9 Electrodeposition of Carboxyl Containing Copolymers Basic Studies, Phase Growth, Counterion Fixation
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009
A.
E.
RHEINECK
a
and A. M. U S M A N I
Polymers and Coatings Department, N o r t h Dakota State University, Fargo, N. D.
Two copolymers containing the potassium salts of acrylic or methacrylic acid were used in vehicles for electrodeposi tion at a constant voltage (125 volts). Zinc, steel, and tin were used as anodes. Up to 88.8% of the total charge trans ferred was used for anodic dissolution with the vehicle while 72.8%
acrylic
was used in anodic dissolution with
the methacrylic vehicle.
Electrodeposits contained only 0.48
to 0.77 wt % potassium; thus, counterion fixation was slight. NMR
results indicate that electrodeposition has only a minor
effect on tacticity and microstructure
of the
Infrared results confirm that decarboxylation
copolymers. occurs espe
cially at the higher voltages, but molecular weight deter minations indicate that macroradical recombination
is not
extensive.
"Decently
the e l e c t r o d e p o s i t i o n
of o r g a n i c
coating
c o m p o s i t i o n s has
s h o w n g o o d p o t e n t i a l , a n d the c o m m e r c i a l e x p l o i t a t i o n as a m e t h o d of c o a t i n g a p p l i c a t i o n is n o w a r e a l i t y . It has a n d w i l l c o n t i n u e to m a k e a firm i m p a c t i n c o a t i n g a p p l i c a t i o n operations s u c h as the p r i m i n g of a u t o m o b i l e b o d i e s , t h e c o a t i n g of a l u m i n u m extrusions, a n d h o m e a p p l i a n c e parts a n d r e l a t e d objects. H i s t o r i c a l l y , C r o s s e a n d B l a c k w e l l , L t d . (1,2), d e v e l o p e d a n d s h o w e d the possible p o t e n t i a l of t h e a p p l i c a t i o n s of "oleoresinous l a c q u e r s " b y a n e l e c t r i c current.
T o d a y , c o m m e r c i a l systems use v a r i o u s types of w a t e r
s o l u b l e or w a t e r d i s p e r s i b l e p o l y m e r i c c o m p o s i t i o n s . T h e s e are g e n e r a l l y a
Deceased, August 10, 1971. 130
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
9.
RHEiNECK
AND
131
Carboxyl Containing Copolymers
usMANi
carboxyl bearing polymeric compositions inherently insoluble i n water b u t c a p a b l e of c o m b i n i n g w i t h o r g a n i c or i n o r g a n i c bases. T h e c h e m i c a l c o m p o s i t i o n s a n d properties of s u c h systems are d e s c r i b e d b y G i l c h r i s t ( 3 ) , H a g e n (4),
a n d S u l l i v a n ( 5 ) . W h e n a n e l e c t r i c a l p o t e n t i a l is i m
pressed across their aqueous systems, a d e p o s i t i o n o n t h e anode w i l l o c c u r . I n a d d i t i o n to a s o l u b i l i z e d o r d i s p e r s e d r e s i n system, a n electro d e p o s i t i o n b a t h m a y c o n t a i n d i s p e r s e d p i g m e n t s , i o n i z a b l e a n d other c o m p o u n d s as d e s c r i b e d b y G l o y e r et al. (6).
T h u s , ions a n d surface-
c h a r g e d particles i n t h e broadest sense are i n v o l v e d . tinuous electrodeposition
o p e r a t i o n requires
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009
m a i n t a i n a m a t e r i a l balance. c o m p o s i t i o n tends critical.
that
A successful c o n
a l l the
components
H o w e v e r , d u r i n g electrodeposition the bath
to change
u n e v e n l y , a n d u n e v e n changes m a y b e
If the s h i e l d e d areas o n objects to b e electrocoated
p r o p e r l y coated, t h e coatings l a c k t h r o w i n g p o w e r .
are n o t
M e t h o d s to deter
m i n e a n d o v e r c o m e these p r o b l e m s h a v e b e e n discussed b y B r e w e r a n d c o - w o r k e r s (7—10) i n their d e s c r i p t i o n s of t h e F o r d M o t o r C o . ' s electroc o a t i n g process.
I n a s i m i l a r v e i n , a n I t a l i a n process is d e s c r i b e d b y
Bono a n d Pagani ( I I ) . T h e a n o d i c electrode reactions h a v e b e e n s t u d i e d b y L e B r a s H a g e n et al. ( 1 3 ) , a n d M a y a n d S m i t h (14).
(12),
I n a previous report ( 1 5 ) ,
f r o m o u r l a b o r a t o r y , electrode reactions o c c u r r i n g d u r i n g electrodeposi t i o n i n t h e case of a m a l e i c a d d u c t of a p o l y m e r i c p o l y o l - o l e i c a c i d ester neutralized w i t h potassium hydroxide were described.
T h e important
r o l e o f m e t a l l i c cations generated f r o m t h e a n o d e w a s e l u c i d a t e d a n d the extent of cation—polyion i n t e r a c t i o n w a s discussed. F r e s h electrodeposited coatings are c u r e d b y b a k i n g o r m a y b e c u r e d b y i n d u c t i o n h e a t i n g . R e c e n t l y , t w o patents (16, 17) h a v e b e e n g r a n t e d to the F o r d M o t o r C o . T h e s e cover the c u r i n g b y r a d i o c h e m i c a l m e t h o d s a n d electrodeposited coating methods.
T h i s c u r i n g process merges elec
t r o d e p o s i t i o n a n d h i g h energy c u r i n g . T h e r e is n o d o u b t that this merger of processes represents a t e c h n o l o g i c a l a d v a n c e . T h e objective of this p a p e r is to e l u c i d a t e t h e m e c h a n i s m of electro d e p o s i t i o n at constant v o l t a g e w h e n c a r b o x y l c o n t a i n i n g a c r y l i c c o p o l y mers a r e u s e d as e l e c t r o d e p o s i t i o n resins. M e t h o d s i n c l u d e d e t e r m i n a t i o n of t h e mass of t h e electrodeposit as a f u n c t i o n of t i m e a n d charge trans f e r r e d , d e t e r m i n a t i o n of c u r r e n t v a r i a t i o n s w i t h t i m e , analysis of m e t a l content of electrodeposits, a n d i n v e s t i g a t i o n of film structure b y m o l e c u l a r w e i g h t d e t e r m i n a t i o n a n d i n f r a r e d a n d N M R spectroscopy.
T h e metals
a n a l y z e d i n c l u d e cations f o r m e d b y a n o d i c d i s s o l u t i o n a n d p o t a s s i u m ions w h i c h are present as counterions i n t h e e l e c t r o d e p o s i t i o n b a t h .
Since
the r e t e n t i o n o f counterions i n t h e electrodeposit m a y i n f l u e n c e
water
a n d salt spray resistance of t h e film, p o t a s s i u m content is of p a r t i c u l a r interest.
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
132
ELECTRODEPOSITION
O F
COATINGS
Experimental Electrodeposition. T w o a c r y l i c c o p o l y m e r s w e r e u s e d f o r t h e s t u d y ; the c o m p o s i t i o n s are i n d i c a t e d i n T a b l e I. T h e c o p o l y m e r i z a t i o n w a s c o n d u c t e d at 125 =b 2 ° C w i t h 2 - b u t o x y e t h a n o l as t h e solvent. T h e cata lyst w a s a 4 % d i - i e r i - b u t y l p e r o x i d e s o l u t i o n b a s e d o n t o t a l m o n o m e r i n b o t h reactions. T h e final n o n - v o l a t i l e content o f b o t h r e s i n solutions w a s 7 0 . 0 % . T h e a c i d values b a s e d o n solids w e r e 76.0 f o r c o p o l y m e r A a n d 75.0 f o r c o p o l y m e r M (as m g K O H / g r a m s o l i d s ) .
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009
Table I.
Monomer Mole Composition of Electrodeposition Resins
Monomers
Copolymer A, Moles
Copolymer M, Moles
M e t h y l methacrylate n - R u t y l acrylate A c r y l i c acid Methacrylic acid
1.5 4.0 1.0 —
1.5 4.0 — 1.0
B o t h resins w e r e n e u t r a l i z e d to t h e extent of 9 3 % w i t h p o t a s s i u m h y d r o x i d e a n d t h e i r solids adjusted to 7 . 0 % w i t h d e i o n i z e d w a t e r . T h e electrodeposition vehicle obtained f r o m copolymer A w i l l be henceforth r e f e r r e d to as E D V - A a n d that f r o m c o p o l y m e r M as E D V - M . T h e p H of b o t h solutions w a s 8.3. A l l depositions w e r e r u n b y the constant voltage t e c h n i q u e . T h e voltage w a s a p p l i e d p r i o r to i m m e r s i o n of the anode into t h e electro d e p o s i t i o n c e l l . T h e anodes s t u d i e d w e r e t i n , z i n c , a n d c o l d r o l l e d steel. A l l electrodes w e r e 7.5 c m w i d e a n d i m m e r s e d 7.5 l i n e a r c m . T h e total area of the i m m e r s e d surface was 112.5 c m p e r electrode. T h e d e p o s i t i o n v o l t a g e w a s m a i n t a i n e d at 125 volts, unless o t h e r w i s e i n d i c a t e d , a n d the electrode residence t i m e i n the cells w a s v a r i e d f r o m 15 to 90 seconds. It w a s felt that the y i e l d s of the deposit p e r electrode o n 112.5 c m w e r e too s m a l l f o r t h e a n a l y t i c a l w o r k . T h e r e f o r e i n e a c h r u n , a d u p l i c a t e w a s also p r e p a r e d , a n d the d e p o s i t e d films c o m b i n e d . I n other w o r d s , the t o t a l d e p o s i t i o n surface w a s 2 X 112.5 = 225 c m f o r t h e results to be described. A l l panels after e l e c t r o d e p o s i t i o n w e r e w a s h e d a n d d r i e d i n a v a c u u m o v e n at 110 ± 2 ° C . T h e q u a n t i t y of e l e c t r i c i t y i n m i c r o f a r a d s , /xF, w a s d e t e r m i n e d f r o m t h e c o u l o m b i c curves. F o r t w o s i m i l a r runs, t h e y w e r e a d d e d to get the t o t a l μ¥. L i k e w i s e , the w e i g h t s of t w o s i m i l a r deposits w e r e d e t e r m i n e d a n d c o m b i n e d to get t h e t o t a l w e i g h t . Recovery and Analysis of Electrodeposits. T h e electrodes w i t h t h e d e p o s i t e d films after a v a c u u m d r y i n g w e r e exhaustively extracted w i t h m e t h y l e t h y l ketone i n a Soxhlet extractor. T h e extraction w a s c o n t i n u e d u n t i l n o o r g a n i c m a t e r i a l r e m a i n e d o n t h e electrodes. T h i s w a s c h e c k e d b y r e c o r d i n g a surface s p e c t r u m of the electrode i n the i n f r a r e d r e g i o n (18). M e t h y l e t h y l ketone w a s e v a p o r a t e d f r o m the s o l u b i l i z e d p o l y m e r films. T h e solids w e r e t h e n a s h e d at a b o u t 6 0 0 ° C i n a muffle f u r n a c e f o r six hours. A s m a l l p o r t i o n of p e r c h l o r i c a c i d was u s e d to assist the r e m o v a l of t h e o r g a n i c matter. A s controls, p o l y m e r s A a n d M per se, d i d n o t leave a n y r e s i d u e w h e n s i m i l a r l y ashed. T h e i n o r g a n i c r e s i d u e f r o m a s h e d e l e c t r o d e p o s i t e d films w a s d i s s o l v e d i n d i l u t e n i t r i c a c i d . 2
2
2
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009
9.
RHEiNECK AND
usMANi
Carboxyl Containing Copolymers
133
M e t a l contents of the ashed solutions, thus p r e p a r e d , w e r e deter m i n e d b y a t o m i c a b s o r p t i o n spectroscopy (19). F o r atomic absorption analysis, the l i q u i d s o l u t i o n s a m p l e w a s a t o m i z e d i n a flame. M e t a l l i c ions present w e r e r e d u c e d to n e u t r a l atoms. A n O s r a m l a m p w a s u s e d to o b t a i n p o t a s s i u m s p e c t r u m w h i l e h o l l o w cathode l a m p s of i r o n a n d z i n c w e r e u s e d to o b t a i n the spectra of i r o n a n d z i n c , r e s p e c t i v e l y (19). C a l i b r a t i o n curves w e r e p r e p a r e d for a l l the metals w i t h a n a l y t i c a l grade i n o r g a n i c salts. T h e w a v e l e n g t h s u s e d for p o t a s s i u m , z i n c , a n d i r o n w e r e 4665, 2139, a n d 2483 A , respectively. A P e r k i n - E l m e r m o d e l 421 spectrophotometer was u s e d to r e c o r d the i n f r a r e d spectra of electrodeposits. T h e s e spectra w e r e a n a l y z e d to f o l l o w the change i n c a r b o n y l content w i t h d e p o s i t i o n voltage. T h e s t a n d a r d base l i n e t e c h n i q u e c o u p l e d w i t h r a t i o n i n g the peak-areas was used. T h e m e t h o d is d e s c r i b e d b y R h e i n e c k et al. (15, 18). T h e c a r b o n y l content Yco is expressed as f o l l o w s : _
Y c
o
A r e a of c a r b o n y l peak A r e a of h y d r o c a r b o n peak
N M R spectra w e r e o b t a i n e d o n a V a r i a n A 6 0 A h i g h r e s o l u t i o n spec trometer. T h e p o l y m e r c o n c e n t r a t i o n was 2 0 % i n d e u t e r a t e d c h l o r o f o r m . T e t r a m e t h y l s i l a n e w a s u s e d as a n i n t e r n a l s t a n d a r d , a n d spectra w e r e r e c o r d e d at a m b i e n t temperature. N u m b e r average m o l e c u l a r w e i g h t s , M , w e r e d e t e r m i n e d w i t h a M e c h r o l a b v a p o r phase osmometer. B e n z i l , r e c r y s t a l l i z e d three times f r o m m e t h a n o l w a s u s e d to o b t a i n the c a l i b r a t i o n c u r v e . n
Results and Discussion Mass of Electrodeposit. E l e c t r o d e p o s i t i o n i n v o l v e s phase ( i n c l u d i n g phase d i s s o l u t i o n ) . C o h n (20)
extension
s t u d i e d the t a r n i s h i n g of silver
m e t a l b y halogens a n d b y a p p l y i n g the d i s o r d e r t h e o r y o b t a i n e d t w o t i m e dependencies.
M a t h e m a t i c a l l y , this m a y b e represented as f o l l o w s : am + m
2
(1)
= p*t
w h e r e : a is constant T h e a b o v e c o n c e p t c a n be u s e d i n e l e c t r o d e p o s i t i o n w h i c h is essentially a phase g r o w t h process.
T w o l i m i t i n g cases are p o s s i b l e : m is mass of phase g r o w t h ρ is p r o p o r t i o n a l i t y constant t is t i m e of r e a c t i o n
C a s e 1: w h e n t is s m a l l ; m
2
am. 2
m =
(ρ·0
T h u s , E q u a t i o n 1 reduces t o : (2) T h e n , E q u a t i o n 1 becomes:
1 / 2
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
(3)
134
ELECTRODEPOSITION
O F COATINGS
I n F i g u r e s 1 a n d 2, mass d e p o s i t e d vs. t i m e a n d square root of t i m e are plotted f o r zinc anode a n d E D V - A a n d È D V - M respectively.
Both the
a b o v e l i m i t i n g cases ( E q u a t i o n s 2 a n d 3 ) a r e satisfied. O l s o n (21) has suggested a n u n i m p e d e d p h a s e g r o w t h d u r i n g early stages of d e p o s i t i o n . D u r i n g a d v a n c e d d e p o s i t i o n stages d i f f u s i o n t h r o u g h t h e g r o w i n g phase becomes important.
It is also t o b e n o t e d f r o m these graphs that t h e
square root t i m e d e p e n d e n c y is v a l i d u p to 45 sec o f d e p o s i t i o n ; t h e i n t e r c e p t changes, a n d t h e n t h e r e l a t i o n s h i p h o l d s a g a i n . T h i s i n v a l i d a t e s the c o n c e p t u a l c o n s t a n c y o f p. H o w e v e r , o u r results suggest that ρ m i g h t h a v e t w o values, X a n d Y , w h i c h a r e t i m e a n d process d e p e n d e n t .
I n the
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009
case of a c o l d r o l l e d steel a n o d e , t h e a b o v e d e s c r i b e d d e p e n d e n c i e s w e r e n o t o b e y e d f o r b o t h e l e c t r o d e p o s i t i o n vehicles. DEPOSITION 15
ι
Figure 1.
30
1
TIME, 45
1
Sec. 60
1
75
1
90
r
Deposit mass vs. time and square root of time for zinc anode and EDV-A
F i n n a n d H a n s i p (22) h a v e s h o w n m a t h e m a t i c a l l y that t h e r e c i p r o c a l of square of c u r r e n t s h o u l d g i v e a l i n e a r c u r v e w h e n p l o t t e d
against
d e p o s i t i o n t i m e . T h i s r e l a t i o n s h i p is o n l y v a l i d i f t h e specific resistance of t h e deposit r e m a i n s constant d u r i n g t h e entire d e p o s i t i o n p e r i o d . F i g ures 3 a n d 4 are plots o f r e c i p r o c a l of t h e square o f c u r r e n t , 1/c vs. d e p o 2
s i t i o n t i m e , t, at a d e p o s i t i o n voltage o f 125 volts f o r z i n c a n d c o l d r o l l e d steel electrodes r e s p e c t i v e l y .
T h e a b o v e r e l a t i o n s h i p is f o l l o w e d reason-
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
9.
RHEiNECK
AND usMANi
DEPOSITION 15
135
Carboxyl Containing Copolymers
TIME,
30
sec.
60
45
B 0.6 a
'
K E Y
/
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009
2 H 0 +
0
2
2
P r o t o n a t i o n results i n p r e c i p i t a t i o n , a n d t h e p r o t o n c a p t u r e p r o d u c t c o n tributes s u b s t a n t i a l l y to the t o t a l deposit. ( 2 ) T h e i n t e r a c t i o n of p o l y a n i o n s w i t h m u l t i v a l e n t cations b y a n o d i c d i s s o l u t i o n is represented,
generated
f o r example, i n the case of z i n c
anode as f o l l o w s : - I 2+ OH 2
H 0 L 2
I
pry
H 0
+
ι
OH
Ο D
^0
OH
/
,
2
OH
ΛΟΗ
2
2
2
2
/ 0 H
2
OH,
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
144
ELECTRODEPOSITION
(3)
OF
COATINGS
A n o d i c o x i d a t i o n of p o l y a n i o n s m a y y i e l d c a r b o x y l r a d i c a l s .
T h e s e m a y u n d e r g o d e c a r b o x y l a t i o n to m a c r o r a d i c a l s . T h e m a c r o r a d i c a l s m a y c o m b i n e or d i s p r o p o r t i o n a t e to g i v e the deposit.
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009
-C0
2
\O H
OH
Radical Formation
\ OH
—Φ
HO
O^
Coupling Reaction
c
t S
O H
/
N
Φ O H
Ο
OH
(combination)