Applications of Liquid Membrane Technology - American Chemical

May 11, 1987 - Liquid membrane and facilitated transport technology have been ... branes and observed an oxygen permeability of 17-10"1 0 c m. ( S T j...
1 downloads 0 Views 1MB Size
Chapter 8

Applications of Liquid Membrane Technology Richard D. Noble and J. Douglas Way

1

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

National Bureau of Standards, Center for Chemical Engineering, Boulder, C O 80303

Commercial and laboratory applications of liquid membrane technology are discussed including gas transport, sensor development, metal ion recovery, waste treatment, biotechnology and biomedical engineering. Immobilized liquid membranes, emulsion or liquid surfactant membranes, and membrane reactors are discussed. Economic data from the literature for liquid membrane processes are presented and compared with existing processes such as solvent extraction and cryogenic distillation of air.

L i q u i d membrane and f a c i l i t a t e d t r a n s p o r t t e c h n o l o g y have been s t u d i e d e x t e n s i v e l y i n many d i s c i p l i n e s such as: c h e m i c a l e n g i n e e r ing, inorganic chemistry, a n a l y t i c a l chemistry, physiology, biotechn o l o g y , and b i o m e d i c a l e n g i n e e r i n g . W i t h i n these d i s c i p l i n e s , t h e t e c h n o l o g y has been a p p l i e d t o a range o f d i v e r s e a p p l i c a t i o n s such as gas s e p a r a t i o n s , o r g a n i c r e m o v a l , m e t a l s r e c o v e r y , t o x i c waste removal, development o f s e l e c t i v e s e n s i n g d e v i c e s , enzyme r e a c t o r s , and r e c o v e r y o f f e r m e n t a t i o n p r o d u c t s . Only s e n s o r s and waste remova l a r e commerical p r o c e s s e s a l t h o u g h t h e b i o t e c h n o l o g y and m e t a l s r e c o v e r y a p p l i c a t i o n s seem p o i s e d f o r c o m m e r c i a l i z a t i o n . T h i s chapt e r w i l l h i g h l i g h t t h e many a p p l i c a t i o n s o f l i q u i d membrane t e c h nology. F a c i l i t a t e d T r a n s p o r t o f Gases Oxygen. Due t o g r e a t b i o l o g i c a l i m p o r t a n c e , oxygen t r a n s p o r t v i a a hemoglobin c a r r i e r was one o f t h e f i r s t f a c i l i t a t e d t r a n s p o r t s y s tems s t u d i e d . Scholander (1_) determined t h e steady s t a t e oxygen f l u x through an aqueous hemoglobin s o l u t i o n s impregnated i n t h i n c e l l u l o s e a c e t a t e s u p p o r t s . He p o s t u l a t e d a "bucket b r i g a d e " mechanism whereby t h e oxygen l e a p s from one c a r r i e r s i t e t o t h e n e x t . W i t t e n b e r g (2) s t u d i e d a s i m i l a r system and r e c o g n i z e d t h a t a m o b i l e c a r r i e r was n e c e s s a r y . He a l s o noted t h a t t h e r a t e s o f complex f o r 1

Current address: SRI International, Chemical Engineering Laboratory, Menlo Park, CA 94025 This chapter is not subject to U.S. copyright. Published 1987, American Chemical Society

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

8. NOBLE AND WAY

Applications of Liquid Membrane Technology

111

mation and r e v e r s a l were b o t h i m p o r t a n t . K r e u z e r and Hoofd ( 3 ) de­ s c r i b e d t h e m a t h e m a t i c a l a n a l y s i s assuming a f a c i l i t a t e d t r a n s p o r t mechanism and showed v e r y good agreement w i t h e x p e r i m e n t a l d a t a . More r e c e n t l y , o t h e r c a r r i e r s have been s t u d i e d . An e x c e l l e n t r e v i e w o f t h i s a r e a was r e c e n t l y completed W . Bend Research I n c . has r e c e n t l y o b t a i n e d a Japanese p a t e n t f o r oxygen s e p a r a t i o n from a i r u s i n g a c o b a l t - s a l e n complex. They were a b l e t o o b t a i n 0 / N s e l e c t i v i t i e s i n e x c e s s o f 20 and an 0 p e r m e a b i l i t y o f 26χ10~ cm (STP)-cm/cm -s-cmHg. U s i n g a ambient p r e s s u r e f e e d and low p r e s ­ s u r e permeate, they measured 0 p u r i t y o f 80-90 mole % ( 5 ) . A major problem w i t h s y n t h e t i c c a r r i e r s f o r oxygen a t t h i s t i m e i s t h a t they w i l l i r r e v e r s i b l y o x i d i z e a t ambient c o n d i t i o n s and, t h e r e f o r e , r e ­ quire r e f r i g e r a t i o n t o maintain t h e i r r e v e r s i b i l i t y . K o v a l and Reyes (6_) d i s c u s s t h e c h e m i c a l problems e n c o u n t e r e d w i t h f a c i l i t a t e d t r a n s p o r t o f oxygen. There i s c o n s i d e r a b l e r e c e n t i n t e r e s t i n p r e p a r i n g r e a c t i v e polymer membranes w i t h h i g h s e l e c t i v i t i e s f o r oxygen. N i s h i d e e t a l . (7,8) c o v a l e n t l y a t t a c h e d c o - s a l e n complexes t o polymer mem­ branes and o b s e r v e d an oxygen p e r m e a b i l i t y o f 1 7 - 1 0 " ( j^ cm "S-kPa and an 0 / N s e p a r a t i o n f a c t o r o f 12. Another approach t o i n c r e a s e the c o m p l e x a t i o n s i t e d e n s i t y i s by p o l y m e r i z i n g a monomer which c o n t a i n s a r e a c t i v e Co complex ( 9 ) . 2

2

9

2

3

2

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

2

10

2

c

m

S T

c m

2

Carbon D i o x i d e . Carbon d i o x i d e has been s t u d i e d from both a b i o l o g i ­ c a l and an e n g i n e e r i n g p e r s p e c t i v e . One system which has r e c e i v e d a t t e n t i o n i s t h e use o f t h e b i c a r b o n a t e i o n as a c a r r i e r . Enns (10) e s t a b l i s h e d t h e r o l e o f t h e b i c a r b o n a t e i o n i n carbon d i o x i d e f a c i l i ­ t a t e d t r a n s p o r t and demonstrated t h a t t h e f l u x c o u l d be i n c r e a s e d by c a t a l y z i n g t h e r e a c t i o n sequence w i t h t h e enzyme c a r b o n i c anhydrase. A l s o , anions o f weak a c i d s such as s e l e n i t e , a r s e n i t e , t e l l u r i t e , and h y p o c h l o r i t e have been found t o be e f f e c t i v e c a t a l y s t s (11,12). Ward and Robb ( J _ 3 ) used sodium a r s e n i t e as a h y d r a t i o n c a t a l y s t f o r removing carbon d i o x i d e from a carbon d i o x i d e - o x y g e n m i x t u r e . They a c h i e v e d a s e p a r a t i o n f a c t o r o f 4100. The low oxygen p e r m e a b i l i t y can be p a r t i a l l y a t t r i b u t e d t o t h e p r e f e r e n t i a l p r e c i p i t a t i o n o f o x i d i z e d s a l t s i n t h e 6 Ν CsHC0 membrane s o l u t i o n . Otto and Quinn (14) measured t h e carbon d i o x i d e f l u x t h r o u g h t h i n b i c a r b o n a t e s o l u ­ t i o n f i l m s . They found t h e t r a n s p o r t t o be r e a c t i o n r a t e l i m i t e d i n the absence o f c a t a l y s t s . The f a c i l i t a t i o n f a c t o r i n c r e a s e d w i t h i n c r e a s i n g l a y e r t h i c k n e s s and a l k a l i m e t a l c o n c e n t r a t i o n . They were a b l e t o i n c r e a s e t h e carbon d i o x i d e f l u x t o r e a c t i o n e q u i l i b r i ­ um ( d i f f u s i o n - l i m i t e d ) v a l u e s w i t h t h e a d d i t i o n o f t h e enzyme c a r b o n ­ i c anhydrase. Meldon e t a l . ( 1 J _ ) have shown t h a t carbon d i o x i d e f a c i l i t a t i o n i s i n c r e a s e d by t h e a d d i t i o n o f a weak a c i d b u f f e r s o l u ­ tion. A r e c e n t r e v i e w o f t h i s system has been p u b l i s h e d by Meldon et a l . (J_5). L e B l a n c e t a l . (1_6) r e p o r t e d f a c i l i t a t e d c a r b o n d i o x ­ i d e t r a n s p o r t u s i n g e t h y l e n e d i a m i n e as t h e c a r r i e r i n i o n exchange membranes (IEMs). They noted t h e advantages o f i o n exchange mem­ branes over i m m o b i l i z e d l i q u i d membranes. They a l s o s t a t e d t h a t these advantages c o u l d c o n t r i b u t e t o a l o n g e r o p e r a t i n g l i f e i n p r a c ­ t i c a l gas s e p a r a t i o n s under a d v e r s e h i g h temperature and p r e s s u r e c o n d i t i o n s . Way e t a l . (J_7) a l s o used e t h y l e n e d i a m e a s t h e c a r r i e r 3

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

LIQUID MEMBRANES: THEORY AND APPLICATIONS

112

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

i n a p e r f l u o r s u l f o n i c a c i d ion-exchange membrane. They measured s e p a r a t i o n f a c t o r s ( r a t i o of p e r m e a b i l i t i e s ) of up t o 551 f o r C 0 over CH„.

2

Carbon Monoxide. The f a c i l i t a t e d t r a n s p o r t o f carbon monoxide by cuprous c h l o r i d e i n aqueous s o l u t i o n was f i r s t s t u d i e d by S t e i g e l m a n and Hughes (1_8) and more r e c e n t l y by Smith and Quinn (]_9). Smith and Quinn found the cuprous i o n t o be v e r y e f f e c t i v e c a r r i e r f o r carbon monoxide and i n c r e a s e d the f l u x by two o r d e r s o f magnitude o v e r the p u r e l y d i f f u s i v e c a s e . The f a c i l i t a t i o n f a c t o r was meas­ ured as a f u n c t i o n o f carbon monoxide p a r t i a l p r e s s u r e , t o t a l copper c o n c e n t r a t i o n , and membrane t h i c k n e s s . R e c e n t l y , K o v a l e t a l . (20) r e p o r t e d f a c i l i t a t e d CO t r a n s p o r t u s i n g a f e r r o u s complex d e r i v e d from t h e t e t r a i m i n e m a c r o c y c l i c l i g a n d 2 , 3 , 9 , 1 0 - t e t r a m e t h y l 1t3t8,11-tetraazacyclo-tetradeca-1,3,8,10- tetraene(TIM) i n benzonitrile. They measured the k i n e t i c and d i f f u s i o n a l c o n s t a n t s and show­ ed s e l e c t i v i t y f o r CO over a v a r i e t y o f o t h e r g a s e s . The experimen­ t a l and m a t h e m a t i c a l p r o c e d u r e s w h i c h t h e y d e s c r i b e d can be used f o r any s i m p l e c o m p l e x a t i o n r e a c t i o n . Hydrogen S u l f i d e . Matson e t a l . (21_) u t i l i z e d a c a r b o n a t e s o l u t i o n i m m o b i l i z e d i n a porous polymer f i l m t o s t u d y hydrogen s u l f i d e remov­ a l f o r c o a l g a s i f i c a t i o n a p p l i c a t i o n s . T h e i r membrane had a h i g h hydrogen s u l f i d e p e r m e a b i l i t y and g r e a t e r s e l e c t i v i t y t h a n conven­ t i o n a l hot c a r b o n a t e s c r u b b e r s . They made p e r m e a b i l i t y measurements a t h i g h t e m p e r a t u r e and p r e s s u r e (363-^03 K, t o t a l f e e d p r e s s u r e 2.1 χ 1 0 kPa) and o b s e r v e d a hydrogen s u l f i d e p e r m e a b i l i t y dependence on carbon d i o x i d e p a r t i a l p r e s s u r e . This r e s u l t i s reasonable since both hydrogen s u l f i d e and c a r b o n d i o x i d e can compete f o r the c a r r i e r . They a l s o s t u d i e d membrane l i f e t i m e . T h e i r a p p a r a t u s was o p e r a t e d c o n t i n u o u s l y f o r p e r i o d s o f up t o 3 . 6 χ 1 0 s (1000 h) and no a p p r e c ­ i a b l e d e c r e a s e i n membrane p e r m e a b i l i t y was o b s e r v e d . They a l s o noted t h a t c a r r i e r d e a c t i v a t i o n due t o the presence o f oxygen i n c o a l gas was p o s s i b l e and t h a t f o u l i n g due t o c o a l t a r s and dust would have t o be c o n s i d e r e d i n an i n d u s t r i a l s c a l e s y s t e m . Kimura e t a l . (j_2) r e p o r t e d p r o g r e s s toward a p p l y i n g f a c i l i t a t ­ ed t r a n s p o r t membranes t o i n d u s t r i a l s c a l e s e p a r a t i o n s . They meas­ ured c a r b o n d i o x i d e and hydrogen s u l f i d e p e r m e a b i l i t i e s a t i n d u s t r i ­ a l l y s i g n i f i c a n t o p e r a t i n g c o n d i t i o n s (6.90 χ 1 0 kPa C 0 , 363-403 K ) . Under t h e s e c o n d i t i o n s , the a u t h o r s d e t e r m i n e d t h a t carbon d i o x ­ i d e t r a n s p o r t i s i n f l u e n c e d by b o t h d i f f u s i o n and r e a c t i o n r a t e s . They a l s o n o t e d t h a t hydrogen s u l f i d e s e l e c t i v i t y o v e r carbon d i o x ­ i d e can be improved by i n t r o d u c i n g gas gaps i n a m u l t i l a y e r membrane because o f t h e h i g h e r r e a c t i o n r a t e s o f hydrogen s u l f i d e . They found t h a t c a t a l y s t s i n c r e a s e d the c a r b o n d i o x i d e h y d r a t i o n r a t e by a f a c t o r of 2 a t low carbon d i o x i d e p a r t i a l p r e s s u r e , t h i s e f f e c t was o b s e r v e d t o i n c r e a s e as carbon d i o x i d e p a r t i a l p r e s s u r e de­ creased. Economic s t u d i e s based on e x p e r i m e n t a l d a t a i n d i c a t e t h a t c o s t s a v i n g s on the o r d e r of 30-50$ over c o n v e n t i o n a l a c i d gas s c r u b ­ b i n g were p o s s i b l e w i t h i m m o b i l i z e d l i q u i d membranes. Way and Noble (22) r e p o r t e d f a c i l i t a t e d t r a n s p o r t o f H S i n i o n exchange membranes c o n t a i n i n g o r g a n i c d i a m i n e c a t i o n s a t ambient c o n d i t i o n s . The IEMs were h i g h l y s e l e c t i v e f o r H S over CH„ and had 3

6

2

2

2

2

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

8. NOBLE A N D WAY

113

Applications of Liquid Membrane Technology

h i g h H S p e r m e a b i l i t i e s . S e p a r a t i o n f a c t o r s f o r H S/CH up t o 1200 were measured c o r r e s p o n d i n g t o an H S p e r m e a b i l i t y o f 4 6 3 2 * 1 0 " cm (STP)cm cm »s«kPa 2

2

U

10

2

3

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

z

O l e f i n s . F a c i l i t a t e d t r a n s p o r t o f o l e f i n s has a l s o been r e p o r t e d i n the l i t e r a t u r e . L e B l a n c e t a l . (1_6) s t u d i e d e t h y l e n e t r a n s p o r t us­ i n g a s i l v e r i o n c a r r i e r i n an i o n exchange membrane. Hughes e t a l . (23) p r e s e n t e d the r e s u l t s o f a bench and p i l o t s c a l e s t u d y o f e t h y l e n e and p r o p y l e n e t r a n s p o r t u s i n g a s i l v e r i o n i m m o b i l i z e d i n a n i s o t r o p i c , porous h o l l o w f i b e r membranes. T h i s work i s very s i g ­ n i f i c a n t because i t i s the f i r s t r e p o r t f a c i l i t a t e d t r a n s p o r t mem­ branes used on a commercial s c a l e . Teremoto e t a l . (24) a l s o s t u d ­ i e d e t h y l e n e t r a n s p o r t w i t h a s i l v e r i o n c a r r i e r i n a supported li­ q u i d membrane. They found a s e l e c t i v i t y f o r e t h y l e n e over ethane o f a p p r o x i m a t e l y 1000 when the s i l v e r n i t r a t e c o n c e n t r a t i o n was 4 mol/ dm . 2

N i t r i c Oxide. N i t r i c o x i d e f a c i l i t a t e d t r a n s p o r t u s i n g a f e r r o u s i o n as c a r r i e r has been r e p o r t e d . Ward (25) c a r r i e d out an e x p e r i ­ mental and m a t h e m a t i c a l i n v e s t i g a t i o n o f t h i s system. He measured the NO f l u x t h r o u g h a l i q u i d l a y e r i m m o b i l i z e d between two t h i n p o l y ­ m e r i c f i l m s . H i s m a t h e m a t i c a l a n a l y s i s showed t h a t the system was not o p e r a t i n g i n e i t h e r d i f f u s i o n - l i m i t e d o r r e a c t i o n - l i m i t e d r e ­ g i o n s but somewhere i n between. I n a f u r t h e r i n v e s t i g a t i o n , Ward (26) o b s e r v e d t h a t NO c o u l d be t r a n s p o r t e d a c r o s s a f e r r o u s c h l o r i d e f i l m a g a i n s t a NO c o n c e n t r a t i o n g r a d i e n t by a p p l y i n g a v o l t a g e d i f f e r e n c e a c r o s s the f i l m . B d z i l e t a l . (27) p r e s e n t e d a mathemati­ c a l a n a l y s i s o f e l e c t r i c a l l y induced c a r r i e r t r a n s p o r t f o r t h i s s y s ­ tem. Sensors. Bard and F a u l k n e r (28) r e v i e w a p p l i c a t i o n s o f i m m o b i l i z e d l i q u i d and f a c i l i t a t e d t r a n s p o r t membranes t o the d e s i g n o f e l e c ­ t r o d e s f o r the d e t e c t i o n o f c a t i o n s and anions i n aqueous s o l u t i o n s . Deetz (29) d e s c r i b e s the f a b r i c a t i o n o f l i q u i d membrane based sen­ sors f o r organic vapors. L i q u i d Phase Systems I m m o b i l i z e d L i q u i d Membranes (ILM). M e t a l i o n s e p a r a t i o n f o r h y d r o m e t a l l u r g i c a l a p p l i c a t i o n s has r e c e i v e d c o n s i d e r a b l e i n t e r e s t (30). Babcock, Baker, and coworkers (31"3^) have s t u d i e d c o u p l e d t r a n s p o r t o f m e t a l i o n s u s i n g supported l i q u i d membranes. Porous p o l y p r o p y l e n e f l a t sheet membranes and porous polymer h o l l o w f i b e r membranes were impregnated w i t h a h y d r o c a r b o n s o l v e n t c o n t a i n i n g an a p p r o p r i a t e c a r r i e r . The a p p l i c a t i o n s c o n s i d e r e d were the c o n t r o l of heavy metal p o l l u t a n t s , and the r e c o v e r y o f copper, uranium, and c o b a l t . Baker e t a l . (32) d i s c u s s e d work on s u p p o r t e d l i q u i d membranes f o r copper t r a n s p o r t . Copper was t r a n s p o r t e d a g a i n s t a 4000 f o l d c o n c e n t r a t i o n d i f f e r e n c e u s i n g a beta-hydroxyoxime c a r r i e r from a m i x t u r e o f copper and i r o n i o n s and a s e p a r a t i o n f a c t o r o f 1000 f o r copper over i r o n was o b s e r v e d . T y p i c a l t r a n s p o r t r a t e s were a p p r o x i m a t e l y 5.0 χ 1 0 " kg C u / ( m - s ) . Uranium t r a n s p o r t u s i n g a t e r t i a r y amine c o m p l e x i n g agent under s i m i l a r c o n d i t i o n s was 7

2

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

114

LIQUID MEMBRANES: THEORY AND APPLICATIONS

r e p o r t e d by Babcock et a l . (313.34). The p r i n c i p a l f a c t o r s a f f e c t i n g the uranium f l u x were the uranium i o n c o n c e n t r a t i o n and the pH of the aqueous phase, c o n c e n t r a t i o n o f the c a r r i e r , pore s i z e d i s t r i b u t i o n o f t h e s u p p o r t i n g membrane and the s o l u b i l i t y o f the uranium c a r r i e r complex i n the o r g a n i c s o l v e n t . The maximum f l u x was o b t a i n e d at 30 volume % c a r r i e r . They p o s t u l a t e d t h a t the s o l u b i l i t y o f the complex l i m i t e d the r e a c t i o n r a t e . The a u t h o r s o b s e r v e d two t y p e s o f i n t e r f a c i a l e f f e c t s ; c o n c e n t r a t i o n p o l a r i z a t i o n a t the aqueous phase-membrane i n t e r f a c e and t r a n s p o r t r a t e l i m i t a t i o n by the r a t e of c o m p l e x a t i o n at the i n t e r f a c e . Danesi et a l . (35) s t u d i e d cadmium and z i n c t r a n s p o r t u s i n g a c a r r i e r . A h i s t o r i c a l development of c o u p l e d t r a n s p o r t i s g i v e n by Babcock et a l . ( 3 6 ) . Danesi and C i a n e t t i (37,38) and Danesi and R e i c h l e y - Y i n g e r (1986) d e s c r i b e d the use of m u l t i p l e membranes t o perform metal extraction. The s e p a r a t i o n can be i n c r e a s e d by s t a g i n g the membranes. The use of composite membranes i s a l s o d i s c u s s e d whereby each segment o f the composite can perform a s p e c i f i c f u n c t i o n . C h i a r i z i a e t a l . (39) d e s c r i b e d the i n f l u e n c e of c a r r i e r d i m e r i z a t i o n on m e t a l e x t r a c t i o n . They noted t h i s e f f e c t on o v e r a l l membrane p e r m e a b i l i t y but t h i s e f f e c t can be i n c o r p o r a t e d i n any measure o f membrane t r a n s p o r t . The use o f ILMs f o r the s e p a r a t i o n o f f e r m e n t a t i o n p r o d u c t s such as a c e t i c and c i t r i c a c i d has been r e c e n t l y r e p o r t e d by s e v e r a l i n v e s t i g a t o r s . Kuo and Gregor (HO) and K i a n i et a l . (41_) used imm o b i l i z e d l i q u i d membranes t o e x t r a c t a c e t i c a c i d from aqueous s o l u t i o n s . W h i l e Kuo and Gregor (40) d i d demonstrate t h e concept o f f a c i l i t a t e d t r a n s p o r t of a c e t i c a c i d , the p e r m e a t i o n r a t e s they r e p o r t e d were q u i t e low. Babcock e t a l . (42) r e p o r t e d the e x t r a c t i o n of c i t r i c a c i d from a c t u a l f e r m e n t a t i o n b r o t h . The e f f e c t s of t e m p e r a t u r e , a g e n t - s o l u t i o n c o m p o s i t i o n , and c i t r i c a c i d c o n c e n t r a t i o n on t r a n s p o r t r a t e s were i n v e s t i g a t e d . I n another b i o t e c h n o l o g y a p p l i c a t i o n , Matson (43) c o i n e d the term "membrane r e a c t o r " to r e f e r t o the i n t e g r a t i o n o f the r e a c t i o n , s e p a r a t i o n , and c o n c e n t r a t i o n s t e p s of an e n z y m a t i c c o n v e r s i o n r e a c t i o n . A sandwich o f a p e r m s e l e c t i v e ILM and a c a t a l y t i c membrane was used t o a l l o w the d i f f u s i o n of the r e a c t a n t i n t o the c a t a l y t i c membrane and t o l i m i t the d i f f u s i o n o f the p r o d u c t of the e n z y m a t i c r e a c t i o n of the membrane. A h i g h f e e d stream f l o w r a t e t o product stream f l o w r a t e r a t i o was used t o c o n c e n t r a t e the p r o d u c t . Danesi (£4) r e p o r t e d on an ILM u s i n g a c a r r i e r m o l e c u l e as an electron carrier. T h i s a l l o w s one t o use redox r e a c t i o n s t o t r a n s p o r t charge as w e l l as mass. Danesi et a l . (45) s t u d i e d the l i f e t i m e o f the ILMs f o r l i q u i d phase e x t r a c t i o n s . C o r r e l a t i o n s were e s t a b l i s h e d among the f o l l o w ing f a c t o r s : the l i f e t i m e o f the ILM's, t h e i r i n t e r f a c i a l and water e x t r a c t i o n p r o p e r t i e s , the c o n c e n t r a t i o n s of the f e e d and s t r i p s o l u t i o n s a d j a c e n t t o the ILM and the a b i l i t y o f the ILM t o t r a n s p o r t water. The f o l l o w i n g c o n c l u s i o n s were r e a c h e d about the s t a b i l i t y o f ILM's: ( i ) when the e l e c t r o l y t e c o n c e n t r a t i o n s o f the aqueous s o l u t i o n s s e p a r a t e d by the membrane a r e a p p r o x i m a t e l y e q u a l and t h e s o l u b i l i t y of the o r g a n i c c a r r i e r i n water i s low, s t a b l e I L M s a r e obt a i n e d , ( i i ) when the e l e c t r o l y t e c o n c e n t r a t i o n s o f t h e s e aqueous 1

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

8. NOBLE A N D WAY

Applications of Liquid Membrane Technology

115

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

s o l u t i o n s are v e r y d i f f e r e n t , r e s u l t i n g i n a l a r g e o s m o t i c p r e s s u r e g r a d i e n t , ILM's become u n s t a b l e and t h e i r l i f e t i m e d e c r e a s e s w i t h the a p p l i e d o s m o t i c p r e s s u r e g r a d i e n t , the amount o f water e x t r a c t e d and the w e t t a b i l i t y o f the ILM, ( i i i ) the a b i l i t y o f ILM's t o t r a n s port water p a r a l l e l s t h e i r i n s t a b i l i t y and the amount o f water t r a n s p o r t e d can be t a k e n as an i n d i c a t i o n o f i n s t a b i l i t y . E m u l s i o n L i q u i d Membranes (ELM). M e t a l i o n e x t r a c t i o n u s i n g e m u l s i o n l i q u i d membranes has r e c e i v e d c o n s i d e r a b l e i n t e r e s t ( 4 6 ) . M a r t i n and Davies (4jO e v a l u a t e d the f e a s i b i l i t y o f u s i n g e m u l s i o n l i q u i d membranes t o r e c o v e r copper i o n s from d i l u t e aqueous s o l u t i o n s . They s t u d i e d f a c t o r s i n f l u e n c i n g mass t r a n s f e r such as membrane c o m p o s i t i o n , pH and a c i d content o f the f e e d and i n t e r n a l phase, and a g i t a t i o n r a t e . A t low breakage l e v e l s , t h e i r mass t r a n s f e r data c o u l d be r e p r e s e n t e d by a pseudo f i r s t order p r o c e s s . Kondo e t a l . (48) f o r m u l a t e d e m u l s i o n l i q u i d membranes f o r r e c o v e r i n g copper i o n s . A w a t e r - i n - o i l e m u l s i o n was p r e p a r e d w i t h HC1 i n the i n n e r aqueous phase and copper c h e l a t i n g agent such as b e n z o y l a c e t o n e i n the o r g a n i c phase. They s t u d i e d the r a t e s o f complex f o r m a t i o n and e f f e c t o f process v a r i a b l e s such as a g i t a t i o n speed, c o n t i n u o u s phase pH, c a r r i e r c o n c e n t r a t i o n , s u r f a c t a n t c o n c e n t r a t i o n , and t r e a t r a t i o ( r a t i o o f the e m u l s i o n volume t o the c o n t i n u o u s phase volume) on the mass t r a n s f e r r a t e . T h e i r e x p e r i m e n t a l r e s u l t s showed t h a t the i n i t i a l e x t r a c t i o n r a t e o f copper was i n v e r s e l y p r o p o r t i o n a l t o the square r o o t o f the hydrogen ion c o n c e n t r a t i o n i n the c o n t i n u o u s phase and d i r e c t l y p r o p o r t i o n a l t o the c a r r i e r c o n c e n t r a t i o n . The a u t h o r s found t h a t the e x t r a c t i o n r a t e o f copper c o u l d be e x p l a i n e d by a pseudo f i r s t order dependency w i t h r e s p e c t t o the copper c o n c e n t r a t i o n . I t was p o s t u l a t e d t h a t the o v e r a l l e x t r a c t i o n r a t e s were c o n t r o l l e d by the complex f o r m a t i o n r e a c t i o n r a t e and d i f f u s i o n i n the c o n c e n t r a t i o n boundary l a y e r . Cahn e t a l . (4^) a l s o s t u d i e d copper e x t r a c t i o n u s i n g e m u l s i o n l i q u i d membranes. They s t u d i e d the e f f e c t o f membrane parameters and p r o p e r t i e s such as bulk v i s c o s i t y , c a r r i e r c o n c e n t r a t i o n , t r e a t r a t i o and i n t e r n a l d r o p l e t l e a k a g e . The b u l k v i s c o s i t y o f hydrocarbon membrane phase was measured. They found t h a t the mass t r a n s f e r r a t e was r e t a r d e d and l e a k a g e was reduced by i n c r e a s e d v i s c o s i t y . Data from p i l o t p l a n t t e s t s were used t o c a l c u l a t e p r o c e s s economics f o r a p l a n t t o r e c o v e r copper w i t h e m u l s i o n l i q u i d membranes. Compared t o s o l v e n t e x t r a c t i o n , they concluded t h a t the l i q u i d membrane p r o c e s s c o u l d be up t o 40Ï l e s s expensive. The major c o s t r e d u c t i o n was i n c a p i t a l e x p e n d i t u r e s . V o l k e l e t a l . (50) s t u d i e d copper e x t r a c t i o n and found t h a t they c o u l d c o n c e n t r a t e copper 500:1 u s i n g ELMs. Weiss and G r i g o r i e v (51) and Boyadhiev and Benzenshek (52) s t u d i e d mercury removal from wastewater. Hochhauser and Cussler~T53) c o n c e n t r a t e d chromium w i t h ELMs. F u l l e r and L i (5£) r e p o r t e d on chromium and z i n c e x t r a c t i o n from c o o l i n g water blowdown. Uranium e x t r a c t i o n has a l s o been r e p o r t e d (55). S u b s t a n t i a l work has been done t o i n v e s t i g a t e the use o f macroc y c l i c p o l y e t h e r s t o f a c i l i t a t e the t r a n s p o r t o f m e t a l ions by C h r i s t e n s e n , I z a t t and Lamb (56-59). These c a r r i e r s were i n c o r porated i n t o both b u l k l i q u i d and e m u l s i o n l i q u i d membranes f o r the t r a n s p o r t o f mono- and d i v a l e n t c a t i o n s . They have developed a

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

116

LIQUID MEMBRANES: THEORY A N D APPLICATIONS

model which d e s c r i b e s t h e e f f e c t on m e t a l i o n t r a n s p o r t o f v a r i o u s parameters i n c l u d i n g t h e m e t a l b i n d i n g c o n s t a n t w i t h t h e c a r r i e r s . R e c e n t l y , B a r t s c h and coworkers ( 6 0 - 6 4 ) have d e v e l o p e d i o n i z a b l e macrocycles. T h i s development a l l o w s f o r i o n t r a n s p o r t w i t h o u t having t o consider the counterion. Their studies i n d i c a t e that the i o n i z a b l e crown e t h e r s have i n c r e a s e d f l u x and s e l e c t i v i t y . An ext e n s i v e r e v i e w o f t h i s t o p i c has r e c e n t l y been p u b l i s h e d ( 6 5 ) . C u s s l e r and coworkers r e p o r t e d some o f t h e e a r l i e s t r e s u l t s i n t h i s area ( 5 3 , 6 6 , 6 7 ) . C a r a c c i o l o e t a l . ( 6 8 ) showed t h a t a m a c r o c y c l i c p o l y e t h e r can pump a c a t i o n a g a i n s t i t s c o n c e n t r a t i o n g r a d i e n t . They e x p l a i n e d t h i s phenomenon i n terms o f i o n p a i r t r a n s p o r t . Lee et a l . ( 6 9 ) s t u d i e d copper e x t r a c t i o n u s i n g two t y p e s o f l i q u i d memb r a n e s . More r e c e n t l y , G o k a l p e t a l . ( 7 0 ) used l i q u i d membranes c o n t a i n i n g p o l y e t h e r s t o e l e c t r o r e f i n e s i l v e r and copper. They exp l o r e d two g e o m e t r i e s f o r t h e l i q u i d membrane. They p l a c e d t h e membrane between t h e anode and cathode and a l s o c o a t e d t h e cathode w i t h the membrane i n s e p a r a t e e x p e r i m e n t s . They were a b l e t o demonstrate the t e c h n i c a l f e a s i b i l i t y o f t h i s p r o c e s s . A r e c e n t s t u d y w i t h b i o t e c h n o l o g y a p p l i c a t i o n s r e l a t e s t o amino a c i d e x t r a c t i o n . S c h u g e r l and co-workers (71_) used a q u a t e r n a r y ammonium c a r r i e r i n an e m u l s i o n l i q u i d membrane system f o r enzyme c a t a l y z e d p r e p a r a t i o n o f L-amino a c i d s . F r a n k e n f i e l d e t a l . (72) d i s c u s s a wide v a r i e t y o f b i o m e d i c a l ELM a p p l i c a t i o n s i n c l u d i n g enzyme e n c a p s u l a t i o n , b l o o d o x y g e n a t i o n , and t r e a t m e n t o f c h r o n i c uremia. E m u l s i o n l i q u i d membranes have been f o r m u l a t e d f o r t h e removal of s p e c i e s w i t h o u t c h e m i c a l c a r r i e r s . These systems r e l y on s o l u b i l i t y d i f f e r e n c e s between permeant s p e c i e s . The f i r s t work performed by L i ( 7 3 ) d e a l t w i t h t h e s e p a r a t i o n o f a b i n a r y m i x t u r e o f a r o m a t i c and p a r a f f i n i e h y d r o c a r b o n s . The hydrocarbons were e n c a p s u l a t e d i n an aqueous l i q u i d membrane f o r m i n g an e m u l s i o n which was d i s t r i b u t e d i n a h y d r o c a r b o n s o l v e n t and mixed. The a r o m a t i c h y d r o c a r b o n s p r e f e r e n t i a l l y permeated t h r o u g h t h e aqueous l i q u i d membrane phase due t o s o l u b i l i t y d i f f e r e n c e s . Cahn and L i ( 7 4 ) d e s c r i b e a l i q u i d membrane f o r m u l a t i o n f o r phenol removal i n which sodium h y d r o x i d e i s e n c a p s u l a t e d by an o r g a n i c l i q u i d membrane. The r e s u l t i n g membrane phase i s mixed w i t h a c o n t i n u o u s aqueous phase c o n t a i n i n g p h e n o l . The a r o m a t i c h y d r o c a r b o n can d i f f u s e t h r o u g h t h e l i q u i d membrane i n t o t h e i n n e r aqueous phase. The phenol i s then n e u t r a l i z e d t o sodium phenolate w h i c h , b e i n g i n s o l u b l e i n t h e o r g a n i c membrane, i s t r a p p e d i n t h e i n n e r phase. Thus, a h i g h phenol c o n c e n t r a t i o n g r a d i ent was c o n s t a n t l y m a i n t a i n e d a c r o s s the l i q u i d membrane. Halwachs et a l . ( 7 5 ) r e p o r t e d on t h e removal o f phenol and o t h e r o r g a n i c s o lutes. T e r r y e t a l . ( 7 6 ) p r e s e n t e d f u r t h e r work on removing p h e n o l and o r g a n i c a c i d s i n c l u d i n g m i x t u r e s u s i n g ELM t e c h n o l o g y . Teremoto et a l . ( 7 7 ) s t u d i e d p h e n o l and c r e s o l e x t r a c t i o n w i t h ELMS. B o y a d z h i e v e t a l . ( 7 8 ) d i s c u s s e d phenol e x t r a c t i o n u s i n g a combined ELM and f i l m p e r t r a c t i o n scheme. V o l k e l e t a l . ( 7 9 ) d i s c u s s an i n t e r e s t i n g a p p l i c a t i o n . They used an enzyme e n c a p s u l a t e d i n an ELM to remove phenol from b l o o d . Kitagawa e t a l . ( 8 0 ) discussed a p p l i c a t i o n s o f t h e l i q u i d membrane t e c h n i q u e t o t h e removal o f ammonia and v a r i o u s m e t a l i o n s from i n d u s t r i a l waste w a t e r . For ammonia r e m o v a l , t h e f o r m u l a t i o n used was s i m i l a r t o t h a t f o r phenol s e p a r a t i o n e x c e p t t h a t t h e t r a p p i n g agent was an a c i d . V a r i o u s commercial

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

8.

NOBLE AND WAY

Applications of Liquid Membrane Technology

117

i o n exchange r e a g e n t s were employed a s c a r r i e r s f o r the m e t a l s e p a r a t i o n s . B a i r d e t a l . (8j_) r e c e n t l y r e p o r t e d v a r i o u s amine e x t r a c t i o n s u s i n g HC1 i n the i n t e r n a l phase t o t r a p the amine. They r e p o r t e d b o t h s i n g l e component and b i n a r y d a t a . C u i e t a l . (82) r e c e n t l y r e p o r t e d on a new approach i n ELM t e c h nology. They use one s p e c i e s as both c a r r i e r and s u r f a c t a n t . N o r m a l l y , s e p a r a t e s p e c i e s are used.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

I n d u s t r i a l A p p l i c a t i o n s o f L i q u i d Membrane Technology E m u l s i o n L i q u i d Membranes. Bock e t a l . (j83) and Hayworth e t a l . (84) r e p o r t e d on the a p p l i c a t i o n o f e m u l s i o n l i q u i d membrane t e c h n o l ogy t o the r e c o v e r y o f uranium from wet process p h o s p h o r i c a c i d . The hydrocarbon phase o f the ELM c o n s i s t e d o f a m i x t u r e o f d i - 2 e t h y l h e x y l p h o s p h o r i c a c i d (DEHPA) and t r i o c t y l phosphine o x i d e (TOPO) as c a r r i e r s , and a p i p s a p o l y a m i n e s u r f a c t a n t i n a p a r a f f i n i c a r o m a t i c hydrocarbon s o l v e n t . The aqueous i n t e r n a l phase o f t h e emulsion contained a s t r i p p l i n g s o l u t i o n of phosphoric a c i d with a r e d u c i n g agent c a p a b l e o f p r o d u c i n g U** from U . The a u t h o r s conc l u d e d t h a t t h e economics o f t h e l i q u i d membrane p r o c e s s were s u p e r i or t o s o l v e n t e x t r a c t i o n . The economic study was based on d a t a from a 0.06 m /h c o n t i n u o u s p i l o t p l a n t o p e r a t e d i n South P i e r c e , F l o r i d a . S i n g l e and two stage c o u n t e r c u r r e n t e x p e r i m e n t a l runs were used t o confirm a three countercurrent e x t r a c t o r design capable of greater than 90Î r e c o v e r y w i t h a 6 g/L i n t e r n a l phase uranium c o n c e n t r a t i o n . The c a p i t a l c o s t s o f the ELM d e s i g n were e q u i v a l e n t t o s o l v e n t ext r a c t i o n w i t h minimum f e e d p r e t r e a t m e n t and s u p e r i o r t o s o l v e n t ext r a c t i o n when e x t e n s i v e f e e d p r e t r e a t m e n t was r e q u i r e d . The operat i n g c o s t e s t i m a t e f o r t h e ELM p l a n t was $40.2/kg compared t o $55.256.0/kg U 0 f o r s o l v e n t e x t r a c t i o n . F r a n k e n f e l d e t a l . (85) r e p o r t e d a s i m i l a r study on the r e c o v e r y o f copper w i t h ELM t e c h n o l o g y . The ELM used had a t y p i c a l hydrocarbon phase f o r m u l a t i o n o f 2.0 mass % n o n i o n i c polyamine s u r f a c t a n t , 2.556 beta hydroxyoxime c a r r i e r , and t h e balance i s o p a r a f f i n i e h y d r o c a r b o n s o l v e n t . The i n t e r n a l aqueous phase o f t h e e m u l s i o n was a p p r o x i m a t e l y 20 mass % H S0„. U s i n g a b a s i s o f a 2 . 7 χ 1 0 kg Cu/ year p l a n t , i t was e s t i m a t e d t h a t t h e l i q u i d membrane p l a n t would save H0% i n c a p i t a l c o s t s w i t h n e a r l y i d e n t i c a l o p e r a t i n g c o s t s . Marr (86) d i s c u s s e d the a p p l i c a t i o n o f ELM t e c h n o l o g y t o remove z i n c a s z i n c s u l f a t e from low c o n c e n t r a t i o n wastewater from a t e x ­ t i l e p l a n t i n L e n z i n g , A u s t r i a . I n the s i x month p i l o t p l a n t s t u d y , 1000 m /h o f wastewater was t r e a t e d more e c o n o m i c a l l y w i t h l i q u i d membranes t h a n s o l v e n t e x t r a c t i o n due t o the low Zn c o n c e n t r a t i o n . The p l a n t used p r o p r i e t a r y c o u n t e r c u r r e n t e x t r a c t i o n columns and e l e c t r o s t a t i c c o a l e s c e r s t o break t h e e m u l s i o n p r i o r t o Zn r e c o v e r y and o r g a n i c phase r e c y c l e . A commercial p l a n t f o r Zn removal a t the same l o c a t i o n has been i n o p e r a t i o n s i n c e the end o f 1986 and i s m e e t i n g a l l d e s i g n g o a l s , i n c l u d i n g Zn removal and t h r o u g h p u t . The Zn c o n c e n t r a t i o n i n t h e aqueous stream i s reduced from l e s s than 1 g/1 t o ppm l e v e l s i n l e s s than 20 minutes average r e s i d e n c e t i m e i n the e x t r a c t i o n column (87). C o n c e n t r a t i o n s i n the i n n e r d r o p l e t phase o f the ELM o f up t o 50 g/1 Zn a r e o b t a i n e d . P r o p r i e t a r y design countercurrent e x t r a c t i o n columns (10 m h i g h , 1.5 m d i a m e t e r ) are used. The p l a n t +

6 +

3

3

8

7

2

3

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

LIQUID MEMBRANES: THEORY AND APPLICATIONS

118

throughput i s 75 t o 100 m V h r . processing consideration.

E m u l s i o n s t a b i l i t y i s t h e major

I m m o b i l i z e d L i q u i d Membranes. A p i l o t p l a n t study o f t h e r e c o v e r y of e t h y l e n e and p r o p y l e n e from a p o l y p r o p y l e n e r e a c t o r o f f - g a s stream was presented by Hughes e t a l . ( 2 3 ) . Aqueous s o l u t i o n s o f Ag i o n were i m m o b i l i z e d i n t h e pore s t r u c t u r e o f commercial r e v e r s e osmosis h o l l o w f i b e r modules. The p i l o t p l a n t o p e r a t e d a t f e e d p r e s ­ s u r e s o f 414-827 k P a , f e e d f l o w r a t e s o f 1.42-4.25 m /h a t STP, and sweep f l o w r a t e s o f 3.79 χ 1 0 " - 0.114 m /h hexane. Permeate streams w i t h p r o p y l e n e c o n c e n t r a t i o n s i n e x c e s s o f 98 mole % were observed i n p i l o t p l a n t o p e r a t i o n w i t h modules c o n t a i n i n g 2 2 . 3 t o 37.2 m membrane a r e a . Babcock (88) d i s c u s s e d e f f o r t s t o c o m m e r c i a l i z e an ILM p r o c e s s t o produce o x y g e n - e n r i c h e d a i r . The s p i r a l - w o u n d modules c o n t a i n an ILM c o n s i s t i n g o f a c o b a l t based c a r r i e r m o l e c u l e i n a low v o l a t i l i ­ t y o r g a n i c s o l v e n t i m m o b i l i z e d i n a 4 ym t h i c k m i c r o p o r o u s f i l m . The oxygen c a r r i e r has a 3 t o 4 week l i f e t i m e a t ambient t e m p e r a t u r e . Longer l i f e t i m e s were o b t a i n e d a t subambient t e m p e r a t u r e s . O p t i ­ mized ILM modules produced 80 t o 90 % 0 i n a s i n g l e p a s s . In long term t e s t s , t h e p r o d u c t gas p u r i t y exceeded 70% f o r as l o n g as t h r e e months. A t m o s p h e r i c C 0 was observed t o reduce t h e membrane l i f e ­ time. The membrane has a s e p a r a t i o n f a c t o r o f 25 ( 0 p e r m e a b i l i t y / N p e r m e a b i l i t y ) and a c h i e v e s a f l u x o f 5.34 χ 1 0 ~ g m o l / ( c m - s ) . A p r o d u c t stream o f 80% 0 can be produced from a i r a t a c o s t o f $93.6/1000 kg ($85/ton) 0 . An economic study i n d i c a t e d t h a t a f l u x of 2.4-10" gmol/(cm -s) i s needed i f t h e ILM p r o c e s s can compete f a v o r a b l y w i t h t o n q u a n t i t i e s o f 0 produced by c r y o g e n i c distillation. Babcock (^9) a l s o r e p o r t e d p i l o t p l a n t uranium and chromium r e c o v e r y p r o j e c t s u s i n g ILMs. Membrane modules were c o n s t r u c t e d w i t h h o l l o w f i b e r p o l y s u l f o n e s u p p o r t s c o n t a i n i n g kerosene s o l u t i o n s of c o m m e r c i a l l y a v a i l a b l e h y d r o m e t a l l u r g i c a l c o m p l e x a t i o n agents such as t e r t i a r y amines. O p e r a t i n g c o s t s f o r t h e e x t r a c t i o n s t e p c a l c u l a t e d from uranium r e c o v e r y d a t a were $ 0 . 8 / k g Ur f o r a 3.8 χ 1 0 m V d a y p l a n t which were s u p e r i o r t o c o s t s a s s o c i a t e d w i t h s o l ­ vent e x t r a c t i o n and ion-exchange. +

3

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

2

3

2

2

2

2

8

2

2

2

2

7

2

2

3

Conclusions C u r r e n t l y , t h e o n l y commercial p r o c e s s a p p l i c a t i o n o f l i q u i d mem­ brane t e c h n o l o g y i s waste t r e a t m e n t , where low c o n c e n t r a t i o n s o l u t e s must be removed from l a r g e volumes o f e f f l u e n t s . C o n v e n t i o n a l t e c h ­ n o l o g y s u c h as s o l v e n t e x t r a c t i o n and i o n exchange i s o f t e n m a r g i n ­ a l l y economic a t these c o n d i t i o n s . Due t o t h e presence o f t h e com­ p l e x a t i o n r e a c t i o n and t h e low volume o f l i q u i d membrane r e q u i r e d f o r e i t h e r e m u l s i o n o r i m m o b i l i z e d c o n f i g u r a t i o n s , l i q u i d membrane technology i s i d e a l l y s u i t e d f o r high r e c o v e r i e s of d i l u t e s o l u t e s as demonstrated by t h e c o m m e r c i a l i z a t i o n o f ELM t e c h n o l o g y f o r Zn removal i n A u s t r i a . L i q u i d membranes a r e b e i n g used c o m m e r c i a l l y i n t h e p r o d u c t i o n of i o n s e l e c t i v e e l e c t r o d e s f o r many aqueous c a t i o n s and a n i o n s . R e c e n t l y , Deetz (29) d e s c r i b e d t h e use o f l i q u i d membrane t e c h n o l o g y f o r t h e f a b r i c a t i o n o f gas s e n s o r s s e l e c t i v e f o r o r g a n i c vapors.

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

8.

NOBLE AND WAY

Applications of Liquid Membrane Technology

119

These membranes have a s e l e c t i v i t y o f over 1 0 : 1 f o r acetone over water vapor. D e s p i t e v e r y p r o m i s i n g t e c h n i c a l performance, few p r o c e s s e s have been c o m m e r c i a l i z e d . T h i s f a c t p r o b a b l y stems from a number o f economic f a c t o r s , e s p e c i a l l y t h e depressed s t a t e o f t h e non f e r r o u s m e t a l s i n d u s t r y . S e v e r a l l i q u i d membrane p i l o t s t u d i e s f o r U, C r , and Cu had more f a v o r a b l e economics than s o l v e n t e x t r a c t i o n , b u t very few new p l a n t s w i l l be b u i l t i n poor economic c l i m a t e s . T h i s o b v i a t e s t h e p r e s e n t need f o r new t e c h n o l o g y , r e g a r d l e s s o f i t s t e c h n i c a l or economic s u p e r i o r i t y . The l o n g term s t a b i l i t y o f l i q u i d membranes o f e i t h e r t h e emul­ s i o n o r i m m o b i l i z e d c o n f i g u r a t i o n promises t o be an i m p o r t a n t i s s u e t h a t may l i m i t the c o m m e r c i a l i z a t i o n o f l i q u i d membrane t e c h n o l o g y . B a b c o c k s (89) ILM p i l o t p l a n t f o r uranium r e c o v e r y o p e r a t e d s u c c e s s ­ f u l l y f o r 200-250 days b e f o r e r e q u i r i n g a r e c h a r g e o f s o l v e n t and complexing agent. Such l o n g term s t u d i e s a r e n e c e s s a r y t o e s t a b l i s h i n d u s t r i a l confidence i n the technology. Research i s n e c e s s a r y t o develop new c o m p l e x a t i o n c h e m i s t r y t o i n c r e a s e t h e number o f s e p a r a t i o n s p o s s i b l e w i t h l i q u i d membrane t e c h n o l o g y and t o improve e x i s t i n g p r o c e s s e s . R e l a t e d t h e o r e t i c a l work c o u l d d e f i n e t h e s e t o f p r o p e r t i e s r e q u i r e d t o o p t i m i z e t h e s e p a r a t i o n and p r o v i d e g u i d e l i n e s f o r i m p r o v i n g e x i s t i n g complexa­ t i o n r e a c t i o n s . Improved t h i n f i l m t e c h n o l o g y would d e f i n i t e l y speed i n d u s t r i a l a p p l i c a t i o n o f l i q u i d membrane t e c h n o l o g y , e s p e c i a l ­ l y i n gas s e p a r a t i o n a p p l i c a t i o n s . Improved s u p p o r t s and i m m o b i l i z a ­ t i o n t e c h n i q u e s a r e n e c e s s a r y i n o r d e r t o f a b r i c a t e ILMs and i o n exchange membranes i n t h i c k n e s s e s o f a few ym o r l e s s t o produce economically a t t r a c t i v e f l u x e s .

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

5

1

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8.

9. 10. 11. 12.

13. 14.

Scholander, P.F. Science 1960, 131, 585. Wittenberg, J.B. J. Biol. Chem. 1966, 241, 104. Kreuzer, F. and Hoofd, L. Resp. Phys. 1970, 8, 280-302. Niederhoffer, E.C., Timmons, J.H., and Martell, A.E. Chem. Rev. 1984, 84(2), 137-203. Johnson, B.M., Baker, R.W., Matson, S.L., Smith, K.L., Roman, I.C., Tuttle, M.E., and Lonsdale, H.K., J. Mem. Sci., in press. Koval, C.A. and Reyes, Z., ibidem. Nishide, H., Ohyanagi, M., Okada O., and Tsuchelda, E., Macromolecules 1986, 19, 496-498. Nishide, H., Kuwahara, M., Ohyanagi, M., Funada, Y., Kawakami, H. and Tsuchida, E. Chem. Letters, Chem. Soc. of Japan 1986, 43-46. Sterzel H.J., Sanner, Α., Neumann, P., U.S. Patent No. 4,584, 359, 1986. Enns, T. Science 1967, 155, 44-47. Meldon, J.H., Smith, D.A., and Colton, C.K. Chem. Eng. Sci. 1977, 32, 939. Kimura, S.G., Matson, S.L., and Ward, W.J. III. In Recent Developments in Separation Science; N.N. L i , Ed.; CRC Press, 1979; Vol. 5. Ward, W.J. III and Robb, W.L. Science 1967, 156, 1481-1484. Otto, N.C. and Quinn, J.A. Chem. Eng. Sci. 1971, 26, 949-961.

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

120

LIQUID MEMBRANES: THEORY AND

APPLICATIONS

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

15.

Meldon, J.H., Stroeve, P., and Gregoire, C.K. Chem. Eng. Comm. 1982, 16, 263. 16. LeBlanc, O.H., Ward, W.J., Matson, S.L., and Kimura, S.G., J. Mem. Sci. 1980, 6, 339. 17. Way, J.D., Noble, R.D., Reed, D.L., and Ginley, G.M., Α.I.Ch.E.J. 1987, in press. 18. Steigelman, E.F. and Hughes, R.D. (1973). U.S. Patent 3,758,603. 19. Smith, D.R. and Quinn, J.A. A.I.Ch.E. J. 1980, 26, 112. 20. Koval, C.A, Noble, R.D., Way, J.D., Louie, B., Reyes, Α., Horn, G. and Reed, D. Inorgan. Chem. 1985, 24, 1147-1152. 21. Matson, S.L., Herrick, C.S., and Ward, W.J. III I&EC Proc. Des. Dev. 1977, 16, 370. 22. Way, J.D. and Noble, R.D. ibidem. 23. Hughes, R.D., Mahoney, J.A. and Steigelmann, E.F., Recent Developments in Separation Science, CRC Press, 1986; Vol. IX, pp 173-195. 24. Teremoto, M., Matsuyama, H., Yamashiro, T. and Katayama, Y. J. Chem. Eng. Japan 1986, 19, 419-424. 25. Ward, W.J. III. A.I.Ch.E. J. 1970a, 16, 405-410. 26. Ward, W.J. III. Nature 1970b, 227, 162-163. 27. Bdzil, J., Carlier, C.C., Irisch, H.L., Ward, W.J., and Breiter, M.W., J. Phys. Chem. 1973, 77, 846. 28. Bard A.J. and Faulkner, L.R., Electrochemical Methods 1980, J. Wiley & Sons, Inc. 29. Deetz, D., Proceedings of 4th International Conf. on Indoor Air Quality and Climate, Berlin, FRG, Aug. 17-21, 1987. 30. Kim, K. J. Mem. Sci. 1984, 21, 5-10. 31. Babcock, W.C., Baker, R.W., Kelly, D.J., Kleiber, J.C., and Lonsdale, H.K. (1979b). Coupled Transport Systems for Control of Heavy Metal Pollutants. EPA Report No. R804682-01. 32. Baker, R.W., Tuttle, M.E., Kelly, D.J., and Lonsdale, H.K. J. Mem. Sci. 1977, 2, 213. 33. Babcock, W.C., Baker, R.W., LaChapelle, E.D., and Smith, K.L. J. Mem. Sci. 1980a, 7, 71-87. 34. Babcock, W.C., Baker, R.W., LaChapelle, E.D., and Smith, K.L. J. Mem. Sci. 1980b, 7, 89-100. 35. Danesi, P.R., Chiarizia, R., and Castagnola, A. J. Mem. Sci. 1983, 14: 161-174. 36. Babcock, W.C., Kelly, D.J., LaChapelle, E.D., Smith, K.L., and Baker, R.W. Proceedings of Hydrometallurgy; Society of Chemical Industry, Manchester, England, 1981. 37. Danesi, P.R. and Cianetti, C. J. Mem. Sci. 1984a, 20, 201-214. 38. Danesi, P.R. and Cianetti, C. J. Mem. Sci. 1984b, 20, 215-226. 39. Charewicz, W.A. and Bartsch, R.A., J. Mem. Sci. 1983, 12, 323-333. 40. Kuo, Y. and Gregor, H.P., Sep. Sci. Tech. 1983, 18(15), 421-440. 41. Kiani, A, Bhave, R.R., and Sirkar, K.K., J. Mem. Sci. 1984, 20, 125-145. 42. Babcock, W.C., Brose, D.J., Chambers, A.R., and Friesen, D.T., J. Mem. Sci. 1987, in press. 43. Matson, S.L. (1979) University of Pennsylvania. Ph.D. Thesis. 44. Danesi, P.R., J. Mem. Sci. 1986, 29, 2.

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

8.

NOBLE A N D WAY

45. 46. 47. 48.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

49. 50. 51. 52. 53. 54. 55. 56.

57. 58. 59. 60. 61. 62. 63.

Applications of Liquid Membrane Technology

121

Danesi, P.R., Reichley-Yener, L., Rickert, P.G., J. Mem. Sci. 1987, in press. Izatt, R.M., Dearden, D.V., McBride, Jr., D.M., Oscarson, J.L., Lamb, J.D., and Christensen, J.J., Sep. Sci. Tech. 1983, 18, 1113-1129. Martin, T.P. and Dvaies, G.A., Hydrometallurgy 1977, 2, 315. Kondo, K., Kita, K., Koida, I., Irie, J., and Nakashio, F., J. Chem. Eng. Japan 1979, 12, 203. Cahn, R.P., Frankenfeld, J.W., and Li, N.N. Extraction of Copper with Liquid Membranes; Paper presented at A.I.Ch.E. Mtg., Chicago, IL., Nov. 1980. Volkel, W., Halwachs, W., and Schugerl, K. J. Mem. Sci. 1980, 6, 19-31. Weiss, S. and Grigoriev V. J. Mem. Sci. 1982, 12, 119-129. Boyadzhiev, L., and Bezenshek E. J. Mem. Sci. 1983, 14, 13-18. Hochhauser, A.M. and Cussler, E.L. A.I.Ch.E. Symp. Ser. 1975, 71(152), 136-142. Fuller, E.J. and Li, N.N. J. Mem. Sci. 1984, 18, 251-272. Boch, J. and Valint, P.L. I&EC Fund 1982, 21, 417. Christensen, J.J., Izatt, R.M., and Lamb, J.D. Selective transport of Metal Ions Through Liquid Membranes Containing Macrocyclic Carriers; Papers presented at A.I.Ch.E. Mtg., Chicago, IL., Nov. 1980. Izatt, R.M., Lamb, J.D., Swain, C.S., Christensen, J.J., and Haymore, B.L. J. Amer. Chem. Soc. 1980, 102, 3032. Lamb, J.D., Christensen, J.J., Izatt, S.R. Bedke, Κ., Astin, M.S., and Izatt, R.M. J. Amer. Chem. Soc. 1980a, 102, 3399. Lamb, J.D., Christensen, J.J., Osearson, J.L., Nielsen, B.L., Asay, B.W., and Izatt, R.M. J. Amer. Chem. Soc. 1980b, 6820. Strzelbicki, J. and Bartsch, R.A. J. Mem. Sci. 1982, 10, 35-47. Charewicz, W.A., Heo, G.S., and Bartsch, R.A. Anal. Chem. 1982, 54, 2094-2097. Charewicz, W.A. and Bartsch, R.A. Anal. Chem. 1982, 54, 2300-2302. Charewicz, W.A. and Bartsch, R.A. J. Mem. Sci. 1983, 12, 323-333.

64. 65. 66. 67. 68. 69. 70. 71.

Barsch, R.A., Charewicz, W.A., and Kang S.I. J. Mem. Sci. 1984, 17, 97-107. Izatt, R.M., Clark, G.A., Bradshaw, J.S., Lamb, J.D., and Christensen, J.J. Sep. Pur. Meth. 1986, 15(1), 21-72. Cussler, E.L. Evans, D.F., and Matesich, M.A. Science 1971, 172, 377-379. Reusch, C.F. and Cussler, E.L. A.I.Ch.E. J. 1973, 19, 736-741. Caracciolo, F., Cussler, E.L., and Evans, D.F., A.I.Ch.E. J. 1975, 21, 160-167. Lee, K.H., Evans, D.F., and Cussier, E.L. A.I.Ch.E. J. 1978, 24, 860. Gokalp, M., Hodgson, K.T., and Cussler, E.L. J. Phys. Chem. 1985, 89, 1825-1830. Makryaleas, K., Scheper, T., Schugerl, Κ., and Kula, M.R. Chem. Ing. Tech. 1985, 57, 362-363.

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

LIQUID MEMBRANES: THEORY AND APPLICATIONS

122

72. 73. 74. 75. 76. Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 30, 2013 | http://pubs.acs.org Publication Date: July 24, 1987 | doi: 10.1021/bk-1987-0347.ch008

77. 78. 79. 80. 81. 82. 83.

84. 85. 86.

87. 88.

89.

Frankenfeld, J.W., Asher, W.J., and L i , N.N. Recent Developments in Separation Science; N.N. Li, Ed.; Chemical Rubber Co; 1978; Vol. 4, p 39. Li, N.N. I&EC Proc. Des. Dev. 1971, 10, 215-221. Cahn, R.P. and Li, N.N. Membrane Separation Processes; P. Meares, Ed., Elsevier Pub. Co., 1976. Halwachs, W., Flaschel, E. and Schugerl, K. J. Mem. Sci. 1980, 6, 33-44. Terry, R.E., Li, N.N., and Ho, W.S. J. Mem. Sci. 1982, 10, 305-323. Teremoto, M., Takihana, H., Shibutani, M., Yussa, T., and Hara, N. Sep. Sci. Tech. 1983a, 18, 397-420. Boyadzhiev, L. Bezenshek E. J. Mem. Sci. 1983, 14, 13-18. Volkel, W., Poppe, W., halwachs, W., and Schugerl, K. J. Mem. Sci. 1982, 11, 333-347. Kitigawa, T., Nishikawa, J., Frankenfeld, J., and L i , N.N. Envir. Sci. Tech. 1977,11,602. Baird, R.S., Bunge, A.L., and Noble, R.D., A.I.Ch.E. J. 1987, 33(1), 43-53. Cui, F., Tang, Β., Xu, M., Qi, Q., and Zhu, L. J. Mem. Sci. 1985, 23, 137-154. Bock, J., Klein, R.R., Valint, P.L., and Ho, W.S. Liquid Membrane Extraction of Uranium from Wet Process Phosphoric Acid-Field Process Demonstration; Paper presented at A.I.Ch.E. Met., New Orleans, La. Nov. 1981. Hayworth, H.C., Ho, W.S., Burns, W.A., and Li, N.N. Sep. Sci. Tech. 1983, 18, 493-520. Frankenfeld, J.W., Cahn, R.P., and L i , N.N. Sep. Sci. Tech. 1981, 16, 385-402. Marr, R. Pilot Plant Studies of Liquid Membrane Separations; Paper presented at the Engineering Foundation Conference on New Directions in Separation Technology, Davos, Switzerland, Oct. 1984. Draxler, J., F i i r s t , W., and Marr, R., Proceedings of the International Solvent Extraction Conference; 1986; Vol. 1, pp 553-560. Babcock, W.C. Liquid Membranes for the Production of Oxygen­ -Enriched Air; Paper presented at the U.S. Dept. of Energy Membrane Technology Res. & Dev. Workshop, Clemson Univ., Clemson, S.C., Oct. 1984. Babcock, W.C., LaChapelle, E.D., and Kelly, D.J. Coupled Transport Membranes for Heavy Metal Recovery; Paper presented at the A.I.Ch.E. Mtg., Denver, Co. Aug. 1983, paper no. 60e.

RECEIVED May 11, 1987

In Liquid Membranes; Noble, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.