Chemical microscopy - ACS Publications - American Chemical Society

(41M) The fluorimetric determination of chlordiazepoxide in dosage forms and biological fluids with fluorescamine. Stewart. J. T.; Williamson, J. L.; ...
2 downloads 0 Views 2MB Size
ANALYTICAL CHEMISTRY, VOL. 50, NO. (36M) Hydrogen bonding effects on the fluorescence of methyl salicylate. Sandros, K.: Acta Chem. Scand.. 1976, 30A(9), 761-3. (37M) Colbborative study of a spectrofluorometric assay for rauwolfia serpentina tablets and powdered roots, using a vanadium pentoxide phosphoric acid determinative step. Smith. W. M.; J . Assoc. Off. Anal. Chem., 1977, 60(5), 1018-2 1. (38M) Collaborative study of a spectrofluorometric assay for rauwolfa serpentina tablets and powdered r w t . Smith, W. M.; Cbrk, C. C.; J. Assoc. Anal. Chem., 1976, 59(4), 811-16. (39M) Spectrofluorometric determination of hydroflumethiazide in plasma and urine. Smith, R B.: Smith, R. V.: Yakatan, G. J : J . Pharm Sci., 1976, 65(8), 1208-1 1. (40M) Soivent effect on cocaine and methyl benzoate phosphorescence. Stenberg. V. 1.; Singh, S . P.; Narain. N. K.; Spectrosc. Lett., 1977, 10(8), 639-44. (41M) The fluorimetric determination of chlordiazepoxide in dosage forms and biological fluids with fiuorescamine Stewart. J. T ; Williamson, J. L.; Anal. Chem . 1976, 48(8), 1182-5 (42M) Steric inhibtion of conjugation in lowest excited singlet state of g-anthramide by hydrogen bond donor solvents; role of solvent in chemical structure. Sturgeon, R. J.; Schulman, S. G.; J . Pharm. Sci., 1976, 65(12), 1833-5. (43M) Automated fluorometric analysis of epinephrine in lidocaine hydrochloride injection. Tarlin H.: Hudson, M.; Sahn. M.: J , Pharm. Sci., 1976, 65(10), 1463-5. (44M) Spectrophotofluorometric determination of alkaloids containing a tertiary amine group. Thomas, A. D.; Talanta, 1975, 2 2 ( 1 0 - l l ) , 865-9. (45M) Heavy-atom effect on room temperature phosphorimetry. Tuan Vo Dinh; Yen, E. L.; Winefordner. J . D.; Anal. Chem., 1976, 48(8). 1186-8. (46MI Microchemical investigation of medicinal plants. XV. Quantitation of total alkaloid content in the leaves of Ipomoea violacea via spectrophotofluorimetry Weber, J. M.; Ma, T. S.; Mikrochim Acta, 1976, 1(6), 581-8. (47M) Rapid fluorimetric determination of phenothiazines employing in-situ photochemical oxidation. White, V. R.; Frings, C. S.; Vilhfranca, J. E ; Fltzgerald, J. M.; Anal Chem., 1976, 48(9), 1314-16.

N. Purines, Pyrimidines, and Nucleic Acids (1N) Species responsible for the fluorescence of 3, N4-ethenocytidine. Barrio, J. R.; Sattsangi, P. D.; Gruber, B. A.; Dammann. L. G.; Leonard. N. J.; J . Am. Chem. SOC.,1976, 98(23), 7408-13. (2N) Cadmium, copper, mercury, and zinc ions as inorganic probes in phosphorimetric analysis of nucleosides Boutillier, G. D.; Andrew, J. R.: O’Donnell, C. M ; Solie, T. N.; A m i . Chem., 1975, 47(14), 2454-7. (3N) Rapid filter method for the microfluorometric analysis of DNA Cattolico, R A.; Gibbs, S . P ; Anal. Biochem . 1975, 69(2), 572-82 (4N) Synthesis and spectroscopic characterization of nucleosides and nucleotides which carry a fluorescent chromophor. Faerber, P.; Vizethum, W.; J . Carbohydr., Nucleosides, Nucleotides, 1976. 3(1-2), 15-24. (5NI Interaction of ethidium bromide with ribosomes. Absorption, fluorescence, circuhr dichroism, and sedimentation studies. Gatti, C.; Houssier, C.; Fredericq, E.; B i o c h m Biophys. Acta, 1977, 476(1), 65-75. (6N) Flow microfluorometric anatysis of sperm DNA content. Effect of cell shape on the fluorescence distribution. Gledhill, B. L.; Lake, S ; Steinmetz, L. L.: Gray. J. W.; Crawford, J, R.; Dean, P. N., Van Dilla, M. A ; J , Cell. Physiol , 1976, 87(3), 367-75. (7N) Dynamic and static quenching of 1,N6-ethenoadenine fluorescence in nicotinamide 1,Ne-ethenoadenine dinucleotide and in 1, Ne-etheno-9-adenine. Gruber, B A . : Leonard, N. J.; Proc. Nati. Acad. Sci. U.S.A., 1975. 72(10), 3966-9 (8N) In-vivo measurement of pyi idine nucleotide fluorescence from cat brain cortex. Harbig, K.: Chance, B.; Kovach, A. G. B.; Reivich, M.; J. Appl. phvsiol, 1976, 41(4), 480-88. (9N) The use of anti-tumor antibiotics for simple quantitative assays for DNA. Hill, B. T.: Anal. Biochem., 1976. 70(2), 635-8. (1ON) Fluorescence properties of 2’(or 3’)-0-(2,4.6-trinitrophenyl)adenosine b’tiphosphate and its use in h e study of binding to heavy meromyosin ATPase. Hiratsuka, T., Biochim. Biophys. Acta, 1976, 453(1), 293-7. (11N) New principle for actrvty measurement of ADP or ATP dependent enzymes. Fluorescence quenching of +ADP and t-ATP by divalent metal ions. Hoehne, W. E.; Heitmann, P.: Anal Blochem , 1975, 69(2), 607-17. (12N) An investigation of t+e electronic and steric environments of tyrosil resldues a carotovora L-asparaginase through fluorescence quenching by caesium, iodide. and phosphate ions. Homer, R. 8.; Allsopp, S. R.; Biochim. Biophys. Acta, 1976, 434(2), 297-310. (13N) Simple and rapid fluorometric method for DNA microassay. Kapuscinski, J.; Skoczylas, B.; Anal. Biochem.. 1977, 83(1), 252-7.

5, APRIL 1978

205 R

(14N) Improvements in the ethidium bromide method for direct fluorometric estimation of DNA and RNA in cell and tissue homogenates. Karsten, U.; Wollenberger, A.; Anal. Blochem., 1977, 77(2), 464-70. (15N) Assay of picomole amounts of ATP, ADP, and AMP using the luciferase enzyme system. Kimmich, G. A.: Randles, J.: Brand, J. S.; Anal. Biochem.. 1975, 69(1), 187-206. 16N) Detection of adenine residue free from base-pairing by means of fluorescence measurement of t-adenosine. Kimura, K.; Nakanishi, M.; Yamamoto, T.; Tuboi, M ; Nucleic Acids Res., Spec. Pub/.. 1976, 2(Symp. Nucleic Acids Chem., 4th, 1976), 125-8. 17N) New fluorescent cytidine 5‘-phosphate derivatives. Kochetkov, N. K.; Shibaev, V. N.; Kost, A. A,; Razzhivin, A. P., Borisov, A,; Nucleic Acids Res., 1976, 3(5), 1341-9. 18N) The use of phosphorescence in characterizing components of the cell nucleus. Koppa, V.; Hidalgo, H. A.; Bryan, S . E.; Anal. Lett., 1976, 9(8), 727-39. 19N) Pulse fluorometric analysis of DNA, protein and chlorophyll in cultivated cells. A contribution to biologically active substance testing. Krieg, K.; Renner, H.; Rathsack, R.; Dressel, H.; Biol. Zentralbl., 1977, 96(1), 51-9 (Ger). (20N) Flow dichroism, flow polarized fluorescence and viscosity of the DNA:acridine complexes. Kubota, Y.; Hashimoto, K.; Fujita, K.; Wakita, M.; Miyanohana, E.; Fujishaki, Y.; Blochem. Biophys. Acta, 1977, 478(1), 23-32. (21N) Studies on the interactions between DNA and flavins. Kuriatomi, K.; Kobayashi, Y.; Biochem. Biophys. Acta, 1977, 476(3), 207-17. (22N) Reverse banding on chromosomes produced by a guanosine-cytosine specific DNA binding antibiotic: olevomycin. Jorgensen, K. F.; Lin, C. C.; van de Sande, J. H.; Science, 1977, 195, 400-402. (23N) Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. Latt, S. A,; Stetten, G.; J . Histochem. Cytochem., 1976, 24(1), 24-33. (24N) Fluorometric determination of DNA in Chlamydomonas. Lien, T.; Knutsen, G.; Anal. Biochem., 1976, 74(2), 560-66. (25N) Studies related to antitumor antibiotics. Part V. Reactions of mitomycin C with DNA examined by ethidium fluorescence assay. Lown, W. J.; Begleiter. A.; Johnson, D.; Morgan, R. A.; Can. J . Blochem., 1976, 54(2), 110-19. (26N) Continuous monitoring of ATP-converting reactions by purified firefly luciferase. Lundin, A,; Rickardsson, A,; Thore, A,; Anal. Biochem., 1976, 76(2), 61 1-20. (27N) A simple fluorimetric assay for guanosine nucleotides. Malcolm, A. D. B.; Greene, J.; Anal. Blochem., 1977, 77(2), 532-5. (28N) A modified fluorometric assay for adenine in plasma and urine. Moore, G. L.; Ledford, M. E.; Biochem. Med., 1975, 14(2), 147-51. (29N) Photochemistry of guanines at low temperature. Morgan, J. P.; Callis, P. R.; Photochem. Photobiol., 1976, 23(2), 131-4. (30N) Rapid fluorimetric determination of 5-fluorocytosine in serum. Richardson, R. A,; Ciin. Chim. Acta, 1975, 63(2), 109-14. (31N) Binding of n-substituted anthracenecarboxamides to doublestranded DNA: an electronic spectral study. Schulman, S . G.; Paul, W. L.; Sturgeon; J. pharm. Sci., 1977, 66(10), 1473-7. (32N) The binding of fluorochromes and proteins to cellulose-immobilizednucleic acids. Sehnder, R. K.: Ckpelle. A. D. L.; Acta Chem. Scand., 1976, 308(10), 925-32. (33N) A d i f i e d fluorometric mehod for the determination of microgram quantities of DNA from cell or tissue cultures. Setaro, F.; Morley, C. G. D.; Anal. Biochem., 1976, 71(1), 313-17. (34N) A reliable method for the estimation of DNA in higher plant tissues. Singh, J.; Siminovitch, 0.; Anal. Biochem., 1976, 71(1), 308-12. (35N) Stability of reagents for use in an automated ATP bioluminescence assay system. Spiegel, S. J.; Tifft, E. C., Jr.; Anal. Biochem.. 1977, 78(2), 586-8. (36N) Microfluorometric analysis of cellular DNA foilowing incorporation of bromodeoxyuridine. Swartzendruber, D. E.; J . Ceil. Physiol., 1977, 90(3), 4 4 5- 53. (37N) Interaction of a fluorescent reagent, fluorescein mercuric acetate, with nucleic acids. Takeuchi, S.; Maeda, A.; Blochim. Biophys. Acta, 1976, 454(2), 309-18. (38N) Spectrofluorimetric determination of thiopurines. 1. Thioguanine. Thomas, A. D.; Talanta, 1976, 23(5), 383-6. (39N) Modified procedures for the separation and fluorometric determination of adenine nucleotides. TriDlett, R. B.: Smith, L. D.; Anal. Biochem., 1977, 80(2), 490-95. (40N) Fluorescent guanosine-nucleotide analogues suitable for photoaffinity-labeling experiments. Wiegand, G.; Kaleja, R.; f u r . J . Biochem., 1976, 85121. 473-9. (41N) ‘Fluorimetric determination of adenine and adenosine and its nucleotides by high-performance liquid chromatography. Yoshioka, M.; Tamura, Z.;J . Chromatogr., 1976, 123(1), 220-24.

Chemical Microscopy George G. Cocks Cornell University. Ithaca. New York 14853

T h e prei.ious review in this series 1.50) covered the period from January 1974 through December 1975. This review covers t h r period from .lanuar>.1976 through December 1977.

There were, as usual, a number of interesting publications omitted from the previous review and some of those are reported in this review.

0003-2700/78/0350-205RS01.00/0 ‘C 1978 American Chemical Society

206R

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

T h e articles and books reviewed here are those which the author considers to be of interest to anyone who uses the light microscope to solve chemical problems. No attempt has been made to report publications in the fields of histochemistry, cytochemistry, petrography, metallography, or ceramography unless they appeared to be of direct interest to chemists or chemical engineers. The great diversity and number of‘ publications of interest to chemical microscopists makes it nearly impossible to find and review all of them. Therefore, the author would appreciate comments or suggestions, part>icularlywith regard t o the omission of important published articles. T h e author appreciates the kindness of those who pointed out omissions from the 1974-75 review (501, and those who sent reprints of papers for inclusion in this review. In preparing this review many references to the literature were first found in bibliographic sections of Microscopica Acta and Mikroskopie. The Microscope had one review in Vol. 24, No. 3: and each issue contains book reviews. Mihroskopie has discontinued their literature survey.

BOOKS OF GENERAL INTEREST De Martin has written, in German, a handbook of microscopical literature covering the period from 1590 to 1970 (69). A book on “The Billings Microscope Collection of the Armed Forces Institute of Pathology 1974” has been published (8). This book continues the description of microscopes in t h e collection begun in an earlier book with the same title. “A Short Hisrory of Early American Microscopes” (253) has been published as a part of the “The Microscope Series” by Microscope Publications Ltd. Another book in this series entitled “Teaching Microscopy” (67) has also appeared. Wilson (365) has written a small book on the science and art of microscopy. Bradbury (28)describes various methods of light microscopy which are of particular use to biologists. Still another short book, part of the Wykeham Science Series (310),describes electron ion and x-ray microscopy as well as light microscopy and tells how these microscopes are used in biology, chemistry, mineralogy, geology, metallurgy, and materials science. Three volumes contain collections of articles on microscopy. They are Vol. 6 of “Advances in Optical and Electron Microscopy” (13),“Multidisciplinary Microscopy“ (362),and “Festshrift Josef Kisser” (2). The first of these (13)contains chapters on “Intravital hIicroscopy“, “Phase Contrast Systems“, and “An Integrating Microdensitometer” as well as chapters on electron microscopy. Reference (362)reports on sessions which were held to discuss optical microscopy, electron and ion microscopes, and acoustic and infrared microscopes. Three books on general optics (54, 215, 317) rnay be of general interest to microscopists. Another book on “Optical Surfaces” (168)contains a considerable amount of information on microscope objectives which may be especially useful for lens designers. Grehn has edited three more volumes in Freund’s “Handbuch der Mikroskopie in der Technik” 1121, 122, 1 2 2 ~ ) . Band VI1 is entitled “Mikroskopie in der chemischen Technik” (121). Band VI11 is “Methoden der Lebensmittel-Mikroskopie und Lebensmuttel-Uberwachung“ (122),and another Part of Band VI11 is entitled “Mikroskopie d e r Nahrungs und F u t t e r m i t t e l , der Drogen und Genuszmittel” (122a). New books on crystallography deal with the growth of crystals (2931, crystal technology (251, crystal growth and characterization ( 3 3 9 ,three dimensional nets and polyhedra (359),crystallographic groups of four dimensional space (31), and point defects in crystals (351). Books on optical mineralogy include Shelley‘s “Manual of Optical Mineralogy” 1294), the 19th edition of “Manual of , “Stach‘s Textbook of Mineralogy” (after J . Coal Petrology” 2nd nd “Physic.(>-Chemical Methods of h!Iineral Microscopy in materials science and metallography is discussed in three books. Mulvey and LYebster (231) cover optical microscopy and interferometry as well as electron, x-ray, and neutron beam techniques. McCall and French (205) are concerned wkh photographic optics, light and holographic microscopy, remote metallography, and microhardness testing. Rostoker and Dvorak (277)have written a 2nd edition of their book “Interpretation of Sqetallographic Structures“.

Rochow and Rochow (273)have published a book entitled “Resinography-An Introduction to the Definition, Identification and Recognition of Resins, Polymers, Plastics and Fibres“. Rochow and Rochow have also written a new book entitled “Introduction to Microscopy by means of Light, Electrons, X-Rays or Ultrasonics”, which will be published soon. The proceedings of a meeting on “Biological Identification with Computers”, held a t King’s College, Cambridge, England, in Sept. 1973, have been published (256). A book on “Digital Processing of Biomedical Images” has also appeared (247). Some information on the new fields of acoustical microscopy and holography is contained in a new book entitled “Acoustical Holography“ (26).

ARTICLES OF GENERAL INTEREST Articles on the history of microscopy include one by Otto on Goethe’s four microscopes in Weimar (250),one by Moseley on a Dancer microscope (227), and one about “Andrew Pritchard, Optician and Microscope Maker“ by Nuttall (242). McCrone and Padgett have examined ruled gratings made by Fasoldt (207) and Dell57 (68) has reported on “Microscopes on Postage Stamps”. Keller and McCrone discuss standardization in the design of microscopes (171) and Gumpertz is concerned about “Microscope Terminology, Conventional and Unconventional” (225). Dubochet describes a simple method of measuring resolution on micrographs (77). Frank presents a practical resolution criterion in optics and electron microscopy (92). Gabor has written two articles on the transmission of information by coherent light (94, 95). Hutzler has written a very interesting article on spatial frequency filtering and its application to microscopy (153). Hartley discusses the Hoffman modulation contrast systems of microscopy (133). Petzow has published a review on optical microscopy in metallography (262). Lasse writes on the development of textile microscopy (195). OPTICS See Books of General Interest (54, 215, 317, 168); and Articles of General Interest (77, 92, 94, 95, 133, 153). In a series of three articles Huiser and Ferweda and van Toorn and Ferweda (151,341,342)have continued a discussion of the problem of phase retrieval in light and electron microscopy. An earlier article in the series was reported in the last review (50). Singh (300) has written on image formation with coherent light and Yamamoto et al. discuss the influence of light coherence a t the exit pupil of the condenser on image formation (369). The same authors (368) discuss the performance of an apodized aperture in a defocused optical system under partially coherent light. The edge response due to apodized apertures under partially coherent illumination (21) and the influence of an apodized condenser in a microscope on images of extended objects (126)have also been considered. Gupta (127) discussed the imagery of extended objects by an annular aperture under partially coherent illumination. De Santis e t al. (70) have written on modulation contrast and coherence theory. Singh and Singh (298, 299) have published on imaging of incoherent disk objects by a polarizing microscope and on incoherent bar images formed by a polarizing microscope. Chopra et al. 145) discuss images of truncated sine and square wave objects formed by a polarizing microscope. Carter (39) measures the second-order coherence in a light beam using a microscope and grating. Schumacher (287) discusses radiance and radiant energy distribution in light and electron optics. Hartley (132) has measured the location of the primary image plane for a number of eyepieces. Jarvis (158)gives criteria for optimizing focus in computer image processing. Communay (52) gives a method for measuring the coefficient of spherical aberration in focusing systems. A microscope has been adapted for the generation of various contrast types by de Lang and Dekkers (63). They discuss the theoretical and experimental aspects of their instrument. In a series of four articles, Nayyar and Verma discuss the resolution of microscopes and the effect of a semitransparent r-phase annular aperture on resolution (233-236). Super-

ANALYTICAL CHEMISTRY, VOL. 50, NO.

George G. Cocks has been associate professor of chemical microscopy in the School of Chemical Engineering at Cwnell Universty since 1964 He has been interested in light and electron microscopy and in optics He graduated from Iowa State University in 1941, having received a B S degree in chemical technology After working as an analytical chemist for the Allison Division of General Motors for a year he joined the U S Naval Reserve and spent the war years as an Engineering Officer I n 1949 he received a W.D. in chemical microscopy from Cornell University He was employed in the Physics of Solids Divison at Battelb Memwlal InstmRe from 1949 until 1964 He is a fellow of the AAAS and the Roval MlcroscoDical Societv and a member of the ACS, the Optical Society of America, and the New York Microscopical Society He is a member of the Electron Microscopy Society of America

resolution is the subject of two articles; one by Wadaka and Sat0 (346) on superresolution in incoherent imaging and one by Jain (156) entitled “Superresolution Imaging: Use of Wavelength and Angular Diversity Techniques”. Sheppard (295) discusses the use of lenses with annular apertures in scanning light microscopy and Sheppard and Choudhury (296) discuss image formation in scanning microscopes. Ade ( 3 ) discusses in German t h e nonlinearity problem in bright and dark field imaging. Hanssen (131) presents some light optical model experiments to elucidate the interpretation of dark field images in electron microscopy. Nyyssonen (243) discusses line width measurement using a light microscope and t h e effect of operating conditions on the image profile. Menzel et al. (214)consider the examination of microstructures on smooth but curved surfaces. Ravey (268) discusses t h e optical anisotropy of absorbing particles. In particular, he reports on light scattering depolarization, electric and flow birefringence, and dichroism of suspensions of carbon blacks. Lonskii (201)reports on the reflection and refraction of light a t the boundary between two biaxial crystals.

INSTRUMENTS Microscopes. See under Optics (63, 133, 295, 296). Laser doppler microscopes are t h e subject of papers by Mashina et al. (222) and Koyama et al. (187). T h e former authors describe a microscope while t h e latter use the microscope to study microcirculation in the web of a frog. Hadni (128)uses a laser scanning microscope for pyroelectric display in real time. Zemskov et al. (370) have investigated the principal characteristics of the laser projection microscope. Ovcharenko et al. (251) describe a n infrared scanning microscope. Khrust et al. (173)use a double aperture scanning microscope for the automatic analysis of stained autoradiographs. Eccles e t al. (80) describe a programmable flying spot microscope and picture processor which is controlled by a PDP-8E computer. They discuss the design, construction, and use of the microscope. In another article (81), these authors analyze the spatial and gray-level resolution of t h e flving spot microscope. Raman microscopes are described by Dhamelincourt and Bisson (71) and by Delhaye and Dhamelincourt (64). Sawamura et al. (283) report on the design and construction of an incident light microspectrofluorimeter. Bourne and Enoch (27) discuss “some optical principles of the clinical specular microscope”. Ginzburg et al. (101) describe a holographic microscope. Schleuter and Gumpertz (284) discuss “The Stereomicroscope-Instrumentation and Techniques”. The use of microscopes in metrology is the subject of three articles. One by Jones (165)discusses the optical micrometer, one by Ciddor ( 4 7 ) reviews recent developments in photoelectric setting microscopes, and another by Ciddor (46) co.mpares methods of linearizing the output of a photoelectric microscope. Huck e t al. (149)report a “Quasi-Microscope Concept for Planetary Missions”. They describe a simple modification of t h e camera used in Viking lander to give a resolution of appro?: 0.02 mm.

5, APRIL 1978

207R

Objectives and Oculars. See under Optics (132);and under Books (168). White (360) describes a bifocus element for microscope objectives which can focus simultaneously a t two levels within the specimen. Courtney-Pratt (53) uses a specially designed nonachromatic microscope objective to examine tracks in nuclear emulsions. Phipps et al. (263)describe reflective optics systems for uniform spherical illumination. Sorgenfrey (309) tells (in German) how to build your own amplitude contrast apparatus. Illuminators. See under Objectives and Oculars (263). Martin (209)discusses some aspects of vertical illumination. H e also gives some practical suggestions for its use. Fursey (93)makes use of a “flexible light source” for examining water trees in polyethylene. Seifert (289)tells (in German) how to build a microflash apparatus for Kohler illumination. Stages. A universal hot stage system for use with a polarizing microscope is described by Gogolewski (103). Tynan and von Gutfield (334)report on a microscope hot stage for use between 300 and 500 K. McGhie (208)describes a ”sample holder for hot stage microscopy”. Feldmann and Velicescu (90)discuss temperature regulation of the Leitz Microscope Heating Stage 1750. Hartshorne (134) gives further information on his hot wire stage. H e discusses temperature gradients and the determination of transition temperatures. Lovinger et al. (202)report on an apparatus for the in-situ microscopy of zone solidifying polymers. Ziegler and Schuster (371)have carried out research on colored glazes with a hot stage using oblique light illumination. Wong et al. (367)have investigated t h e detachment of films of vapor deposited arsenosilicate glasses from silicon using hot stage microscopy. Hildebrandt and Cocks (140) report on a cold stage for t h e direct observation of vacuum etching and freeze-drying. Eder (82) reports on a chamber for microscopical examination of living cells and other particles. Lock (199)describes a staining jig for use under the microscope. Miscellaneous Instruments. Hougardy ( 1 4 5 ) discusses recent progress in automatic image analysis instrumentation. Equipment for focusing computer controlled microscopes is the subject of three articles (55, 211, 212). Delingat (6.5) reports on contactless optical speed and distance measurement using grating sensors. Smolle (305)tells (in German) how to build your own microtome. Miller (221)describes instruments for microscopical observation of the biophysical effects of ultrasound. Dodd (72)has designed a holographic attachment for the light microscope. Simple modifications which increase the intensity of a xenon light source and allow t h e use of mercury light are proposed by Benkiki and Penchina (18). Martin et al. (210) describe a tilt calibration for stereomicroscopy. Chang (42) tells how a n ordinary slide projector can be used to project stereoscopic images. MICROSCOPICAL METHODS Polarized Light Microscopy. See Books (152.294,311); Optics (45, 298, 299); and Instruments Stages (103). Methods for measuring birefringence are discussed by Taylor and Zeh (322). This article also has a good bibliography. R a t h and Pohl (267) write (in German) about polarization figures. Robinson (272) also writes about polarization colors. Kothiyal (186) discusses the analysis of polarized light using imperfect optical components. Salmon and Ellis (280)have designed and built a simple compensator transducer which makes it possible to measure birefringence easily, accurately and rapidly. Bruck et al. (32) report on t h e use of a fluorescence polarizing microscope t o screen automatically the membrane fluidity of individual cells. Barsky e t al. (14) discuss t,he registration of azimuth characteristics of the polarized fluorescence of microstructures using the X/2 plate. A method of measuring the anisotropy of the pyro-carbon coating layers on nuclear fuel particles is described by Koizlik and G r u ebmeier (183). Kohlbeck and Bolleter (181) report on the polarization colors of nitrocellulose. Brizitsky et al. (30)h a w investigated the normal and shear stresses in the flow of polymers using polarized light. Goke has written two articles (in German) on polarization microscopy in biology (113,124). Thylstrup e t al. (330) have used the polarizing microscope to study the enamel StrUCtiJrf of teeth. Taylor has produced three articles describing studies of amoeboid movement using polarizing microscopy (318.319>

208R

A N A L Y T I C A L CHEMISTRY, VOL. 50, NO 5, APRIL 1978

321). H e has also investigated t h e polarization optical properties of striated muscle (320). Achgtz (1) has also used the polarizing microscope to study flight muscle and Ortmann (249)has used the same technique to determine quantitatively the adjustment of the tangential fibers in articular cartilage. Curtis and Tyson (60)have used polarization microscop5 as a quantitative method for analysis of human hair. Prud’homme and Noah (265) compare x-ray diffraction and polarization microscopical techniques for determining the fibril angle distribution in wood fibers. Butler (36) discusses (in German) the role of polarization microscopy in the preservation of works of art. Saunders (282)uses a polariscope to determine the stresses in optical fibers and Kubo and Nagata (190) consider polarization holography as a means of investigating photoelasticity. Microphotometry and Microspectrophotometry. See Books (13);Instruments, Microscopes (64, 71, 283);and Instruments Miscellaneous (55). A considerable number of microphotometer designs have been reported. Among these are a quantitative microphotometer system (61),a fiber-optic microdensitometer (194)) a microphotometer for ore microscopy (316), two microphotometers using lasers as light sources (143, 191), a fast scanning microspectrophotometer employing an electrodynamically moved condenser (17 ) , and a microspectrophotometer with spatial, spectral, and polarization modulation ( 4 ) . Groszkopf (123)describes a method of microphotometry using television image analyzing systems. Muller (229) describes a n image analyzing system, (Leitz T.A.S.) assembled from densitometer building blocks. Welber (358) reports on a microspectroscopic system for use with a diamond anvil high pressure cell. Kohen (180)discusses new methodological criteria in rapid multichannel microspectrofluorometry. Jotz et al. (167) describe a multichannel microspectrofluorometer. Pailthorpe (254) has reported on the construction of an electronically compensated spectrofluorophosphorimeter. Some requirements on microdensitometers for digital manipulation of photographic images are set forth by Carter (38). Darwell (62) discusses the practical aspects of a quantitative microphotometer system. He also discusses the operation and use of the equipment to study dental amalgams as they corrode in artificial saliva. Vialli and Zanotti (345)report (in Italian) an improvement in the objective photometry of micrographs equipped with a photometric density scale. Dormer and Thiel (75)describe a method of quantitative autoradiography using an incident light microphotometer. Grys (124) reports on the spectrophotometric microdetermination of copper in biological samples. Kuhnle et al. (192) have used a microdensitometer to examine dye concentration profiles in polymers. Klig et al. (174) use microspectrofluorimetry in the study of biogenic amines. They describe a n on-line digital system of correcting fluorescence excitation spectra for the response of the exciting light system. Thiessen and Thiessen (329) have written a book on microspectrophotometric cell analysis. Ultraviolet and Infrared Microscopy. See Books (362). Casida (40)reports on the infrared color photomicrography of soil microorganisms. Passner (257)describes a liquid filter for the ultraviolet. Interference Microscopy. See Books (321). Goke (104,105)has written two articles on the polarization interference microscope and its use. Galbraith and David (99) describe a computer program which simulates differential interference contrast microscopy. This program is a valuable teaching aid. Lavan e t al. (196) have devised a heterodyne interferometer for use in determining relative optical phase changes. Khashan (172) reports on t h e concept of phase multiplication; a new sensitive method for interference microscopy. Dodd (73)demonstrates that a Schlieren microscope can be used, under certain conditions, as an interferometer. The Interphako interference microscope has been used by Ohtsuka and Shimizu (244) to determine t h e radial distribution of refractive index in light focusing rods. Chao ( 4 1 ) has written a n article on the application of quantitative interference microscopy to mineralogy and petrology. Soltzberp et al. (308)have used a Lebedeff type interference microscope to study solid-solid phase transformations. Beyer (20)has

investigated the refractive index and particle size of small grain fractions using interference microscopy. Weidmann and Doll (356) use interference methods to study crazing in poly(methylmethacrylate). Raith (266)describes a technique for measuring step height using a two-beam interferometer with a light source of adjustable wave length. Pabst (252)measures the thickness of thin sections using transmitted light interference microscopy. Smutzer and Berlin (306) report on t h e use of Nomarski interference contrast microscopy as an alternative to the staining of Epon sections following autoradiography. Hannes (129)uses interference microscopy to determine binder mass in nonwoven fabrics. Howarth et al. (146)use the technique to study adhesive distribution in pigment coatings on paper. Izzard and Lochner (155) use an interference reflection technique to study cell to substrate contacts in living fibroblasts. Schlieren Microscopy. See Interference Microscopy (73). Two new Schlieren techniques have been reported; a color Schleiren system using a wedge-type interference filter (216) and a quantitative Schlieren technique (255). Holographic Microscopy. See Books (26, 265); Instruments, Microscopes (101); Instruments Miscellaneous (72); and Polarized Light Microscopy (190). Tyler and Thompson (333)have reassessed the idea of using Fraunhofer holography for particle size analysis. Budhiraja (35) has discussed the improvement of image quality in holographic microscopy. Phase Microscopy. See Books (13). Ellis and Hunn (88) describe high resolution phase microscopy of unmounted specimens. Stewart (313) discusses differential phase contrast with a n extended illumination source. Goke (107) has written (in German) a n article on phase- and amplitude contrast methods. Dispersion Staining. Goldberg (115) describes a fiber optical illuminator for dispersion staining. Fluorescence Microscopy. See Instruments, Microscopes (283);and Microphotometry and Microspectrophotometry (167, 174, 180, 254). Goke has written (in German) a series of articles on fluorescence microscopy (109, 110, 112), introducing the technique, discussing the practical aspects, and describing narrow band fluorescence. Becker (16)describes (in German) the new Leitz transmitted light fluorescence apparatus. Koch (179) discusses fluorescence photomicrography, and Vanderploeg et al. (340)describe a technique for the pre-exposure of films to be used in fluorescence photography. Hirschfeld (142)has published a very interesting article on the light microscopical observation of single small molecules. Hileman and Bempah (141) report a new technique using fluorometric microscopy for studying nucleation from solution. Kokot et al. (184)characterize cotton fabrics by staining them with fluorescent compounds. Zotikov and Polyakov (372)have studied t h e phosphorescence of various cells and find t h e spectra are specific for every species of cell. Verma and Dosik (343) report an improved method for photographing fluorescent human chromosomes. Veselsky and Wolfl (344)have used fluorometry t o determine uranium in minerals. Dark Field and Ultramicroscopy. See Optics (3,131). Draper (76)uses a condenser with a “figure 8” stop to obtain dark field illumination for a Greenough binocular microscope. Hewlett (139) discusses the value of oblique darkground illumination and describes a variety of methods for obtaining it. Laree field darkeround illumidation is discussed bv Murrav and Onerenshaw @32). Acoustical Microscow. See Books (362):and Instruments, Miscellaneous (221j. Wade (347) has written a book, dealing with acoustical imaging, part of which is devoted to microscopes and holographic systems. The biomedical applications of acoustical microscopy are presented by Lemons and Quate (198).

TECHNIQUES FOR SPECIMEN PREPARATION Embedding and Mounting. A rapidly setting glue for remounting and resectioning of Epoxy embedded tissue has been discovered by Johnson (162). Two articles (29. 319) describing preparation techniques for fiber microscopy have appeared. Cariou et al. (37)have described a new technique of mounting metallographic specimens so that thev can be

A N A L Y T I C A L CHEMISTRY, VOL. 50, NC. 5, APRIL 1978

ground and polished with a minimal rounding of the edges. Microtomy. See Instruments, Miscellaneous (305);and Interference Microscopy (252). T h e use of a sliding microtome for sectioning material embedded in plastic is the subject of an article by Filippenko (91). Luiten (203) presents a simple method for serially sectioning small specimens of hard tissue. Walter (348) discusses microtome techniques in the textile laboratory. Seidl (288) presents a simple technique for mounting l-Fm serial sections of resin embedded tissue. Milby (217) presents a bibliography on methods of softening refractory plant and animal tissues. Jordan and Saunders (166)describe a method for presenting three dimensional reconstructions derived from serial sections. Petzold and Ozel (261) describe (in German) how a critical-point-drying apparatus (Polaron E300) can be adapted for drying of serial sections. Penel and Simon (260) have written an article entitled “A stochastic approach to the problem of sampling and slicing in histology. Application to t h e determination of t h e number and size distribution of spherical structures”. Grinding, Polishing, and Etching. See Books (335); Instruments, Stages (140);and Embedding and Mounting (37). Patzelt (259) describes (in German) a new light microscopical technique called reflection contrast. This is apparently t h e same as the technique called gas etching by Ondracek and Spieler (246). The process forms films, thin enough to produce interference colors, on the surface of alloys. Plichta et al. (264)have published an article on the chemical polishing of steel for optical microscopy. Tomkins and Coleman (331) give a n assessment of t h e mechanical preparation of sintered iron micrographic specimens. Metallographic techniques for hard-to-handle materials are discussed by Nelson (237). Sobott (307) describes (in German) a simple method of preparing thin sections of rocks. Wegner and Cristie (353) describe the chemical etching of forsterite. Kallweit and Szesny (169) discuss t h e influence sectioning and polishing have on the surface structure of partially crystalline high polymers. Miscellaneous. A device built by Leitz, the subject of two papers in the previous section (246, 2591, has been used by Amstutz and Muff (6) for producing color contrast on ores. Back and Pabst (11) also describe t h e use of this device t o produce colored interference films on metals. T h e same apparatus can be used to investigate the cathode-luminescence of solids (102). Weiss (357) describes t h e optical staining of colorless suecimens with infrared color film. This is a uhomicroiraphical technique. Teetsov (324) describes methods of manipulating small particles. Isenberg e t al. (154)describe the use of a laser micro-dissection apparatus for cell surgery.

T E C H N I Q U E S OF S P E C I M E N EXAMINATION Photomicrography. See Books (205);Instruments, 11luminators (289);Ultraviolet and Infrared Microscopy (40); Fluorescence Microscopy (179, 340); and Techniques for Specimen Preparation, Miscellaneous (357). Klosevych has written a series of articles on microscopy and photomicrography (175-1 78). Earlier articles in this series were reported in the previous review (50). Goke has also written a series of articles (in German). One (106)is concerned with the fundamentals of color photomicrography, one (111) on conversion filters for color photomicrography, and another (108) on a n apparatus for electron flash photomicrography. Bode et al. (24) discusses photomicrography with fiber optics and electronic flash. Teicher (325)also uses an electronic flash apparatus. Garrett and Traylor (100)use oblique transmitted light for photomacrography and photomicrography. Nikolic (241) discusses exposure corrections for macrophotography. Eaton (79)discusses high acutance with improved contrast in black and white photomicrography a t low magnifications. Taylor (323) tells about processing for unusual film/developer combinations. Eger a n d Frieser (83) have used microcinematography with infrared illumination to investigate photographic development. Enders (89) discusses the Super-8 format in cinemicrography. Shapiro (292) considers t h e photography of materials distributed in liquid media. “The Micrography of Cement”

209R

is the title of a paper by Terrier (326). Keeley and Sprackling (170) use cinematography to study the quenching process in ionic crystals. Grabner and Martin (119) present a brief historical introduction to scientific photography in numismatics. They also describe macro- and microphotographic techniques. Heating and Fusion Methods. See Instruments, Microscopes (308);and Instruments, Stages (134, 202). Morrow has written two articles on the use of hot stage microscopy for characterizing thermally sensitive polymers (225, 226). Kuhnertbrandstatter et al. (193) describe the thermomicroscopic identification of addictive poisons. Refractometry. See Optics (201) and Interference Microscopy (244). Autoradiography. See Instruments, Microscopes (173, 306);Instruments, Objectives and Oculars (53);and Microphotometers and Microspectrophotometers (75). Bienz (22) has reviewed the literature on the techniques and applications of autoradiography in light and electron microscopy. Bisignani and Greenhouse (23)discuss the hybrid resolution approach to automated autoradiographic analysis. Montero (223) describes a light-dark-field double exposure photomicrographic method for autoradiographic preparations. Stereology. See Microtomy (260). Stereology continues to be a popular topic for investigation. The trends in stereology were surveyed by Underwood (337). Rohr (274) reports on the 4th International Conference on Stereology held in Washington, D.C., in Sept. 1975. Weibel (354) discusses “Quantitation in Morphology: Possibilities and Limits”. Miles and Davy (219) set forth precise and general conditions for the validity of a comprehensive set of stereological fundamental formulas. Rhines (269)discusses the gzometry of microstructure. CruzOrive (58)searches for a “quantifying pattern” suitable for treating spatial relationships used for discrimination. Kolers (185) discusses a pattern analyzing memory. Anderson and Jakeman (5,157)describe Abel type integral equations in stereology. Nicholson (240) discusses the estimation of linear functionals by maximum likelihood. Underwood (338) presents some quantitative shape parameters for microstructural features. Elias (85)has developed new formulas for the stereology of parallel straight circular cylinders. Chang and Dullien (43)have developed a section diameter method for nonspherical objects. Selden (290,291) tells how to mathematically model particle size distributions and discusses the statistical reliability of particle size distributions. Gotoh and Finney (118) discuss a method of representing the size and shape of a single particle. CruzOrive (59)also considers particle size-shape distributions and the general spheroid problem presenting a mathematical model. T h e same author (56, 57) has written two articles on the correction of stereological parameters from biased samples on nucleated particle phases. A binocular microscope has been adapted for estimating areas and volumes by van der Kroon and Kicken (339). Wolf (366) describes (in German) a simple electrooptical method for the “morphometry” of electron micrographs. Short (297) discusses the “morphology of materials via a microfiche reader printer”. Bernroider (19)has written an article on the “Recognition and classification of structure by means of stereological methods in neurobiology”. Haug (135)describes (in German) various procedures for the collection of values in biological morphometry and stereology. Weibel et al. (355) present a stereological method for estimating relative membrane surface area in freeze fracture preparations of subcellular fractions. Webb e t al. (352) apply the cluster analysis technique of pattern recognition t o investigating the trace metal composition of cardiovascular tissues. Lemons and Richardson (197) apply quantitative stereological techniques to the investigation of porous alumina implant bromaterials. Miles (218)discusses estimating aggregate and overall characteristics from thick sections by transmission microscopy. Whitehouse (361)deals with errors in area measurement in thick sections with special reference t o trabecular bone. Steele et al. (312) have written on the quantitative characterization of wood microstructure. Stroeven (314) applies stereological methods to the study of grain and crack structure of concrete. Bartholome et al. (15) compare the results of stereological measurements with the chemical analysis of

210R

A N A L Y T I C A L CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

Fe-Mn-S alloys. Rickwood and Freere (270)describe a unified stereological system for geological and biological applications. Ondracek and PejSa (245)discuss stereological microstructure analysis as a tool for quantitative quality control and property determination. Automatic Image Analysis. See Books (247,256);Articles of General Interest (153); Optics (158);Instruments, Microscopes (80,81);Instruments, Miscellaneous (145,211,212); and Microphotometers and Microspectrophotometers (38, 123). Jesse (159,160)presents both a review of the present status of automatic image analysis and a bibliography covering the period from 1973 to 1975. Sivaram et al. (301)has reviewed automatic image processing. Slater and Ralph (302)report the status of automatic image analysis in materials science and technology from the point of view of instrumental development. Galbraith et al. (98) report on the Denver Universal Microspectroradiometer (DUM) and the computer configuration and modular programming for radiometry. Hallander et al. (144) describe (in German) a coordinate and area recording microscope for the topographical analysis of particle size distributions. Rohr (275) reports on a new system for opto-manual semiautomatic quantitative image analysis. Longfellow and Steinberg (200)have developed a turntable device for determining radial symmetry. Rink (271)describes a computerized quantitative image analysis procedure. Gahm (97) describes (in German) an optical marking system for microscopical television image analysis. Dunn et al. (78) discuss quantitative analysis of micrographs by computer graphics. Muller and Wasmund (230)describe the Leitz ASM system for semiautomatic image analysis and Miller (220) reports on a device to allow automatic scanning of irregular areas on the Quantimet Analysing Computer. Miscellaneous uses of image analysis are discussed by Aus et al. ( I O ) , Johnston and Stoemer (163),and Wasmund (350), all of whom are concerned with the investigation of biological cells. Eins and Wilhelms (84) assess the preparative volume changes in nerve tissue using automatic image analysis. Gahm (96) discusses (in German) image analysis in mineralogy. P a r t i c l e a n d G r a i n Sizing. See Microphotometers and Microspectrophotometers (191); Holographic Microscopy (333);Stereology (56, 57, 59, 118, 290, 291);and Automatic Image Analysis (144). A review of the common methods of particle size measurement has been prepared by Colling et al. (51). Muller (228) describes new equipment and methods of counting particles used for controlling troublesome particles in cotton card web. Mayne et al. (213) compare three methods of estimating projected surface area of dispersed systems. Miscellaneous. See Optics (268);Instruments, Illuminators (209);and Microphotometers and Microspectrophotometers (358). Uhlig (336)describes the use of the stereomicroscope in the textile industry. Appelt and Meyer-Arendt ( 7 ) discuss the use of interference filters to produce color contrast in microscopical preparations. Schober and Linke (286) present some techniques for metallographic examination. Nelson (238) describes apparatus for the microscopical determination of ore minerals. Grant (120) has written an article on the stereoscopic projection of mineral assemblages. Champness (41)writes on the identification of asbestos using light and electron microscopy and diffraction techniques. Schmitt (285)compares the different possible methods of measuring the cross sections of voluntary muscle fiber. Lycos and Besant (204)describe measurement of fast reactor reaction rates using solid-state track recorders. Kranich and Scholze (188)consider the influence of various measurement conditions on the Knoop-microhardness of glasses. Hesse and Halboth (138)discuss the measurement of microhardness in textile yarn filaments. Howell (147) characterizes, quantitatively, paint surfaces using ray reflection mapping and Schlieren techniques. Ellis (87) has devised a method of measuring packaging film flatness. A P P L I C A T I O N S OF C H E M I C A L M I C R O S C O P Y C r y s t a l l o g r a p h y . See Books (152, 294, 311, 335); Fluorescence Microscopy (141);Interference Microscopy (308); Photomicrography (170);and Instruments Stages (134). Bryant (33,34)has investigated the optical crystallographic

properties of organic compounds containing conjugated unsaturation, and some biologically important organic bases and their derivatives. Coates and Gray (48) describe the structures and microscopic textures of smectic liquid crystals. Thaler (327,328) presents a series of micrographs of crystals of sublimed dyes. Krc (189) reports the crystallographic properties of flufenamic acid. Hauser and Wenk (136)have investigated the optical properties of composite crystals considering submicroscopic domains, exsolution lamella, and solid solutions. Resins a n d Polymers. See Books (273);Optics (268); Instruments, Illuminators (93);Instruments, Stages (202); Polarizing Microscopy (30, 181); Interference Microscopy (356);Microphotometry and Microspectrophotometry (292); Grinding, Polishing, and Etching (169);Heating and Fusion Methods (225, 226); and “Techniques of Specimen Examination, Miscellaneous (87, 147). Morrow (224)reports on a microscopical study of the role of free radical processes in the thermal decomposition of‘ nitrocellulose. Kohlbeck, M. Hugh, and Weidner (182) describe the microscopical analysis of graphite fiber reinforced Epoxy matrix laminates. Textiles a n d Fibers. See Interference Microscopy (229); Fluorescence Microscopy (184);Embedding and Mounting (29, 349); Particle and Grain Sizing (228);and Techniques for Specimen Examination, Miscellaneous (138, 336). Lasse (195) has written an article on the development of textile microscopy. Hesse (137)discusses the microscopical examination of fabrics. John (161)reports on a contribution to quantitative analytical evaluation of pulp fibers and textile fibers in fiber webs by microscopical methods. Ellis (86)gives a new method for the rapid examination of textile fibers a t high magnification. Opitz (248) reports (in German) some research on new combinations of modern textile dyes in microscopical color fixing mixtures. Wood a n d P a p e r . See Polarized Light Microscopy (265); Interference Microscopy (146);Stereology (297. 312); and Textiles and Fibers (161). M i n e r a l s a n d Ceramics. See Books (152, 294. 3 1 2 ) ; Instruments, Microscopes (149);Instruments, Stages (367, 371);Polarized Light Microscopy (183);Microphotometry and Microspectrophotometry (316);Interference Microscopy (44); Fluorescence Microscopy (344); Grinding, Polishing, and Etching (353);Techniques of Specimen Preparation, Miscellaneous (6, 102);Photomicrography (326);Stereology (270, 314); Automatic Image Analysis (96); and Techniques of Specimen Examination, Miscellaneous (41, 120, 188, 238). Troyer (332) has written an article on the importance of microscopy for the assessment of new and used magnesia refractories. Sarkar (281) discusses the optical microscopy of belites in commercial clinkers. The microscopical analysis of clinker and cement is the subject of an article by de Lisle (66). Romer and Dubrolubov (276) discuss the application of microscopy in building materials testing with specific reference to cements, mortar, concrete, lime, gypsum, and ceramics. Takomori and Tomazawa (325)have investigated the birefringence and microstructure of anisotropic borosilicate glasses. Slatkine (303) discusses microscopical research on antique ceramics. Jones (164)reports on an optical microscopy and electron probe microanalytical study of ilmenite reduction. Baker and Biddles (12)discuss the surface inspection of optical and semiconductor components. Coal. See Books (311). Hucka and Das (148) have reported a study of coal properties using microtechniques. Goodarzi and Murchison (117 ) discuss the petrography and anisotropy of carbonized preoxidized coals. Augustyn et al. (9)report on an optical and electron microscopical study of brown coals. Patrick et al. (258)discuss the influence of carbonization conditions on the development of different types of optical anisotropy in cokes. Goodarzi and Murchison ( 116) have examined polished sections under reflected light and revealed the plant cell structures in coking coal. Metals. See Books (205); Microphotometry and Microspectrophotometry (62);Grinding, Polishing, and Etching (246);and Stereology (15). Rostaker and Dvorak (277)have published a second edition of their book on the “Interpretation of Metallographic Structures”. Petzow (262)has written (in German) a review of optical microscopy in metallography.

A N A L Y T I C A L CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

Criminalistics. McCrone (206)has characterized human hair using light microscopical techniques. Air and Water. Smith (304) has written an article on the identification of particles of coal and processed solid fuels in airborne dust. Rothwell and Bickham (278,279)have written two articles on the application of light microscopy to studies of dust filtration. Biology and Medicine. See Books (13,28,l22,122a, 247, 236, 365);Instruments, Microscopes (27, 187);Instruments, Stages (82);Polarized Light Microscopy ( I , 32, 60, 113, 114, 249, 318--321, 3301, Microphotometry and Microspectrophotometry ( 1 2 4 , 329); Interference Microscopy (155); Fluorescence Microscopy (342, 372); Dark Field and Ultramicroscopy (232);Ultraviolet and Infrared Microscopy (40); Techniques of Specimen Preparation, Miscellaneous (154); Heating and Fusion Methods (193);Stereology (19, 135, 197, 218. 302. 335, 3 6 I ) ;Automatic Image Analysis (10, 84, 163, X%); and Techniques for Specimen Examination (285). Dor6 and Vermon-Roberts (74)present a method for the selective demonstration of gold in tissues. Williams and Adams (363) propose a histochemical method for the determination of titanium in tissues surrounding implants. Miscellaneous. See Books (121);and Microphotometry and Microspectrophotometry ( 174). Hannigan et al. (130) continue a series of articles on microscopical studies of leather defects. Huesch e t al. (150) discuss the use of microscopical examination in the manufacture and development of surfactants. ANALYTICAL MICROSCOPY See Books (122, 1 2 2 ~ )Microphotometry ; and Microspectrophotometry (124); Fluorescence Microscopy (344); Techniques of Specimen Preparation, Miscellaneous (6,102); Photomicrography (326);Heating and Fusion Methods (193); Techniques of Specimen Examination (41,238);Stereology (15,352);and Applications to Biology and Medicine (74,364). LVhitman and Wills (363)have extended the use of squaric acid as a reagent in chemical microscopy. They tested the reagent with 42 ions, 18 of which formed complexes which crystallize and can be used to identify the 18 cations. LITERATURE C I T E D (1) Achbtz, I., Acta Biochim. Biophys. Acad. Sci. Hung., 11, 161 (1976). (2) Adam, H.. Grabner, A., Kisser, J., "Festschrift Josef Kisser, Bd. 25 Mikroskopie". Verlag Georg Fromme & Co.. Wien & Minchen, 1969. (3) Ade, G., Optik(Stuftgarf), 42, 199 (1975). (4) Agroskin, L. S . , et al., Dokl. Akad. Nauk S S S R , 221, 580 (1975). (5) Anderssen, R S., Jakeman, A. J.. J . Microsc. (Oxford), 105, 135 (1975). (6) Amstutz. G. C.. Muff, R., Leltz Inform. V I , 258 (1976). (7) Appelt, H., Meyer-Arendt, J. R., Microkosmos, 66, 224 (1977). (8) Armed Forces Inst. of Path., "The Billings Microscope Collection of the Medica Museum of the Armed Forces Institute of Pathology", Armed Forces Inst. of Path., Washington, D.C. 20306. 1974. (9) Augustyn, D., et al., Fuel, 5 5 , 25 (1976). (10) Aus, H., Gunzer. U., TerMeulen, V., Microscope, 24, 39 (1976). (11) Back, H., Pabst, K., Leitz Inform., V I , 230 (1976). (12) Baker, L. R., Biddles, B J., Opt. Eng., 15, 244 (1976). (13) Barer, R.. Cosslett, V. E., "Advances in Optical and Electron Microscopy, Vol. 6". Academic Press, New York, N.Y., 1976. (14) Barsky. I. Y., et al., Tsifologiya, 18, 1153 (1976). (15) Bartholome, W., Froehlke, M., Koestler, H. J., LeitzInform., V I , 127 (1975). (16) Becker, E., Leifz-Mitt. Wiss. Tech., V I , 302 (1976). (17) Benedetti, P. A,, et al., Appl. Opt., 15, 2554 (1976). (18) Benkiki, M., Penchina, C . M., Rev. Sci. Insfrum., 46, 490 (1975). (19) Bernroider, G., J . Microsc. (Oxford), 107, 287 (1976). (20) Beyer, H., Freiberg. Forschungsh. A , . 5431, 41 (1975). (21) Bhogra, R. K., Jaiswal, A. K., Indian J . Pure Appl. Phys., 14, 131 (1976). (22) Bienz. K. A.. Microsc. Acta, 79, 1 (1977). (23) Bisignani, W. T., Greenhouse, S. C., J . Histochem. Cytochem., 24, 152 (1976). (24) Bode, F., Horstmann. L., Wangorsch, G., Mikrokosmos, 6 6 , 261 (1977). (25) Bond, W. L., "Crystal Technology", John Wiley, New York, N.Y., 1976. (26) Booth, N., "Acoustical Holography, Vol. 6". Plenum Press, New York, N.Y., 1975. (27) Bourne, W M , Enoch. J. M., Invest. Opthalmol., 15, 29 (1976). (28) Bradbury, S., "The Optical Microscope in Biology", E. Arnold, London, 1976. (29) Breunig. A., Kimmerle, E.. Wbl. Papierfabrik, 104, 642 (1976). (30) Brizitsky, V. I . , et al., J . Appl. Polymer Sci., 20, 25 (1976). (31) Brown. H., Bulow. R.. Nebuser, J., Wondratschek, H., Zassenhaus, H., "Crystallographic Groups of Four-Dimensional Space (Wiley Monographs in Crystallography)". John Wiley, New York. N.Y., 1977. (32) Bruck. A., Sahar, E., Agmon, E., Shinitzky, M., Appl. Opt., 16, 564 (1977). (33) Bryant, W. M. D., Microscope, 24, 261 (1976). (34) Bryant, W. M. D., Microscope, 25, 179 (1977). (35) Budhiraja, C. J., J . Opt. Soc. A m . , 66, 1061 (1976). (36) Butler, M. H.. Zeiss Inform., 22, 4 (1976). (37) Cariou. J. M.. et al.. C . R . Hebd. Seances Acad. Sci., Ser. C., 281. 611 (1975).

211 R

(38) Carter, W. H., Photogr. Eng., 1, 36-41 (1975). (39) Carter, W. H., Appl. Opt., 16, 558 (1977). (40) Casida, L. E., Jr., Can. J . Microbiol., 21, 1892 (1975). (41) Champness. P. E., Cliff, G., Lorimer, G. W., J . Micros (Oxford), 108, 231 ( 1976). (42) Chang, C. K., J . Chem. Educ., 5 3 , 601 (1976). (43) Chang, K. S . , Dullien, F. A. L., J . Microsc. (Oxford), 108, 61 (1976). (44) Chao., E. C. T., A m . Mineral., 61, 212 (1976). (45) Chopra, K. N., et al., Nouv. Rev. Opt., 7 , 41 (1976). (46) Ciddor, P. E., Metrologia, 12, 165 (1976). (47) Ciddor, P. E., Microsc. Acta. 79, 113 (1977). (48) Coates, D., Gray, G. W., Microscope, 24, 117 (1976). (50) Cocks, G. G., Anal. Chem., 48, 333R (1976). (51) Colling, E. A., et al., J . Paint Technol., 47, 35 (1975). (52) Communay, P., Optik, 45, 219 (1976). (53) Courtney-Pratt, J. S., Opt. Eng., 15, 379 (1976). (54) Cowley, J. M., "Diffraction Physics", North HollandiAm. Elsevier, New York, N.Y., 1975. (55) Cronin, D. J., et al., Opt. Eng., 14, 366 (1975). (56) CruzOrive. L. M., J . Microsc. (Oxford), 106, 1 (1976). (57) CruzOrive, L. M., J . Microsc. (Oxford), 106, 19 (1976). (58) CruzOrive, L. M., J . Microsc. (Oxford), 107, 1 (1976). (59) CruzOrive. L. M., J , Mlcrosc. (Oxford), 107, 235 (1976). (60) Curtis, R. K., Tyson, D. R., J . Soc. C o m e t . Chem., 27, 411 (1976). (61) Darwell, B. W., Surf. Technol., 4 , 95 (1976). (62) Darwell, B. W., Microsc. Acta, 79, 353 (1977). (63) de Lang, H.. Dekkers, N. H., Appl. Opt., 16, 2215 (1977). (64) Delhaye, M., Dhamelincourt, P., J . Raman Spectrosc.. 3, 33 (1975). (65) Delingat, E., Leitz Inform., V I . , 249 (1976). (66) delisle, F. A.. Cement Technol., 7, 93 (1976). (67) Delly, J. G., "Teaching Microscopy" (The Microscope Series, Vol. 52), Microscope Pub. Ltd., Chicago, Ill., 1976. (68) Delly. J. G., Microscope, 24, 279 (1976). (69) De Martin, H., "Vademecum mikroskopischer Literatur", Verlag Walter Krieg, Wien, 1973. (70) DeSantis, P., Gori, F., Guattari, G., Palma, C.. Appl. Opt., 15, 2385 (1976). (71) Dhamelincourt, P.. Bisson, P , Microsc. Acta, 79, 267 (1977). (72) Dodd, J. G.. Microscope, 25, 55 (1977). (73) Dodd. J. G., Appl. Opt., 16, 470 (1977). (74) Dore, J. L., Vermon-Roberts, B., Med. Lab. Sci.. 33, 209 (1976). (75) Dormer, P., Thiel. E., J . Histochem. Cytochem.. 24, 145 (1976). (76) Draper, B. M., Microscopy, 33, 146 (1977). (77) Dubochet, J., J . Microsc. (Oxford), 106, 333 (1976). (78) Dum. R. F., O'Leary, D. P., Kumley, W. E., J . Microsc. (Oxford), 105, 205 (1975). (79) Eaton, E. W., J . Biol., Photogr. Assoc.. 44, 94 (1976). (80) Eccles, M. J., McCarthy, B. D., Proffitt, D., J . Microsc. (Oxford), 106, 33 (1976). (81) Eccles. M. J., McCarthy, B. D., Proffitt, D., J . Microsc. (Oxford), 106, 43 (1976). (82) Eder, H., Microsc. Acta, 79, 131 (1977). (83) Eger, H., Frieser, H., J . Signalaufzeichnungsmaterialien 4, 295 (1976). (84) Eins, S., Wilhelms, E., Microscope, 24, 29 (1976). (85) Elias, H., J . Microsc. (Oxford), 107, 199 (1976). (86) Ellis, S. G., Textile Res. J . , 45, 596 (1975). (87) Ellis, S. G.. Microscope, 24, 253 (1976). (88) Ellis, S. G.. Hum, W., Microscope, 23, 127 (1975). (89) Enders, R., J . Biol. Photog. Assoc., 44, 127 (1976). (90) Feldmann, D., Velicescu, M., Leifz Inform., V I , 133 (1975). (91) Filippenko, V. N., Tsifologiya. 18, 1411 (1976). (92) Frank, J., Optik, 43, 25 (1975). (93) Fursey, A.. J . Microsc. (oxford)., 107, 169 (1976). (94) Gabor, D., J . Phys. E , 8. 73 (1975). (95) Gabor, D., J . Phys. E , 8 , 161 (1975). (96) Gahm, J., Fortschr. Mineral., 53, 79 (1975). (97) Gahm, J., Microsc. Acta, 79, 5 5 , (1977). (98) Galbraith, W., Geyer, S. B., David, G. B., J . Microsc. (Oxford), 105, 237 (1975). (99) Galbraith, W., David, G. B., J . Microsc. (Oxford). 108, 147 (1976). Garrett. H. L.. Travlor. P. A.. Microscooe. 25. 147 (19771. Ginzburg, V. M., e: al., Instrum. exp. 'Tech., 18, 929 (1975). Goebel, V. W., Patzelt, W. J., Leitz Inform., V I , 263 (1976). Gogolewski, S., J . Phys. E , 8 , 506 (1975). Goke, G., Mikrokosmos, 65, 80 (1976). Goke, G., Mikrokosmos, 65, 103 (1976). Goke. G., Mikrokosmos, 65, 237 (1976). Goke. G., Mikrokosmos, 65, 261 (1976). Goke, G., Mikrokosmos, 65, 252 (1976). Goke, G., Mikrokosmos, 65, 382 (1976). Goke, G., Microkosmos, 66, 24 (1977). Goke, G., Mikrokosmos, 66, 82 (1977). Goke, G., Mikrokosmos. 6 6 , 148 (1977). Goke, G., Mikrokosmos. 66, 233 (1977). Goke, G., Mikrokosmos. 68, 263 (1977). Goldberg. O., Microscope, 24, 291 (1976). Goodarzi, F., Murchison. D. G., J . Microsc. (Oxford), 106, 49 (1976). Goodarzi, F., Murchison, D. G., Fuel, 5 5 , 141 (1976). Gotoh, K., Finney, J. L., Powder Technol., 12, 125 (1975). Grabner, A,, Martin, H., Mikroskopie, 32, 45 (1976). Grant. J. A,. A m . Mineral.. 61. 1020 11976). (121) Grehn, J. (Hrsg.): Freund, "Handbuch der Mikroskopie in der Technik. bd. VII: Mikroskopie in der chemischer Technik", Umschan Verlag, Frankfurt, 1975.

212R

ANALYTICAL CHEMISTRY, VOL. 50, NO. 5, APRIL 1978

(122) Grehn, J. (Hrsg.): Freund. "Handbuch der Mikroskopie in der Technik, bd. VIII: Sonder ausgabe A.Thb. Czaja: Methoden der LebensmittelMikvoskopie und Lebensmittel-Uberwachung", Umschau Verlag, Frankfurt, 1976. (122a) Grehn, J. (Hrsy.): Freund, "Handbuch der Mikroskopie in der Technik. bd. VIII: Mikroskopie der Nahrungs-und Futtermittel, der Drogen und Genuszmittel", Umschau Verlag. Frankfurt, 1976. (123) Groszkopf, R., Microsc. Acta, 78, 28 (1976). (124) Grys, S . , Mikrochim. Acta, 1, 147 (1976). (125) Gumpertz, W.. Microscope, 25, 115 (1977). (126) Gupta, P. C.. Singh, K., Indian J . Pure Appl. Phys., 14, 372 (1976). (127) Gupta, S. D., Jpn. J . Appl. Phys.. 15, 1709 (1976). (128) Hadni, A., et al., Appl. Opt., 15, 2150 (1976). (129) Hannes, H., Leitz Inform., V I , 162 (1975). (130) Hannigan, M. V.. et al.. J . A m . Leather Chem. Assoc.. 71. 41 1 (1976). (131) Hanssen. K. J., Optik, 46, 107 (1976). (132) Hartiey, W. G., Microscopy. 33, 142 (1977). (133) Hartley, W. G., Microscopy. 33, 147 (1977). (134) Hartshorne, N. H., Microscope. 24, 217 (1976). (135) Haug, H., Microsc. Acta, 78, 197 (1976). (136) Hauser, J., Wenk, H. R., Z . Kristallogr., Kristallgeom., Kristallphys, Kristallchem.. 143, 188 (1976). (137) Hesse, R., Textilveredlung, 10, 159 (1975). (138) Hesse, R., Halboth, H., Melliand Textilber. Int.. 57, 448 (1976). (139) Hewlett, P. S.. Microscopy, 33, 1 (1976). (140) Hildebrandt, W. H., Cocks, F. H., Rev. Sci. Instrum.. 47, 866 (1976). (141) Hileman, 0. E., Jr., Bempah, 0. A., J . Colloid Interface S c i , 51. 380 (1975). (142) Hirschfeld, T.. Appl. Opt., 15, 2965 (1976). (143) Hoeschen, D., MirandB, W., Optik. 48, 459 (1977). (144) Hollander, H., Wickelmaier. M., Pastor, W., Microsc. Acta. 78, 118 (1976). (145) Hougardy, H. P., Microscope, 24, 7 (1976). (146) Howarth, P., et al., J . Phys. E , 8. 1055 (1975). (147) Howell, D. M., J . Oil Colour Chem. Assoc.. 58, 41 (1975). (148) Hucka, V., Das, B., Metallography, 9, 8 5 (1976). (149) Huck, F. O., Arvidson, R . E , Burcher, E. E., Giat. O., Wall, S. D.. Appl. Opt., 16, 2454 (1977). (150) Huesch. R., et al., Fefte Seifen Anstrichm.. 78, 359 (1976). (151) Huiser. A. M. J.. Ferwerda, H. A , , Opt. Acta., 23, 445 (1976). (152) Hurlbut, Cornelius S.,Jr.. Klein, Cornelius., "Manual of Mineralogy, 19th ed. (after J. D. Dana)", John Wiley. New York, N.Y.. 1977 (153) Hutzler, P. J. S , Appl. Opt., 16, 2264 (1977). (154) Isenberg, G., Bielser, W., Meier-Ruge, W., Remy, E.. J . Microsc (Oxford). 107, 19 (1976). (155) Izzard, C . W., Lochner, L. R., J . Cell. Sci., 21, 129 (1976) (156) Jain, A,, Appl Phys. Lett.. 28. 451 (1976). (157) Jakeman. A. J., Anderssen, R. S . , J. Microsc. (Oxford). 105. 121 (1975). (158) Jarvis, R. A.. Microscope, 24, 163 (1976). (159) Jesse. A., Microscope, 24, l ( 1 9 7 6 ) . (160) Jesse, A., Microscope, 24, 165 (1976). (161) John, K , Papier, 29, 478 (1975). (162) Johnson, P. C., Stain Technol., 51. 275 (1976). (163) Johnston, E. M., Stoemer, E. F.. Microscope. 24, 181 (1976). (164) Jones, D. G., Trans. Inst. Min. Metall., Sect. C . , 84. c186 (1975). (165) Jones, R . V., Opt. Eng.. 15, 247 (1976). (166) Jordan, E. G.. Saunders, A. M., J . Microsc. (Oxford), 107, 205 (1976). (167) Jotz, M. M., et al., J . Histochem. Cytochem., 24, 91 (1976). (168) Jurek, Bahumil, "Optical Surfaces: Aspheric Optical Systems. X-Ray Optics, Reflecting Microscopes, Reflectors, measurements", Elsevier, Amsterdam, 1977. (169) Kallweit, J. H., Szesny. B.. Colloid Polymer Sci.. 254, 299 (1976). (170) Keeley, R A . Sprackling, M. T.. J . Phys. O., 9, 612 (1976). (171) Keller. H. E., McCrone, W . C., Microscope, 25, 169 (1977). (172) Khashan. M. A., Opt. Acta, 22, 10011 (1975). (173) Khrust, Y. R., et al.. Tsitologka. 18, 915 (1976). (174) Klig, V., Demirjian, C., Pungaliya, P., J . Microsc. (Oxford), 107, 173 (1976). (175) Klosevych, S . , J . Biol. Photogr. Assoc., 43, 30 (1975). (176) Kiosevych, S . , J . Biol. Photogr. Assoc.. 43, 51 (1975). (177) Klosevych, S., J . Biol. Photogr. Assoc., 43, 119 (1975). (178) Klosevych, S.,J . Biol. Photogr. Assoc., 43, 187 (1975). (179) Koch, K. F., Leitz Inform., V I , 149 (1975). (180) Kohen, E., et al., Mikrochim. Acta, 2, 195 (i976). (181) Kohlbeck, J. A., Bolleter, W. T.. J . Appl. Polym. Sci., 20. 153 (1976). (182) Kohlbeck, J. A., McHugh. G. F., Weidner, J. C., Microscope. 25, 161 ( 1977). (183) Koiziik, K , Gruebmeier, H. B.. Leitz Inform.. V I , 121 (1975). (184) Kokot. S., et al., Textilveredlung. 10, 127 (1975). (185) Kolers. P. A., Science, 191, 1280 (1976). (186) Kothiyal. M. P., Opt. Commun., 18, 310 (1976). (187) Koyama. T., et al., Experientia, 31, 1420 (1975). (188) Kranich, J. F., Schoize. H.. Glastech. Ber., 49, 135 (1976). (189) Krc, J., Jr., Microscope, 25, 31 (1977). (190) Kubo, H., Nagata, R., Opt. Acta, 23, 519 (1976). (191) Kuehner, E. C . , Casatt, W. A . . Appl. Spectrosc., 30, 289 (1976). (192) Kuhnle, G , Schollmeyer, E., Herlinger, H.. Optik, 47, 477 (1977). (193) Kuhnertbrandstatter, M., et al., Pharm. Acta Helv., 50, 360 (1975). (194) Kushelevsky, A. P., Phys. Med. Biol., 21, 289 (1976). (195) Lasse, R . , Textilveredlung, 10, 172 (1975). (196) Lavan, M. J., et al., Rev. Sci. Instrum., 46, 525 (1975). (197) Lemons, J. E., Richardson, W. C.. J . Dent. Res., 55, 111 (1976). (198) Lemons, R. A., Quate, C. F., Science, 183. 905 (1975). (199) Lock, M. W. B., J . Phys. E , 8 , 178 (1975). (200) Longfellow, D. G., Steinberg. R. L., Trans. Am. Microsc. Soc.. 94, 124 (1975). (201) Lonskii, E. S., SOC. Phys. Crysfallogr.. 21, 3 (1976).

(202) Lovinger, A. J., et al., J . Phys. € , 9 , 927 (1976). (203) Luiten, P. G. M., Stain Techno/., 5 1 , 309 (1976). (2041 Lvcos. T.. Besant. C B.. Microscooe. 24. 199 119761 (205j McCall, James L., French, P. M., '"Interpretative Techniques for Microstructural Analysis", Plenum, New York. N.Y., 1977. (206) McCrone, W. C., Microscope, 25, 1 5 (1977). (207) McCrone, W. C., Padgitt, D. L., Microscope, 25, 89 (1977). (208) McGhie, A. R.. J . Chem. Educ., 53, 637 (1976). (209) Martin, L. V., Microscopy, 32, 489 (1975). (210) Martin, M., et al., MetaNography. 9. 157 (1976). (21 1) Mason, D. C., Green, D. K., IEEE Trans. Biomed. Eng., 22, 312 (1975). (212) Mason, D. C., Green, D. K., Microsc. Acta, 78, 439 (1976). (213) Mayne, F. G., et al., Powder Techno/.. 12, 103 (1975). (214) Menzel, E., et ai., Optik, 46, 219 (1976). (215) Meyer-Arendt, J. R., "Introduction to Chssical and Modern Optics", Prentice Hall, Englewood Cliffs, N.J., 1974. (216) Meyer-Arendt. J. R., Appelt, H., Appl. Opt., 15, 2017 (1976). (217) Milby, T. H., Microscope, 24, 237 (1976j. (218) Miles, R. E., J . Microsc. (Oxford), 107, 227 (1976). (2191 Miles. R. E.. Davv. P.. J . Microsc. 1Oxfordl. 107. 211 119761. ~, (220) Miller, A. K. H., hicroscope. 24, 275 (1976). (221) Miller, D. L.. J . Acoust. SOC. Am., 60, 1203 (1976). (222) Mishina, H., et al., Opt. Laser Technol.. 8 , 121 (1976). (223) Montero, V. M., Brain Res., 113, 171 (1976). (224) Morrow, S. I . , Microscope, 24, 227 (1976). (225) Morrow, S. I., Int. Lab., 1976, p 56. (226) Morrow, S. I.,Am. Lab., 8. 54 (1976). (227) Moseley, J.. Engineering, 215, 203 (1975). (228) Muller, O., Melliand Textilber Int.. 56, 444 (1975). (229) Muller, W., Leitz-Mitt. Wiss Tech., V I , 323 (1976). (230) Muller, W., Wasmund, H., Leitz-Mitf. Wiss Tech., V I , 316 (1976). (231) Mulvey, T., Webster, R. K., "Modern, Physical Techniques in Materials Technology". Oxford Univ. Press, Cambridge, 1974. (232) Murray, R., Ollerenshaw, R , Med. Biol. Illus., 25, 153 (1975). (233) Nayyar, V. P., Opt. Commun., 13, 254 (1975). (234) Nayyar, V P I Verma, N. K., Appl. Opt., 15, 1341 (1976). (235) Nayyar, V . P., Verma, N. K., Appl. Opt., 16, 2460 (1977). (236) Nayyar. V. P., Verma, N. K., J , Phys D . 9 , 1819 (1976). (237) Nelson, J. A,, Met. Prog., 112, 57 (1977). (238) Nelson. J. B., Int. Lab., 1976, p 67. (239) Nicol. A. W., "Physico-Chemical Methods of Mineral Analysis", Plenum Press, New York. N:Y., 1975. (240) Nicholson, W. L.. J . Microsc. (Oxford). 107, 323 (1976). (2411 Nikolic. N. M.. Am. J . Phvs.. 44. 931 119761. ' (242) Nuttall, R. H., Microscope, 25, 65, (1977). (243) Nyyssonen, D , Appl. Opt., 16, 2223 (1977). (244) Ohtsuka, V., Shimiza, Y.. Appl. Opt., 16, 1050 (1977). (245) Ondracek, G.. PejSa, R., J , Microsc (Oxford), 107, 335 (1976). (246) Ondracek. G., Spieler, K., Leitz Inform., V I , 224 (1976). (247) Onoe, M.. Preston, K Jr.. "Digital Processing of Biomedical Images". Plenum. New York, N.Y.. 1916 (248) Opitz, H., Mikrokosmos, 66, 119 (1977). (249) Ortmann, R . , Anat. Embryo/-Z. Anat. Entwickl., 148, 109 (1975). (250) Otto, J . Microsc. (Oxford). 106, 71, 1976. (251) Ovcharenko. G M.. et ai., Sov. J Opt. Technol. (Engl. Trawl.), 42, 588 (1975). (252) Pabst, H.. Leitz Inform., V I , 246 (1976) (253) Padgitt, Donald L., "A Short History of Early American Microscopes", Microscope Publications, Ltd., Chicago, Ill., 1375 (254) Pailthorpe, M. T., J . Phys. E . 8.-194 (1975). (255) Pandya, T. P., et al.. Rev. Sci. Instrum., 47, 1299 (1976). 1256) , , Pankhurst. R. J.. "Bioloaical Identification with Comouters n h e Svstematics Assoc. Special Volume Go. 7"), Academic Press, New York, N',Y., 1975. (257) Passner, A.. et al., Rev. Sci. Insfrum., 47, 1221 (1976). (258) Patrick, J. W., et ai., Carbon, 13, 509 (1975). (259) Patzeit. W. J., Mikrokosmos, 66, 78 (1977). (260) Penel, C., Simon, C. A., J . Microsc. Biol. Cell, 26, 107 (1976). (261) Petzold, H., Ozel, M I Microsc. Acta, 78, 292 (1976). (262) Petzow, G., Microsc. Acta, 78, 1 (1976). (263) Phipps, C. R., Jr.. et al.. Appl. Opt.. 14, 985 (1975). (264) Plichta, M. R., et al., Metallography, 9 , 455 (1976). (265) Prud'homme, R. E., Noah, J., Wood Fiber, 6, 282 (1975). (266) Raith, S . , Microsc. Acta, 79, 339 (1977). (267) Rath, R . , Pohl, D., Mikroskopie. 31, 66 (1975). (268) Ravey, J. C . . Colloid Polym. Sci., 253, 292 (1975). (269) Rhines, F. N., Metal Prog., 112, 60 (1977). (270) Rickwood, P. C., Freere, R . H.. Microscope, 24, 151 (1976). (271) Rink, M., J . Microsc. (Oxford), 107, 267 (1976). (272) Robinson, P. C., Proc. R . Microscop. SOC., 11, 23 (1976). (273) Rochow, T. G., Rochow, E. G., "Resinography-An Introduction to the Definition, Identification and Recognition of Resins, Polymers, Plastics and Fibres", Plenum Press, New York, N.Y., 1976. (274) Rohr, H., Microsc. Acta, 78, 4 3 (1976). (275) Rohr, H. P.. Microsc. Acta, 79, 246 (1977). (276) Romer, B., Dobrolubov, G., Leitz Inform., V I , 135 (1975). (277) Rostoker, William, Dvorak, James R., "Interpretation of Metallographic Structures, 2nd ed.", Academic Press, New York, N.Y., 1977. (278) Rothwell, E.. Bickham, D. R., J . Microsc. (Oxford), 106, 87 (1976). (279) Rothwell, E . , Bickham, D. R., J . Microsc. (Oxford), 108, 211 (1976). (280) Salmon, E. D., Ellis, G. W.. J . Microsc. (Oxford), 108. 6 3 (1976). (281) Sarkar. S. L., Microscope, 25, 191 (1977). (282) Saunders, M. J., Rev. Sci. Instrum., 47, 496 (1976). (283) Sawamura, 11, et al., Japn. J . Appl. Phys., 14, 123 (1974). (284) Schleuter, G. E., Gumpertz, W. E., Am. Lab. 8, 61 (1976). (285) Schmitt, H. P., Microsc. Acta, 77, 427 (1976). (286) Schober, T.. Linke, U.. Metallography, 9, 309 (1976).

ANALYTICAL CHEMISTRY, VOL. 50,

NO. 5,

APRIL 1 9 7 8

213R

Fischer Veriag, Stuttgart, 1976. (330) Thylstrup, A., et al., Scand. J . Dent Res., 84, 243 (1976). (331) Tomkins, D.W., Coleman, D. S., Powder Metall., 19, 53 (1976) (332) Troyer, F., SfahiEisen, 9, 50 (1975). (333) Tyler, G. A., Thompson, B. J., Opt. Acta, 23, 685 (1976). (334) Tynan, E. E., von Gutfeid, R. J., Rev. Sci. Instrum., 46, 569 (1975). (335) Ueda, R., Mullin, J. B., "Crystal Growth and Characterization Proc, 2nd Int. Spring School on Crystal Growth, Japan 1974", North-Holland, New York. N.Y., 1974. (336) Uhlig, M., Meiliand Texfilber. Int., 56, 578 (1975). (337) Underwood, E. E., Microscope, 24, 45 (1976). (338) Underwood, E. E., Microscope, 24, 49 (1976). (339) van der Kroon, P. H. W., Kicken, J., Microsc. Acta, 77, 445 (1976). (340) Vanderploeg, M., et al., Histochem. J . , 8. 201 (1976). (341) van Toorn, P., Ferwerda. H. A., Opt. Acta, 23, 457 (1976). (342) Van Toorn, P., Ferwerda, H. A,, Opt. Acta, 23, 469 (1976). (343) Verma, R. S.,Dosik, H., J . Microsc. (Oxford), 108, 339 (1976). (344) Veselsky, J. C., Wolfl, A,, Anal. Chim. Acta, 85, 135 (1976). (345) Vialli, D. M., Zanotti, L., Mikroskopie, 32, 305 (1976). (346) Wadaka, S., Sato, T., J . Opt. SOC.Am., 65, 354 (1975). (347) Wade, G., "Acoustic Imagining with Cameras, Microscopes, Phased Arrays and Holographic Systems", Plenum, New York, N.Y., 1976. (348) Walter, F., Textilveredlung, 10, 168 (1975). (349) Walter, F., Schmitt, W., Leitz, Inform., V I , 248 (1976). (350) Wasmund, H., Leifz Inform., V I , 217 (1976). (351) Watts, R. K., "Point Defects in Crystals", Wiley-Interscience, New York, N.Y., 1977. (352) Webb, J., et al., Anal. Chim. Acta, 81, 143 (1976). (353) Wegner, M. W., Christie, J. M., Confrib. Mineral. Petrol., 59, 131 (1976). (354) Weibel, E. R., Beitr. Pathol., 155, 1 (1975). (355) Weibel, E. R., Losa, G., Bolender, R. P., J , Microsc. (Oxford), 107, 255 (1976). (356) Weidmann, G. W., Doll, W., Colloid Polym. Sci., 254, 205 (1976). (357) Weiss, C. H., J . B i d . Photogr. Assoc.. 44, 86 (1976). (358) Welber, B., Rev. Sci. Instrum., 47, 183 (1976). (359) Wells, A. F., "Three Dimensional Nets and Polyhedra", Wiley Interscience. New Vnrk ,._.. - , . ~ , N V ., 1P77 . (360) White, A. D., Appl. Opt., 16, 549 (1977). (361) Whitehouse, W. J., J . Microsc. (Oxford), 107, 183 (1976). (362) Whitman. R. L.. "MultidisciDlinarv Microscoov". Vol. 104 of Proc. of the Sbc. of Photo-Optical 1nstrumentat;on Engineer;, Bellingham, Washington, 1977. (363) Whitman, V. L., Wills, W. F., Jr., Microscope, 25. 1 (1977). (364) Williams, D. F., Adams, D., J . Ciin. Pathoi., 29, 657 (1976). (365) Wilson, Michael B., "The Science and Art of Basic Microscopy", Am. SOC.for Medical Technology, Bellaire, Texas 1976. (366) Wolf, B., Microsc. Acta, 7 8 , 300 (1976). (367) Wong, J., et al., Thin SolidFiims, 33, 341 (1976). (368) Yamamoto, K., Ichioka, Y., Suzuki. T., Opt. Acta, 23, 965, (1976). (369) Yamamoto, K., Ichioka, Y., Suzuki, T., Opt. Acta, 23, 987 (1976). (370) Zemskov, K. L., et al., Kvantovaya Elekfron-(Moscow),3, 35 (1976). (371) Zlegler, L., Schuster, P., Ber. Dfsch. Kerarn. Ges., 5 3 , 257 (1976). (372) Zotikov, A. A., Polyakov, Y. S., Microsc. Acta, 79, 415 (1977).

(287) Schumacher, 8. W., Optik. 45, 355 (1976). (288) Seidl, W., Stain Techno/.,51. 311 (1976). (289) Seifert, H. W., Mikrokosmos, 65, 312 (1976). (290) Selden, M. G., Jr., Microscope, 24, 213 (1976). (291) Selden, M. G., Jr., Microscope, 25, 127 (1977). (292) Shapiro. S.. J . Bioi. Photogr. Assoc.. 44, 29 (1976). (293) Sheftal, N. N., "Growth of Crystals, Vol. 10 (Trans. by J. E. S. Bradley)", Plenum Press, New York, N.Y., 1976. (294) Shelley, David, "Manual of Optical Mineralogy", Elsevier, New York, N.Y., 1975. (295) Sheppard, C. J. R., Optik, 48, 329 (1977). (296) Sheppard, C. J. R., Choudhury, A,, Opt. Acta, 24, 1051 (1977). (297) Short, P. H., Wood Sci., 9, 37 (1976). (298) Singh, J., Singh, K., Opt. Acta, 23, 161 (1976). (299) Singh, K., Singh, J., Microsc. Acta. 78, 149 (1978). (300) Singh. R. N., Opt. Acta, 23, 597 (1976). (301) Sivaram, B. M., et al., Indian J . Phys., 50, 357 (1976). (302) Stater, J., Ralph, B., Microscope, 24, 25 (1976). (303) Slatkine, T., Zeiss Inform., 22, 6 (1976). (304) Smith, A. H. V., J , Microsc. (Oxford), 106, 325 (1976). (305) Smolle, J., Mikrokosmos, 65, 189 (1976). (306) Smutzer, G., Berlin, J., Trans. Am. Microsc. SOC.,95, 109 (1976). (307) Sobott, R. J. G., Mikrokosmos, 65, 281 (1976). (308) Soltzberg. L. J., Athearn. M., Levy, J. E., Simpson. E.L., Appl. Opt., 16, 3206 (1977). (309 Sorgenfrey, W., Mikrokosmos, 65, 179 (1976). (310) Southworth, H. N., "Introduction to Modern Microscopy", Wykeham Publications, (London) Ltd, London, 1975. (31 1) Stach, E., et al., "Stach's Textbook of Coal Petrology, 2nd rev. ed.", Gebr. Borntraeger. Berlin-Stuttgart, 1975. (312) Steele, J. H., Ifju, G., Johnson, J. A,, J . Microsc. (Oxford), 107, 297 (1976). (313) Stewart, W. C., J . Opt. SOC.A m . , 6 6 , 813 (1976). (314) Stroeven, P., J . Microsc. (Oxford).,107, 313 (1976). (315) Takamori, T., Tomazawa, M., J . A m . Cerarn. SOC.,59, 377 (1976). (316) Tarkian, M., et al., Miner. Mag., 40, 97 (1975). (317) Taylor, C. A,, Harburn, G.. Welbemy, T. R., "An Atlas of Optical Transforms", G. Bell & Sons Ltd., London, 1976. (318) Taylor, D. L., et al., Exp. CeiiRes., 101, 127 (1976). (319) Taylor, D. L., "Motile Models of Amoeboid Movement" in "Cell Motility", R. Goldman, T. Pollard, and J. Rosenbaum, Ed., Cold Spring Harbor Press, Cold Spring Harbor. N.Y., 1976, p 797. (320) Taylor, D. L., J . Ceii. B i d . 68. 497 (1976). (321) Taylor, D. L , Rhodes, J. A., Hammond, S. A., J. Cell. Biol., 70, 123 (1976). (322) Taylor, D. L., Zeh, R. M., J . Microsc. (Oxford), 108, 251 (1976). (323) Taylor, M. E., J . Biol. Photogr. Assoc., 44, 26 (1976). (324) Teetsov, A. S., Microscope, 25, 103 (1977). (325) Teicher, G., Bild Ton, 29, 55 (1976). (326) Terrier, P., Ann Mines, 182, 35 (1976). (327) Thaier, H., Mikrokosrnos, 66, 158 (1977). (328) Thaler, H., Mikrokosrnos, 66, 190 (1977). (329) Thiessen, G., Thiessen, H., "Microspectrophotometric Cell Analysis (Vol. 9INo. 4 of the Series "Progress in Histochemistry and Cytochemistry")", Gustav

I

... .". . I

Gas Chromatography Stuart P. Cram * Varian Instrument Division, 2700 Mitchell Drive, Walnut Creek, California 94598

Terence H. Risby Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

INTRODUCTIOK

which had to be searched and reviewed for this paper was larger than for any other biennium, and is reasonably comprehensive in that two different computer library searches, the primary chromatographic literature, and the Preston Technical Abstracts (GC) were used to locate the references cited in this work. It is clear that the ratio of GC applications to fundamental new developments is rapidly increasing. This can be explained in terms of the increasing number of new scientific disciplines and laboratories employing the technique, number and type of analysis which require the resolving power and detection limits of GC, and the maturing of the technique. In the 1977 Directory of Members of the American Chemical Society's Division of Analytical Chemistry ( 4 A ) , more than 21 % of the members listed one of their job spe-

This review surveys the fundamental developments in the field of gas chromatography (GC) during the biennium since the publication of the last review in this series (2A) and covers the years 1976-77. Earlier articles of particular significance appearing in foreign journals and the patent literature which were not available a t the time of the previous review are also included. This review does not represent a comprehensive bibliography or discussion of the literature in GC. Rather. the authors have attempted to be very critical in selecting only the most fundamental developments in theory, methodology, and instrumentation; a few applications are cited only insofar as they advance the state-of-the-art or have particular current relevance to new developments. The number of publications 0003-2700/78/0350-213R$05.00/0

C

1978 American Chemical Society