Highly Efficient Perovskite Solar Modules by Scalable Fabrication and

Jan 2, 2018 - To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells...
0 downloads 0 Views 2MB Size
Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization Mengjin Yang,†,§ Dong Hoe Kim,†,§ Talysa R. Klein,‡ Zhen Li,*,† Matthew O. Reese,‡ Bertrand J. Tremolet de Villers,† Joseph J. Berry,‡ Maikel F. A. M. van Hest,‡ and Kai Zhu*,† †

Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States



S Supporting Information *

ABSTRACT: To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules with a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ∼10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ∼87.3%.

O

most lab-scale devices is not designed to minimize material usage and is incompatible with large-area substrates. Developing scalable deposition processes is essential for the practical application and commercial adoption of PSCs. Scalable solution deposition methods include blade coating, spray coating, slot-die coating, etc.18,19 Most research efforts on scaling up PSCs have primarily focused on the scalable deposition of the perovskite absorber layer, with some of the functional layers, such as the organic hole transport layer (HTL), still deposited by spin coating.20−23 Large-area perovskite modules fabricated using all-scalable deposition methods are still rare, and the performance is usually inferior to their small-area counterparts.24−26 To fully exploit the potential of PSCs, it is critical to develop scalable deposition methods for all of the functional layers in PSC device stacks. To form a solar module, large-area PSCs are normally separated into smaller-area subcells, which are then series interconnected. The solar module integration avoids longdistance charge transport in the conductive substrates, thus reducing parasitic resistive loss; it also increases the total

rganic−inorganic hybrid halide perovskite materials have gained tremendous attention in recent years as a promising candidate for next-generation low-cost photovoltaics (PVs). The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has surged rapidly from 17% can be achieved in the near future. In summary, we demonstrated an approach to scaling up PSCs that includes monolithic interconnects and results in a highly efficient four-cell perovskite module with a stabilized module PCE of 15.6% measured from an aperture area of ∼10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric FF of ∼87.3%. The n−i−p device structure of the modules was fabricated with a fully scalable deposition scheme coupled with the standard scribing scheme used for conventional thin-film PV modules. The TiO2 ETL was deposited by spray pyrolysis, whereas the perovskite absorber layer and spiro-OMeTAD-based HTL were both deposited by blade coating. Key to the module development is control of the monolithic interconnection contact (FTO/ TiO2/Au)from a nonohmic to ohmic behaviorby adjusting the TiO2 ETL thickness without causing significant shunts. The

interconnection between subcells strongly affects the FF of module performance. Because the interconnection is absent in small-area laboratory devices, different considerations of device optimization are needed when transitioning from small-area lab-scale cells to modules, even when the same stack layers are used in both types of devices. Future material/structure innovations to fully resolve the interconnection issue will have great impact on the development of perovskite modules.



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsenergylett.7b01221. Device fabrication and experimental details; microscopic image of P1, P2, P3 scribing; SEM images of different thickness TiO2 and a spiro-OMeTAD surface; corrected J−V curve after eliminating TiO2 resistance; and comparisons of the MAPbI3 and MA0.7FA0.3PbI3 devices (PDF)



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected] (Z.L.). *E-mail: [email protected] (K.Z.). ORCID

Kai Zhu: 0000-0003-0908-3909 Author Contributions §

M.Y. and D.H.K. contributed equally to this work.

Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS The work at the National Renewable Energy Laboratory is supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. We acknowledge support by the hybrid perovskite solar cell program of the National Center for Photovoltaics, funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. K.Z., D.K., M.v.H., and T.R.K acknowledge support by the U.S. Department of Energy/National Renewable Energy Laboratory’s Laboratory Directed Research and Development (LDRD) program. 326

DOI: 10.1021/acsenergylett.7b01221 ACS Energy Lett. 2018, 3, 322−328

Letter

ACS Energy Letters



Processing Techniques for the Upscaling of Perovskite Solar Cell Technology. APL Mater. 2016, 4, 091508. (20) Qiu, W.; Merckx, T.; Jaysankar, M.; Masse de la Huerta, C.; Rakocevic, L.; Zhang, W.; Paetzold, U. W.; Gehlhaar, R.; Froyen, L.; Poortmans, J.; et al. Pinhole-Free Perovskite Films for Efficient Solar Modules. Energy Environ. Sci. 2016, 9, 484−489. (21) Chiang, C.-H.; Nazeeruddin, M. K.; Grätzel, M.; Wu, C.-G. The Synergistic Effect of H2o and Dmf Towards Stable and 20% Efficiency Inverted Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 808− 817. (22) Leyden, M. R.; Jiang, Y.; Qi, Y. Chemical Vapor Deposition Grown Formamidinium Perovskite Solar Modules with High Steady State Power and Thermal Stability. J. Mater. Chem. A 2016, 4, 13125− 13132. (23) Cotella, G.; Baker, J.; Worsley, D.; De Rossi, F.; Pleydell-Pearce, C.; Carnie, M.; Watson, T. One-Step Deposition by Slot-Die Coating of Mixed Lead Halide Perovskite for Photovoltaic Applications. Sol. Energy Mater. Sol. Cells 2017, 159, 362−369. (24) Hwang, K.; Jung, Y. S.; Heo, Y. J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D. Y.; Vak, D. Toward Large Scale Rollto-Roll Production of Fully Printed Perovskite Solar Cells. Adv. Mater. 2015, 27, 1241−1247. (25) Yang, Z.; Chueh, C.-C.; Zuo, F.; Kim, J. H.; Liang, P.-W.; Jen, A. K. Y. High-Performance Fully Printable Perovskite Solar Cells Via Blade-Coating Technique under the Ambient Condition. Adv. Energy Mater. 2015, 5, 1500328. (26) Qin, T.; Huang, W.; Kim, J.-E.; Vak, D.; Forsyth, C.; McNeill, C. R.; Cheng, Y.-B. Amorphous Hole-Transporting Layer in Slot-Die Coated Perovskite Solar Cells. Nano Energy 2017, 31, 210−217. (27) Kim, J.; Yun, J. S.; Cho, Y.; Lee, D. S.; Wilkinson, B.; Soufiani, A. M.; Deng, X.; Zheng, J.; Shi, A.; Lim, S.; et al. Overcoming the Challenges of Large-Area High-Efficiency Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 1978−1984. (28) Booth, H. Laser Processing in Industrial Solar Module Manufacturing. J. Laser Micro/Nanoeng. 2010, 5, 183−191. (29) Rakocevic, L.; Gehlhaar, R.; Merckx, T.; Qiu, W.; Paetzold, U. W.; Fledderus, H.; Poortmans, J. Interconnection Optimization for Highly Efficient Perovskite Modules. IEEE J. Photovoltaics 2017, 7, 404−408. (30) Fakharuddin, A.; Di Giacomo, F.; Palma, A. L.; Matteocci, F.; Ahmed, I.; Razza, S.; D’Epifanio, A.; Licoccia, S.; Ismail, J.; Di Carlo, A.; et al. Vertical TiO2 Nanorods as a Medium for Stable and HighEfficiency Perovskite Solar Modules. ACS Nano 2015, 9, 8420−8429. (31) Zhao, Y.; Zhu, K. Organic-Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications. Chem. Soc. Rev. 2016, 45, 655−689. (32) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316. (33) Yang, M.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y.; Berry, J. J.; van Hest, M. F. A. M.; et al. Perovskite Ink with Wide Processing Window for Scalable HighEfficiency Solar Cells. Nat. Energy 2017, 2, 17038. (34) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells. Nat. Mater. 2014, 13, 897−903. (35) Zhang, F.; Ma, W.; Guo, H.; Zhao, Y.; Shan, X.; Jin, K.; Tian, H.; Zhao, Q.; Yu, D.; Lu, X.; et al. Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells. Chem. Mater. 2016, 28, 802−812. (36) Rong, Y.; Hu, Y.; Ravishankar, S.; Liu, H.; Hou, X.; Sheng, Y.; Mei, A.; Wang, Q.; Li, D.; Xu, M.; et al. Tunable Hysteresis Effect for Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 2383−2391. (37) Hu, Y.; Si, S.; Mei, A.; Rong, Y.; Liu, H.; Li, X.; Han, H. Stable Large-Area (10 × 10 cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency. Solar RRL 2017, 1, 1600019. (38) Priyadarshi, A.; Haur, L. J.; Murray, P.; Fu, D.; Kulkarni, S.; Xing, G.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. A Large Area (70

REFERENCES

(1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050−6051. (2) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. (3) Bi, D.; Yi, C.; Luo, J.; Décoppet, J.-D.; Zhang, F.; Zakeeruddin, S. M.; Li, X.; Hagfeldt, A.; Grätzel, M. Polymer-Templated Nucleation and Crystal Growth of Perovskite Films for Solar Cells with Efficiency Greater Than 21%. Nat. Energy 2016, 1, 16142. (4) Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; et al. Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356, 1376−1379. (5) Ndione, P. F.; Li, Z.; Zhu, K. Effects of Alloying on the Optical Properties of Organic-Inorganic Lead Halide Perovskite Thin Films. J. Mater. Chem. C 2016, 4, 7775−7782. (6) Steirer, K. X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J. J. Defect Tolerance in Methylammonium Lead Triiodide Perovskite. ACS Energy Lett. 2016, 1, 360−366. (7) Yin, W.-J.; Shi, T.; Yan, Y. Unusual Defect Physics in CH3NH3PbI3 Perovskite Solar Cell Absorber. Appl. Phys. Lett. 2014, 104, 063903. (8) De Wolf, S.; Holovsky, J.; Moon, S. J.; Loper, P.; Niesen, B.; Ledinsky, M.; Haug, F. J.; Yum, J. H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014, 5, 1035−1039. (9) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341− 344. (10) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344−347. (11) Zhao, Y.; Zhu, K. Solution Chemistry Engineering toward HighEfficiency Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 4175− 4186. (12) Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V. Making and Breaking of Lead Halide Perovskites. Acc. Chem. Res. 2016, 49, 330−338. (13) Gong, J.; Darling, S. B.; You, F. Perovskite Photovoltaics: LifeCycle Assessment of Energy and Environmental Impacts. Energy Environ. Sci. 2015, 8, 1953−1968. (14) Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; et al. Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance. Science 2016, 354, 206−209. (15) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Lead-Free Solid-State Organic-Inorganic Halide Perovskite Solar Cells. Nat. Photonics 2014, 8, 489−494. (16) Chen, H.; Ye, F.; Tang, W.; He, J.; Yin, M.; Wang, Y.; Xie, F.; Bi, E.; Yang, X.; Grätzel, M.; et al. A Solvent- and Vacuum-Free Route to Large-Area Perovskite Films for Efficient Solar Modules. Nature 2017, DOI: 10.1038/nature23877. (17) Ono, L. K.; Park, N.-G.; Zhu, K.; Huang, W.; Qi, Y. Perovskite Solar Cells - Towards Commercialization. ACS Energy Lett. 2017, 2, 1749−1751. (18) Krebs, F. C. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394−412. (19) Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T. M. Research Update: Large-Area Deposition, Coating, Printing, and 327

DOI: 10.1021/acsenergylett.7b01221 ACS Energy Lett. 2018, 3, 322−328

Letter

ACS Energy Letters cm2) Monolithic Perovskite Solar Module with a High Efficiency and Stability. Energy Environ. Sci. 2016, 9, 3687−3692. (39) Agresti, A.; Pescetelli, S.; Palma, A. L.; Del Rio Castillo, A. E.; Konios, D.; Kakavelakis, G.; Razza, S.; Cinà, L.; Kymakis, E.; Bonaccorso, F.; et al. Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area. ACS Energy Lett. 2017, 2, 279−287. (40) Remeika, M.; Raga, S. R.; Zhang, S.; Qi, Y. Transferrable Optimization of Spray-Coated PbI2 Films for Perovskite Solar Cell Fabrication. J. Mater. Chem. A 2017, 5, 5709−5718. (41) Cai, C.L.; Liang, L.; Wu, J.; Ding, B.; Gao, L.; Fan, B. Large Area Perovskite Solar Cell Module. J. Semicond. 2017, 38, 014006. (42) Liao, H.-C.; Guo, P.; Hsu, C.-P.; Lin, M.; Wang, B.; Zeng, L.; Huang, W.; Soe, C. M. M.; Su, W.-F.; Bedzyk, M. J.; et al. Enhanced Efficiency of Hot-Cast Large-Area Planar Perovskite Solar Cells/ Modules Having Controlled Chloride Incorporation. Adv. Energy Mater. 2017, 7, 1601660. (43) Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature 2015, 517, 476−480. (44) Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angew. Chem., Int. Ed. 2014, 53, 3151−3157. (45) Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 2016, 28, 284−292. (46) Deng, Y.; Dong, Q.; Bi, C.; Yuan, Y.; Huang, J. Air-Stable, Efficient Mixed-Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer. Adv. Energy Mater. 2016, 6, 1600372.

328

DOI: 10.1021/acsenergylett.7b01221 ACS Energy Lett. 2018, 3, 322−328