Mass spectrometry - ACS Publications - American Chemical Society

Data Analysis/Chemometrics. Balke (E31, E32) reviewed and critically examined the use ..... Hirose and Ishii (Kl) described the con- struction of seri...
0 downloads 0 Views 3MB Size
AMI. Chem. 1990, 6 2 , 3 8 1 R-39413 (R15) Novakovk, J.; Agbaba, D.; Zlvanov-Staklc, D.; olisovic, L. J . phann. &be1888, 44, 230-234. (RIB) Sashldher, R. 6.; Sudershan, R. V.; Ramakrlshna. Y.; Nahdi, S.; Bhat, R. V. Analyf (London) 1988, 113. 809-812.

8. Toxkrr (SI) BetIna, V. J . ChrOmetOgr. 1989, 477, 187-233. (S2) Scott,P. M. F w d A m . Ccntam. 1888, 6,283-305. (S3) Shepherd, M. J.; Mortlmer, D. N.; Gilbert, J. J . Assoc. Public Anal. 1987, 25. 129-142. (54) Wilson, D. M. Arch. Envkon. Contam. Toxlcol. 1989. 18, 308-314. (55) Abramson, D.; Thorstelnson, T.; Forest, D. Arch. Envkon. Contam.

-.

raxlm. . -. -. . iaaa. .- - 18.327-330 .- , - -. - - -. (S6) Frisvad, J. C.; Flltenborg, 0.; Thrane, U. Arch. Envkon. Contam. Toxicd. 1888. 18. 331-335. (57) Tomllns, K.'I.; Jewers, K.; Coker, R. D. C h f ~ f o g r 8 p h l e1888, 27. 67-70. (S8) Boyacioglu, D.; Gonul, M. J . Assoc. Off. Anal. Chem. 1888, 7 1 , 280-282. (S9) Kublcek. E. M.; Franz, K.; Hober, H. G. Emehrung (Vknna) 1988, 12, 302-305. (SIO) Coker. R. D.; Jewers, K.; TomHns, K. I.; Biunden. G. Chromefop8phia 1888, 25, 875-880. 6 1 1 ) Anon. (Swk.) SU, Schwek. Lab.-.?. 1987, 44, 473-474. Chem. Abstr. 1888, 108, 73902d. (512) Enjalbert, F.; Bouvier, M. J.; Andary, C. J. chromefogr. 1989, 462, 442-447. (S13) (3uenero. M.; Pineyro, A.; Waksman; N. Toxicon 1887, 25, 565-568. 614) Tomllns, K. I.; Jewers, K.; m e r , R. D.; Nagler, M. J. chromatogrephle 1888. 27. 49-52. (SI@ Wang. Y . C.; Yang, C. K.; Ling, K. H. J. Clin. Blochem. Soc.1987, 16, 47-53. T. Mbcrllaneow Orgnnk Compounds

Bhushen, R.; Aii, 1. Arch. -rm. (Welnheim, Oer.) 1987, 320, 1186-1 187. (T2) Mandrou, 6.; Charlot, C.; Tsobze, A. D. Ann. Feklf. Expert. C h h . TOXlcol. 1888, 81, 323-332. chem.AbStr. 1889. 110, 55866g. (T3) Brasseur, T.; Angonot, L. Bull. Llakon-(;roupe polyphenols 1986, 13, 139-141. Chem. Abstr. 1988, 108, 4408W. (T4) Dondi, F.; OrasslnCStrazza, G.; Kahie, Y. D.; Lodi, 0.; Pletrogrande. C.; Reschlgilan, P.; Blghi, C. J . Chfomatogr. 1989, 462, 205-217. (TS) Klotz, H. Tern&, Swfactanfs, Detefg. 1887, 24, 370-373. Chem. Abstr. 1988, 108, 160593~. (T6) Csefhatl, T.; Somogyi, A. J . Chromatogr. 1888, 446, 17-22. (T7) Nishkata, M. J. Chromatcgr. 1987, 408, 449-452. (T8) De Splegeber, B. M. J.; Llevens, D.; Siegers, G.; Van den Bossche, W.; De Moerloose, P. J . Plenar Chromfogr.--Mod. nc 1888, 7 , 148-149. (T9) De Splegeleer, 8. M. J.; De Moerloose, P. J. Planar Chromafcgr.m. nc 1888, i,61-64. ( T l O ) De KrujH, N.; Rijk, M. A. H.; Pranoto-Soetardhi, L. A.; Schouten, A. J . chrometoqr. 1887, 410, 395-411. ( T i l ) Davldkova, P. J. Inf. Rec. Meter. 1888, 16, 121-132. (T12) K m . D.; Hartmann, M.; Stein, A.; Schnabelrauch, M.; Spangenberg, S.; (3rOSs. M.; Kiepei, M.; Jumar, A. J . C h l o g r . 1888. 438, 122-125. (T13) Munavaill, S.; Panneila, M. J . Chromatogr. 1988, 437, 423-428. Tetenyi, P. Acta phann. Hung. 1887, (T14) Kery, A.; Turlak, 0.; Zambo, I.; 57, 228-238. (TI51 Ranny, M.; Pokorny, J. J. Pianar Chfom8fogr.-Mod. n C 1988, 7 , 255-257. (T16) Bkg8nowsk8, M. L.; Glowniak, K. Chromatographla 1888, 25, (TI)

. .-.

I.l.l .- 1 1 8

(T17) Zogg, G.; Nyiredy, S.; Stlcher, 0. J. Li9. Chromatcgr. 1987, 10, 3605-3621. (TIS) Sherma, J.; Schafer, S. L.; Morris, K. J. Liq. Chromafogr. 1887, 70, 3585-3593.

(T19) Shema, J.; Pilgrim, M. J . Plenar chromefogr.--Mod. TLC 1988, 1 , 360-3131, (T20) Lawson, D. R.; Danehower, D. A. J . Chromafogr. 1988, 463, 429-440. (T21) Juhasz, 0.; Kozma, P.; Urbanyi Sesztak, M. Roc. Inf. Conf. Role Formahhy& B M . Sysf., 2nd 1987. 203-207. Chem. Abstr. 1888, 109, 20283s. (T22) Heimler, D.;VMrich. V. J . Chromafogr. 1888, 448, 301-305. (T23) Haensei, W.; Stroemmer, R. Msch. Lebensm.-Rundsch. 1987, 83. 315-319. Chem. Abstr. 1988, 708, 36371). (T24) Funk, W.; Heinz. B.; Michel, H.; Vonderheid. C. GIT-Suppl. 1987, ( 3 ) , 4-6, 9-11. Chem. Abstr. 1988, 108, 27007t. (T25) ECAgamy, R.; Hofmann, H.; Seifert, G. phann. Ztg. 1888, 733, 87-89. Chem. Abstr. 1888, 109, 79818~. (T26) Duez. P.; Chamart, S.; Hanocq, M.; Sawadogo, M. J . Plenar chrometogr.-Mod. nc 1888, 7,313-316. U. Inorganic8 and Molal-Organla (UI) Robards, K.; Clarke, S.; Patsalides, E. Analyst (London) 1888. 113. 1757-1779. (U2) Deshmukh. I.; Kharat, R. B. J . Liq. Chromafogr. 1888. 72, 937-947. (U3) Dabrai, S. K.; Muktawat, K. P. S.; Rawat, J. P. Anal. Left. 1988, 21, 6 13-620. (U4) Nath, K. V. S.; Tendon, S. N. J . Liq. Chromefogr. 1988, 7 7 , 1433- 1439. (US) Mohammad, A.; Fatima, N. c h f ~ f o g r 8 p h k r1988, 25, 536-538. (U6) Ajmai, M.; Mohammad, A.; Fatima, N.; Khan, A. H. J. Planer ChromafOgr.-Mod. n C 1988, 1 , 128-134. (U7) Ajmai, M.; Mohammad. A.; Fatima, N.; Ahmad. J. J . Planar Chromafogr.-Mod. n C 1988. 1 , 239-245. (U8) AJmal, M.; Mohammad, A.; Fatima, N. Indian J . Chem., Sect. A 1888, 28A, 91-92. (U9) AJmai, M.; Mohammad, A.; Fatima, N. Mlwmhem. J . 1988, 37, 314-321. (UIO) Shimizu, T.; Suzuki, Y.; hose, C. Chromatogfephia 1987, 2 3 ,

----.

R A R R50 -1-

(U1I ) Shlmizu, T.; Arikawa. N.; Mlyazak, T.; Nonaka, K. J . Plenar Chromatogr.-Mod. nc 1980,2,90-92. (U12) Rajput, R. P. S.; Misra, A. K.; Agrawal, S. J . Planar Chromatcgr.Mod. TLC 1988. 1 . 349-350. (U13) Ninomlya, S.; Takeda, N.; Ish&, K. Fresenlus' 2.Anel. Chem. 1888, 332, 798-801. (U14) Mohammad, A.; Fatima, N. Chromafogf8phia 1987. 23, 653-656. (U15) Kuroda, R.; Ishlmaru, S.; Oguma, K. Anel. Sci. 1988, 4 , 667-669. (Ul6) Kuroda, R.; Adachi, M.; Oguma, K. ChfOm8fOgraphia 1988, 25, 989-992. (U17) HadzlJa, 0.; Tonkovlc, M.; Iskric, S. J. Li9. Chromatcgr. 1987, 10. 3673-3679. (U18) Ajmai, M.; Mohammad, A.; Fatima, N.; Ahmad, J. J . Pkrnar Chromatogr.--Mod. nc 1988, 1,329-335. (U19) Upadhyay, R. K. Chromatcgraphia 1888, 25, 324-326. (U20) Vuckovic, G.; Mailnar, M. J.; Celap, M. B. J . Chromafogr. 1888, 454, 362-366. (U21) Bottura, G.; Pavesi, M. A. Mlcrmhem. J. 1887, 35, 223-226. (U22) Tomboullan, P.; Walters, S. M.; Brown, K. K. Mi&rochim. Acfa 1987, 2 , 11-19. (U23) Vuckovic, G.; Juranlc, N.; Celap, M. B. J . Chromafogr. 1988. 367, 217-221. (UG) Sihuster, M.; Koenig, K. H. Fresenius' 2.Anel. Chem. 1988, 331, 383-386. Chem. Abstr. 1989, 110, 17771q. (U25) Haworth. D. T.; Lunkenheimer, J. K.; Das, M. J . Liq. Chromafogr. 1987, 10, 1327-1348. (U26) Ray, R. K.; Kauffman, G. 8. J. Chromafogr. 1988, 442, 381-385. (U27) Janjic, T. J.; Tesic, 2. L.; Vuckovic. G. N.; Celap, M. B. J . Chromatwf. 1887, 404, 307-312.

Size Exclusion Chromatography Howard G. Barth* and Barry E. Boyes Du Pont Company, Central Research & Development Department, Experimental Station, P.O. Box 80228, Wilmington, Delaware 19880-0228

INTRODUCTION Size exclusion chromatography (SEC), also referred to as gel permeation chromatography (GPC)or gel filtration chromatography if aqueous mobile phases are used, is the premier technique for rapidly determinin the molecular weight distribution of macromolecules. Unfike other liquid chromatogra hic techniques, solutepacking interactions are absent and t i e separation mechanism is based on molecular size. 0003-2700/90/0362-381R$O9.50/0

During this review period, several ma'or trends have become apparent with respect to SEC. There has been less emphasis on theory and band broadenin and more attention placed on the use of molecular-wei Et-sensitive detectors (light scattering and viscometry) for fetermining absolute molecular weight distributions and for measuring polymer branching. By employing information-rich detectors or multidimensional chromatographic approaches, SEC is now being used more often for the characterization of copolymers, as well as for biopolymers. The development of new analytical SEC 0 1990 American Chemical Society

381 R

SIZE EXCLUSION CHROMATOGRAPHY

packings appears to have leveled off; 5-10-pmparticle size packings consisting of either deactivated silica (mainly “diol” stationary phases) or hydrophilic polymeric supports are used for water-soluble polymers, while cross-linked polystyrene is still the packing of choice for organo-soluble polymers. This biennial review covers fundamental developments in SEC during the period of December 1987 to December 1989. Our data bases were mainly CA GPC Selects, Chemical Ab-+-acts, and Biosis. Please note that this review is a continuation of the SEC review sections that have been published in past Column Liquid Chromatography Fundamental Reviews in this journal. Because of the growth of this area, a se arate article devoted to SEC was considered necessary. b e have attempted to critically select only those references that reflect fundamental developments. Because of the wide acceptance of high-performance SEC, especially in the biochemical community, we have also included a table of selected applications that we believe should be useful. In addition, appropriate foreign-language articles are included in this review, in which Chemical Abstract references are given. Finally, we gratefully acknowledge and appreciate the excellent and thorough search strategies developed by Neil Feltham, Central Research and Development Department, Du Pont.

A. BOOKS AND SYMPOSIA During this review period two boob on SEC were published

( A I , A2), including a volume on molecular weight measurementa (A3). Dubin’s book on aqueous SEC (AI) consists of 15 chapters covering separation mechanisms, band broadening, calibration, packing structure, mobile-phase optimization, q d packing selection. The application chapters cover inorganic compounds, biopolymers, inverse SEC, and the use of SEC to stud associatin systems. The gook on SEE by Hunt and Holding (A2),consisting of 10 chaDters. is a more eeneral reference on SEC. The first art of the b&k reviewctheory, instrumentation, and CaliEration. The application sections deals with high-temperature SEC, co lymer analysis, SEC of small molecules, and aqueous SEC. e last part of the book reviews field-flow fractionation, supercritical fluid chromatography, and hydrodynamic chromatography. A recently ublished book on molecular wei ht measurements, editeg by Cooper (A3), describes in jetail all the classical techniques including polymer fractionation, SEC, phase distribution chromatography, field-flow fractionation, and supercritical fluid chromatography. Although not dealing directly with SEC, Com ton’s book on polymer analysis (A4) is a worthwhile text for Jose involved with synthetic polymers. The proceedings of the First International S posium on Polymer Analysis and Characterization (ISPAG&), which was held in Toronto in 1988, consists of a number of papers covering chromatographic, spectroscopic,and thermal methods er analysis. The roceedings of the International ymposium ’87 (A6), eld in Chicago in 1987, contains apen covering all aspects of SEC. Proceedings of the Second b P A C meeting (Austin) and the International GPC Symposium ’89 (Boston), which were held in 1989, are scheduled for publication in 1990.

:%P

R

B. REVIEWS A listiny of application-specific reviews is iven in the reference %”section and is arranged by topic. &me of these are discuseed in the appropriate topic sections. A good general review of SEC was presented by Yau et al. (BI). Dawkins (BZ) and Takamatsu (B3) presented general reviews of SEC that were oriented more toward polymer characterization. Fisher (B4)published a comprehensive survey on the retention processes of SEC. A useful presentation of SEC for small molecules can be found in an article by Bidlingmeyer and Warren (B5). Reviews dealin with the principles of rotein SEC were written by Hagel (%6) and by Welling an: Welling-Wester (B7).

C. THEORY Gorbunov and co-workers ( C I , C2)reviewed the theory of

SEC with emphasis on determining packing ore size and structure (inverse SEC). Brochard et al. ( C 3 , 8 4 )developed 382R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

a model that relates the fractal nature of ackings to SEC elution behavior. The fractal dimension orthe pore surface was derived from the slope of a plot of the log of the polymer radius versus log (1- Kd) where Kd is the distribution coefficient. Waldmann-Meyer (C5) discussed the relationshi of pore size and polymer concentration and radius as re8cted by a proposed eometrical exclusion model. With tiis a roach, it was possihe to distinguish between globular, rodife, and random-coil molecules, as well as to calculate a number of fundamental molecular parameters. Schnitzer (C6)formulated general expressions for the steric partition behavior of molecules in both random and ordered membrane structures. The mean effective exclusion volume for a molecule was calculated as a function of a global interaction energy, which varies with the position, conformation, and orientation of the molecule. This approach was applied to SEC and gel electrophoresis. Vilenchik et al. (C7) investigated the viscometric behavior of poly(amic acid)s in which a change in slope of log intrinsic viscosity versus log molecular weight was observed, implying a decrease of polymer draining with increased molecular weight. This phenomenon affected the hydrodynamic dimensions as determined from SEC. Men et al. (C8) measured diffusion coefficients of proteins on a T8K-SW column and correlated these results to protein molecular weight. Deviations from this correlation were attributed to protein polydispersity. Poitevin and Wahl (C9) determined the translational diffusion coefficients of dextran in Sephadex packings. This was accom lished using fluorescent recovery after photobleaching of extran labeled with fluorescein isothiocyanate. Adachi et al. (CIO)measured the distribution, intraparticle diffusion, and axial dispersion coefficients of maltooligosaccharides on a hydrophilic vinyl SEC packing. Koo and Wmkat (C11) compared results obtained with size exclusion parametric pumping with predictions using local equilibrium and dispersion models. (In parametric pumping, the porosity of the bed is changed by heating and cooling.)

cf

D. BAND BROADENING Yau and Rementer (01)developed a computer algorithm that corrects for column dispersion errors when using universal calibration with an online viscometer. Billiani et al. ( 0 2 ) presented a computational procedure for axial dispersion correction with a LALLS detector. Tuan and Kausch ( 0 3 , 0 4 ) developed a theory that permits the determination of band- broadening by utilizing chromophore-labeledpolystyrene and UV detection. Gugliotta et al. ( 0 5 ) described a method for instrumental band broadening correction using a stochastic matrix approach based on Weiner filtering theory. Omorodion and Hamielec (06) evaluated a proposed instrumental spreading shape function for the estimation of the peak dispersion coefficient. Cheng and co-workers (07)determined the variance of the instrumental spreadin function using polystyrene standards. An equation was devefoped that related the spreading factor to elution volume.

E. CALIBRATION General

A one-point method for calibration with pol disperse polystyrene standards was demonstrated by Li an$Lu (El). Zhang et al. (E2) compared and evaluated several methods for obtaining molecular weight data from SEC and intrinsic viscosity measurements. Calibration using multiple polydisperse standards was reported by He and Meng (E3). Szewczyk (E4)studied the conver ence of numerical procedures used for calibration. Ito a n f Aoyama (E51 derived an equation for calculatin the intrinsic viscosity of a low-molecular-weight, broad-dstribution polymer. Chen (E6) reported that the results obtained from nonlinear calibration curves were more accurate than those obtained from linear calibration curves. Mori (E7) described a procedure for determinin the molecular weight distribution of poly(ethy1ene tereptthalate) (PET) in which poly(methy1 methacrylate) was used as a secondary standard and polystyrene as a primar standard. measured the molecular weight Jstribution Zhou et al. (E&?)

SIZE EXCLUSION CHROMATOGRAPHY Howard 0. Barlh is a member of the research staff 01 the Ansiytical Division of me Central Research & Development Department 81 Du Pont Experimental Station. Wilmington. DE. Before joining DU Pant in 1988. he was a Research Scientist and Group Leader at Hercules Research Center. He received his B.A. (1969) and W.D. (1973) in analytical Chemistry from Northeastern UniversW. He 1s a heqwnt lecturer of Shad courses sponsored by the ACS Polymeric Materials Science and EngineerIng Dlvision. His spaciakies include polymer exclu~lon characterlzation. size chromatography. and hlgh-pertwmance liquid chromatography. He has published over 43 papers m these and related areas and has also d l e d a book. Modem Methods of Parficle Size Analysis. wblished bv Wile". and two SVmDOsiUm voiume6 on oolvmer characterizaiion. Earth war G'the lnstruienitation Advisory Panel'of 'Anatyifcal Chemisfry and was ASSOCIBIBEdnor 01 the Journal of Applied Polymer Science. He is cofounder of the International Symposium on Polymer Analysis and Characterization and is past Chairman of the Delaware Section of the ACS. Dr. Earth is a member of the ACS divisions 01 Analyticai Chemistry. Polymer Chemistry. and Polymeric MaterYlS Science and Engineering.the AAAS, and the Delaware Valley Chromatography Forum. He is also a Fellow of the American InstitUte of Chemists.

I

any E. ~ o y isn a vlsning sckmist WM me Anaiytical DiviSIOn of the Cennal Research d Development DepaRment at Du Pont Exprimental Station. Wiimingtoon. DE. H% received his B.Sc. in biochemistry st the University 01 Alberta (Edmonton. Aka.) in 1982. Barry then obtained the M.Sc in neuoiogicai sciences (1985) at the Unlversny 01 British Columbia (Vancouver, B.C.) under me direnlon of Dr. S. C. Sung. He recently completed his FhD. in neuroscienceat the University 01 BTklsh Columbia under the guidance of Dr. Edith G. McGeer. His published wwks include protein and nucleic acid isolation and Dhvsicochemical Characterization and the &cation of neurochemical and molecular biological approaches lo the study of neurodegenerativediseases. His current research activitm are in the application 01 hydrodynamic and chromatographic methods to the study 01 biopolymer structure and Confornwtion.

of PET using well-characterized polydisperse PET samples. A method was described by Konkina and co-workers (E9)for determining the molecular weight distribution of cellulose nitrates using polydisperse samples of known viscosity. Volk et al. (EZO)reported that unsatisfactory results were obtained in a round-robin study of the SEC of nitrocellulose. A calibration approach has been reported for 1-decene oligomers (EZZ). Meyer and Johnson (E12) described a self-calihration procedure for oligomeric liquid crystalline polymers. Low molecular-weight epoxy samples were used for calibrating epoxy resins (E13). Cahre et al. (E141 reported on the accuracy and precision of determining hydrodynamic parameters of glohular proteins obtained hy inverse regression from SEC data. The usefulness of SEC for determining Stokes radius was also discussed. Rihela and Bartolini (E15) described a technique for detrmining the Stokes radius of radioiodinated proteins hy SEC. De Haen (E161 reviewed the physiochemical parameters of ferritin and apoferritin as related to their use as standards for SEC and gel electrophoresis. Universal Callbration

Tsitsilianis et al. (EZ7)proposed an indirect calibration method based on the conversion of an experimental calibration curve to another polymer using universal calibration and a new intrinsic viscosity-molecular weight relation. This indirect calibration curve is especially useful for the low-molecularweight region, where the method based on the Mark-Houwink equation gives erroneous results. Saito and co-workers (E18) also examined a method for obtaining reliable molecular weight data for low-molecular-weight polymers. Mendelson (E19) developed general intrinsic viscosity relations for copolymers and terpolymers for universal calibration. Gorbunov and co-workers (E20, E2Z) determined

pol mer polydispersity using universal calibration without prezminary calibration with standards. Zhang and Yang (E%') described a method for estimating molecular weights of polymers with unknown Mark-Houwink constants from intrinsic viscosity and SEC data. Universal calibration was successfully used for the characterization of ethylene-propylene copolymer (E.231, polysulfone (E231, and polyamide (E24).

Duhin and Principi (EZ5, E26) studied the applicability of universal calibration for globular, rodlike, and random-coil conformations, and found that rodlike macromolecules (DNA and schizophyllan) did not follow universal calibration. Le Maire et al. (E27)also demonstrated that universal calibration did not hold for large SDS-protein complexes and other elongated macromolecules. This group concluded that for steric reasons, SEC is more sensitive than hydrodynamic measurements to the detailed conformation of rods and random coils and that SEC cannot he universally calibrated for all kinds of macromolecules. Universal calibration was applied to plant-gum polysaccharides (gum arabic and silk oak gum) (E28),gelatin (E29),and pectin (E30). Data AnaiysislChemometrics

Balke (E31,E321 reviewed and critically examined the use of chemometrics (nonlinear regression, graphics, and error propagation) in SEC as applied to calibration and LALLS and viscometry detector sensitivity. Balke (E33,E34) also applied various aspects of chemometrics for data anal sis of hi h temperature SEC of polypropylene. Meira and iarcia-Rufio (E351 described the measurement of the joint distribution of molecular weights and composition in linear copolymers. Rodriguez (E36) presented a formalism to correct the composition distribution of linear copolymers in which the refractive index increment depends on chemical composition. Dickens and McCrackin (E37, E38) wrote a series of computer programs for data collection and processing. Long et al. (E39) reported on an SEC software package. Pang and cwworkers (E401 described an automated data acquisition and analysis system for high-temperature SEC that utilizes LALLS, viscometry, mass detection, and a differential refractometer. Griffith (E411 described a computer simulation program geared for students for the separation and analysis of samples. A Kalman filter algorithm for the continuous estimation of chain length distribution of polystyrene during polymerization was reported by Papadopoulou (E42).

F. NONSIZE EXCLUSION EFFECTS Shear Degradation

Ye et al. V I )studied the effect of flow rate and the nature of the solvent on shear degradation of polystyrene, polybutadiene, poly(viny1acetate), and ply(methy1 methacrylate). Sample overloading and degradation of polystyrene were studied with an online low-angle laser light scattering detector (FZ). Concentratlon Effects

Song and eo-workers (F3) presented a theory of concentration effects for polydisperse polymers based on hydrodynamic volume reduction and viscosity phenomena. This model predicted the effects of concentration on elution volume, axial spreading, and peak skewing. These authors also reported on a procedure for determining the second virial coefficient of polymers from concentration effects (F4, F5). Mourey et al. (F6) studied the solution properties of poly[bis(trifluoroethoxy)phosphazene]and found that concentration-induced chain compression was more severe in a good solvent as compared to a poor solvent. Ousalem and Busnel (F4)discussed concentration effects for several polymer types. Hydrodynamic Effects

Boyes e t al. (FS)discovered that high-molecular-weight (>5000 base pairs) double-strand DNA was retained on a Bioseries GF-250 SEC column. Retention increased linearly as the square root of chain length. Lower molecular weight DNA samples were separated by size exclusion. Adsorption was ruled out as a possible retention mechanism. Hirahayashi ANALYTICAL CHEMISTRY, VOL. 62. NO.

12. JUNE 15, 1990

383R

SIZE EXCLUSION CHROMATOGRAPHY

and Kasai (F9) confirmed this phenomenon using both silica-based and polymeric-based packings. A possible explanation proposed by these authors is a molecular sieving mechanism. Cheng and Hollis (FIO)studied the effect of flow rate on the elution of polystyrene using different types of packings. Elution volume was found to increase with flow rate. Adsorptlon Effects and Moblle Phase Selection

Nonsize exclusion effects in SEC were reviewed by Barth (FII). This paper covered electrostatic interactions, concentration effects, polymer shear degradation, ultrafiltration, and hydrodynamic effects. Adsorption of polymers during SEC was reviewed by Aptel et al. (F12). Methods of reducing metal-ligand interactions on SEC packings were resented by Martin (F13). Sunaga and coworkers (F14) iscussed a procedure for methylating residual carboxyl groups in SEC packings. For increased solubdi in a number of mobile phases, nylon was derivatized with tri uoroacetic anhydride (F15). Amines and olyamides were derivatized with o-phthalaldehyde prior to SEC analysis (F16). The effects of mobile phase composition, pH, and ionic h on the SEC elution behavior of proteins were studied by ori and Kat0 (F17),Johansson and Gustavsson (F18), Potschka (FI9),and Dubin and Principi (F20). The influence of various electrolytes spanning the Hofmeister series on the adsorption of aromatic compounds was reported by Cacace and Sada (F21). Goheen (F22)discussed the influence of pH and acetonitrile content on the SEC elution of proteins. The SEC properties of hemoglobins were investigated by Adachi and co-workers (F23) and Dyr and Suttnar (F24). Using a vinyl alcohol copolymer packing, Hirata et al. (F25) encountered a mixed-mode separation for proteins. Fatty acid binding proteins were also separated b a mixed-mode retention mechanism (F26). The retention Lhavior of aliphatic carboxylic acids using cation-exchange packin was attributed to a combination of several interactions includiin SEC (F27). Watson and Kenney (F28) observed hydropho%icretention of proteins using a low H mobile phase. In a series of papers, Agad and associates (F29-F32) studied the SEC behavior of sodium poly(styrene sulfonate) under different mobile phase conditions. Mori (F33),Dublin et al. (F34),and Styring et al. (F35)investigated the effect of mobile phase ionic strength on the elution of sodium poly(styrene sulfonate). Hejzlar (F36)and Matsubara (F37) described the effect of salts on the adsorption of organics on Sephadex packings. Thiouracil was used as a test compound to study the adsorptive properties of Sephadex (F38). SEC of polymers on a vinyl alcohol copolymer packing with chloroform and methanol as mobile phases was reported by Mori (F39,F40). Noguchi et al. (F41)found that a high (>60%) concentration of acetonitrile is needed for SEC of nonionic surfactants using a vinyl alcohol copolymer packing. Nonsize exclusion effects and mobile phase optimization were reported for cellulose nitrate (F42),lignin (F43, F44), polyamic acids (F45, F46),.poly (acrylic acid) (F47), poly(amide-imide) (F48)poly(viny1pyrrolidone) (F49),asphalts (F50), polycyclic aromatics (F51),and alkyd resins (F52).

f

'X

skez

G. DETECTORS M o l e c u l a r - W ~ h t - S l v eDetectors

For related papers in this area, see also sections on Comositional Heterogeneity/Branching and Physiochemical hudies. Light Scattering Detectors. Prochazka and Kratochvil (GI)presented a detailed analysis of the errors that can occur when using online low-an le laser light scattering (LALLS) detectors. Stuting et al. fG2) reviewed the theory and bioP O l rer applications of LALLS as an online detector for SEC an other chromatographic modes. Polysaccharide characterization usin online LALLS was given by Corona and Rollings (G3). 4 he use of LALLS for membrane proteins was covered by Hayashi and associates (G4, G5). Analysis of rubbers with online LALLS was discussed by Honma and Tazaki (G6). The principles and applications of multiangle laser light scattering photometry for synthetic polymers and biopolymers 384R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12,JUNE 15, 1990

have been presented by Wyatt and mworkers (G7-G10). This detector was also used to characterize linear polyethylene (GII). An online dynamic light scattering detector for bioolymer studies was introduced by Carr et al. (G12)and has een commercialized b Oros Instruments (Cambridge,MA). Online LALLS has teen used to monitor polysaccharide depolymerase activity in fermentation broths (G13) and enzymatic degradation of poly(g1utamic acid) (GI4). SECLALLS was applied to pectin (G15), xanthan (GIs), and acrylamide copolymers (G16, G17). Hanson and Wenzel (G18)modified the filters in a LALLS instrument to measure laser-induced fluorescence of lignin. In the area of organo-soluble polymers, applications of online LALLS have been reported for olyethylene (G19), nylon (G20),cellulose acetate (G21),celfdose nitrate (G22),liquid crystalline polyesters (G23),polystyrene (G24),styreneacrylic copolymers (G25),and pro ellant binders (G26). Viscometers. Garcia-Rugio (G27) used error propagation to study and redict experimental errors when using multiple detectors in 8EC. This analysis was applied to a detection system composed of a differential refractometer, spectrophotometer, and viscometer. A referenced-capillarydifferential viscometer was designed and evaluated by Yau et al. (G28). A sin le-capillary viscometer was described by Lesec et al. (G29,830)and applied to the analysis of polyamides (G31, G32). A patent was awarded to Chamberlin and Tuinstra (G33, G34) for the construction of a sin le capillary viscometer that was incorporated directly with, a conventional differential refractometer. Brower et al. (G35) described a novel membrane viscometer in which the pressure drop across a membrane, rather than a capillary, was used to monitor viscosity. Online viscometry was applied to poly(viny1 alcohol) (G36), lignin (G37, G38),poly(pheny1ene sulfide) (G39),and pectin (J51).

E

Miscellaneous Detectors

Online SEC inductively coupled plasma emission detectors have been used to determine metal content in oils (G40-G44), tar sand bitumen (G45), ferritin (G46),and kidne (G47). Diodearray detectors were utilized for the analysis oxheparin ((348) and phenolic-modified oils (G49). An online fluorescence detector was used to measure the molecular weight dependence of intramolecular excimer formation in polymer solutions (G50). Coulombe (G51)compared a differential refractometer, a flame ionization detedor, and an evaporative detector in terms of linearity, response factors, and detection limits using heavy oil samples. A flame ionization detector was used for hightemperature SEC of poly(pheny1ene sulfide) (G52). A highsensitivity, refractive index gradient detector for microbore SEC columns was described and evaluated by Hancock and Synovec (G53).

H. PACKINGS There were relatively few changes in the nature of SEC column packings during the review period, and developments in SEC packings appear to have reached a mature stage. There remains room for im rovement, however, for protein separations, which still tendPto suffer from solutestationary phase interactions. An electron microscopic study of the internal structures of a variety of wide-pore SEC packing materials was carried out by Tanaka et al. ( H I ) . Of interest were the observation of several different particle types in some of the silicas and the comments relating to microporous domains in polymeric packings. Slllca-Based Packlngs

Silica-based column packings continue to exhibit the best performance in terms of physical stability and efficiency. Anspach and colleagues (H2)described the separation of proteins with the newer 5-pm article diameter packings (Zorbax Bioseries GF and T S K - S h ) . This study describes the increased column plate numbers, relative to the IO-pmdiameter materials, and compared the operational characteristics of these popular columns. The improved chemical stability of zirconium-doped silica for SEC column packings

SIZE EXCLUSION CHROMATOGRAPHY

was described by Szabo et al. (H3,H4). Procedures for the preparation and evaluation of customwho made SEC columns were described by Lumley et al. (H5), claim e uivalent quality to commercially obtained columns. DEAE jextrans were used as silica coatings to prepare SEC A patent was issued columns for protein separations (H6). for a ketal silane for use in reversed-phase LC of proteins (H7). It was pointed out that the ketal-blocked diol may be hydrolyzed to 'eld free diol and thus rovide a packin material for SEC. Foulombe and Desjarchs (H8)descri%ed their unsuccessful attempts to use PTFE, carborundum, and mixtures thereof, for the pre aration of SEC packings of use for heavy oil and bitumen c aracterization. A patent was issued for the pre aration of chromatogra F c supporta obtained by fluidizing s p i e r i d glass particles, wkch have been claimed to be useful for SEC (H9). Macroporous glass particles derivatized with poly(vinylpyrro1idone)were repared for the purification of a variety of viruses (HIO,H11). batenta were issued for the reparation of carbohydrate-silica complex gels prepared wit simple sugars (H12,H13).

R

K

Organic-Based Packings

A detailed study of the roperties of Se hacryl HR was reported by Hagel et al. $ 7 4 )and should \e of interest to readers carr ing out semipreparative applications in biotechnology. %rocewesfor the preparation of a number of new polymeric stationary phases were described; these included H16),cross-linked cellulosic beads from cellulose esters (H15, poly(viny1 alcohol) (HI7,H18),hydrolyzed glycidyl methacrylate-ethylene dimethacrylate copolymer (H19), crossH21),and a composite olymer of linked glucomannan (H20, silica and reticulated copolymers (H22).Addition&, complex vesicular ackings were prepared from various plant tissues (H23, H a y and microorganisms (H25), by treatment to remove various cellular components while leaving the shell intact. Packings baaed on st enedivinylbenzene (H26)and vinyl acetatedyrene-divinylgnzene (H27)were described, as were certain of their features of operation in the SEC mode. Hirata et al. (H28)described the Asahi ak GS vin 1 alcohol copolymer packings as being cornpatitle with b o d aqueous and organic mobile phases.

I. COMPOSITIONAL HETEROGENEIN/BRANCHING Molecular-weight-sensitive and information-rich HPLC detectors have been extremely valuable for characterizing complex polymers. Shi a (11) reviewed various characterization methods for long-c!mn branching. Kulin and Meijerink (12)discussed in detail the use of SEC-LALLS, as well as temperature-rising elution fractionation and liquid-liquid fractionation, for determinin long- and shorbchain branching frequency in low-density pobethylene. Yu and Rollings (13) resented an a proach using SEC-LALLS for measuring !ranchin of pogsaccharides. Branchin in isoprene rubber was also tetermined by SEC-LALLS (147.SEC-LALLS was used to mesaure the com ositional heterogeneity of polyst ene-dimethylsiloxane $block copolymers and blends (15). errors ~ssociatedwith this method are discussed at length. Styring et al. (16)evaluated a commerical online viscometer by analyzing a series of branched ly(viny1acetate) sam les. Kuo and co-workers (17)developed% automated data d y s i s method for the determination of the branching index of polymers using SEC viscometry. Branching characterization usin online viscometry was applied to polyethylenes (18,19), acryfate pol mers (110, I l l ) , and polybutadienes (112). Short-chain ranchin in ethylene-1-octene copolymer was determined by SEC/%T-IR (113) Compositional heterogeneity of'methyl methacrylate-styrene co olymers was determined by using 3-phenylazobenzoyl peroxi e as an initiator and labelin agent (114).The use of a photodiode array detector with SBC was described by Del Rios (115). W detection was used to determine compositional hetero eneity of wood components (116),poly(ethy1ene tere h&te)-poly (tetramethylene ether) multiblock copolymers (f17),and styrene-butadiene-styrene block copolymers (118). Usin SEC coupled to UV and IR detectors, Verenich et al. (119Ydetermined the compositional hetero eneity of oligomeric epoxy propiolates. Online IR was usecfto determine

&

i:

B

functional group distributions of poly(dimethylsiloxane)s(120). An online interface for SEC/FT-IR to remove high-boilin mobile phases for subseuqent FT-IR detection was describe! by Dekmezian and Morioka (121).SEC/NMR was employed to characterize isotactic poly(methy1 methacrylate) (122)and block and random copolymers of methyl and butyl methacrylates (123). The use of multiple modes of liquid chromatography to determine the chemical com sition distribution of complex polymers has received consi erable attention during this review period. Investigators are finding it convenient to first separate by molecular size, followed by adsorption chromatography. This approach has been used by Mori (124-127), Glockner (128-132),and others (133,134)for the characterization of various copolymers. Also, Jiang et al. (135)first fractionated copolymer blends by precipitation followed by SEC. Techniques involving the coupling of SEC columns to a reversed-phase system have been reported for the separation of proteins (136),glycoproteins (133,and additives in cellulose acetate (138).An SEC capillary electrophoresis apparatus has been reported for t e characterization of proteins (139). See refs 140-143 for other studies dealing with multi-HPLC approaches for protein separation. An interestin multidimensional technique was reported by Cortes et al. (f44)in which a microcolumn SEC system was coupled to a yrolysis GC apparatus for the characterization of acrylonitrirmtyrene copolymer. Fujimoto and co-workers (145)described a technique utilizing microcolumn SEC followed by TLC. Detection was accomplished on the TLC plates with FT-IR. Orthogonal chromatography has also been used for the separation of complex polymers. With this approach, the sample is first separated by SEC in a given mobile phase. Through the use of a switching valve, the separated components are then eluted through a second column utilizing a poor solvent as the mobile phase which will either change the conformation of the polymer or encourage interaction with the packing (146-148). Finally, there has been renewed interest in the use of temperature-rising elution fractionation as a means of characterizing polyolefins on the basis of branching and/or tacticity (149).

8"

h

J. PHYSICOCHEMICAL STUD1ES For a survey of the use of other modes of liquid chromatography to measure physiochemical parameters, please consult the Physiochemical Studies section of the Column Liquid Chromatography review in this issue. Assoclation/Ligand Binding

Biopolymers. Krull et al. (JI)used L F L S in conjunction with both SEC and hydrophobic interaction chromatography to study self-association of bovine alkaline phosphatase. Using SEC-LALLS, Hayashi and co-workers (52)investigated the oligomeric state of canine renal sodium-potassium ATPase as a function of temperature and electrolyte type. SECLALLS was also used to study the trimer formation of tumor necrosis factor (J3).Using a combination of techniques, including SEC, Kunitani et al. (54)studied the reversible subunit dissociation of tumor necrosis factor during hydrophobic interaction chromatography. Funasaki et al. (J5)developed a com uter simulation method for SEC based on plate theory a n f t h e mass action law for rapidly self-associatingsystems. This approach was used to estimate the aggregation numbers and equilibrium constants for the dimerization of carbonylHb and hexamerization of a-chymotrypsin. The tetramer-dimer equilibrium in hemoglobin solutions was reported by Baudin-Chich and co-workers (56). An SEC strate for the analysis of the hydrophobic selfassociating p e p t i g gramicidin A, incorporated into artificial phospholipid vesicles (liposomes),was reported by Ban0 and associates (57).From these experiments, information related to the organization of gramicidin A in the vesicles and conformational transition within the vesicles was obtained. These authors also used SEC to study the dimer-monomer conformational equilibrium of oligo(phenyla1anine)s (J8)and gramicidin A (J9).Calcium-bindinginteractions with gramicidin A were also investigated (J9), as well as dimermonomer ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

385R

SIZE EXCLUSION CHROMATOGRAPHY

equilibrium conducted in a series of 1-&enols (J10).Binding studies invol cobalamin (J11)and osteocalcin (J12)using SEC have a l x e e n reported. Monomemligomer equilibrium studies using SEC were also reported for sarcoplasmic reticulum Ca-ATPase (J13),glutamic deh drogenase (5141, allbladder mucin (J15),interferons a n i interleukin 2 (J16f phycocyanin (J17)a ferritin (J18),and bovine brain tubulin (J19). SEC was study the formation of ovalbumin aggregates induced by thermal denaturation (J20). an evaluation of equilibrium of the Hummel-Dryer carried out numerical has a different elution volume than the acceptor-ligand complex. This group demonstrated that a good approximation of the equilibrium association constant can be obtained from the steady-state constant. This finding implies that a wider ran e of chromatographic conditions should be tolerated for %is type of analysis. Notable advanw have been made in the area of small-zone SEC analyak of protein-ligand and protein-protein associating systems. Stevens (J22) was awarded a patent for the development of his SEC system and method of determining macromolecular interactions. The interaction between human myeolma IgG Fc fragment and an antiserum to Fc was used as an example. In a subsequent paper (J23),the effects of association/dissociation kinetics on small-zone SEC elution behavior were described by numerical modeling. A similar approach was taken by Cann et al. (J24)to describe the association behavior of small synthetic fr menta of tubulins with the microtubule-associated protein &-2. In this paper specific guidelines are provided for the kinetic interpretation of the elution profile of labeled ligand reversibly associating with an acceptor. Berger et al. (JW) modified the Hummel-Dryer method for studying the simultaneous binding of ADP and ATP on spinach coupling factor CF1 usin anion exchange. This method gave the same results as S&C when ADP alone was present. Hashimoto and co-workers (J26) determined the apparent dissociation constant of an F1-ATPase-protein com lex. The Hummel-Dryer method was used to determine the i n d i n of trifluoroperazine to calmodulin and calmodulin adducts (j27). The binding property of bovine IgG2 to staphylococcal protein A was investigated by SEC and affinity chromatography (J28). A procedure was developed b Rao and Takagi (J29) for determinin the amount of SDS gound to proteins. Mascher and Lundafl (J30) also used SEC to measure the amount of SDS in SDS- rotein com lexes. Kalambet et al. (J31, J32) measured D A- rotein ginding constants. In the area of polysaccharides, 8EC was used to measure binding constants of he arin-plasma proteins (J33),heparin-metal cations (J34), and extran-solutes (J35).The size of a polysaccharideiron complex was also determined by SEC (J36). Synthetic Polymers. Stereoassociation of iso- and syndiotactic poly(methy1 methacrylate) was studied by Katime and Quintana (537, J38) by using a detector which measures light scattering intensity at 90°. Prochazka et al. (539, J40) proposed a model for describing the SEC behavior of the association of micelles formed from block copolymers. Frontal SEC was used for determining the monomer concentrations of nonionic surfactants (J41)and studying micelle formation (J42, J43). Dubin and co-workers (J44)used SEC and dynamic light scattering photometry to measure the size of micelles as a function of ionic strength. Takata et al. (545) employed SEC to stud the interactions between chromium complexes and electro&tes.

&

3

a

Conformational Measurements

Shalongo et al. (J46) used SEC, among other techniques, to measure the unfolding and refolding c?f pancreatic RNase in guanidinium chloride. SEC was used to follow the denaturation by urea and renaturation of 20P-hydroxysteroid dehydrogenase (J47). Conformational changes of gliadins were monitored by SEC as a function of pH and ionic stren h (J48).Al-Obeida and Light (J49)used SEC to compare Stogs radius of native, denatured, and partially refolded trypsino en. Unfolding of bovine heart cytochrome oxidase induced: by 386R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

idine hydrochloride was studied by Hill et al. (J50)using E. Fishman and co-workers (J51) used SEC/viscometry to

characterize pectins. In addition to studying polyelectrolyte effects of pectin as a function of ionic strength and polymer concentration, this group obtained shape information by determining the power relationship between intrinsic viscosity and radius of gyration. Hearn and colleagues (J52) used online derivative spectroscopy to investigate the influence of reversed-phase stationary-phase induced effects on protein conformation. In addition, a diode array detector was used to study uilibrium unfolding of growth hormones in urea by SEC. An%C online circular dichroism spectrometer was used by Takakuwa et al. (J53) to determine the CD spectrum of proteins using the stop-flow mode of detection. Inverse SEC

Jerabek and Setinek (J54) used inverse SEC to study the structure of macronet styrene polymer in its original artially sulfonated form and its fully sulfonated structure. $%mroff and Regnier (J55)proposed a method for determining the hold-up volume and the phase ratio of a protein on an anion-exchange packing based on mercury porosimetry and size exclusion calibration with 1 er standards. Eltekova (J56) discussed the potential of evaluating pore volume and diameter of packings. Mark-Houwink Constants

Usin SEC/viscometry, Haney et al. (J57)determined the Mark-Ifouwink constants for polystyrene in THF over a wide molecular weight range. A combination of online LALLS and viscosity detectors was used to determine Mark-Houwink constants for pullulan (J58),dextran (J59),and xanthan (J59). Cortizo et al. (J60)described a procedure for determinin Mark-Houwink constants of a stoichiometrically labelefi polymer sample with a broad molecular weight distribution. A method for determining Mark-Houwink constants from SEC and viscosity data on a single sample was presented by Price and co-workers (J61). Mark-Houwink constants of arylene silicone rubber (J62)and chlorinated neoprene rubber (J63)have been determined by SEC. Partition Coefficients/Thermodynamic Parameters

Frontal SEC was used to measure partition coefficients for dextran sulfate-sodium chloride, dextran-sorbitol, and protein-poly(ethy1ene glycol) systems (Js4).The authors suggest that this technique is of particular value for the quantitative characterization of thermodynamic nonideality arising from excluded-volume effects in concentrated mixtures of macromolecules. Balaz et al. (J65) used SEC to determine liposome/saline partition coefficients of low-molecular-weight solutes. Dubin and Principi (J66) obtained a gel h drophobicit index for a series of normal alcohols and Jifferent S E 8 packings. This was done by determining the slope of linear plots of the log of the chromatographic partition coefficient versus the log of the molar aqueous solubility of the solute. The slope is a measure of the free energy of solute transfer from water to gel, per methylene group, relative to the comparable quantity for solute transfer from water to the neat alcohol.

K. MICROCOLUMN SEC The desire to separate increasin ly smaller amounts of materials, particularly proteins, has fostered develo ment of describdthe conmicrocolumn SEC. Hirose and Ishii (K1) struction of series capillary columns for protein separations. Placement of absorbance detectors at the end of three columns allowed monitorin of the chromatogram as a function of the ite column kngth. Novotny’s group (K2,K3) described z z c d s for SEC of proteins using 250-pm4.d. packed capillary columns. The microcolumns were slurry packed to yield good chromatographic efficiency and allowed detection fo subnanogram quantities of proteins using intrinsic UV absorbance detection. Gankina et al. (K4) reported the use of packed columns of 0.5-mm i.d. for the separation of protein

SIZE EXCLUSION CHROMATOGRAPHY

mixtures. These authors describe separations carried out using bare silica with an eluent oif 5% dimethylacetamide/3% water in trifluoroacetic acid.

L. PREPARATIVE Ekmanis (L1)used analytical SEC columns to predict optimum sample loading for separations on preparative columns usin high-molecular-weight polystyrene and low-molecularweigit epoxy resins as examples. A preparative SEC system was described by Gadkari et al. (L2)for the fractionation of 20- quantities of polyisobutylene samples. Sisson and cowor ers (L3) demonstrated the use of a continuous, annular chromatogra h for preparative SEC fractionation. Huan aniGuiochon (L4, L5) reviewed the area of pre arative APLC of pe tides and proteins which included SEE: as well as other moies of HPLC. Antle and associates (L6) reported on the purification of biomolecules using smallparticle, silica-based packings with conventional HPLC equipment. High-resolution fractionation of proteins in downstream processing including process scale-up was described b Hammond and Scawen (L7). Plasmiiinsert DNA uences (0.14-8.4 kilobase pairs) were fractionated on lar e-sc e agarose columns (LB). McClung and Gonzales (L9y compared plasmid DNA purification methods, CsCl centrifugation, and HPLC with Superose 6 packing. Plasmid DNA purification was also accomplished with Zorbax GF250 packings (LIO). Gre ory et al. ( L I I ) substituted preparative SEC (Sephacryl -1000) for CsCl density- radient ultracentrifu ation for the purification of covalentfy closed circular D$A. Restricted cDNA/linker mixtures were purified for cloning using a TSK G4000-SW column (LI2). Other ap lications of preparative SEC include erythrocyte ents of human serum albumin (LI4), ghosts (L13f7peptic fr avidin-8- alactmidase?f?5), IgM monoclonal antibodies (L16), polysaccEarides (alginate, pectin, and carrageenan) (LI7), dextran n L I B ) , and poly(viny1 chloride) (LI9, L20).

%

Yi

8

M. PROCESS/QUALITY CONTROL Renn and Synovec (MI, M2) reported on a super-speed mode of SEC in which they were able to obtain a separation of pol styrene in less than 3 s. Limpert and co-workers (M3, M4) escribed the use of an online SEC system for process developed an automatic monitoring. Budde and Reichert (M5) polymerization reador with online measurement of conversion, viscosity, and molecular weight distribution during homogeneous free radical polymerization. Furth and Riedelbauch (M6)discussed the use of SEC for quality control of polyamide 66, polyether-polysulfone, and polycarbonates during processing.

N. SELECTED APPLICATIONS Small Molecules

The use of small-molecule SEC for a variety of applications was reviewed by Bidlingmeyer and Warren (B5).The elution characteristics of many pesticides and other chemicals of environmental interest were determined by Steinwandter (N1).Burlitch and Winterton (N2) described the analysis of mixtures of phenylchlorosilanes. These compounds require special consideration because of their sensitivity to air and water. The recoveries of complexes of tris(acety1acetono)aluminum, -gallium, and -indium were investigated by Noda et al. (N3). Blopolymers

Proteins/Peptides, Nucleic Acids, and Assemblies. The compatibility of SEC with retaining functional activity of biopolymers resulted in continued popularity of this separation technique in the life sciences. Thus, a wide variety of applications in this area have been reported during the review period. Several eneral reviews dealing with protein SEC were presented, Laling mostly with the isolation of proteins (B6-Z39).The determination of Stokes radius for proteins was discussed by Le Maire (N4). Cabre et al. (E14) compared a variety of data transformation methods for column calibration. An area of active applications development is the use of

SEC for epitope characterization (epitope mapping). Jackson and colleagues (N5) employed SEC and immunochemical assays to determine the simultaneous binding of antibodies to epitopes on a synthetic antigen. An excellent description of the application of small-zone SEC methods for analysis of eDitotm and antibody-antigen interactions has been presented 6y Sbvens (N6). The use of SDS in protein SEC and electrophoresis was reviewed by Takagi (N7). The removal of SDS from rotein-containingsolutions was effected on an SEC column ( k 8 ) . A solid-nhase method for the removal of CHAPS from a protein iolution allowed for solvent compatability with subsequent chromatographic steps (N9). Separations in the resence of detergents were carried out for several memgrane-bound proteins ( N l G N 1 4 ) . Approaches to the o timization of peptide and protein digest separations by SlfC, as well as other chromatographic Synthetic modes, were described by Mant and Hodges (N15). peptide standards for column evaluation were designed by these investigators, as was a program to assist in optimization of separations (N16). Complex rotein hydrolysates were separated into components by SkC rior to resolution by reversed-phase HPLC (NI7,NIB). TRis work was aimed, in part, at providing a large number of solutes for retention mapping of peptide Separations. Methods development for clinically important plasma lipoproteins was carried out by a number of investi ators ( N I g N 2 4 ) . Levels of serum retinol were determined tased on fluorescence detection of the retinol-(retinol-binding protein) complex (NW). A rapid assay method for serum uric acid was developed by using a poly(viny1alcohol) copolymer SEC column (N26). Table I presents selected examples of SEC separations, illustrating the range of sample types that have been examined. Applications of SEC to nucleic acid separations and characterization were reviewed (BIO-BI3).A method for separation of intact large DNA restriction fragments was described (FB) and given the name slalom chromatography (F9). A number of investigators developed SEC-based methods for the pre aration of plasmid and bacteriophage DNAs, as given in TabE I and the Preparative SEC section. Carbohydrates/Polysaccharides. SEC remained the method of choice to describe molecular wei ht distributions of carbohydrates, polysaccharides, and t eir derivatives. Polymer-based packings were strongly favored in this application group. The adsorption characteristics of gum arabic on latex and on an oil-water interface were investigated by SEC (N63, N64). A detailed study of the thermal degradation of guar gum was reported by Bradely et al. (N65). Xanthan molecular weight distribution during batch fermentation was determined (N66),as was the association of xanthan with galactomannan (N67). Aqueous SEC with LALLS was employed for the characterization of agarose and agarose4 e polysaccharides (N68). Most of the commercially o b t a i n s agaroses were observed to have molecular weights of 80 000-140 000. A combination of derivatization,selective depolymerization, and subsequent SEC was used to differentiate amidated and nonamidated pectins (N69). Ring et al. (N70) examined the association regions of amylopectin gels. Carunchio and colleagues (N71)developed an SEC method for the measurement of microbial enzymes that hydrolyze pectins. Several studies examined the a propriate elution conditions and sample preparative metho& for starch analysis (N72N75). Kennedy et al. (N76,N77) investigated the relationship between the nature of the gl cosidic linkages of a variety of starch-related oligosacchariies and the elution behavior on an SEC column. The hydrolysis products of starch were examined by Bouchard et al. (N78) and Praznik et al. (N79). Russel et al. (N80) characterized the material in starch that was resistant to enzymatic hydrolysis with a-amylase and pullulanase. Jackson and colleagues (N81) studied the inherent water-solubilit properties of starches by SEC. Telkova and co-workers (N82);described a method for determination of hydroxylethyl starch molecular weight. The molecular weight of alginates was determined by using SEC by Fujihva and Nagumo (N83).. Ball e t al. (N84) described a comblned SEC and ultracentrifugation approach for I

f

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

387R

SIZE EXCLUSION CHROMATOGRAPHY

Table I. SEC Applications of Biochemical Interest target

proteins/peptides ribosomal proteins immunoglobins valosin immunoreactivity serum glutamyltranspeptidase enterokinase-enteropeptidase IGF-I binding proteins

collagen macroamylase Tc-99m binding proteins plectin, crystallins, etc. echis venom proteins CE and NC antigens (CEA, NCA) adherence protein metal-binding proteins whey proteins recombinant IL-1 receptor interferons, interleukin-2 nucleic acids DNA restriction fragments plasmid DNA bacteriophage DNA assemblies immune complexes cytochrome c2-bcl complex estrogen receptor glucocorticoid receptor clathrin-coated vesicles chromatin

purpose"

matrix

Escherichia coli large subunit iv preparations, ascites tissue extract serum various matrices serum, placenta

refs

purified recombinant proteins

N27 N28-32 N33 N34 N35 N36, N37 N38 N39 N40, N41 N42-4 N45 N46 N47 N48 N49, N50 N51 N52

enzyme digests bacterial lysate crude DNA

N53, L8,F8, F9 N54, N55, L9-11 N55, F9

serum Rhodospirillum rubrum purified receptor purified and crude material

N56 N57 N58 N59, N60 N61 N62 HI0

cosmetics

serum plasma

lens tissues snake venoms purified proteins Mycoplasma pneumoniae bass liver whey isolates culture medium

bovine brain alga extract various matrices

viruses a I, isolation or purification; P, physical characterization; S, stability testing; A, assay or activity determination. determining the molecular weight distribution of alginate. In this study narrow fractions of the eluted alginate were subjected to analytical low-speed centrifugation, thereby supplying narrow calibration standards to interpret the SEC molecular weight distribution. Dark (N85)described a method for the determination of molecular weight and polydispersity of hyaluronic acid. Uneo et al. (N86) used LALLS and viscometry to establish the Mark-Houwink relationship for hyaluronic acid from rooster comb. Motohashi et al. (N87) and Sarri et al. (N88, N89) described quantitative methods for the determination of hyaluronate in biological samples. Turner et al. (N90)used enzymatic digestion of hyaluronate followed by SEC to obtain material for the subsequent investigation of association between chain segments. Applications of SEC to the characterization of cellulose and cellulose derivatives were reviewed (B14,B15). Schwald and Bobleter (N91)devised a method for the direct determination of the mass distribution of nonderivatized cellulose. Several roups reported SEC analysis of cellulose derivatives (N9297). New methods were presented for the determination of the molecular weight distribution of lignins (N98, N99). A method for the determination of dextran in beet juice using SEC and enz atic decomposition was presented by was also employed for monitoring the Sayama (~100). hydrolysis of dextran during batch processing (NIOI). Two groups reported their findings on the transfer of dextrans across ultrafiltration membranes (N102, N103). Kurtshals et al. (N104) developed methods for the investigation of the biological dis osition of intravenous injected fluorescein isothiocyanate xerivatized dextrans.

k

SE

Synthetlc Polymers Reviews of the ap lication of SEC to synthetic polymer characterization c a n t e found in refs B16-B21. A listing of s analyzed b SEC is given in Table II; details the polymer of typical con itions applielto specific polymers can be obtained from the primary references listed in the table.

tys"

Others Fats and Oils. Application of SEC to fats and oils was reviewed by Aitzetmueller (B22). Husain et al. (N139) em388R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

Table 11. SEC Application to Synthetic Polymers polymer type

branched/block copolymers elastomers

polyacrylamide polyamides polyanilines poly(ary1 ether ether ketone)

polybutadiene polyisocyanates

poly(methy1 methacry1ate)s polyolefins polysiloxanes

polyterephthalates polyurethanes poly(viny1 acetate)s poly(viny1 alcohol) resins alkyd epoxy

phenolic

refs N105-107 N108, N109 NllO Nlll-114 N115 N116 N117 N118 N119 E33, E34, N120, N121 N122-127 N128. N129 N130' N131 N132 N133 N134-136 N137, N138

ployed SEC to determine the molecular weight of oils and fats. Dobarganes et al. (N140)studied the polar compounds in oils. Goncalves (N241)separated dimeric fatty acid methyl esters from monomers. Oligomers of prostaglandin B1 were synthesized and resolved by Martin and Lille (N142). The molecular weight distribution of wood pyrolysis oils from a variety of sources was determined by Johnson and colleagues (N143). Asphalts and Bitumens. Kojima reviewed the use of SEC for analysis of coal-derived liquids (B23). SEC was used to fractionate asphalts from a variety of sources prior to characterization by isota ic composition (N144),diffuse reflectance IR (N145), NMR (k146, N147), and ESR (N148). Several groups investigated the relationship between asphalt SEC molecular weight distributions and utility (N149-NI51). Tars and pitchw were studied under a variety of conditions in order to establish molecular weight distributions (N152N155). The combination of SEC and mass spectometry established additional information on the influence of composition on retention properties (N156, N157).

SIZE EXCLUSION CHROMATOGRAPHY

Inorganic Complexes/Polymers. The SEC retention properties of aqueous oligomeric silicate complexes were inNakahra et al. (N159) vestigated b Fitzgerald et al. (N158). employed S J C to determine the Mark-Houwink relationship for potassium polyphosphate compounds. The SEC retention properties of several chromium complexes were described (N160, N161).Strasak and Bystricky (N162)were able to resolve optically active anionic metal complexes b SEC. Environmental and Waste Managment. S&C with pattern recognition procedures was applied to the identifiN164).Chaissac et al. (N165) studied cation of oil spills (N163, the molecular we‘ ht distribution of o anic materials in urban waste waters anfKatayama et al. ( 166)examined the decomposition of water-soluble or anic wastes in soils. Knuutinen and co-workers (N167) etermined the humic substances in uncontaminated natural surface water. Czuczwa describe an optimized SEC method and Alford-Stevens (N168) for cleanup of samples before determination of semivolatile pollutants.

f

3

0. MISCELLANEA It was surprising that on1 one reference was found on the

use of SEC with supercritic$’fluids. Inthispaperb Fujimoto et al. (011,dichloromethane was used as the mogile phase,

polystyrene standards were the test solutes, and the packing was controlled-pore glass. As com ared to normal conditions, column efficiency in supercriticaffluid SEC appeared to be hi her; however, the slope of the calibration curve appeared t o s e significantly higher, which would decrease resolution. Unfortunately eak resolution values were not reported. Interactive ciromatography has also been used for determining molecular-weightdistributions of polymers. For exand Hiroi et al. (03)used this approach ample, Nakazawa (02) for determining molecular weights of proteins on reversedphase columns. Lochmiiller and associates ( 0 4 ) studied the retention mechanism of hi h-molecular-weightpolystyrenes using binary solvent mo%ile phases and reversed-phase packin s. Okata (05) described a technique called micelle exclusion chromatography, in which a micellar mobile phase and an SEC column are used for the ionic separation of heavy-metal cations. Partition coefficients of metal ions between micelles and the bulk solution and between the imbibed solution and stationary phase were calculated. Imai et al. (06)reviewed HPLC column-switching techniques as applied to sample enrichment and cleanup. SEC coupled to reversed-phase and hydrophobic interaction coldeveloped a umns was described. Bennett and James (07) trace-enrichment technique in which proteins and peptides are first concentrated on a guard column and then switched onto an SEC column. Williams and co-workers (08)described an interface which permits the online cou ling of an SEC column with an a ueous reversed-phase co umn. The technique was applieg to the direct analysis of low-molecularweight contaminants and additives in foods. Finally, a system was reported by Sped and Stanczak (09) to reduce mobile phase consumption in SEC. column was repared from a porous poly(viny1 alck$!xw fiber whic! was cross-linked with epichlorohydrin, and the outside of the hollow fiber was coated with oly(viny1 chloride) containing a plasticizer (010, 011). bermeable solutes were se arated by sievin within the reticulated matrix of the wak Adachi et al. (912)developed an enzyme reactor, which was based on the difference in migration rate of the enzyme and substrate in an SEC column. With this approach, an enzyme and substrate could be continuously converted into a product without further addition of enzyme.

P

LITERATURE CITED BOOKS AND SYMPOSIA

(AI) Dubin, P. L., Ed. Aqueous S&e-Exclusion chromatography; Elsevler: Amtwdnm, Neth., 1988. (A2) Hunt, B. J.; Holding, S.R.. Eds. Slze Exckrskn chromatography; Black- . . k: Gtesgow. U.K., f9W. (A31 Cooper, A. R., Ed. Detennhrebron o f M o k & r Wdght; Wiiey: New York. 1989. (A4) cbmpton, T. R. ~ n a l y s ~ofs polvmc~s: An Introduction; Pergamon: Oxford, U.K.. 1989.

(A5) Barth, H. G., Ed. PO&InW AmrVsfs end chaf8C&fh&; J . &pi. POlym. Sei., Appl. Polym. Symp. 1989,43. (A6) Prooeedlngs of the Intmbbnel GFC Symposium ‘87; Waters Division of Millipore: Milford, MA, 1987. REVIEWS

Qenrral Reviews (Bl) Yau. W. W.; Kirkland, J. J.; Biy, D. D. Chem. Anal. ( N . Y . ) 1988. 98, 277-316. (82) Dawkins, J. V.; Montenego, A. I n Appl. P W . Anal. Charact.; Mltchell, J., Ed.; Hanser: Munich, FRO. 1987, pp 233-6. (83) Takamatsu, S. Kobunshi, K., 37, 283-8, Japan; Chem. Abstr. 1989, 770, 88682. (84) Fischer, L. Chromatogr. S d . 1987, 38 (Chromatogr. Theory Basic Princ.). 347-84.

Small Mol.culrs (85) Bdlingmeyer. 8. A.; Warren, F. V. LC-f3C 1988,6, 780-6.

Blopdymers (B6) WelHng, G. W.; WellingWebster, S., I n HPLC of M e m u h 9 s : A Practical Approach; Oliver, R. W. A., Ed.; IRL Press: New Ywk, 1989: pp 77-90. (87) Hagel. L. I n Protein Pwihtion: Principles, Hlgh Resdutbn Msfhodp, and Applications; Janson. J.-C., Ryden, L., Ed.; VCH Inc.: New York, 1989: pp 63-106. (B8) Gey, M.; Thiem, M.; Gruel, H. Acta Bktechnol. 1989,9 , 69-77. (B9) Moore, P. M. NATO ASI SW., Ser. E 1989, 158, 581-76. (B10) Steffens, P. BioEng/neef/ng 1887,3 (I), 40-3 (Ger); Chem. Abstr. 1888, 708,146445~. (B11) Cocuua, J.; Gopai, H. D.; Agris, P. Biotechnol. Lab. 1887,5 , 22-35. (812) Thompson, J. A. ~ ~ O c h ~ ~ t o g r a1987, p h y2 , 4-18. (813) Sawai, H. Rinsho Ken= 1988,32, 1636-43 (Japan); Chem. Abstr. 1989. 710, 208606~. (814) Lloyd, L. L.; Warner, F. P.; Kennedy, J. F.; White. C. A. WoodCellul. ism. 203-10. . .. -. . (815) Kamide, K.; Saito, M. A&. Polym. Scl. 1987,83, 1-56.

.

Synthotlc Polymers (B16) Lederer, K.; Billlani, J.; Vijayakumar, C. T. Oesten. Kunstst.-Z. 1987, 78, 154-9 (Ger); Chem. Abstr. 1988. 708, 6702a. (817) Tomka, I.; Vancso, 0. Appl. Polym. Anal. Charact. 1987,237-78. (818) Kuo, C. Y.; Provder. T. ACS Symp. Ser. 1987,352, 2-28. (B19) Anderson, D. 0. Anal. Chem. 1989,61, 33-45. (820) Riera, T. J.; Teixido, S. J. Pint. Acabados Ind. 1989, 37, 75-81 (Span); Cbem. Abstr. 1989, 7 7 7 , 1558891. (821) Zhang, Q. Tuliao Gongye 1989.(1). 49-55 (Ch); Chem. Ab&. 1989, 7 7 7 , 1559101. Other (822) Aitzetmueiler, K. Chem. Ind. (London) 1988,(14), 452-465. (823) Kojima, T. Nenfyo, K. 1987,66. 687-702, (Japan); Chem. Abstr. 1987, 707. 220042h. THEORY

(C1) Gorbunov, A. A.; Solovyova, L. Y.; Pasechnik, V. A. J. Chrcwnetog. l98& 448,307-32. (C2) Gorbunov, A. A.; Skvortsov, A. M. Vysokomoi. Soedn., Ser. A 1988, 30, 3-8 (Russ); Cbem. Abstr. 1988. 708, 95252~. (C3) Brochard, F.; Ghazi, A.; Le Maire, M.; Martin, M. Chromatograph& 1988,27. 257-63. (C4) Brochard, F. Polym. Prepr. (Am. Chem. Soc.. Div. Pokm. Chem.) 1988,29 (I), 380. (C5) Waidmann-Meyer. H. J. Chromatog. 1987,470, 233-48. (C6) Schnitzer, J. E. Biophys. J. 1888,5 4 , 1065-76. (C7) Vilenchik, L. 2.; Zhmakina, T. P.; Skiirkova, V. P.; Kurdryavtsev, V. V.; Tennikova, T. B.; Bel’nikevich, N. 0.;Belen’kii. B. 0.; Frenkel, S.Ya.; Koton, M. M. Chromat0gr;ephle 1987,2 4 , 633-6. (C8) Meng, Q. C.; Chen, Y. F.; Delucas, L. J.; Oparil, S. J. chnxnetogr. 1988. 445, 29-36. (C9) Poitevin, E.; Wahl, P. Blophys. Chem. 1888,37,247-58. (C10) Adachi, S.; Watanabe, T.; Hashimoto, K. Denpun Kag8ku 1989,36, 21-4. (C11) Koo. Y. M.; Wankat, P. C. Sep. Sei. Techno/. 1988,23, 413-27. BAND BROADENINQ (Dl) Yau, W. W.; Rementer, S. W. Int. cipc Symp. ’87 1087, 148-67. 1988, ~ ~ 26, 372-8. (D2) Biiiiini, J.; Rois, G.; Lederer, K. c h r o m e t ~ a (D3) Nguyen, T. Q. Spectra 2000 [Deux M e ] 1987,722,45-7 (Fr); Chem. Abstr. 1987, 707, 237862h. (D4) Tuan, Q. N.; Kausch, H. H. J. chrometcgr. 1988, 449, 63-78. (D5) Gugiiotta. L. M.; Alba, D.; Meira, G. R. ACS Symp. Ser. 1987, 352, 287-98. (D6) Omorodion, S . N. E.; Hamlelec, A. E. J. Liq. Chromegw. 1989, 12, 1155-67. (D7) Cheng, R.; Wang, 2.; Zhao, Y. ACS Symp. Ser.1987,352,281-6. CALIBRATION (El) Li, L.; Lu, S. Fenxi CeSM Tongbao 1988,7 ( 8 ) .64-7 (Ch);Chem. Abstr. 1989, 770, 1937301. ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

380R

SIZE EXCLUSION CHROMATOGRAPHY (E2) Zhsn X.; Zeng,H.; U, 2. Rwue Xuebeo. Zkan Kexueban 1988, (3). 120-5 (8h): Chem. A&+. 1900, 170, 213815~. (E3) He, Q.; Meng. D. Yh?gyong Huaxue 1989, 6 (21, 56-9 (Ch); Chem. Abstr. 1989, 7 7 7 , 58680~. (E4) Szewczyk, P. PO/hty(Warsaw)1988, 3 3 , 141-3 (Pol); Chem. Abstr. 1988. 709, 93962~. (E5) Ito, K., Aoyama, T. Polym. Commun. 1988, 2 9 , 68-9. fE6) Chen, C. Sem 1988. 6 113-15 (Ch); Chem. Absb. 1988, 708, 222353% (E7) Mori, S. Anal. Chem. 1989, 67, 1321-5. (E8) Zhou. M.; Zhang, Q.; Shi, Y. Sepu 1989$ 7, 38-41; Chem. Abstr. 1QBQ. .- - - , 710. - , -213814~. -(E9) Konkina, L. N.; Ermakova, V. D.; Taganov. N. G.; Osipov, S. A.; More zov, V. A.; Entells, S. 0. V m o m o l . W i n . Ser. B 1989, 37, 182-5 (Russ); Chem. Abstr. 1989, 7 7 7 , 415862. (E10) Volk, F.; Bucerlus, K. M.; Wunsch, G. Symp. Chem. Rob/.Connected Slab. E x p h . , (Roc.) 1986, 7th, 197-216 (Ger); Chem. Abstr. 1989, 770, 10704m. ( E l l ) Hudec, P., Weiglova, I., Cvengros, J. Ropa Uhlk 1989, 37 (l), 21-5 (Czech); Chem. Abstr. 1989, 7 7 7 , 81242. (E12) Meyer, G. A,; Johnson, J. F.; Chin, H. H.; Azaroff, L. V. J . Liq. Chromalogr. 1988, 7 7 , 1595-603; Chem. Abstr. 1989, 770, 8923p. (E13) Russell, D. J. J . L i q . Chromalogr. 1988, 7 7 . 383-94. (E14) Cabre, F.; Caneia, E. I.; Canela, M. A. J . Chromatogr. 1989, 472, 347-56. (E15) Ribela, M. T. C. P.; Bartollni, P. Anal. Biochem. 1988. 774, 693-7. (EM) De Haen, C. Anal. Bbchem. 1987, 766, 235-45. (E17) Tsltslknis, C.; Mltslani, G.; Dondos, A. J . Pdym. Sci., Part 8 : polym. phvS. 1989, 27, 763-73. (E18) hito, T.; Ito, K.; Aoyama, T. Nagoya Kogyo Gijutsu Shkensho Hokoku 1987, 36, 292-8 (Japan); Chem. Abstr. 1988. 709, 111253~. (El9) Mendelson. R. A. ACS Symp. Ser. 1987, 352, 263-80. (E20) Gorbunov, A. A.; Skvortsov, A. M.; Tennlkov, M. B. Vysokomol. Soedin., Ser. A 1989, 3 1 , 1308-10; Chem. Abstr. 1989, 7 1 1 , 175055). (E21) Tennlkov, M. B.; Gorbunov, A. A,; Skvortsov, A. M. Vysokomo/. Soedin., Ser. A 1989, 37, 1328-32 (Russ); Chem. Abstr. 1989, 7 7 7 . 175056k. (E221 Zhang, Z.; Yang, G. &otenzi Xuebao 1987, (3), 196-200 (Ch); Chem, Abstr. 1987, 707, 2183812. (E231 Xin, Y.; Wang, s.; Yang, S. Zhejiang Daxue Xuebao, ZEran Kexueban 1988, 22(4), 54-63 (Ch); Chem. Abstr. 1089, 770, 174129d. (E24) Ogawa. T.; Sakai, M. J . Polym. Scl. Part A : Polym. Chem. 1988, 26, 3141-9. (E251 Dubin, P. L.; hincipi, J. M. Macromolecules 1989, 22, 1891-6. (E26) Dubln, P. L.; Principl, J. M. PoMm. Repr. (Am. Chem. Soc., Div. Polym. Chem.) 1880, 30(1), 400-1. (E27) Le Malre, M.; Viel, A.; Moiler, J. V. Anal. Biochem. 1989, 777, 50-6. (E28) Churms, S. C.; Stephen, A. M. S. Afr. J . Sci. 1988, 84, 855. (E29) Loret, C.; Chaufer, E.; Sebille, B.; Hanselin, M.; Blain, Y.; Le Hir, A. Int. J . Bbl. h4acronwl. 1988, 70, 366-72. (E30) Berth, G. C a r M M . Polym. 1988, 8 , 105-17. (E311 Balke, S. T. ACSSymp. Ser.1987, 352, 202-19. (E32) Bake, S. T. J . Appl. Polym. S d . , Appl. Polym. Symp. 1989, 43, 5-38. (E33) Lew, R.; Suwanda, D.; Balke, S. T. J . Appi. Polym. Sci. 1988, 35, 1049-63. . . (E341 Lew, R.; Cheung, P.; Suwanda, D.; Balke, S. T. J. Appl. Polym. Scj. 1988. 35. 1085-84. (E35) Meira, G. R.; GarciaRubio, L. H. Polym. Mater. Sci. Eng. 1988, 58, 504-9. (E36) Rodriguez, R. pdvm. Eng. Sci. 1988. 28, 510-16. (€37) Dlckens, E.; McCrackh, F. L. Polym. Mater. Sci. Eng. 1988, 58, 465-8. (E38) Dlckens, 8.; McCrackin, F. L. Report 1987, NBSIR-8713669; Order No. p888-153697. Avail. NTIS. (E39) Long, E. C.; Canales, M.; Brown, T. Am. Lab (FaiffkU, Conn.) 1987, 19 (4). 58, 60, 62, 64, 66-8, 70-1. (E40) Pang, S.; Pronovost, J.; Rudin, A. Polym. Meter. Scl. Eng. 1988, 58, 474-6. (E41) @AM, T. W. J . Chem. Educ. 1989, 66, 407-8. (E42) Papadopoulou, S. A. lFAC Roc. Ser. 1988 (4, Dyn. Control Chem. React. Dlstill. Columns), 141-6. '

~

"SZE-EXCLUS1oN EFFECTS

(Fl) Ye, M.; Liu, M.; Shl, L. Sepu 1988, 6, 265-8 (Ch); Chem. Abstr. 1989, 770, 155156~. (F2) Wang, P. J.; Glasbrenner, B. S. J . L i q . Chromarcgr. 1987. 70, 3047-57. (F3) Song, M.; Hu, G. J . Llq. Chromatq. 1988, 7 7 , 363-81. (F4) Hu, G.; Zhao, Q.;Song, M. HWXW W~llXUebao1988, 7 , 382-90 (Ch); Chem. Abstr. 1989, 7 7 7 , 8183t. (F5) Wang, E.; Su, C.; Xu, 2.; Song, M. Huadr~ngHuagong Xueyuan Xuebao 1988, 74. 393-9 (Ch);Chem. Absb. 1989. 770, 76428f. (F6) Mourey, 1.H.; Miller. S. M.; Fenar, W. T.; Molaire, T. R. Macronwkcules 1989. 22, 4286-91. (F7) Ousalem. M.; Busnel, J. P. Specba 2000 [Deux Milk] 1987, 722, 49-50 (Fr); Chem. Abstr. 1987, 707, 237663j. (F8) byes, E. E.; Waker. D. G.; McGeer, P. L. Anal. Biochem. 1988, 770, 127-34. (F9) Hlrabayashi, J.; Kasai. K. Anal. Blochem. 1089, 778. 336-341; Hlrabayashi, J.; Kasai, K. Nucleic AcM Symp. Ser. 1988, 20, 57-8. (F10) Cheng, W.; HoHis, D. J . chnwnetogr. 1987. 408, 9-19. (F11) Barth, H. G. ACS Symp. Ser. 1987, 352, 29-46. (F12) Aptel, J. D.; Carroy, A.; Dejardin, P.; Pefferkorn, E.; Schaaf, P.; SchmM, A.; Varoqui, R.; Voegei, J. C.; Yen, F. Specba 2000 [ C w x M k ] 1987, 722. 54-6 (Fr); Chem. Abstr. 1988, 708, 52193h.

390R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 199

(F13) Martin, M. T. Methods Enzynwl. 1988, 758 (MetaHoMochemlstry. Pt. A), 15-21. (F14) Sunaga, H.; Suzuki, K. T. J . L i q . Chfcmatogr. 1088. 7 7 , 701-11. (F15) Czlonkowska-Kohutnlcka, 2.; Pogorzelska, Z.; Glowala, H. pdknery (Warsew) 1987, 32, 275-7 (Pol); Chem. Ab&. 1988, 708, 187561~. (F16) Broersen, J. J.; Jansen, H.; De Ruiter, C.; Brinkman. U. A. T.; Frei, R. W.; Buijtenhuijs, F. A.; Van der Maeden, F. P. B. J. Chromatogr. 1988, 436, 39-46. (F17) Mori, S.; Kato, M. J . L i p . Chmmatogr. 1987, 70, 3113-26. (F16) Johansson, 8. L.; Gustavsson, J. J . Chrcmatogr. 1988. 457, 205-13. (F19) Potschka, M. J . Chromatogr. 1988, 447, 239-60. (F20) Dubin, P. L.; Principi, J. J . Chrcmalogr. 1989, 479, 159-64. (F21) Cacace. M. G.; Sada, A. Chromalographie 1988, 25, 335-8. (F22) Goheen, S. C. J . L i q . Chromalogr. 1988. 7 7 , 1221-8. (F23) Adachi, K.; Kim, J. Y.; Asakura, T. J . Chromatogr. 1988, 428, 247-54. (F24) Dyr, J. E.; Suttnar, J. J . Chromalogr. 1987, 408, 303-7. (F25) Hirata, N.; Kassai, M.; Yanaglhara, Y.; Noguchi, K. J . Chromalq. 1QBB. .- - -, 434. .- . , 71-82. . . -. (F26) Samanta, A.; Cordis, G. A.; Prasad, M. R.; Das, D. K. J . Chromatogr. 1988. 459, 221-7. (F27) Kihara, K.; Rokushika, S.; Hatano, H. J . Chromatogr. 1987, 470, 103- 10. (F28) Watson, E.; Kenney, W. C. Biolechnol. Appl. Biochem. 1988, 70, 551-4. (F29) Abad, C.; Braco, L.; Soria, V.; Garcia, R.; Campos, A. Br. Polym. J . 1987, 79, 489-500. (F30) Abad. C.; Braco, L.; Soria, V.; Garcia, R.; Campos, A. Br. Polym. J. 1987, 79, 501-8. (F31) Soria, V.; Garcia, R.; Campos, A,; Braco. L.; Abad, C. Br. polym. J . 1988. 20. 115-23. (F32) PerezlPaya, E.; Braco, L.; Campos, A.; Soria, V.; Abad, C. J . ChromatOgr. 1989, 467, 229-42. (F33) MOri, S. Anal. Chem. 1989, 67, 530-4. (F34) Dubin. P. L.; Speck, C. M.; Kaplan, J. I . Anal. Chem. 1988, 60, 895-900. (F35) Styring, M. G.; Teo, H. H.; Price, C.; Booth, C. Eur. Polym. J . 1988, 24, 333-9. (F36) Hejzlar, J. WaterRes. 1987, 27, 1311-18. (F37) Matsubara, H.; Abematsu, Y. Suishitsu CMaku Kenkyu 1988, 7 7 , 783-9 (Japan); Chem. Abslr. 1989, 770. 198817~. (F38) Zaton. A.; Ruiz de Alegria, R.; De Gandarias, J. M. J . L i q . Chromat q r . 1987, 70, 3073-83. (F39) Mori, S. J . L i q . Chromalcgr. 1988, 7 7 , 1205-19. (F40) Mori, S. J . Chromatogr. 1988, 452, 137-43. (F4l) Noguchi, K.; Yanagihara, Y.; Kasai, M.; Katayama, B. J . Chromatogr. 1989, 467, 365-75. (F42) Eremeeva, T. E.; Bykova, T. 0.; Gromov, V. S. Khim Drev. 1988, (3, 108-9 (Russ); Chem. Absh. 1088. 709, 2125650. (F43) Johnson, D. K.; Chum, H. L.; Hyatt, J. A. ACS Symp. Ser.1969. 397, 109-23. (F44) Zakharov, V. I.; Nefedov, P. P.; Lazareva, M. A,; Ivanov, M. A.; Ivanov, A. K. Khim. Drev. 1989, (3), 42-8 (Russ); Chem. Absb. 1989. 7 7 7 , 176488q. (F45) Mukoyama, Y.; Shimiru. N.; Sakata, T. Netsu Kokasei Jushi1988, 9 (l), 1-7 (Japan); Chem. Abstr. 1988, 709, 55602~. (F46) Walker. C. C. J . Polym. Sci., Part A : Pdym Chem. 1988, 26, 1649-57. (F47) Nesterov, V. V.; Boimirzaev, A. S.; Belen'kil, B. G. U.S.S.R. SU 1,481,235, 23 May 1989; Chem. Abstr. 1989, 7 7 7 , 1548474. (F48) Sone, Y.; Tsubokawa, N.; Minowa, H.; Tohjoh, T. K o b ~ s hRonbunshu i 1988, 4 5 , 695-902 (Japan); Chem . Abstr 1989, 110. 193836~. (F49) Nesterov, V. V.; Bolmirzaev, A. S.; Belen'kil, E. G.; Urinov. E. U.; Ashurov. N. R.; Rashidova, S. Sh.; Gavrilova, I.I. U.S.S.R. SU 1,397,055 23 May 1988; Chem. Abstr. 1088, 709, 131576j. (F50) DonaMson, G. R.; Hlavinka. M. W.; Bullin, J. A.; Glover, C. J.; Davlson, R. R. J . L i q . Chromalogr. 1988, 7 7 , 749-65. (F51) Lafleur, A. L.; Wornat, M. J. Anal. Chem. 1988. 60, 1096-102. (F52) Wagenaar, P. Polym. Paint Cobor J . 1987, (Suppl.). 138, 143.

.

DETECTORS

(GI) Prochazka, 0.; Kratochvii, P. J . Appl. Potym. Sd.1087, 34, 2325-36. (G2) Stuting, H. H.; Krull, I. S.; hatre, R.; Krzysko, S. C.; Barth, H. G. LC-GC 1989, 7. 402-4. 406, 408-9, 412, 414, 416-17. (G3) Corona, A.; Rolllngs, J. E. Sep. Sd. Techno/. 1988, 23, 855-74. fG4) Hayashi, Y.; Matsui. H.; Takagi, T. Mefhods Enzymol. 1989, 772(Bbm embranes, Pt. S), 514-28. (G5) Hayashi, Y. Selbulsu Butsuri 1988, 28, 330-2 (Japan); Chem. Absb. 1989. 170. 131505f. (G6) Hdnma, T.; Tazaki. M. NippOn Gomu Kyokaishi 1987, 60, 636-43 (Japan); Chem. Abstr. 1988. 708, 76851~. (G7) Wyatt, P. J.; Jackson, C.: Wyatt, G. K. Am. Lab. (Faiffleu, Conn.) 1988, 20 (5), 86, 88-91. (G8) Wyatt, P. J.; Hicks, D. L.; Jackson, C.; Wyatt, G. K. Am. Lab. ( F a m U , Conn.) 1988, 20(6). 108, 110, 112-13. (G9) Wyatt. P. J.; Izisel. I . ; Parker, R. G.; Wyatt, G. K. Int. GfC Symp. '87 1987, 168-79. (G10) Jackson, C.; Nllsson, L. M.; Wyatt, P. J. J . Appi. polym. Sci.; Appl. Polym. Symp. 1980. 43, 99-114. (GIV Housaki, T.; Satoh, K. h4akronwl. Chem., Rap& Commun. 1088, 9 , 257-9. (G12) Carr, R. J. G.; Rarity, J. G.; Stansfield, A. G.; Brown, R. G. W.; Clarke, D. J.; Atkinson. T. Anal. Biochem. 1988, 775, 492-9. (G13) Dean. S. W.; Rollings, J. E. Bbtechnol. Tech. 1989, 3 , 161-6. (G14) YosMoka, S.; Iweki. K.; Havashi, Y.; Aso, Y.; Takeda, Y.; Uchiyama, M. Chem. Pharm. Bu/l. 1988, 36, 4951-7.

SIZE EXCLUSION CHROMATOGRAPHY (G15 Lececheux, D.; Mustlore, Y.; Denls, A. S a 2000 [Deux MUk] d87, 722,57-8 (Fr); Chem. Ab&. 1988, 7 c 0 5 9 7 b (GIB) Hunt, J. A.; Young. T. S.; Green, D. W.; Wiithite, G. P . ' S E R e m & E M . 1988. 3. 835-41. (Gl%-Un, F. C.;'Getman, G. D. Int. GPC Symp. '87 1987, 225-45. (G18) Hanson, D. M.; Wenzei. D. C. J . Wood Chem. Technol. 1989, 9 , 189-200. ((319) Degroot, A. W. J . Appl. Polym. Sci.; Appl. W m . Symp. 1989, 43, 85-98. (020) Wang, P. J.; Rlvard. R. J. J . Li9. Chfomatogr. 1987, 70, 3059-71. (G21) Elgner, W. D.; Biiilanl, J.; Huber, A. P a p k 1987, 4 7 , 680-4 (Ger); Chem. Abstr. 1988, 708, 114452~. (022) Wksen, A. Mekromol. Chem. 1988, 789, 833-43. (G23) Khrugawa, A.; Klse, Y. Kobimshl Ronbunshu 1988, 45, 531-4 (Japan); Chsm. Abstr. 1988, 709, 150399~. (024) Schosseler, F.: Bend. H.; Grublslc-Gallot, 2.; Strazlelle. C.; Lelbler, L. M e e u k s 1989. 22,400-10. (G25) Spychaj, T.; Hamielec, A. E. Angew. Mekromol. Chem. 1988, 757, 137-51. (G26) Cramer, R. J. Report 1987, NWCTP-6774, SBI-ADE900874; Order No. ADA182149, Avail. NTIS. (027) Garcla-Rubio, L. H. ACS Symp. Ser.1987, 352, 220-39. (G28) Yau, W. W.; Abbott, S. D.; Smith, G. A.; Keatlng, M. Y. ACS Symp. Ser. 1987. 352,80-103. (G29) Lesec, J.; Lecacheux, D.; Marot, 0. J . Ll9. Chfomatcgr. 1988, 7 7 . 2571-91. (030) Lesec, J.; Lecacheux, D.; Marot, 0. Int. GPC Symp. '87 1987, 89-112. (031) Marot, G.; Lesec, J. J . Liq. Chromatogr. 1088, 7 7 , 3305-19. (032) Marot, G.; Lesec, J. Int. Opc Symp. '87 1987, 113-27. (033) Chamberiin, T. A.; Tuinstra, H. E. US 4,775,943 04 Oct. 1988. (034) Chamberiin, T. A,; Tulnstra. H. E. J . Appl. Polym. Sci. 1988, 35, 1687-82. (035) Blower, L.; Trowbridge, D.; Kim, D.; Mukherjw, P.; Seeger, R.; McInWe, D. ACS Symp. Sei.1987, 352, 155-68. (036) Nagy, D. J. Int. GPC Symp. '87 1987, 250-72. ( a 7 ) Himmel, M. E.; Tatsumoto, K.; Oh, K. K.; Johnson, D. K.; Chum, H. L. ACS S v m ~ S . er.1989. 397. 62-99. I0381 S6chi. E. J.: Hanev. M. A.: Mahn. W.: Ward. T. C. ACS Svmo. Ser. . 1@89,397. 100-E. (039) Housakl, T.; Satoh, K. Polym. J . (Tokyo) 1988, 2 0 , 1163-6. (040) Reyndds, J. 0.; Biggs, W. R. Acc. Chem. Res. 1988,27,319-26. (041) Reynolds, J. 0.; Blggs, W. R. Fuel Sci. Technol. Int. 1988, 6 ,

.

- .

___

329-54.

(042) Sughrue, E. L.; Hausler, D. W.; Liao, P. C.; Strope, D. J. Ind. Eng. Chem. Res. 1988. 27, 397-401. (043) Reynolds, J. G. h p r . (Am. Chem. Soc.,Dlv. Pet. Chem.) 1989, 34 (21. 376-83. ((34' De Weal, W. A. J.; Kuiper, C. C. H. M.; Maessen, F. J. M. J.; Kraak, J. c.; Wijnands, R.; Jonker, R. J. J . Chfomatogr. 1989, 462, 115-35. ((345) Reynolds. J. G.; Jones, E. L.; Bennett, J. A.; Biggs, W. R. Fuel Sci. Techno/. Int. 1989. 7 , 625-42. (048) La Twe, F.; Violante, N.; Senofonte, 0.; D'Arpino, C.; Caroii, S. SpschoscopV(€Ugene, Oreg.) 1989, 4 (l), 48-51. (047) Crews, H. M.; Dean, J. R.; Ebdon, L.; Massey, R. C. Analyst (London) 1989, 7 14, 895-9. (048) De Vries, J. X. J . Chromatogr. 1989. 465, 297-304. (W9) Mwfwt,N.; Hedstrom, M.; Grebe, W. L C - W 1989, 7(2), 130, 132, 134, 138. (G50) Itageki, H.; Gulllet, J. E.; Sienicky, K.; Winnik, M. A. J . Polym. Sci., part C : P@m. Len. 1989,27, 21-4. (G51) Coubmbe. S. J . Chromtogr. Scl. 1988,26, 1-6. (052) Kinukawa, A. Jpn. Kokai Tokkyo KohoJP63,135,857, 08 Jun. 1988. (053) Hancock, D. 0.; Synovec, R. E. Anal. Chem. 1988. 60, 1915-20. PACKINQS (Hl) Tanaka, N.; Hashldzume, K.; Araki, M.; Tsuchlya, H.; Okuno, A.; Iwaguchl, K.; OhnisM, S.; Takai, N. J . Chromtogr. 1988, 448, 95-106. (H2) Anspech, B.; olerlich, H. U.; Unger. K. K. J . Chromam. 1988. 443, 45-54. (H3) Stabo, G.; Offenmuiler, K.; Csato, E. Symp. Bid. Hung. 1988, 37, 427-39. (H4) Szabo. G.; Offenmuiier, K.; Csato, E. Anal. Chem. 1988, 60, 213-16. (H5) Lumley, I . D.; Patei, I.; W e n , I.C. J . Chromatogr. 1987, 408, 115-27. (H6) Santarelii, X.; Muller, D.; Jozefonvicz, J. J . Chromatogr. 1988, 443. 55-82. (H7) WMlam, D. E. U.S. US 4,773,994, 27 Sep 1988. (H8) Coukmbe, S.; Desjardins, S. Report 1987, EMRIOERDERL87-74(TR). MICROLOCi.8641550, Avall. Energy, Mlnes. Res. Can., 555 Booth St.. Ottawa, Ont., Can., K1A oG1; Chem. Abstr. 1989, 7 7 7 , 100023~. (H9) CirdIW-Baer, 0.; Malwald, R.; Schmidt, W.; Schaefer. M.; Ablcht, U. Gw. (East) DD 255,865, 20 Apr 1988. (HlO) Krasllnkov, I.; Borlsova, V. J . chrometogr. 1988. 446, 211-19. (H11) Ivanov, A. E.; Zigls, L.; Turchlnskil, M. F.; Kop'ev, V. P.; Reshetov, P. D.; Zubov, V. P.; Kastrytlna, L. N.; Lonskaya, N. I. MY/.Oenet ., V h w l . 1987, (ll), 39-48 (Russ); Chem. Abstr. 1988, 7 0 8 , z m : (H12) MlzUkaml, F.; Niwa. S.; Toba, M.; Imai, S. Jpn. Kokai Tokkyo Koho JP 63 63,696, 22 Mar 1988. (H13) Mtzukami, F.; Nhva, S.; Toba, M.; Imai, S. Jpn. Kokal Tokkyo Koho JP 63 69,540, 29 Mar 1988. (Hi41 Hassl, L.; Lundstroem, H.: Andersson. T.: Lindbbm. H. J . Chromatow. 1@88,576, 329-44. (H15) Kagotani, M. Jpn. Kokai Tokkyo Koho JP 63 95,238. 28 April 1986. (H16) Kagotanl, M. Jpn. Kokai Tokkyo Koho JP 62,277,401, 02 Dec 1987. '

(H17) Itagaka, K.; Kusano, H.; Miyata, E.; Tashiro. T. Jpn. Kokai Tokkyo Koho JP 83 17,905, 25 Jan 1988. (H18) Itagakl, K.; Kusano, H.; Miyata, E.; Tashlro, T. Jpn. Kokai Tokkyo Koho JP 63 17.904. 25 Jan 1988. (H19) Tennikova; T. 8.; Hwak, D.; Svec, F.; Kolar, J.; Coupek, J.; Trushin, S. A.; Mal'tsev, V. G.; Belenkli. B. G. J . Chromatogr. 1988, 435, 357-82. (H20) Hirayama. C.; Ihara, H.; Shiba, M.; Nakamura. M.; Motozato. Y.; Kunitake, T. J . Chromatogr. 1987, 409, 175-81. (H21) Motozato. Y. Eur. Pat. Appl. EP 296,171, 11 Jan 1989. (H22) Boschetti, E.; Girot, P. Eur. Pat. Appi. EP 296,926, 28 Dec 1988. (H23) Ehwald, R.; Fuhr, G.; Olbrlch. M.; Goering, H.; Knoesche, R.; Kleine, R. PCT Int. Appi. WO 88 02,654, 21 Apr 1988. (H24) Ehwald, R.; Wring, H.; Jungnickei, F.; Augsten, H. Ger. (East) DD 248.920, 24 Jun 1987. (H25) Beyer, U.; Ehwald. R.; Moeiler, K.; Eckert, V.; Koeppen, B.; Koenlg, J.; Bauch, J. Ger. (East) DD 262,808, 14 Dec 1988. (H26) Bian, F.; Li, 2.; Shen, J. Jilh D8xue Zken Kexue Xuebao 1988, 98-102 (Ch); Chem. Abstr. 1988, 709, 191657~. (H27) Chai, 2.; Jiang, W.; Du, J.; Sun. R. Fenxi Huexue 1989. 77. 1-4 (Ch); Chem. Abstr. 1989, 7 7 7 , 32910~. (H28) Hlrata, N.; Kasal, M.; Yanaglhara, Y.; Noguchl, K. J . Chromatogr. 1987, 396, 115-20. COMPOSITIONAL HEEROGENEIlY/BRANCHING (11) Shiga, S. Polym.-Plest. Technd. Eng. 1989, 28(1). 17-41. (12) Kulin. L. I.; Meljerlnk, N. L.; Starck, P. Pure Appl. Chem. 1988, 60, 1403- 15. (13) Yu, L. P.; Roilinigs, J. E. J . Appi. Polym. Sci. 1988, 35, 1085-102. (14) Piskareva, E. P.; Kartasheva, G. G. Kauch. Rezina 1988, (l), 27-8 (Russ); Chem. Abstr. 1988, 708, 133166d. (15) Dumeiow, T. J . Mecromol. Sci., Chem. 1989, A26, 125-46. (16) Styring, M. G.; Armonas, J. E.; Hamielec, A. E. ACS Symp. Ser.1987, 352, 104-18. (17) Kuo, C. Y.; Provder, T.; Koehier, M. E.; Kah, A. F. ACS Symp. Ser. 1987, 352, 130-54. (IS) Mlrabella. F. M., Jr.; Wild, L. Polym. Meter. Sci. €ng. 1988, 5 9 , 7-11. (19) Moldovan, D. G. Int. GFC Symp. '87 1967, 129-67. (110) Wang, P. J.; Giasbrenner, 8. S. J . Li9. Chromatogr. 1988. 7 7 , 3321-33. ( I l l ) Siochi, E. J.; DeSlmone, J. M.; Hellstern, A. M.; McGrath, J. E.; Ward, T. C. Poly. Prepr. (Am. Chem. Soc., Dhr. Polym. Chem.) 1988, 30(1), 141-3. (112) Jin, C.; Sun, S.; Hou, R.; Cheng, R. Oeofenzi Xuebao 1987, (2), 113-18 (Ch); Chsm. Ab&. 1987, 707, 218354t. (113) Housaki, T.; Satoh, K.; Nishikda, K.; Morimoto, M. Makromol. Chem., RapM Commun. 1988, 9 , 525-8. (114) Sorokin, I.H.; Andreetta, H.; Fignlnl. R. V. J. H/gh Resolut. Chrometogr. 1989, 72,425-7. (115) Dei Rios, J. K. Am. Lab. (FaMleM, Conn.) 1988,20 (l), 78. 80-2. (116) Lazareva, M. A.; Zakharov, V. I.; Ivanov. A. K. Khim. Lkev. 1989, (3), 107-10 (Russ); Chem. Abstr. 1989. 7 7 7 , 176469). (117) Xu, 2.; Yuang, P.; Zhong, J.; Jiang, E.; Wu, M.; Fetters, L. J. J . Appl. Polym. S a . 1989, 37, 3195-204. (118) Cao, H.; Li, M.; Xle, H. Xian&o Gongye 1988, 7 7 . 229-33 (Ch); Chem. Abstr. 1988, 709, 74282). (119) Verenich. S. S.; Gur'eva, N. M.; Gorshkov, A. V.; Chareiishviii, 8. I.; Zapadinskll, 8. I.; Evreinov, V. V.; Enteiis, S. G. Vysokomol. W i n . , Ser. B 1987, 2 9 , 741-5 (Russ); Chem. Abstr. 1988, 708, 95248~. (120) Kohn, E.; Chisum. M. E. ACS Symp. Ser. 1987, 352, 189-82. (121) Dekmerian, A. H.; Morioka, T. Anal. Chem. 1989, 67, 458-61. (122) Hatada, K.; Ute, K.; Okamoto, Y.; Imanari, M.; Fuji, N. P*m. Bull. (Berlin) 1988,20,317-21. (123) Hatada, K.; Ute, K.; Kkayama, T.; Yamamoto, M.; Nlshlmura, T.; Kashiyama, M. Polym. Bull. (Berlin) 1989, 2 7 , 489-95. (124) MWI. S. Anal. SC/. 1088, 4 , 365-9. (125) Morl. S. Anal. Chem. 1988, 60, 1125-8. (126) Morl, S. J . Appl. W y m . Sci.: Appl. Polym. Symp. 1989, 43,85-84. (127) Mori, S. J . Chromatogr. 1987, 477, 355-62. (128) Kretschmer, K.; Helbig, W.; Kroschwitz, H.; CUGckner, 0. Pleste Kautsch. 1987. 34, 441-4 (Ger); Chem. Abstr. 1988, 708, 151312~. (129) Gkkner, G.; Stickler, M.; Wunderlich. W. Fresenius' 2. Anal. Chem. 1988, 330, 46-9. (130) G16ckner, G.; Stejskai, J.; Kratochvii. P.Mekromol. Chem. 1989, 790. 427-35. (131) Gliickner, 0.; Stickler, M.; Wunderlich. W. J . Appl. P o w . Sci. 1989, 37, 3147-61. (132) Gkkner, G. J . Appl. Pdym. Sci.: Appl. Polym. Symp. 1989, 43, 39-64. (133) Tacx. J. C. J. F.; German, A. L. Polymer 1989, 30, 918-27. (134) Van den Berg, J. Chem. Mag. (R&w&, Nefh.) 1987 (Nov.). 761. 764, 766 (Neth); 1988, 708, 222311q. (135) Jiang, Y.; YI, H.; Llang. E. Sepu, 5, 334-7 (Ch); 1988, 708. 76203n. (136) Bhikhabhai, R.; Lindblom. H.; Kaiiman, I.; Fagarstam, L. Am. Lab. (Faiff/e&f, 0.) 1989, 27 (5), 76, 78-81. (137) Hase, S.; Ikenaka, K.; Mikoshiba. K.; Kenaka, T. J . Chrometogr. 1988, 434, 51-60. (138) Floyd, T. R. c h f O f M t ~ 8 p h k1988, 2 5 , 791-6. (139) Yamamoto. H.; Manabe, T.; Okuyama, T. J . Chrometcgr. 1989, 480, 277-83. (140) Wiederkehr, F.; Bueler. M. R.; Wacker, M.; Vonderschmitt, D. J. E k tmphoresis 1989, 70, 480-8. (141) Moinar, I.; Boysen, R. I.; Erdmann. V. A. Chrometogr8phi8 1989, 28, 39-44. (142) Lemleux, L.; Amiot, J. J. Chromatogr. 1989. 473, 189-206. (143) Hyder. S. M.;Shahabi, N. A.; Wittiiff, J. L. Biochrometosgphv 1988, 3 , 2 16-24. ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

391 R

SIZE EXCLUSION CHROMATOGRAPHY (144 U e s , H. J.; Jewett, G. L.; Pfelffer, C. D.; Martin, S.; Smith, C. Anal. &em. 1989, 67, 961-5. (145) FUjknoto, C.; Morlte, T.; JhO, K. J . C m t o p . 1988, 438.329-37. (148) Baike, S. T. ACSSymp. Ser. 1987, 352, 59-77. (147) Dawkins, J. V.; Montenegro, A. M. C. Br. polvm. J. W89, 2 7 , 31-6. (148) LuO. Y. 2.; Reddy, N. K.; Heatley, F.; Booth. C.; Goodwin, E. J.; Jackson, 0. fur. Polym. J . 1988, 24, 607-10. (149) Keiusky, E. C.; Elston, C. T.; Mwray, R. E. Polym. Eng. Sci. 1987. 27, 1562-71. PHYSIOCHEMICAL MEASUREMENTS (Jl) Kruii, I.S.; Stuting, H. H.; Krzysko, S. C. J. Chromatogr. 1988, 442, 29-52. (J2) Hayashi, Y.; Mlmura. K.; Matsui, H.; Takagi, T. Biochlm. Bbphys. Acta 1989, 983, 217-29. (J3) Yoshimwa, T.; Sone, S.; Maezawa, S.; Kameyama. K.; Takagi, T. Biochem. Int. 1988, 77. 1157-63. (J4) Kunitani, M. G.; Cunico, R. L.; Staats J. Chromatogr. 1988, 443, 205-20. (J5) Funasaki, N.; Hada, S.; Neya, S. Bull. Chem. Soc. Jpn. 1989, 62, 380-5. (J6) BaudinChich, V.; Marden, M.; Wajcman, H. J. Chromatcgr. 1988, 437, 193-201. (J7) Bano, M. C.; Braco, L.; Abad. C. J . Chromatogr. 1988, 458, 105-16. (J8) Bano, M. C.; Braco, L.; Celda, B.; Abad, C. Biophys. Chem. 1987, 37, 3-a (Jar "&no, M., Chillaron, F., Abad, C. J . L i q . Chromatogr. 1987, 70, 3463-80. (J10) Braco, L.; Bano, C.; Chillaron, F.; Abad, C. Int. J. Biol. Macromoi. 1988, 70, 343-8. (J11) W a n t , J. L.; Hambaba. L.; VldaHhet, M.; Schaefer, C.; Wahistedt. V.; NiCOlaS, J. P. Cl4. Chem. Actr, 1989, 787, 151-62. (J12) Gendreau, M. A.; Krishnaswamy, S.; Mann, K. G. J . Bid. Chem. 1989, 264, 6972-8. (J13) Viisen, B.; Andersen, J. P. J . Chromafcgr. 1988, 442. 229-36. (J14) Jenkins. R. L.; Ong, R. L.; Parrlsh, S. W.; McDaniei. H. G. Arch. Biochem. Blophys. 1988, 266, 72-82. (J15) Smith, B. F.; Peetermans, J. A.; Tanaka, T.; LaMont. J. T. Gashoenterology 1989, 97, 179-87. (J16) Watson, E.; Kenney, W. C. J . Chromatogr. 1988, 436, 289-98. (J17) Saxena, A. M. J. Mol. 8/01. 1988, 200, 579-91. (Jl8) Smith, J. M. A.; Harrison, P. M. Bhhemistry 1988, 2 7 , 4089-96. (J19) Mejilleno, M. R.; Himes, R. H. Biochemistry 1989, 2 8 , 6518-24. (J20) Koseki, T.; Fukuda, T.; Kitabatake, N.; Doi, E. Food Hj&cdb& 1989, 3, 135-48. (J21) Cann, J. R.; Rao. A. G.; Winzor, D. J. Arch. Biochem. Biophys. 1989, 270, 173-83. (J22) Stevens, F. J. US. 4,762,617, 09 Aug. 1988. (J23) Stevens, F. J. Bbphys. J. 1980, 5 5 , 1155-67. (J24) a n n , J. R.; York, E. J.; Stewart. J. M.; Vera, J. C.; Maccioni, R. B. Anal. Blochem. 1988, 775, 462-73. (J25) Berger, 0.; Glrauk, G.; Gaimiche, J. M. J . L i q . Chmmatogr. 1989, 72, 535-51. (J26) Hashimto, T.; Yoshida, Y.; Tagawa, K. J . B k h e m . (Tokyo) 1987, 702, 685-92. (J27) Jackson, A. E.; Puett, D. Biochem. Pharmacal. 1986, 35, 4395-400. (J28) Shbnaaki, K. J . O e h SCi. 1889, 72, 702-7. (J29) Rao, P. F. Takagi, T. Anal. Biochem. 1988, 774. 251-6. (J30) MaScher, E.; LUndahi, P. J . Chromatop. 1988, 476, 147-58. (J31) Kaiambet, Yu. A.; Burova, E. I.; Zhuchkov, A. A,; Knorre, V. L. Biopolim. Kbta 1988, 4 (l), 20-7 (Russ); Chem. Absb. 1988, 709, 89073. (J32) Kalambet, Yu. A.; Burova, E. I.; Zhuchkov. A. A.; Knorre, V. L.; Aleksandrov, A. A. Symp. Biol. Hung. 1988, 3 7 , 251-68. (J33) Watanabe, J.; Nakagaki, H.: Yuasa, H.; Ozeki, S. J. PharmacobioDyn. 1989, 72, 416-22. (J34) Kaddtura, S.; Miyamoto, T.; Inagaki, H. Bull. Inst. Chem. Res.; Kyoto Univ. 1987, 65(2), 75-82. (J35) Vasii'ev, B. K.; Gladkikh, R. V. KMm-Farm. Zh. 1988, 2 2 , 1504-7 (Rum); Chem. Absh. 1989, 110, 121218a. (J36) Bereman, R. D.; Berg, K. A. Inwg. Chim. Acta 1989, 755, 183-9. (J37) Katime. I.A.; Quintana, J. R. fur. Polym. J . 1988, 24. 775-82. (J38) Katime, I. A.; Quintana, J. R. M a k m l . Chem. 1968, 789, 1373-85 (RUSS); Chem. Absb. 1988, 709, 74249d. (J39) Prochazka, K.; Bednar. B.; Tuzar, 2.; Kocirik, M. J. L i q . Chromatqr. 1988, 7 7 , 2221-39. (J40) Prochezka, K.; Bednar, B.; Tuzar, 2.; Kocirik J . L i q . Chromarogr. 1989, 72, 1023-41. (J41) Funasaki. N.; Hade, S.; Neva, S. J. phvs. Chem. 1988, 92, 7112-16. (J42) Funeaaki, N.; b d a , S.;Neva, S. Bull. Chem. Soc. Jpn. 1989, 62, 1725-30. (J43) Funasaki, N.; Hade, S.;Neya, S. Buli. Chem. Soc. Jpn. 1988, 67, 2961-2. (J44) Dubh, P. L.; Principi, J. M.; Smith, B. A,; Faiion, M. A. J. ColW Interface Sci. 1980, 727, 558-65. (J45) Takata, E.; Ono, Y.; Shirai, K.; Wada, K. M a k u Kagukl 1987, 33 (1). 15-20 (Japan); Chem. Absb. 1987, 707, 2388458. (J46) Shabngo, W.; Jagannadham, M. V.; Flynn, C.; Steiiwagon. E. Bkchemtstty 1989, 28, 4620-5. (J47) Canes. Q.; Longhi. R.; Mauola, G.; Pasta, P.; Vecchio. G. Anal. BioChem. 1909, 780, 181-5. (J48) Popimau, Y.; Pineau, F. Lebensm.-Wiss. Techno/. 1988. 27 (2), 113-17. (J49) ACObeMi. A. M.; Light, A. J. 8/01. Chem. 1988, 263, 8642-5. (J50) Hili. B. C.; Cook, K.; Robinson, N. C. Brbchemisby 1988, 2 7 , 4741-7. (J51) Fishman, M. L.; Gtllespk, D. T.: Sondey, S. M.; Barford, R. A. J . Agric. FoodChem. 1989>3 7 , 584-91.

392R

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

(J52) Hearn, M. T. W.; Aguilar, M. I.; Nguyen. T.; FrMman. M. J. Chromatogr. 1988, 435, 271-84. (J53) Takakuwa. T.; Kwosu, Y.; Sakayanagi, N.; Kaneuch, F.; Takeuchi, N.; Wada, A.; Senda, M. J. L i q . Chromatogr. 1987, 70. 2759-69. (J54) Jerabek, K.; Setinek, K. J. Pokm. Scl., Part A : Polym. Chem. 1989, 2 7 , 1619-23. (J55) Mazsaroff, 1.; Regnier, F. E. J. Chmmatogr. 1988, 442, 15-28. (J56) Ekekova, N. A.; Ekekov. Yu. A. Chrome+phb 1989, 2 7 , 633-8. (J57) Haney, M. A.; Armonas, J. E.; Rosen. L. ACS Symp. Ser. 1987, 352, 119-29. ( J W Sornmermeyer, K.; Cech, F.; Pfitzer, E. Chmnatcgraphla 1988. 25, 167-8. (J59) Tinland, 8.; Mazet, J.; Rinaudo, M. Makromd. Chem., RapMcommOn. 1988, 9 , 69-73. (J60) COrtizo, M. S.; Andreeta, H. A.; Figini, R. V. J . Hlgh Resolut. Chromato@-. 1989, 72, 372-4. (J61) Price, G. J.; Moore, J. W.; Gulllet, J. E. J. f w m . Sci., PartA: Polym. Chem. 1989, 2 7 , 2925-35. (J62) Qian, Y. Gaofenzi Xuebao 1988, (l), 7-11 (Ch); Chem. Ab&. 1988, 709. 39212q. (J63) Chen. C. Sepu 1987, 5 , 316-18 (Ch); Cham. Abstr. 1988, 708, 76888q. (J64) Van Damme, M. P. 1.; Murphy, W. H.; Cornper, W. D.; Preston, B. N.; Winzor, D. J. Biophys. Chem. 1089, 3 3 , 115-25. (J65) Balaz, S.; Kuchar. A.: Drevojanek, J.; Adamcova, J.; Vrbanova, A. J. Biochem. Biophys. Methods 1988. 78, 75-85. (J66) Dubin, P. L.; Principi, J. M. Anal. Chem. 1989, 67, 780-1. MICROCOLUMN (K1) Hirose. A.; Ishii. D. J . Chromatop. 1987, 4 7 7 , 221-7. (K2) Fiurer, C.; Borra, C.; Beale, S.; Novotny, M. V. Anal. Chem. 1988, 80, 1826-9. (K3) Fiurer, C. L.; Borra, C.; Andreolini, F.; Novotny, M. J. Chmmatogv. 1988. 448. 73-86. (K4) Gankina,'E. S.; Kever, J. J.; Kostiuk, I . 0.; Saminsky, A. E.; Belenkil, B. G. J. High Resolut. Chromatogr. Chromatogr. Commun. 1988, 1 7 , 119-21.

PREPARATIVE (L1) Ekmanis, J. L. ACSSymp. Ser. 1987, 352, 47-58. (L2) Gadkari, A. C.; Zsuga, M.; Kennedy, J. P. Polym. Bull. (Serun) 1987, 78, 317-22. (L3) Sisson, W. G.; Begovich, J. M.; Byers, C. H.; Scott, C. D. C"€CH 1988, 78, 498-502. (L4) Hung, J.-X.; Guiochon, G. BioChromatography 1988, 3 , 140, 143, 144-8. (L5) Huang. J. X.; Guiochon, 0. J . Chromatogr. 1989, 492. 431-69. (L6) Antie. P. E.; Cox, G. B.: Shrakoff, S. I.; GoMberg, A. P. BbChromatography 1987, 2 , 46-55. (L7) Hammond, P. M.; Scawen, M. D. J . Biotechnol. 1989, 7 7 , 119-34. jL8) Hansen, J. C.; Rlckett, H. Anal. Blochem. 1989, 779, 167-70. (L9) McCiung, J. K.; Gonzales, R. A. Anal. Bbchem. WBS, 777, 378-82. (L10) Whisenant. E. C.; Rasheed, B. K. A.; Bhatnagar, Y. M. Nucleic AcMs Res. 1988. 16, 5202. (L11) Raymond, G. J.; Bryant, P. K., 111; Nelson, A.; Johnson, J. D. Anal. Blochem. 1988, 173, 125-33. (1-12) White, J. A.; Stott, R. A. W.; Matthews, J. A. NucbicAcMs Res. 1988, 76, 2727. (L13) Wood, P. G. Methods Enzymol. 1987, 149 (Drug Enzyme Targeting. Pt. BI. 271-80. (L14i' Bos, 0J. M.; Fischer, M. J. E.; Wilting, J.; Janseen, L. H. M. J . Chromat-. 1988. 424. 13-21. (L15) Shakoff, S. 1.; Jane,, C. J. BioChromatography 1988, 3 , 62-8. (L16) Chen, F. M.; Naeve, G. S.; Epstein, A. L. J. Chromatogr. 1988, 444, 153-64. (LIT) Lecacheux, D.;Brigand, G. Carbohydr. Polym. 3988, 8, 119-30. (LIE) Barker, P. E.; England, K.; Ganetsos, G. J . Chem. Techno/. Biotechno/. 1988. 4 7 , 61-8. (L19) Hanori, S.; Nakahara, H.; Kamata, T. Kagaku ffjutsu Kenkyusho M o ku 1988, 8 3 , 565-72 (Japan); Chem. Absb. 1980. 7 7 7 , 8122x. (L20) Nakahara, H.; Hattoro, S.; Kamata, T. Kagaku ff/utsu Kenkyusho Hokoku 1988, 8 3 , 573-8 (Japan); Chem. Absb. 1989, 7 7 1 , 8123y. PROCESSlOUALITY CONTROL (Ml) Renn, C. N.; Synovec, R. E. Anal. Chem. 1988. 60, 200-4. (M2) Renn, C. N.; Synovec, R. E. Anal. Chem. 1988, 60, 1829-32. (M3) Cotter, R. L.; Limpert, R. J.; Deiuski, C. Am. Lab (FaMleM, Conn.) 1987, 79 (12), 54, 56, 59-62. (M4) Limpert. R. J.; Cotter, R. L. Int. GPC Symp. '87 1987, 320-9. (M5) Budde, Uwe; Reichert. K. H. Angew. Makronwl. Chem. 1988, 767, 195-204. . .. - .. (M6) Furth, B.; Riedeibauch. H. Kunststoffe 1988, 78, 420-3 (Ger); Chem. Abstr. 1988, 709, 56051d. SELECTED APPLICATIONS (N1) Steinwandter. H. Anal. Chem. 1988, 337,499-502. (N2) Burlitch, J. F.; Winterton, R. C. ACS Symp. Ser. 1987, 357, 24-6. (N3) Noda. H.; Saitoh. K.; S~ruki.N. J . Chrome-. 1988, 435, 368-73. (N4) Le Maire. M. Bio-Sciences 1987. 6 . 119-23 (Fr): Chem. Absb. 1988, 708. 109028q. (N5) Jackson, D. C.; Poumbourios. P.; White, D. 0. Mol. Immunol. 1988, 25. 465-47 1. (N6) Stevens, F. J. Methods Enzymol. 1989, 778, 107-130.

SIZE EXCLUSION CHROMATOGRAPHY (N7) Taka I T. Yakagaku 1988, 3 7 , 402-7 (Japan); Chem. Abstr. 1988, 709, lI%k3ls (N8) Kaplan, 8.; bras, M. J . Chromatog. 1987, 423, 376-9. (N9) HaN, S. W.; VandmBerg, S. R. prep. Bkchem. 1989, 19. 1-11. (N10) Raidaru, G.; Rlnken, A. A.; Jary, J. €est/ NSV Tead. Akad. Tolm., Keem, 1988, 37, 92-9 (Russ); Chem. Abstr. 1988, 709, 145527f. (N11) Schmen. M. J. F.; Goodwh, K. R.; Van der Maaten, M. J. J . Chromatog. 1988. 425, 379-84. (N12) Welling, 0. W.; Kazemler, 8.; WelllngWebster, S. Chromatograph& 1987, 24. 790-4. (N13) Welling-Wester, S.; Kazemier, B.; Oervell, C. J . Chromatogr. 1988, 443, 255-68. (N14) Van E&, J.; NljmelJer, J. R. J.; WeUlngWester, S.; Oervell, C.; Welling, G. W. J . ChrOmetOgr. 1988, 476, 319-27. (N15) Mant, C. T.; Hodges, R. S. J . Llq. Chfomtogf. 1989, 12, 139-72. (NIB) Hodges, R. S.; Parker, J. M. R.; Mant, C. T.; Sharma, R. R. J . Chromtogr. 1988, 458. 147-87. (N17) Plot, J. M.; Gulllochon, D.; Thomas, D. Chromatograph& 1988, 2 5 , 307-12. (N18) Lemleux, L. and Amlot, S. J. Chromtogr. 1989, 473, 189-206. (Nl9) Clifton, P. M.; Baxter. P. J.; Macklnnon, A. M. J . LipMRes. 1988, 2 9 , 121-35. (N20) Takahashi, S.; Tamai, T.; Takal, H.; Hayashl, S.; Maeda, H.; Sabe, H.; Nakai, T.; Mlyabo, S. Domyaku Koka 1987, 75, 1179-83 (Japan); Chem. Abstr. 1988. 108, 109013f. (N21) olde, K.; Nakal, 1.;Mlyabo, S.; Krui, E. S.; Schonfeld, G. Domyaku Koka 1987, 75. 889-95 (Japan); Chem. Abstr. 1988, 708, 34271~. (N22) Knobler, H.; Falnaru, M.; Sklan, D. J . Chromatogr. 1987, 421, 136-40. (N23) Jethmalanl, 8.; Kopplkar, S. V.; Viswanathan, G.; Bandyopadhyay, C.; Noronhas, J. M. Indkn J . Exp. 8101. 1988, 26 (8), 633-7. (N24) Okazakl, M.; Kinoshlta, M.; Hara. I. J . Chfomatogr. 1988. 430, 135-42. (N25) Furr, H. C.; Olson, J. A. Anal. Biochem. 1988, 777. 360-5. (N26) Tanaka, M.; Hama. M. Clln. Chem. 1988, 34, 2567-8. (N27) Nowotny, P.; Eckardt, H.; Kamp, R. M. Chfometogreph& 1988, 25, 409- 12. (N28) Lee, J. K.; Deiuccia, F. J.; Kelly, E. L.; Davldson, C.; Borger, F. R. J . Chrometogr. 1988, 444, 141-52. (N29) Yamsaki. Y.; Kato, Y. J . Chrometogr. 1989, 467, 436-40. (N30) Karglna, T. M.; Runova, V. F.; Gavrllenkova, V. Y. Zh. Mlkrobbl., Epklembl. Immunobbl. 1987, (12), 74-7 (Russ); Chem. Abstr. 1988. 708, 110395~. (N31) Carranza, P. M.; Vltaii. M. S.; Manfredl, M. J.; Glavedoni, E. B. Acta Farm. Bonaerense 1988, 7 , 41-7 (Span); Chem. Abstr. 1989, 770, 635601. (N32) Hwang, H. H.; Heaiey, M. C.; Johnston, A. V. J . Chromatogr. 1988, 430, 329-39. (N33) Glll, J. S.; Ghatei, M. A.; Domln. J.; Bloom. S. R. Llfe Scl. 1989, 44, 483-9 1, ( N W nosekl. S.; Sawamoto, J.; Hagiware, M.; Kwano, M.; Kusano. T.; Oda, H.; ShHna. S. J . chrome-. 1989, 488, 503-5. (N35) Janska, H.; Light, A. Anal. Bbchem. 1989, 176, 132-6. (N38) Armstrong, D. 0.;McKay, C. 0.; Morrell, D. J.; Goodard. C. J . Endo&no/. 1989, 720, 373-8. "7) Fant, M.; Munro, H.; Moses, A. C. placenta 1988, 9 , 397-407. (N38) Antonlni, A,; Bader, S. Cosmet. T&Mes 1988, 703, 57-61. (N39) Omichl, K.; Ikenaka, T. J . Chmatogr. 1988, 428, 415-18. (N40) Kroesbergen, J.; Rooten, A. M. P.; Wortelboer, M. R.; Gelsema, W. J.; oellgny, C. L. Nucl. Med. Bbl. 1988, 75, 479-87. (N41) Hulgen. Y. M.; TJI. T. G.; Gaisema. W. J.; De Ligny, C. L. Appl. Radlat. Isot. 1989. 40, 629-636. (N42) Kamei, A.: Iwata, S.; Horwk, J. Jpn. J . Ophhalmol. 1987, 37, 433-9. (N43) Trlfonova, N.; Novoselska. L.; Aleksiev, C.; Llsaev, P.; Marinov, E. Scl. wotks Hilpher Med. Inst.-Pleven 1987, 9 , 51-4: Chem. Abstr. 1988, 709, 89080r. (N44) Weitzer. G.; Wlche, 0. Ew. J. Bbchem. 1987, 769, 41-52. (N45) Schaeffer. R. C. Toxlcon 1987, 2 5 , 1343-6. (N46) sedleczek, P.; KropWatorek, A.; Gawllkowskl, W.; Usowska. E. Arch. Immunol. mer. Exp. 1987, 35. 249-55. (N47) Jacobs, E.; Fuchte. K.; Bredt. W. 8/01. Chem. Hoppe-Seyk 1988, 385, 1295-9. (N48) Beksi, S. M.; Llbbus, N.; Frazler, J. M. Comp. Blochem. physbl., C : Phemrecd. TOXlCOl. 1988, 97C. 355-63. (N49) Berry, F.; Beechlnor, F.; Foley, J. I f . J . Food Scl. T h n o l . 1988, 72, 25-39. (N50) Woodhouse, L. R.; Lonnerdai, B. Nutr. Res. 1988, 8 . 853-864. (N51) Dower, S. K.; Wlgnall, J. M.; Schooley. K.; McMahan, C. J.; Jackson, J. L.; Rickett, K. S.; Lupton, S.; Cosman, D.; Sims. J. E. J. Immunol. 1989, 742, 4314-4320. (N52) Watson. E.; Kenney, W. C. J. C?mnatog. W88, 436, 289-298. (N53) Elkgren, H.; Laas. T. J . chrometogr. 1989, 467, 217-26. (N54) Moreeu, N.; Tabary, X.; Le Gofflc. F. Anal. Blochem. 1987. 766. 188-93. (N55) Reymond, 0. J.; Bryant, P. K.; Nelson. A.; Johnson, J. D. Anal. B b 1988, 773, 125-33. (N56) Flaminl, 0.;Rla, F.; Scuderi, F. J . Chromato@. 1987, 427, 434-6. (N57) Bosshard. H. R.; Wynn, R. M.; Knaff. D. B. BbchemLsfty 1987, 26, 768693. (N58) Faugue, J.; Scall. J.; Cavailles. V.; Borgna, J. L. J . Sterdd Bbchem. 1889. 32, 769-80. (N59) Vedeckls, W. V.: LaPolnte, M. C.; Kovacic-Mllivojevic, B. BloChromat m p h y 1987, 2 , 178-85. (N60) Wrenge, 0.; Eriksson, P.; Perlmann, T. J . Bbl. Chem. 1989, 264, 5253-5259.

m.

(N61) Privat, J. P.; EgretCharlier, M.; Ptak, M. Anal. Blochem. 1987, 766, 18-26. (N62) Fukomoto, T.; Nlshimura, T.; Nagasawa, TI.; Kltajlma, K.; Iwamua, T. A N I . Biochem. 1988. 770, 463-71. (N63) Randall, R. C.; Phillips, 0. 0.; Williams, P. A. FoodHydroooWdds 1988, -2 , 131-40. .- . . -. (N64) Snowden, M. J.; Phillips, G. 0.; Williams, P. A. Food Hydrocdldds 1987, 1 , 291-300. (N65) Bradley, T. D.; Bail, A.; Harding. S. E.; Mitchell, J. R. Carbohydr. PoIvm. 1989. 10. 205-14. (N66) Herbst, H.; Peters, H. U.; Suh, I. S.; Schumpe, A,; Deckwer, W. D. Biotechnol. Tech. 1988, 2. 101-4. (N67) Cheetham, N. W. H.; Punruckvong, A. Carbohydr. Polym. 1989. 70, 129-41. (N66) Rochas, C.; Lahaye, M. Carbohydr. Polym. 1989, 70. 289-98. (N69) Reksma, J. C. E.; Pihik, W. Carbuhydr. folym. 1989, 10, 315-19. (N70) Ring, S. G.; Coknna, P.; I'Anson, K. J.; Kaiichevsky, M. T.; Miles, M. J.; Morris, V. J.; Orford, P. D. Carbohydr. Res. 1987, 762, 277-93. (N71) Carunchio, V.; Girelli, A. M.; Sinibaldi, M.; Tarola, A. M. C h r m t o graph& 1988, 25, 870-4. (N72) Chuang. J. Y.; Sydor. R. J. J . Appl. Polym. Scl. 1987, 34, 1739-48. (N73) Lehtonen, P. Chromtographla 1988, 26, 157-9. (N74) Cai, W.; Athanassoulis, C.; Diosady, L. L. Acta Allment. 1988, 77, 319-32. (N75) Jackson, D. S.; Choto-Owen. C.; Waniska, R. D.; Rooney, L. W. Cereal Chem. 1988, 65, 493-6. (N76) Kennedy, J. F.; Stevenson. D. L.; White, C. A. Starchlstaerke 1988, 40, 396-404. (N77) Kennedy, J. F.; Stevenson, D. L.; White, C. A. StarchlStaerke 1989, 4 7 72-7. (N78) Bouchard, J.; Chornet. E.; Overend. R. P. J . Argric. Food Chem. 1988, 36, 1188-92. (N79) PramJk, W.; Beck, R. H. F.; Serghofer, E. StarchlStaeVke 1987, 39, 397-402. (N80) Russell, P. L.; Berry, C. S.; Greenwell, P. J . Cereal Scl. 1989. 9 , 1-15. (N81) Jackson, D. S.; Waniska, R. D.; Rooney, L. W. Cereal Chem. 1989, 66, 226-32. (N82) Telkova, T. N.; Chlenov, M. A.; Maloieheva, 0. Y.; Petrov, P. T.; Dombrovskii. V. A. KhlmXarm. Zh. 1987, 27, 1384-8 (Russ); Chem. Abstr. 1988, 108. 439606. (N83) Fujihara, M.; Nagumo, T. J . Chfomatogr. 1989, 465, 386-9. (N84) Ball, A.; Hardlng, S. E.; Mitchell, J. R. Int. J. Bioi. Macromol. 1988, 70, 259-64. (N85) Dark, W. A. Am. Lab. 1988, 2 0 , 22. (N86) Ueno, Y.; Tanaka, Y.; Horie, K.; Tokuyasu, K. Chem. h r m . Bull. 1988, 36,4971-5. (N87) Motohashi, N.; Nakamlchl, Y.; Mori, I.; Nlshikawa, H.; Umemoto, J. J . Chfomtogr. 1988, 435, 335-42. (N88) Saari, H.; Konttinen, Y. T. Ann. Rheum. Dis. 1989, 48, 565-70. (N89) Saari, H.; Konttinen, Y. T.; Santavirte, S. Med. Scl. Res. 1989, 17, 99-101. (N90) Turner, R. E.; Llh, P.; Cowman, M. K. Arch. Blochem. w h y s . 1988, 265, 484-495. (N91) Schwald, W.; Bobleter, 0. J. Appl. Polym. Scl. 1988, 35, 1937-44. (N92) Kvernheim, A. L.; Lystad, E. Acta C h m . Scand. 1989, 43, 209-11. (N93) Zhang, G. s8pU 1988, 6 , 116-18 (Ch); Chem. Ab&. 1988, 709, 248800. (N94) White. C. A.; Brodtes, A. P.; Kennedy, J. F.; Warner, F. P. &. Polym. J . 1987. 19, 313-18. (N95) Ozolins. R.; Pernikis, R.; Leimane, I. Latv. PSR Zlnat, Akad. Vestls, Kim. Ser. 1988, 85-6 (Russ); Chem. Abstr. 19889 108, 186654s. (N96) Evans, R.; Wearne, r. H.; Wallis, A. F. A. J . Appl. folym. Scl. 1989, 37, 3292-303. (N97) Danhelka, J.; Netopilik, M.; bhdanecky, M. J. Polym. Sc/., Par? 6 : POlym. PhYS. 1987, 25, 1801-15. (N98) Miynar, J.; Kolar, J. Vysk. Pr. Odbcfu Pap. Celul. 1988, 43 (Russ); Chem. Abstr. 1988, 709, 232964q. (N99) Poker, E. Acta Blotechnol. 1988. 8 , 233-40 (Ger); Chem. Abstr. 1988, 709, 1885412. (N100) Sayama, K.; Kamata. T. Selto G!jutsu Kenkyu Kaishl 1988, (36), 59-67 (Japan); Chem. Abstr. 1988, 109, 172449~. (N101) Wieczwek, M.; Soloniewicz, R. h e m . Chem. 1988, 6 7 , 512-13 (Pol); Chem. Abstr. 1989, 770, 137379q. (N102) Nobrega, R.; De Baimann. H.; Aimar, P.; Sanchez, V. J. Membr. Scl. 1989, 45, 17-36. (N103) Schock, 0.; Mlquei, A.; Birkenberger, R. J . M m b r . Scl. 1989, 47. 55-67. (N104) Kurtzhals, P.; Larsen, C.; Johansen, M. J . Chmmtogr. 1989, 497, 117-27. (N105) Kitano, T.; Yamamto, T.; Okemoto, Y.; Itsuno, S.; Ito. K. P o r n . J. (Tokyo) 1987, 79, 1013-23. (N106) Xle, H.; Xla, J. M a k r m l . Chem. 1987. 188, 2543-52. (N107) brllnova, I.; Vladimirov. N.; Panaktov, I . Makromol. Chem. RapU Commun. 1989, 70, 163-6. (N108) Sokolov, M. I.; Granovskaya, 0. L.; Kovtunenko, L. V.; Glukhovskd. V. S. Kauch. Rezlna 1989, (1) 31-4 (Russ); Chem. Abstr. 1989, 770, 155896k. (N109) Bender, D. L.; Beres. J. J.; Timmer. R. B. Int. Opc Symp. '87 1987, 1-17. Pet. (N110) Young, T. S.; WNIMle, G. P.; (;reen, D. W. W a t e r - W M Recovery. [Proc. Nat'lMeet. ACS] 1986, 329-42. (N111) Sysei, P.; Moucha, A.; Bednar. B.; Trnena, J.; Kralicek, J. Sb. Vys. Sk. Chem.-Technol. Raze. Polym.: Chem., VIesmOstl Zprac. 1888, S17, 127-38 (Czech); Chem. Abstr. 1989, 7 7 7 , 154755~. ~

m.

ANALYTICAL CHEMISTRY, VOL. 62, NO. 12, JUNE 15, 1990

393 R

Anal. Chem. 1990, 62. 394R-402R , ‘871987, 18-66. (N112) Dark, W. A. Int. W S (N113) Velth, C. A.; cohen.R. f?&b?nef 1989, 30, 942-8. (N114) Shekovaya. E. E.; Ershov, 0. V.; Lyubimtseva, (3. P.; Teishev, A. E.; our’yanova, V. V.; Pavlov. A. V. Vysokomd. S m W . , Ser. A 1987, 29, 2226-9 (Russ); Chem. Abstr. 1988, 708, 6731j. (N115) Wei, Y.; Hsueh, K.; Tang, X.; Sun, Y. Polym. Prepr. (Am. Chem. SOC.. Dlv. POlym. chem.)1989, 30(1), 226-7. (N116) Dawst, D. Spectra 2000 [Deux Mille] 1987, 122, 40-1 (Fr); Chem. Abstr. 1987, 107, 218378d. (N117) Chen, W. Y.; Ho, W. H.; Chiu, Y. S. Int. GFC Symp. ‘87 1987, 447-54. (N118) Vakhtb, I.A,; Metlyakova, I.R.; Petrakova. E. A.; Samoiiova, N. P. &St. MSSy 1988, (3). 50-1 (Russ); Chem. Abstr. 1988. 709, 55594~. (Nll9) Nosterm, V. V.; Chubarova, E. V.; Belen’kii. B. G. Vysdromd. Soedin.. Ser. A 1989, 37,653-7 (Rws); Chem. Abstr. 1989. 7 7 7 , 40252a. (N120) Mukherjee, A. K.; Patri, M. Angew. # a k m / . Chem. 1989, 777, 131-9. (N121) Fuller, E. N. Report 1988. BDX-6134948; Order No. DE88013226, Avail. NTIS. (N122) MeiSSm, K.; Vogel, J.; Poltersdorf, B. pleste Keutsch. 1987, 34, 449-51 (h); Chem. Abstf. 1988, 108, 132730~. (N123) Yaw, M. H.: Liaw, W. C. J . Chin. Chem. Soc. (Taipei) 1988, 35, 147-52. (N124) Altken, C.; Harrod, J. F.; Gill. U. S. Can J . Chem. 1987, 65. 1804-9. (N125) Sawan, S. P.; Tal, Y. G.; Huang, H. Y.; Muni, K. P. Powm. Repr. (Am. Chem. Soc., Div. Polym. Chem.) 1988, 29, 252-3. (N126) Fwmoy, T. R.; Semlyen, J. A. P w m . Commun. 1989, 30, 86-9. (N127) MuHer, A. J.; OpHa, R. L. Ehsctf. Conacts 1988, 34, 269-300. (N128) Ma, R.; Cheng, W. Fenxl Ceshi Tongbao 1988, 7 (5), 32-6 (Ch); Chem. Abstr. 1989, 770, 155159~. (N129) Weisskopf. K. J . Polym. Sci., Pari A : Polym. Chem. 1988, 26, 19 19-35. (N130) Sjprey, R. E. Elestomefics 1989, 727 (3). 15-17. (N131) Lee, C. H.; Mailinson, R. G. J . Appi. Polym. Sci. 1989, 37, 33 15-27. Kuznetsova, V. A,; Sorokin, A. Y.; (N132) bomnicheva, N. A.; Kogan, S. I.; Budtov, V. P. Vysokomol. Soedln., Ser. A 1989, 37, 597-601 IRuss): Chem. Abstr. 1889, 1 7 7 , 40221q. (N133) Wagenaar, P. Conw. FATIPEC 1987, 78th (Voi. 3), 491-503. (N134) Sz6ztay. M.; Laszld.edvig, 2.; Tudos, F.; Hoerhold, H. H.; Klee, J. Angsw, Makromd. Chem. 1988. 782, 149-62. (N135) Noel, D.; Cole, K. C.; Hechler, J. J.; Chouliotis, A.; Overbury, K. C. J . ChromatOgr. 1987. 408, 129-44. (N136) Larwn, F. N.; Spieker. D. A. Int. GfC Symp. ’87 1987, 336401. (N137) Wooten, A. L.; Rswltt, M. L.; Sellers, T.; Teller, D. C. J . chromatcgr. 1988, 445, 371-6. (N138) Rledl, B.; Celve, L.; Blanchette, L. tio/zforschung 1988, 42, 315-18. (N139) Husain, S.; Sastry. G. S. R.; Raju, N. P.; Narasimha, R. J . chrometom. . -I. - 1088. 454. 317-26 (N140) Dobarganes, M. C.; Perez-Camino, M. C.; Marquezduiz, G. Feft WbS Technol. 1988, 90, 308-1 1. (N141) Goncelves, D. Arq. Bid. Tecnd. 1988, 31, 469-74 (Port); Chem. Abstr. 1989. 171. 6012n. (N142) Mertin,’I.; Uk. U. J . Chromatogr. 1989, 466, 339-45. (N143) Johnson, D. K.; Chum, H. L. ACS Symp. Ser. 1988, 376, 156-66. “44) W d t O , S. A.; C w . D. J.; Kiceniuk, J. W.; Simpler, K. T. Org. GeoCIKM). 1988. 13, 273-81. (N145) Yaw, P. W.; Mantsch, H. H.; Kotlyar, L. S.; Woods, J. R. Energy 2. 26-31... .Fuels - 1988. ...-, (N146) Beazley. P. M.; Hawsey, L. E.; Plummer, M. A. Transp. Res. Rec. 1987. 7775. 46-50. (N147) ‘Cy, N:; McIntyre, D. D.; Toth, G.; Straw, 0. P. Fuel 1987, 66, 1709- 14.

.---.

__

.

(N148) Yamada, Y.; Koinuma, Y. SekiyuGakkaLshi1989. 32, 7-10 (Japan); Chem. Abstr. 1989, 710, 9843ld. (N149) Glover, C. J.; Bullin, J. A.; Button, J. W.; Davison, R. R.; Donaldson. G. R. Report 1987. Order No.,PB88-128566, Avail. NTIS. (N150) Leite, L.; Camillo, M.; Deane, G. H. W.; Cintra. R. H.; Vieira. R.; Araujo, N.; Brandao, L.; Ferraz de Carvalho, J. R. Bd. Tec. F€lROBRAS 1989, 32, 41-50 (Port); Chem. Abstr. 1989, 7 7 1 , 1797892. (N151) Garrick. N. W.; Wood, L. E. Asphalt Paving Techno/. 1988, 57, 26-40. (N152) Buchanan, D. H.; Warfel, L. C.; Bailey. S.; Lucas, D. Energy Fuels 1988, 2, 32-6; (N153) Pandey, R. N. Report 1987, MICROLOG-86-03145, Avail. Energy Mines Res. Can. 555 Booth St.. Ottawa, Ont., Can., K1A 001. (N154) Changming, 2.; Aiying, L.; Furong, X.; Zengmh S. Prepr.-Am. Chem. SOC.,Div. Pet. Chem. 1989, 34, 247-50. (N155) Mulllgan, M. J.; Thomas, K. M.; Tytko, A. P. Fuel1987, 66, 1472-80. (N156) Cerny, J.; Miera, J.; Vavrecka, P. Fuel 1989. 68, 596-600. (N157) Philip, C. V.; Moore, P. K.; Anthony, R. G. ACS Symp. Ser. 1987, 352, 183-200. (N158) Ftzgerald, J. J.; Hoffman, J. A.; Nebo, Chinedo, 0. J . Chromtogr. SCi. 1989, 27, 186-92. (N159) Nakahara, H.; Kobayashi, E.; Hattori, S.; Kamata, T. N/ppon Kagaku Kaishi 1987, (12), 2308-14 (Japan); &em. Abstr. 1988, 108, 138758h. (N16O) Takata, E.; Okada. Y.; Shkai. K. Waku Kagaku 1988, 34, 117-22 (Japan); Chem. Abstr. 1989, 110, 215112~. Fraser, S. B.; Hollinshead, C. Int. GfC Symp.‘87 1987, (N161) Chappeii, I.; 370-87. (N162) Strasak, M.; Bystricky, S. J . Chfomatcgf. 1988, 450, 284-90. (N163) Kashima, M. Kenkyu Moku-KaiIo Hoan Da@akko, Dai-2-bu 1987, 33 (2), 13-23 (Japan); Chem. Abstr. 1988, 709. 115696t. (N164) Hlgashi, K.; Hagiwara, K. Water Sci. Techno/. 1988, 20, 55-82. (N165) Chaksac. M.; Audic, J. M.; Faup, G. M. Teah., Sci.. M e w s : Gsnie Urbain-Genie Rue1 1987, (9), 389-95 (Fr); Chem. Abstr. 1988, 108. 43635. (N166) Katayama, A.; Gomez, L., Maria, M.; Ker, K.; Hkai, M.; Shda, M.; Kubota, H. So//Sci. Plant Nutr. (Tokyo) 1987, 33.471-86 #em. Abstr. 1987. 107, 218627k. (N167) Knuutinen, J.; Virkki, L.; Mannila, P.; Mikkelson, P.; Paasivirta, J.; Herve, S. Water Res. 1988, 22, 985-90. (N168) Cruczwa, J. M.; Alford-Stevens, A. J.-Assoc. Off. Anal. Chem. 1989, 72 (9,752-9. MISCELLANEA

(01) Fujimoto, C.; Watanabe, T.; Jinno. K. J . Chromatcgr. Sci. 1989, 27, 325-8. (02) Hiroi, T.; Ouchi, K.; Okuyama, T.; Noguchi, K. Bunseki Ka&u 1988, 37, 659-64 (Japan); Chem. Abstr. 1989, 710, 38316m. (03) Nakazawa, H. Anal. Left. 1987, 20, 1751-64. (04) Lochmuiier, C. H.; McGranaghan, M. B. Anal. Chem. 1989, 87, 2449-55. ( 0 5 ) Okada. T. Anal. Chem. 1988, 60, 2116-19. (06) Imai, H.; Masujima, T.; Morita-Wada, I.; Tamai, G. Anal. Sci. 1989, 5 , 389-93. (07) Bennett, H. P. J.; James, S. Ana/. Biochem. 1989, 179, 222-8. (08) Williams, R. A.; Macrae, R.; Shepherd, M. J. J . Chromtogr. 1989, 477, 315-25. (09) Speri, P. L.; Stanczak, R. J. LC-GC 1988, 6, 431-2. (010) Hirayama, C.; Ihara. H.; Hamada, K.; Kinodrlta, S.; Yonemura, S.; Motozato, Y. J . Chfomatogf. 1988, 368, 391-4. (011) Hirayama, C.; Ihara. H. Jpn. Kokai Tokkyo Koho JP 63,246,657, 13 Oct. 1988. (012) Adachi, S.; Watanabe, T.; Kohashi, M. Agfic. 6b/. Chem. 1989, 53, 1597-602.

Supercritical Fluid Chromatography T.L.Chester* and J. D.Pinkston The Procter & Gamble Company, Miami Valley Laboratories, P.O. Box 398707, Cincinnati, Ohio 45239-8707

INTRODUCTION Supercritical fluid chromatography (SFC) grew steadily through the 19808. The number of manuscripta published r year is now approximately 10 times the rate in the 19708. #e number of practitioners has increased by an even greater factor, as has the overall interest level in the technique. No longer is SFC just a curiosit . Today it is a recognized necessity in many analytical lagoratories. Therefore, it is with pleasure that we present another signal of this growth and acceptance; the inaugural fundamental review in SFC. 394 R

0003-2700/90/0362-394R$09.50/0

In the last two fundamental review +sues, SFC was included in Gas Chromatography. In even earher issues, some aspects of SFC progress were mentioned in both the gas chromatography and column liquid chromatography reviews. For this fundamental review we have selected articles from the 1988 and-1989 ublication years of Chemical Abstracts (except for ref 3 whicE had not yet been abstracted by CA). We have not included papers on supercritical fluid extraction (SFE)unlesa they have included an SFC analysis. Thus, papers concerned with subjects like SFE/GC and SFE/LC are not included here. In addition to the papers we cite, there are approxi@ 1990 American Chemical Society