31 Determination of Fluid Dynamic Parameters in Bubble Column Design T H . P I L H O F E R , H . F . B A C H , and K. H. M A N G A R T Z
Downloaded by MONASH UNIV on February 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch031
Lehrstuhl A für Verfahrenstechnik, Technische Universität München, West Germany
Bubble columns are applied to many processes. They are employed in the same way for chemical synthesis (1) as also in waste water cleaning (2). Quite recently, their use for microbial processes has become increas ingly important (3). In spite of the variety of these applications and the number of known experimental studies, the design and scale-up of a bubble column is still a difficult task. In this paper, results of ex periments are presented, which are concerned with the determination of fluiddynamic parameters for column design. The description of a process, taking place in a bubble column, requires the selection of a suitable model. In most cases the application of the one-dimen sional dispersion model has proven satisfactory. When a differential mass balance is made around a differen tial segment of the column, disregarding radial depen dencies, the following equations result for the case of counter-current:
The l i n e a r velocities o f the c o n t i n o u s and d i s p e r s e phase, u and u , can be a d j u s t e d arbitrarily, whereas the mass t r a n s f e r coefficient k depends first o f all on the system's p h y s i c a l p r o p e r t i e s . On the o t h e r hand the f l u i d d y n a m i c parameters like interfacial a r e a a, gas holdup ε and the d i s p e r s i o n coefficients and are i n f l u e n c e d s t r o n g l y by the phases throughputs. I t is t h e r e f o r e n e c e s s a r y to p r e p a r e a p p r o p r i a t e correlC
D
L
©
0-8412-0401-2/78/47-065-372$05.00/0
In Chemical Reaction Engineering—Houston; Weekman, Vern W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
31.
PILHOFER
Parameters in Bubble Column Design
ET AL.
373
ations f o r the c a l c u l a t i o n o f these parameters i n o r der to solve equation ( l ) a n d ( 2 ) . The f o l l o w i n g state ments a r e concerned w i t h t h i s problem. F i r s t of a l l , the l a y - o u t of the gas d i s t r i b u t o r l l be treated. I t s t a s k i s t o g e n e r a t e swarms o f bbles. I f a sieve t r a y i s used, one should be aware the fact, that a l l the holes must be i n o p e r a t i o n . h e r w i s e , u n d e s i r e d c i r c u l a t i o n s come i n t o existence. rthermore, weeping must be a v o i d e d when u s i n g large enings. This i s most i m p o r t a n t , i f the l i q u i d tends incrustate o r s o l i d i f y . These phenomena a r e caused b y t h e mechanism o f t h e p a r t i c l e formation on the sieve t r a y . The openings work i n the j e t t i n g r e g i o n and n o t i n the b u b b l i n g r e g i o n (k). Therefore, to o b t a i n a f u l l y working sieve tray, so much a g a s t h r o u g h p u t h a s t o b e p r e s e n t e d , that a l l openings work at least at the beginning o f the j e t t i n g region. The minimum gas l o a d r e l a t i v e tqjeach h o l e c a n be d e t e r m i n e d b y t h e f o l l o w i n g e q u a t i o n s (k): Small hole diameters:
Downloaded by MONASH UNIV on February 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch031
w i bu of Ot Fu op to
We.
=
w
L
Large
hole
,
d
L ' P p
=
2
(3)
a
L
diameters:
Fr^
= _ ί ί _ . ( _ 2 _ ) d -g ΔΡ
(4)
=0,37
T
The v a l i d i t y o f f o l l o w i n g value
d These
Q
=
Li both equations i s separated o f the hole diameter:
2,32 · ( a / p -
equations
D
a r e v a l i d
5
g
)°' · ( ρ / Δ ρ )
5
by the
/
(5)
8
0
f o r g a s / l i q u i d
systems
w e l l
as
as f o r l i q u i d / l i q u i d systems (k)· The swarms o f b u b b l e s p r o d u c e d b y t h e d i s t r i b u t o r moves upward t h r o u g h t h e l i q u i d . Now, the nature o f the bubble motion i s most important f o r t h e develop ment o f t h e p r o c e s s i n the column. A t l o w gas v e l o c i t i e s the bubble h a r d l y hinder each other and the swarm r i s e s u p w a r d i n a r e g u l a t e d manner. This i s c a l l ed t h e "bubbly f l o w regime (5.). P r e s u m i n g a constant bubble s i z e , there i s a maximum v a l u e o f gas t h r o u g h put w i t h i n t h i s bubbly f l o w regime, that can be deter mined by f l o o d i n g p o i n t c a l c u l a t i o n s (6). I f the throughputs a r e increased beyond t h i s p o i n t , a f l o w a l t e r a t i o n takes place. I n order to reach higher buoy ancy forces f o r gas transport, bubble c l u s t e r s o r plugs a r e formed. This i s c a l l e d the "churn turbulent regime" ( 5 ) · 1 1
In Chemical Reaction Engineering—Houston; Weekman, Vern W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
Downloaded by MONASH UNIV on February 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch031
374
CHEMICAL
REACTION
ENGINEERING—HOUSTON
F o r t h e s e two f l o w r e g i m e s f i g u r e 1 shows s c h e m a t i c a l l y t y p i c a l c u r v e s f o r the dependency o f the gas h o l d u p on t h e gas v e l o c i t y . D u r i n g b u b b l y f l o w t h e gas h o l d u p i n c r e a s e s s u p e r p r o p o r t i o n a l l y w i t h t h e gas throughput. With the b e g i n n i n g f o r m a t i o n of bubble c l u s t e r s , these curves are s h i f t e d to the r i g h t because of the c o n t i n u o u s l y i n c r e a s i n g bubble s i z e . This r e s u l t s i n a s u b p r o p o r t i o n a l r i s e o f t h e gas h o l d u p w i t h gas t h r o u g h p u t . I t i s t h e r e f o r e n e c e s s a r y t o d i s t i n g u i s h b e t w e e n t h e s e two f l o w r e g i o n s . A t t h e moment i t i s n o t p o s s i b l e t o s p e c i f y t h e l i m i t s of both regimes. For a rough approximation the f o l l o w i n g c a l c u l a t i o n may be c a r r i e d o u t : W a l l i s recommends t h e f o l l o w i n g e q u a t i o n f o r t h e m o t i o n o f a swarm o f b u b b l e s i n t h e b u b b l y f l o w r e g i m e : (6 )
= ( ι - ε ) Using a batch-type l i q u i d , f o r the r e l a t i v e the f o l l o w i n g h o l d s : w = u / R
The
flooding
D
velocity
ε
(7)
condition i s : du
D
/ άε
=
0
F r o m e q u a t i o n (6) a n d (7) we g e t a t t h e f l o o d i n g a g a s h o l d u p o f 0,5 and the r e l a t i o n s h i p : u
D
=
0,25-Woo
(8) point (9)
F o r a u s u a l r i s e v e l o c i t y o f a s i n g l e b u b b l e o f 23 cm/s, f r o m e q u a t i o n (9) a maximum l i n e a r g a s v e l o c i t y o f 5i7 cm/s a r i s e s . A t h i g h e r g a s v e l o c i t i e s o n l y t h e c h u r n t u r b u l e n t r e g i m e e x i s t s . Y e t , e x p e r i m e n t s show, t h a t f l o w a l t e r a t i o n may a l r e a d y o c c u r a t l o w e r g a s t h r o u g h p u t s. A t hi^te moment e q u a t i o n (6) may be r e c o m m e n d e d f o r t h e c a l c u l a t i o n o f t h e gas h o l d u p i n t h e b u b b l y f l o w r e g i m e . A b e t t e r c o r r e l a t i o n can be o b t a i n e d , i f equations f o r the motion of s o l i d s are m o d i f i e d i n a c o n v e n i e n t way. T h i s h a s a l r e a d y b e e n a c h i e v e d f o r t h e m o t i o n o f d r o p l e t swarms ( 7 ) · T h o u g h t h e c h u r n t u r b u l e n t r e g i m e i s t h e more s i g n i f i c a n t r e g i o n , t h e r e a r e no e q u a t i o n s g e n e r a l l y a p p l i c a b l e t o d e t e r m i n e the gas h o l d u p . Beyond t h i s , most e x p e r i m e n t s have been c a r r i e d out w i t h a i r / w a t e r s y s t e m s . I n o u r e x p e r i m e n t s p r e f e r e n c e was t h e r e f o r e given to the v a r i a t i o n of the system's p h y s i c a l pro p e r t i e s . F o u r l i q u i d s w e r e u s e d u n d e r d i f f e r e n t tem p e r a t u r e s ; experiments under pressure are s t i l l going on b u t n o t y e t e v a l u a t e d . F o r e x a m p l e , i n f i g u r e 2 measurements o f t h e gas h o l d u p a t d i f f e r e n t l i n e a r gas
In Chemical Reaction Engineering—Houston; Weekman, Vern W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
PILHOFER
Parameters in Bubble Column Design
ET AL.
Downloaded by MONASH UNIV on February 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch031
bubbly
flow
Figure 1. Dependency of the gas holdup on the linear gas velocity for different flow regions
0.3-
C O O C ο ο c
»
Q ο
α
α · ο
ο·
δ
ο
t%
*
• Ί ° * *
°· „
·
ο ° . \ ο
°. ν
η α
• 0 ι °· ο
»*
•
8
ο
3
liquid
ndo
butane diol
29.5 6,8
ethylene glycol octanol
11.7
•
3.2
tetrabromo eth 0
5
10
1.7
15 cm/s
gas phase linear velocity u
20
0
Figure 2. Measured gas holdup values for four different liquids as a function of gas linear velocity
In Chemical Reaction Engineering—Houston; Weekman, Vern W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
376
CHEMICAL
REACTION
ENGINEERING—HOUSTON
v e l o c i t i e s w i t h d i f f e r e n t l i q u i d s are p l o t t e d . E v a l u a t i n g o u r own m e a s u r e m e n t s a n d c o n s i d e r i n g t h e r e s u l t s o f K u s t e r s (£0 a n d Hammer/Rahse (9.) , u s i n g c o l u m n s w i t h t h e same d i m e n s i o n s , t h e f o l l o w i n g e q u a t i o n f o r the dependency o f the gas h o l d u p f r o m the l i n e a r gas v e l o c i t y and t h e p h y s i c a l p r o p e r t i e s h o l d s :
Downloaded by MONASH UNIV on February 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch031
——
= 0,115
( u
3
/
( v . g - A p /p c
))
c
0 , 2 3
do)
E q u a t i o n (10) i s v a l i d f o r a c o l u m n w i t h a n i n n e r d i a m e t e r o f 100 mm a n d a c l e a r l i q u i d h e i g h t g r e a t e r t h a n 1200 mm. I n a f u r t h e r s t e p we t h e r e f o r e e x a m i n e d , wèther g a s h o l d u p i s i n f l u e n c e d b y t h e c o l u m n d i m e n sions. In f i g u r e 3 S holdup measurements are p l o t t e d v e r s u s g a s l i n e a r v e l o c i t y . The e x p e r i m e n t s w e r e c a r r i ed o u t i n c o l u m n s w i t h i n n e r d i m e n s i o n s l a r g e r t h a n 150 mm a n d c l e a r l i q u i d h e i g h t s h i g h e r t h a n 1000 mm. F u r t h e r m o r e , t h e e m p l o y e d gas d i s t r i b u t o r s c a u s e d a c h u r n t u r b u l e n t f l o w a l r e a d y a t l o w gas throughputs. I t c a n be s e e n , t h a t a l l t h e v a l u e s a r e d e s c r i b e d b y one r e g r e s s i o n l i n e j w i t h s a t i s f a c t o r y a c c u r a c y . C o n s e q u e n t l y , t h e r e i s no d e p e n d e n c y o f g a s h o l d u p f r o m column d i m e n s i o n s . Because of the agreement of the e x p o n e n t o f t h e gas l i n e a r v e l o c i t y i n e q u a t i o n (10) w i t h t h e r e s u l t s o f f i g u r e 3, e q u a t i o n (10) c a n be r e commended f o r g a s h o l d u p c a l c u l a t i o n s . I t i s p o s s i b l e , t h a t t h e c o n s t a n t v a l u e o f 0,115 m u s t be c o r r e c t e d i n s i g n i f i c a n t l y , a s e q u a t i o n (10) has been d e r i v e d f o r a column o f 100 mm i n n e r d i a m e t e r w h e r e a s f i g u r e 3 f e r s to columns w i t h a d i a m e t e r equal or g r e a t e r than 150 mm. The m e n t i o n e d d e p e n d e n c i e s c o m p l y w e l l w i t h t h e r e s u l t s o f R i q u a r t s ' s c o n s i d e r a t i o n s ( 10 ) f o r . f l u i d i z e d beds. An a d d i t i o n a l f l u i d d y n a m i c p a r a m e t e r t o be d e t e r m i n e d i s t h e i n t e r f a c i a l a r e a a: a s
r e
a
=
6·ε
/ d
3 2
(11)
I n e q u a t i o n (11) t h e g a s h o l d u p c a n be d e t e r m i n e d by e q u a t i o n (10) o r r e s p . (6). Further informations are n e e d e d w i t h r e g a r d t o t h e medium b u b b l e s i z e d . U n f o r t u n a t e l y t h e r e i s n o t much e x p e r i m e n t a l data on b u b b l e s i z e s r e s p . b u b b l e s i z e d i s t r i b u t i o n s due t o the c o m p l i c a t e d m e a s u r i n g methods. For our measurements a new e l e c t r i c m e a s u r i n g d e v i c e (11 ) ,(12 ) was u s e d . A p a r t i a l stream of the d i s p e r s e f l u i d two-phase system i s s u c k e d o f f by a v e r t i c a l f u n n e l c o n n e c t e d w i t h a g l a s s c a p i l l a r y . The c a p i l l a r y d i a m e t e r i s c h o s e n s o , t h a t most o f t h e b u b b l e s a r e d e f o r m e d t o p l u g s . These a r e d e t e c t e d t w i c e b y a s u i t a b l e l i g h t s e n s i n g means t h a t i n f o r m s on t h e l e n g t h o f t h e p l u g s . I f t h e p l u g
In Chemical Reaction Engineering—Houston; Weekman, Vern W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
Downloaded by MONASH UNIV on February 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch031
31.
PILHOFER
ET AL.
Parameters in Bubble Column Design
377
c r o s s - s e c t i o n i s determined by a d d i t i o n a l c a l i b r a t i o n p r o c e d u r e s , the volume o f each p a r t i c l e c a n be c a l c u l a t e d ^ i t i s a n advatage o f t h i s m e a s u r i n g method t o enable high measuring f r e q u e n c i e s . I n f i g u r e 4 m e a s u r e d mean b u b b l e s i z e s a r e shown f o r the a e r a t i o n o f x y l e n e and propanol by n i t r o g e n . The m e a s u r e m e n t s t o o k p l a c e i n a c o l u m n o f 225 mm d i a m e t e r . The m e a s u r i n g h e i g h t w a s 850 mm a b o v e t h e g a s d i s t r i b u t o r , w h i c h was f o r m e d a s a s i e v e t r a y w i t h d i f f e r e n t h o l e d i a m e t e r s . I t can be seen, t h a t t h e s a u t e r mean d i a m e t e r d i s almost independent o f t h e g a s t h r o u g h p u t . K u s t e r s (8^) g o t s i m i l a r r e s u l t s . More d e t a i l e d i n f o r m a t i o n r e s u l t s f r o m a n a n a l y s i s o f b u b b l e s i z e d i s t r i b u t i o n s . These have been a p p r o x i mated b y a l o g a r i t h m i c normal d i s t r i b u t i o n so t h a t t h e v a l u e o f t h e s a u t e r mean d i a m e t e r r e m a i n e d t h e same a s b e f o r e . The c e n t r a l v a l u e s d and the standard d e v i a t i o n s 0£, c a l c u l a t e d i n t h e way m e n t i o n e d b e f o r e , a r e p l o t t e d i n f i g u r e 5- The d e p e n d e n c y o f t h e c e n t r a l v a l u e s o f t h e g a s t h r o u g h p u t i s b a s i c a l l y t h e same a s on s i n g l e h o l e s . A f t e r t h e t r a n s i t i o n o f a l l h o l e s i n t h e j e t t i n g r e g i o n ( u » l cm/s ) a s t r o n g d e c r e a s e o f d_ appears, which f l a t t e n s w i t h higher gas through p u t s . Y e t , i t must be c o n s i d e r e d , t h a t t h e s t a n d a r d d e v i a t i o n s a t f i r s t i n c r e a s e stroPgly w i t h gas holdup, before reaching a constant value. With respect t o t h e p a r a l l e l s t o s i n g l e o r i f i c e s , a f u r t h e r a s p e c t must be n o t e d : t h e b u b b l e s , e m e r g i n g f r o m t h e s i e v e p l a t e , s h o u l d b e n o t l a r g e r t h a n a c e r t a i n maximum v a l u e ; o t h e r w i s e t h e y a r e no l o n g e r s t a b l e a n d d e v i d e i n t o s m a l l e r p a r t i c l e s . A c c o r d i n g t o M e r s m a n n (13)> t h e maximum s t a b l e p a r t i c l e d i a m e t e r r e s u l t s f r o m t h e r e lation : n
Q
d
(12)
P · g
max Taking a l l experiments i n t o account, i f p a r t i c l e s c o l l a p s e , a churn t u r b u l e n t f l o w r e g i o n a l r e a d y appears at lower gas throughputs. I n sieve p l a t e design, t h i s a s p e c t h a s t o be checked a d d i t i o n a l l y . F o r the d e t e r m i n a t i o n o f t h e s i z e o f t h eemerging bubbles, w e l l - known methods l i k e t h a t o f R u f f ( l4) c a n be u s e d . I n d e t e r m i n i n g mean b u b b l e s i z e s i n c o l u m n s , t h e r e i s s t i l l a l a c k o f s u i t a b l e c o r r e l a t i o n s . Even o u r r e s u l t s do n o t e n a b l e m o r e p r e c i s e s t a t e m e n t s . T h e r e f o r e we r e c o m m e n d t o d e t e r m i n e mean b u b b l e s i z e s f r o m e q u a t i o n (12). A c c o r d i n g t o o u r c a l c u l a t i o n s t h e r e i s a n a c c u r a c y o f +_ JO % w i t h r e s p e c t t o m e a s u r e d v a l u e s , i f t h e l i q u i d v i s c o s i t y i s l o w e r t h a n 10 c P . F i n a l l y , the d e t e r m i n a t i o n o f the d i s p e r s i o n c o e f f i c i e n t s i n b o t h p h a s e s i s t o b e t r e a t e d . The
Π0 3
°- 3
atr/water nitrogen /n-proponol atr/glycol 30
40
50
60
relative velocity wR
70 cm/s
Figure 7. Gas phase dispersion coefficient as a function of the relative velocity be tween gas and liquid
In Chemical Reaction Engineering—Houston; Weekman, Vern W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
CHEMICAL
382 N o m e n c l a2 t u r3e : a m /m c kmol/kmol c* / m d_p m dg m d Q m Fr g-" D m /g g m/s HQ m m/s t s u m/s w m/s We χ m ε m /m η |g/ms V m / s ρ kg/m^ Δρ »/" Cf N/m 11
lf
Downloaded by MONASH UNIV on February 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch031
1
subscripts : C D F G L co
REACTION ENGINEERING—HOUSTON
i n t e r f a c i a l area concentration equilibrium concentration hole diameter s a u t e r mean d i a m e t e r column diameter central value d i m e n s i o n l e s s mod, F r o u d e - n u m b e r dispersion coefficient gravitational acceleration clear l i q u i d height mass t r a n s f e r c o e f f i c i e n t time linear velocity velocity d i m e n s i o n l e s s Weber-number length gas holdup dynamic v i s c o s i t y kinematic v i s c o s i t y density density difference surface tension standard d e v i a t i o n
continuous phase d i s p e r s e phase liquid gas hole referring to single
bubbles
Literature cited: (1) Mashelkar R.A., Brit. Chem. Eng, (1970),15,1297 (2) Ploos v. Amstel J.J.Α., Rietema Κ . , Chem.Ing. Techn.,(1970),42,981 (3) Todt J., Lücke J., Schügerl Κ., Renken A., Chem. Engng.Sci.,(1977),32,369 (4)RuffΚ., Pilhofer T h . , Mersmann Α., Chem.Ing. Techn.,(1976),48,759 (5) Wallis G . B . , ASME Int.Dev.Heat Trans.,(1962),319 (6) Lapidus L., Elgin J.C., AIChE J.,(1957),3,63 (7) Pilhofer T h . , Chem.Ing.Techn.,(1976),48,273 (8) K ü s t e r s W., Ph.D.Diss. TH Aachen Germany 1976 (9) Hammer H., Rähse W.,Chem.Ing.Techn.,(1973),45,968 (10) Riquarts H . P . , Verfahrenstechnik,(1977),11,164 (11) Pilhofer T h . , Jekat Η . , Miller H . D . , M ü l l e r J.H., Chem.Ing.Techn.,(1974),46,913
In Chemical Reaction Engineering—Houston; Weekman, Vern W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
31. piLHOFER ET AL. (12) (13) (14) (15) (16) (17) (18)
Downloaded by MONASH UNIV on February 25, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch031
(19) (20) (21) (22) (23) (24) (25) (26)
Parameters in Bubble Column Design
US Pat. 3.818.200 Mersmann Α . , Verfahrenstechnik,(1976),10,641 Ruff Κ . , Chem.Ing.Techn.,(1972),44,1360 Ohki Υ . , Inoue Η . , Chem.Engng,Sci.,(1970),25,1 Badura R . , Deckwer W.D., Warnecke H.J., Lange mann Η . , Chem.Ing.Techn.,(1974),46,399 Hikita Η . , Kikukawa Η., Chem.Eng.J.,(1974),8,191 Towell G.D., Ackermann G.H., 2.Int.Symp.Chem. React.Eng., Amsterdam 1972, Preprints B3 Kastanek F., Nyvlt V., Rylek Μ., Coll.Czech.Chem. Comm.,(1974),39,528 Deckwer W.D., Burckhart R . , Zoll G., Chem.Engng. Sci.,(1974),29,2177 Freedman W., Davidson J.F., Trans.Instn.Chem. Engrs.,(1969),47,251 Akita Κ . , Yoshida F., Ind.Eng.Chem.Proc.Des.Dev. (1973),12,76 Reith T., Chem.Engng.Sci.,(1968),23,619 Towell G.D., Strand C.P., Ackermann G.H., AIChE - I.Chem.E.Symp.Ser.,(1965),10,97 F a i r J.R., Ind.Eng.Chem.Proc.Des.Dev.,(1962),1,33 Jekat Η . , Ph.D.Diss. TU München Germany 1976
In Chemical Reaction Engineering—Houston; Weekman, Vern W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
383