p r e p a r e d as follows. A m i x t u r e of 171-g w h e y permeate, 73.2-g NH4NO3, 2.85-g C u C b , a n d 2 0 0 - m L H2O was placed i n t o a P a r r pressure reactor a n d heated w i t h s t i r r i n g at 125 ° C for 90 m i n . T h e p H of the final p r e p a r a t i o n was 3.6. A p p r o x i m a t e l y 7- t o 10-mg samples of t h i s resin were weighed i n sealed-glass, high-pressure crucibles. Pressure cells were used t o c o n t a i n any v o l a t i l e , reactive

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

28.

viswANATHAN

Adhesive Resins from Whey and Whey Byproducts

401

F i g u r e 3. Percentage o f m e t h a n o l - i n s o l u b l e p r o d u c t o b t a i n e d d u r i n g t h e r e a c t i o n of 233.4 g o f d r y w h e y permeate a n d 90.3 m L o f s u l f u r i c a c i d i n a n enclosed reactor at 145 ° C . A m m o n i a was injected after a r e a c t i o n t i m e o f 21 m i n u t e s to increase the p H t o 4.0.

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

402

ADHESIVES F R O M R E N E W A B L E RESOURCES

species a n d t o s i m u l a t e the pressure c o n d i t i o n s at w h i c h the resin m i g h t be cured i n p r a c t i c e . A n e m p t y sealed-glass c r u c i b l e was used as a n i n e r t reference. T h e D S C sensor used was a five-part A u / N i t h e r m o c o u p l e h a v i n g a s e n s i t i v i t y of a p p r o x i m a t e l y 20 m i c r o v o l t s per K . T e m p e r a t u r e scan rates of 5 t o 10 K / m i n were generally used t o scan the t e m p e r a t u r e range f r o m 30 t o 250 ° C .

T a b l e I I I . P r o p e r t i e s of P a r t i c l e b o a r d s P r e p a r e d w i t h the W h e y P e r m e a t e R e s i n

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

1

Resin ( D r y Basis)

Temperaturepressed

Density

IB

(% ) 7

(»c) 165

(lb/ft ) 55.7

(psi)

10

185 165 185

53.7 53.9 61.6

Thickness Swell 24 h r 2hr

2

3

(% ) 50

81 125 92 132

11 19 7.4

(%) 20 25 18

Dried Strength (psi) 4

-

21

-

30

S i n g l e - l a y e r b o a r d s of l o c a l p i n e s a w d u s t , 3 / 8 i n t h i c k . V a l u e s represent the average of d u p l i c a t e tests. T h e p a r t i c l e b o a r d m a t ( m o i s t u r e content 6%) was pressed at 500 p s i for 7 min. P o u n d s per square i n c h . T h e i n t e r n a l b o n d s t r e n g t h recovery was d e t e r m i n e d after the specimens (24 h r w a t e r i m m e r s e d ) were d r i e d i n a n oven at 103 ± 2 ° C u n t i l a p p r o x i m a t e l y constant weight was o b t a i n e d . 2

3

4

SOURCE:

Reprinted from ref. 13. Copyright 1984 American Chemical Society.

Results a n d Discussion T h e D S C t h e r m o g r a m of the whey-based resin prepared above i n d i c a t e d a n e x o t h e r m i c p e a k o c c u r r i n g at a p p r o x i m a t e l y 185 t o 190 ° C . T h e s o l i d mass o b t a i n e d p r i o r t o the e x o t h e r m is r u b b e r y , b u t becomes b r i t t l e after t h i s t r a n s i t i o n . T h e change i n e n t h a l p y d u r i n g the course of p o l y m e r i z a t i o n , w h i c h corresponds t o the a m o u n t of heat l i b e r a t e d d u r i n g the e x o t h e r m i c process, m a y be determ i n e d b y the area u n d e r the D S C curve. A c o m p u t e r p r o g r a m w r i t t e n as p a r t of the T A processor's k i n e t i c m e t h o d i n d i c a t e d E = 633.44 k J / m o l . A s s u m i n g t h a t the heat change is p r o p o r t i o n a l t o the extent of r e a c t i o n , the area under the curve m a y serve as a n a n a l y t i c a l p a r a m e t e r , a n d the r e a c t i o n k i n e t i c s m a y be d e r i v e d i n a s t r a i g h t f o r w a r d m a n n e r . I n the case of w h e y - b a s e d resins, h o w ever, the sequence of reactions o c c u r r i n g d u r i n g the p o l y m e r i z a t i o n process is sufficiently c o m p l e x t h a t o n l y q u a l i t a t i v e aspects of the D S C t h e r m o g r a m m a y be considered. a

T h e c o m p l e x i t y of the whey-based resin t h e r m o s e t t i n g process c a n be i l l u s t r a t e d b y c o n s i d e r i n g several i s o t h e r m a l i n v e s t i g a t i o n s . S a m p l e s of the resin

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

28.

VISWANATHAN

Adhesive Resins from Whey and Whey Byproducts

403

were heated i s o t h e r m a l l y at various t e m p e r a t u r e s r a n g i n g f r o m 140 t o 185 ° C , a n d the r e a c t i o n was m o n i t o r e d w i t h respect t o t i m e . W h e n the resin s a m ­ ple was heated i s o t h e r m a l l y at 140 ° C for 15 m i n , no e x o t h e r m was observed. T h e s a m p l e was allowed to c o o l slowly to r o o m t e m p e r a t u r e a n d t h e n heated i s o t h e r m a l l y at 185 ° C for 15 m i n . A g a i n , no e x o t h e r m was observed.

T a b l e I V . P r o p e r t i e s of P a r t i c l e b o a r d s P r e p a r e d w i t h P h a s e I I R e s i n [ W h e y P e r m e a t e / H S 0 / N H 3 (17) ]

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

2

Resin ( D r y Basis)

4

Thickness

(%)

Press Cycle (min)

Rice

10

8

(lb/ft ) 57.0

75% Ground rice & 2 5 % dust

7

7

Dust

7

50% Ground rice h 5 0 % dust G r o u n d rice

Composition

IB (psi)

MOR (psi)

Swell

12.9

864

125.9

53.2

49.8

984

37.8

7

55.9

144.4

2047

27.0

7

7

56.9

79.8

838

49.4

7

7

54.3

29.4

Density 3

(%)

38.8

^ i n a l p H = 3. T h e b o a r d s are a single layer of p i n e dust a n d / o r rice h u l l s ( g r o u n d a n d u n g r o u n d ) . V a l u e s given represent average o f d u p l i c a t e r u n s . F i n a l thickness o f the b o a r d s was 1/4 i n c h . 2

Reprinted with permission from ref. 17. Copyright 1987

S O U R C E :

Technomic

Publishing. However, w h e n a fresh s a m p l e of the resin was heated i s o t h e r m a l l y at 185 ° C , there was a n e x o t h e r m i c process evident t h a t peaked w i t h i n the first m i n u t e a n d reached c o m p l e t i o n w i t h i n a p p r o x i m a t e l y 4 t o 5 m i n . T h u s , i t is e v i d e n t t h a t the cure m e c h a n i s m m a y change w i t h change i n r e a c t i o n c o n d i t i o n s , r e v e a l i n g the c o m p l e x i t y of the whey-based resin t h e r m o s e t t i n g process. Since a d y n a m i c r u n described earlier revealed a n e x o t h e r m i c p o l y m e r i z a ­ t i o n at a r o u n d 185 t o 190 ° C , crosslinkers were a d d e d i n a n a t t e m p t to lower the t e m p e r a t u r e for p o l y m e r i z a t i o n . T h e c r o s s l i n k i n g agents ( 1 0 % w / v of resin p r e p a r a t i o n ) used were p h t h a l i c a n h y d r i d e , m a l e i c a n h y d r i d e , t a l l o w d i a m i n e , a n d p-toluenesulfonic a c i d . W e were u n a b l e t o lower the t e m p e r a t u r e of i n i t i a ­ t i o n o f p o l y m e r i z a t i o n b y the a d d i t i o n of the first three reagents, b u t d i d observe a shift t o a lower t e m p e r a t u r e ( « 165 ° C ) i n the presence of ])-toluenesulfonic a c i d . T h e ρ H of the m i x t u r e p r i o r to h e a t i n g was a r o u n d 2.0, whereas, the Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

404

ADHESIVES F R O M R E N E W A B L E RESOURCES

CURVE A"=PRESS TEMR = l65 C.,PRESS =500?5l, MAT MOISTURE » CURVE"B-PRESS TEMP-IftS't./PRESS.-SOOPSl,MAT MOISTUKEg g>7* e

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

1

0

1

ε

3

4-

5



7

T I M E

F i g u r e 4. T h e influence o f press t e m p e r a t u r e , pressure, a n d t i m e o n core t e m ­ p e r a t u r e rise d u r i n g hot pressing. A m o u n t o f resin used was 7 % (by d r y weight) i n the b o a r d . T h e resin a p p l i e d h a d 6 5 % solids content. M a t m o i s t u r e content was 6 % p r i o r t o pressing.

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

28.

viswANATHAN

405

Adhesive Resins from Whey and Whey Byproducts

ΙςυκνεΆ": PRESS ΤΕΜ& - ;*o c ASSURE SOOPSL'MAT MOISTURE^ e

200

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

"A"

4 ο ο

U: Σ tu

/

UJ

ο ο

>

TIME



F i g u r e 5. T h e influence of press t e m p e r a t u r e , pressure, a n d t i m e o n core t e m ­ p e r a t u r e rise d u r i n g h o t pressing. T h e a m o u n t of resin used was 7% (by d r y weight) i n t h e b o a r d . T h e resin a p p l i e d h a d a 6 5 % s o l i d content w i t h 1 0 % w / v of p h t h a l i c a n h y d r i d e . M a t m o i s t u r e content was 6 % p r i o r t o pressing.

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

406

ADHESIVES F R O M RENEWABLE RESOURCES

others h a d a p H a r o u n d 3.0 t o 3.5. W h e n t h e p H o f t h e m i x t u r e c o n t a i n i n g p-toluenesulfonic a c i d w a s r a i s e d t o 3.5, t h e advantage i n t e r m s o f lower t e m p e r a t u r e for t h e i n i t i a t i o n o f p o l y m e r i z a t i o n was lost.

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

S i n c e we (19) have r e p o r t e d t h a t there is a n i m p r o v e m e n t i n i n t e r n a l b o n d s t r e n g t h o f h i g h - d e n s i t y p a r t i c l e b o a r d s o n a d d i t i o n o f p h t h a l i c a n h y d r i d e , we decided t o investigate t h e influence o f press t e m p e r a t u r e , pressure, a n d t i m e o n core t e m p e r a t u r e rise d u r i n g h o t pressing. F i g u r e s 4 a n d 5 i n d i c a t e t h e results o b t a i n e d under t h e c o n d i t i o n s s t a t e d . T h e a m o u n t o f p h t h a l i c a n h y d r i d e i n F i g u r e 5 w a s 1 0 % w / v o f a 6 5 % resin s o l u t i o n . T h e m a t thickness w a s threeeighths o f a n i n c h , a n d t h e b o a r d w a s p r e p a r e d b y pressing u n d e r continuous pressure w i t h o u t stops. It is clear f r o m t h e results o b t a i n e d t h a t t h e core t e m p e r a t u r e rises above the p l a t e n t e m p e r a t u r e i n the presence o f p h t h a l i c a n h y d r i d e . Since n o u n u s u a l differences i n t h e D S C t h e r m o g r a m o f w h e y - b a s e d resin i n t h e presence a n d i n the absence o f p h t h a l i c a n h y d r i d e were seen, t h e e x o t h e r m i c p h e n o m e n o n b e i n g observed u n d e r c o n d i t i o n s o f b o a r d p r e p a r a t i o n deserves f u r t h e r i n v e s t i g a t i o n . Conclusion W o r k done w i t h w h e y - b a s e d resins so f a r h a s d e m o n s t r a t e d t h e f e a s i b i l i t y o f u s i n g t h e t h e r m a l d e g r a d a t i o n / p o l y m e r i z a t i o n p r o d u c t s o f lactose as a n adhesive for b i n d i n g l i g n o c e l l u l o s i c m a t e r i a l s . T h i s offers a n e x c i t i n g s o l u t i o n t o t h e w h e y d i s p o s a l p r o b l e m , w h i c h takes o n n o t o n l y n a t i o n a l b u t i n t e r n a t i o n a l s i g nificance. T h e m a j o r d r a w b a c k i n b o a r d m a n u f a c t u r e u s i n g w h e y - b a s e d resins is the p r o l o n g e d cure t i m e a n d d a r k e r color. T h e m a j o r advantages are t h e lower cost a n d t h e lower f o r m a l d e h y d e emissions. B o t h s h o u l d encourage t h e forest p r o d u c t s i n d u s t r y t o consider t h i s v i a b l e a l t e r n a t i v e . G o v e r n m e n t a l decisions r e g a r d i n g f o r m a l d e h y d e t o x i c i t y w i l l have a n enormous b e a r i n g o n the f u t u r e o f research o n adhesives f r o m renewable resources. Acknowledgments T h e a u t h o r t h a n k s the A r k a n s a s Science a n d T e c h n o l o g y A u t h o r i t y for f u n d i n g a n d t h e Office o f R e s e a r c h i n Science a n d Technology, U n i v e r s i t y o f A r k a n s a s at L i t t l e R o c k for assisstance i n t h e p r e p a r a t i o n o f t h i s m a n u s c r i p t . Literature

Cited

1. United States Department of Agriculture, Dairy Products Annual Summary 1982. Statistical Reporting Service, Washington, DC, 1983; pp. 17, 33. 2. Viswanathan, T.; Burrington, D.; Richardson, T. J. Chem. Tech.Biotechnol.,1984, 34B, 52. 3. Fisher, A. Contact Dermatitis, 3rd ed., Lea and Fibiger, Pa, 1986; p. 36. 4. Cronin, E . Contact Dermatitis, Churchill Livingstone, London, 1986; p. 622.

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

28.

viswANATHAN

Adhesive Resins from Whey and Whey Byproducts

407

5. Adam, R. M., Occupational Skin Disease, Grune and Stratton, Inc., New York, 19B3; p. 250. 6. White, J. T. Paper presented at Wood Adhesives Research, Application and Needs Symposium held in Madison, WI, Sept. 23-25, 1980. 7. Stofko, J. L. U.S. Patent 4 107 379, 1978. 8. Stofko, J. L. U.S. Patent 4 183 997, 1980.

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028

9. Stofko, J. L. "Carbohydrate Transformation Bonding of Lignocellulosic Materials," paper presented at the Wood Adhesive-Research, Application and Needs Symposium, Madison, WI, 1980. 10. Usmani, A. M.; Salyer, I. O. "Resin Bonded Bagasse Composite," In Polymer Applications of Renewable-Resource Materials, Carraher C. E . , Sperling L. A. Eds., Plenum Press: New York 1983. 11. Gibbons, J. P.; Chiang, M. T. U.S. Patent 4 085 075, 1978. 12. Gibbons, J. P.; Wondolowski, L. U.S. Patent 4 085 076, 1978. 13. Viswanathan, T.; Richardson, T. Ind. Eng. Chem. Product Res. Dev., 1984, 23, 644-647. 14. Viswanathan, T. Ind. Eng. Chem. Product Res. Dev., 1985, 24, 176-177. 15. Tsuchida, H.; Komoto, M . Proc. Res. Soc. Japan Sugar Refin. Technol., 1970, 22, 66-76. 16. Viswanathan, T. Phase II Final Report on the development of thermosetting resins from whey and whey byproducts 121 pages. Submitted to the EPA for contract No. 68-02-4098 (1985). 17. Viswanathan, T.; Smith, M.; Palmer, H. J. Elastomers & Plastics, 1987, 19, 99-108. 18. Zall, R. J. Dairy Sci., 1984, 67, 2621-2629. 19. Viswanathan, T.; Gilton, T. Ind. Eng. Chem. Product Res. Dev., 1986, 25, 313-315. RECEIVED June2,1988

Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.