15 Covalency of Neptunium(IV)
Organometallics
from Neptunium-237 Mössbauer Spectra
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 11, 2016 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch015
D. G. K A R R A K E R E . I. du Pont de Nemours & Company, Savannah River Laboratory, Aiken, SC 29808
The isomer shifts in Np Mössbauer spectra arise from the 237
shielding of neptunium's 6s orbitals by the inner 5f orbitals. In covalent bonding, ligand contributions to the 5f electron density increase the shielding, and the
Np
isomer shift
237
reflects differences in bond character among covalently bonded ligands. The large difference in isomer shift (3.8 cm/s)
between ionic neptunium(IV) and neptunium(III)
compounds permits a good determination of ligand bonding differences in neptunium(IV) organometallic compounds. The Mössbauer spectra for about 20 neptunium(IV) organometallic compounds, principally cyclopentadienyl (Cp) compounds of the general composition
Cp NpX x
4x
(x = 1,2,3;
X = Cl, BH , Bu, Ph, OR, acac), show both the differences 4
n
in σbonding among the X ligands, as well as the covalent effect of the Cp ligands.
r-y^he
2 3 7
N p M o s s b a u e r effect has b e e n e s p e c i a l l y v a l u a b l e f o r c h e m i c a l
a n d p h y s i c a l studies of s o l i d n e p t u n i u m c o m p o u n d s . shift i n
2 3 7
N p has a v e r y w i d e r a n g e — f r o m
T h e isomer
—6.9 to + 3 . 5 c m / s , a n d
excellent r e s o l u t i o n c a n b e o b t a i n e d w i t h o u t excessively elaborate e q u i p ment. N e p t u n i u m forms c o m p o u n d s i n five v a l e n c e states, p l u s the m e t a l l i c state, so a w i d e range of c o m p o u n d s a n d i n t e r m e t a l l i c m a t e r i a l s c a n b e p r e p a r e d f o r M o s s b a u e r studies. E x a m p l e s of some past M o s s b a u e r studies are m a g n e t i c p r o p e r t i e s of some n e p t u n i u m c o m p o u n d s
(1-4)
a n d l o c a l i z a t i o n of 5f electrons i n n e p t u n i u m i n t e r m e t a l l i c s ( 5 ) .
This
c h a p t e r outlines t h e t h e o r y a n d e x p e r i m e n t a l p r o c e d u r e f o r b a u e r studies a n d presents t h e a p p l i c a t i o n of t h e
2 3 7
2 3 7
N p Moss
N p M o s s b a u e r effect
to d e t e r m i n e c o v a l e n t effects i n n e p t u n i u m o r g a n o m e t a l l i c c o m p o u n d s .
©
0065-2393/81/0194-0347$05.00/0 1981 American Chemical Society
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, John G., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
348
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
Np
237
Mossbauer Effect Stone a n d P i l l i n g e r
Description. effect of
2 3 7
discovered
(6)
the
Mossbauer
N p at the S a v a n n a h R i v e r L a b o r a t o r y , a n d the e x p e r i m e n t a l
techniques were further developed
b y t h e g r o u p at A r g o n n e N a t i o n a l
Laboratory, then directed by G . M . Kalvius.
T h e p h y s i c s of
b e e n s u m m a r i z e d i n three excellent r e v i e w s (7,8,9)
2 3 7
N p has
a n d w i l l be discussed
h e r e o n l y briefly.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 11, 2016 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch015
T h e g a m m a r a y u s e d i n the 5 9 . 5 - k e V , 5 / 2 " - » 5.2
2 3 7
N p M o s s b a u e r effect results f r o m the
E l transition i n
2 3 7
l e v e l is accessible f r o m the a - d e c a y of
2 4 1
+
electron-capture decay from
2 3 7
Pu.
N p (t*
63 n s ) .
T h e 59.5-keV
A m , /?-decay f r o m
T h e h a l f - l i f e of
2 4 1
Am
2 3 7
U , or the
(433
years)
makes i t the o b v i o u s c h o i c e for a M o s s b a u e r source. H y p e r f i n e i n t e r a c t i o n s refer to t h e i n t e r
Hyperfine Interactions. a c t i o n of the
2 3 7
N p n u c l e u s w i t h the s u r r o u n d i n g e l e c t r o m a g n e t i c
( i n t e r n a l or e x t e r n a l ) .
T h e i n t e r p r e t a t i o n of
d e p e n d s o n t h e analysis of h y p e r f i n e effects.
2 3 7
N p Mossbauer
field
spectra
T h e H a m i l t o n i a n f o r the
M o s s b a u e r effect system has three t e r m s : Hht = where H
I
S
Hi
S
— H
Q
± i /
M
refers to i n t e r a c t i o n s of the c e n t r a l field w i t h the n u c l e u s ;
represents the i n t e r a c t i o n b e t w e e n e l e c t r i c field g r a d i e n t ; a n d ff
M
the quadrupole moment
with
H
Q
the
is the i n t e r a c t i o n of m a g n e t i c fields w i t h
t h e n u c l e u s . T h e s p l i t t i n g of the e x c i t e d a n d g r o u n d states b y h y p e r f i n e fields
is i l l u s t r a t e d i n F i g u r e 1 for single u n s p l i t levels, q u a d r u p o l e - s p l i t
levels, m a g n e t i c a l l y s p l i t levels, a n d c o m b i n e d m a g n e t i c - a n d q u a d r u p o l e - s p l i t levels
(10).
Isomer Shift.
The
central
field
i n t e r a c t i o n is the result of
the
C o u l o m b i n t e r a c t i o n of the e l e c t r o n i c c h a r g e w i t h t h e n u c l e a r c h a r g e . T h i s i n t e r a c t i o n determines the i s o m e r shift.
T h e c e n t r a l field i n t e r
actions, w h i c h l e a d to t h e i s o m e r shift i n the M o s s b a u e r effect,
are
spherically symmetric a n d depend p r i n c i p a l l y on s orbitals. F o r the
Np
2 3 7
M o s s b a u e r effect, 6s o r b i t a l s are s h i e l d e d f r o m the n u c l e u s b y t h e i n n e r 5/ o r b i t a l s ( F i g u r e 2 ) . Increases i n the e l e c t r o n d e n s i t y i n the 5f o r b i t a l s increase the s h i e l d i n g of t h e 6s o r b i t a l s a n d p r o d u c e
a more
positive
i s o m e r shift. T h e 6d a n d 6p electrons c a n also s h i e l d the 65 o r b i t a l s , b u t t h e i r c o n t r i b u t i o n s are s m a l l c o m p a r e d to t h e effect of 5/ s h i e l d i n g . A n o b v i o u s e x a m p l e of the effect of 5 / e l e c t r o n d e n s i t y o n the i s o m e r shift is t h e difference i n t h e isomer shift f o r n e p t u n i u m c o m p o u n d s
of different
valences, w h i c h a m o u n t to 2 - 4 c m / s b e t w e e n consecutive valences a n d a r a n g e over 10 c m / s b e t w e e n N p
7 +
and N p
G i v e n these l a r g e differences
3 +
(Figure 3).
i n i s o m e r shifts b e t w e e n
valences,
c o v a l e n t effects o n b o n d i n g also c a n b e i d e n t i f i e d b y i s o m e r shifts
(II).
C o v a l e n c y r e q u i r e s the o v e r l a p of l i g a n d o r b i t a l s w i t h the 5/ o r b i t a l s ,
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, John G., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
15.
Neptunium-237
KARRAKER
Mossbauer
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 11, 2016 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch015
Excited State Energy Levels
±
Mognetic + Quadrupole
Splitting
Mogneti
Splitting
349
Spectroscopy
V2-
Ground State Energy Levels
NPAI 77^< 2
cr-4
0
+4
-4
0 +4
-8 -4
0 +4 +8
V(cm/s)
Figure I .
Splitting
-8 - 4
0 +4
+8
~*
of the ground state and 59.5-keV magnetic and electric fields
— i — i — ' — i — ' — i — i — i
>
i
1
i
level of ** Np in 7
1
r
U (5f ) 4 +
2
r (a ) 0
Figure 2. Radial charge density for U (( ) 5f; ( ) 6s; (— • —) 6p) (courtesy of N. M. Edelstein, Lawrence Berkeley Laboratory, Berkeley, CA) 4+
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, John G., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
350
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
Fluorides
ISOMER SHIFT 4 4 —
NpF
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 11, 2016 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch015
N
Oxides 3+
-
3
Np (in Am 0 ) 2
"
P 4 P
Np0 "
NpF
5
2
3
2
+
«•
Np0
- 4 - — .
Np0
2
++ 2
-6
NpF
6
-Np(VII) -7
Figure 3.
Isomer shifts of neptunium
fluorides and neptunium
oxides
w h i c h increases the 5 / e l e c t r o n d e n s i t y w i t h a consequent p o s i t i v e increase i n t h e i s o m e r shift. T h e c o m p a r i s o n of i s o m e r shifts b e t w e e n n e p t u n i u m fluorides
and oxygen-bonded
neptunium compounds
the s t r o n g shift t o w a r d l o w e r v a l e n c e of t h e N p 0 p o u n d s c o m p a r e d t o that of N p F
6
t r i b u t e d to t h e 5f o r b i t a l s of t h e N p
2
( F i g u r e 3) 2 +
and N p 0
shows 2
com
+
and N p F .
T h e electron density con
and N p
ions b y the t i g h t l y b o n d e d
5
6 +
5 +
o x y g e n l i g a n d s results i n a n i s o m e r shift t o w a r d l o w e r v a l e n c e .
F o r the
N p , the c o n t r i b u t i o n of o x y g e n l i g a n d s is s m a l l because i t b e c o m e s m o r e 4 +
difficult f o r t h e o r b i t a l s to o v e r l a p i n t h e l a r g e r N p larger N p
3 +
i o n , essentially n o difference
4 +
ion. I n the still
i n the i s o m e r
shifts
occurs
b e t w e e n a fluoride a n d a n o x y g e n l i g a n d e n v i r o n m e n t . Quadrupole Interaction.
T h e i n t e r a c t i o n of t h e n u c l e a r q u a d r u p o l e
tensor a n d the e l e c t r i c field g r a d i e n t tensor f r o m t h e i o n i c e n v i r o n m e n t s u r r o u n d i n g the n e p t u n i u m i o n c a n r e s u l t i n S t a r k ( e l e c t r i c
field)
split
t i n g of t h e n u c l e a r levels, o r q u a d r u p o l e s p l i t t i n g . I n g e n e r a l , q u a d r u p o l e s p l i t t i n g r e q u i r e s t h e a l i g n m e n t of t h e z - c o m p o n e n t of t h e electric g r a d i e n t of t h e u n f i l l e d 5 / e l e c t r o n s h e l l (8).
This alignment must
field be
p r o d u c e d b y a n e x t e r n a l field; o t h e r w i s e , r a p i d r o t a t i o n of the e l e c t r i c field g r a d i e n t a l l o w s o n l y a n average to b e o b s e r v e d . Q u a d r u p o l e i n t e r a c t i o n s c a n b e r e d u c e d to c o m b i n a t i o n s components—the rf (12).
e l e c t r i c field g r a d i e n t a n d t h e a s y m m e t r y
of
two
parameter
F o r a n e p t u n i u m i o n i n a site w i t h a n n - f o l d r o t a t i o n or r o t a t i o n -
reflection axis w i t h n >
2, t h e a s y m m e t r y p a r a m e t e r 17 — 0, a n d the
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, John G., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
15.
KARRAKER
Neptunium-237
Mossbauer
351
Spectroscopy
resonance is s p l i t i n t o five e q u a l l y s p a c e d lines. A t t h e other extreme, w h e r e rj =
1, the resonance is s p l i t i n t o three lines. I n t e r m e d i a t e v a l u e s
of rj are r e p r e s e n t e d b y u n e q u a l , five-line spectra. I n a l l cases, the c e n t r a l resonance of the q u a d r u p o l e s p e c t r u m has t h e same isomer shift as t h e u n s p l i t resonance w o u l d h a v e ( F i g u r e 1 ) . T h e i n t e r a c t i o n of the n u c l e a r e n e r g y levels
Magnetic Interaction.
w i t h a m a g n e t i c field ( i n t e r n a l o r e x t e r n a l ) results i n m a g n e t i c s p l i t t i n g of the
2 3 7
N p M o s s b a u e r spectra ( F i g u r e 1 ) .
Normally, a paramagnetic
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 11, 2016 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch015
i o n w i l l h a v e a m a g n e t i c field at the n u c l e u s because of its u n p a i r e d electrons.
A t r o o m t e m p e r a t u r e , the d i r e c t i o n of the field changes too
r a p i d l y f o r the n u c l e u s to r e s p o n d .
A t l o w t e m p e r a t u r e s , the r e l a x a t i o n
t i m e is g r e a t l y decreased, often to the p o i n t w h e r e the
2 3 7
N p Mossbauer
s p e c t r u m is m a g n e t i c a l l y split. W h e n the a b s o r b i n g c o m p o u n d b e c o m e s f e r r o m a g n e t i c or a n t i f e r r o m a g n e t i c , the r e l a x a t i o n t i m e becomes infinite o n the
2 3 7
N p M o s s b a u e r t i m e scale, a n d a l a r g e m a g n e t i c s p l i t t i n g n o r m a l l y
results. P u r e m a g n e t i c s p l i t t i n g has a 16-line p a t t e r n ( F i g u r e 1 ) , b u t as t h e energies of some of the resonances are n e a r l y the same, t h e s p e c t r u m u s u a l l y shows o n l y eight to t e n lines. T h e average of t w o s y m m e t r i c a l l y s p l i t lines d e t e r m i n e s the i s o m e r shift i n m a g n e t i c a l l y s p l i t O c c a s i o n a l l y , q u a d r u p o l e s p l i t t i n g also m a y b e i m p o s e d o n
spectra. magnetic
s p l i t t i n g , b u t since the m a g n e t i c s p l i t t i n g is n o r m a l l y m u c h greater t h a n q u a d r u p o l e s p l i t t i n g , no serious c o m p l i c a t i o n is i n t r o d u c e d i n i n t e r p r e t i n g the spectrum.
Where
quadrupole
e q u a l , as for s o m e N p 0
2
2 +
and magnetic
or N p 0
2
+
splitting
compounds,
are n e a r l y
assignment of
the
resonances b e c o m e s v e r y difficult. Intermediate Relaxation Effects.
T h e d i s c u s s i o n of h y p e r f i n e i n t e r
actions i n v o l v e s t h e a s s u m p t i o n t h a t the h y p e r f i n e fields are t i m e i n d e pendent.
F o r some c o m p o u n d s ,
time-dependent
effects
(intermediate
r e l a x a t i o n ) influence t h e M o s s b a u e r s p e c t r u m . T h e electrons i n the u n f i l l e d s h e l l of the n e p t u n i u m i o n c a n considered
to alternate b e t w e e n
be
" s p i n - u p " a n d " s p i n - d o w n " positions
u n d e r the influence of e x t e r n a l fields o n the i o n . T h e e l e c t r o n i c r e l a x a t i o n t i m e is t h e p e r i o d r e q u i r e d for the s p i n flip. I f the r e l a x a t i o n t i m e is s l o w , c o m p a r e d to t h e L a r m o r p r e c e s s i o n f r e q u e n c y of the n u c l e u s a n d the l i f e t i m e of the e x c i t e d state, t h e n u c l e u s w i l l see a static field, a n d t h e s p e c t r u m w i l l b e m a g n e t i c a l l y split. field
F a s t r e l a x a t i o n t i m e s average t h e
o n the n u c l e u s to zero, a n d s i n g l e - l i n e or q u a d r u p o l e spectra w i l l
result. I n t e r m e d i a t e r e l a x a t i o n t i m e s are of the same o r d e r of m a g n i t u d e as t h e L a r m o r p r e c e s s i o n f r e q u e n c y a n d t h e excited-state l i f e t i m e , a n d r e s u l t i n a loss of r e s o l u t i o n of t h e M o s s b a u e r s p e c t r u m , often so m u c h so t h a t t h e s p e c t r u m becomes a n u n i n t e r p r e t a b l e smear ( F i g u r e s 4 a n d 5).
R e l a x a t i o n is c o n s i d e r e d to o c c u r p r i n c i p a l l y t h r o u g h s p i n - l a t t i c e
and
s p i n - s p i n i n t e r a c t i o n s , a l t h o u g h other m e c h a n i s m s h a v e b e e n c o n -
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, John G., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
352
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
RELAXATION TIME Fast
Intermediate
Slow
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 11, 2016 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch015
(Magnetic)
Figure 4. sidered
(13).
Relaxation effects on ^Np Mossbauer
P h y s i c a l methods
of a v o i d i n g
spectra
intermediate
relaxation
effects d e p e n d o n c h a n g i n g t h e e x p e r i m e n t a l c o n d i t i o n s to f a v o r faster (higher temperatures) peratures)
or slower
r e l a x a t i o n times.
(external magnetic
fields,
lower
tem
I n p r a c t i c e , s u c h m e t h o d s a r e n o t easy t o
a p p l y a n d n o t necessarily successful.
However,
m e d i a t e r e l a x a t i o n effects c a n b e a v o i d e d
i n some cases, i n t e r
b y changing the chemical
c o m p o u n d to a s i m i l a r c o m p o u n d that retains t h e features u n d e r s t u d y . S u b s t i t u t i o n of a b u l k i e r l i g a n d o r c a t i o n [ M e C p f o r C p , N ( C H ) 2
5
4
+
for
C s ] often r e d u c e s r e l a x a t i o n effects w i t h o u t affecting t h e object of t h e +
study.
B u l k i e r l i g a n d s increase t h e distance b e t w e e n
neptunium ions,
thus r e d u c i n g t h e s p i n - s p i n interactions that affect r e l a x a t i o n . 144.95
o144.75
144.70
L
-8
-4 Velocity,
Figure 5.
0 cm/sec
Mossbauer spectrum of
4
Np(MeCp) Cl s
Experimental Techniques. T h e experimental apparatus a n d techniques for Np M o s s b a u e r s p e c t r o s c o p y h a v e b e e n i n c l u d e d i n earlier r e v i e w s ( 7 , 8 , 1 4 , 15,16). T h e i n s t r u m e n t a t i o n u s e d i n M o s s b a u e r studies has a l w a y s b e e n s i m i l a r a m o n g different w o r k e r s , b u t there w e r e s o m e differences i n sources, detectors, s t a n d a r d i z a t i o n o f spectra, etc., p a r t i c u l a r l y b e f o r e 2 3 7
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, John G., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
15.
KARRAKER
Neptunium-237
Mossbauer
353
Spectroscopy
1972. I n recent years some t e c h n i q u e s h a v e b e c o m e s t a n d a r d ; t h e y w i l l be e m p h a s i z e d i n t h e next section. Instrumentation. N p M o s s b a u e r experiments u s u a l l y h a v e u s e d a c o n v e n t i o n a l c o n s t a n t - a c c e l e r a t i o n spectrometer i n t r a n s m i s s i o n g e o m etry (17). T h e spectrometer m u s t a c h i e v e r e l a t i v e l y h i g h velocities ( ± 2 0 c m / s ) w h i l e o p e r a t i n g at l i q u i d - h e l i u m t e m p e r a t u r e s . T h e recoilless fraction for N p M o s s b a u e r effect is decreased severely a b o v e h e l i u m t e m p e r a t u r e s for m o s t absorbers, so the source-absorber e q u i p m e n t r e q u i r e s a l i q u i d - h e l i u m d e w a r , p r e f e r a b l y one c a p a b l e of m a i n t a i n i n g h e l i u m t e m p e r a t u r e s for 3 - 4 days. A c o n v e n i e n t v e l o c i t y c a l i b r a t i o n c a n b e o b t a i n e d f r o m a n N p A l absorber, w h i c h has a w e l l - c h a r a c t e r i z e d , m a g n e t i c a l l y s p l i t s p e c t r u m at 4.2 K . Sources. T h e m o s t c o n v e n i e n t source is ^ A m m e t a l as a 5% a l l o y i n c u b i c t h o r i u m m e t a l m a t r i x . A 433-year A m source lasts i n d e f i n i t e l y ; one s u c h source has b e e n u s e d satisfactorily at the S a v a n n a h R i v e r L a b o r a t o r y for a b o u t t e n years. A b o u t 3 m g A m i n a source y i e l d s c o u n t i n g rates a b o v e 1 0 c o u n t s / c h a n n e l - m i n . Sources i n earlier w o r k used U (6.75 d ) , a n d the use of P u (44.6 d ) has b e e n c o n s i d e r e d , b u t the h a l f - l i v e s of b o t h isotopes are q u i t e i n c o n v e n i e n t . T h e Am-Th source has the n a r r o w e s t e x p e r i m e n t a l l i n e w i d t h yet a c h i e v e d , a b o u t 0.1-0.2 c m / s (14). 2 3 7
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 11, 2016 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch015
2 3 7
2
2 4 1
2 4 1
4
2 3 7
2 3 7
2 4 1
Standards. T h e s i n g l e - l i n e s p e c t r u m of N p A l at 77 K is the r e c o m m e n d e d zero of i s o m e r shift (18). T h i s zero c a n be d e t e r m i n e d w i t h m o r e p r e c i s i o n t h a n a zero b a s e d o n the single resonance l i n e of N p 0 . T h e N p 0 resonance is b r o a d e n e d b y a w e a k m a g n e t i c s p l i t t i n g b e l o w 25 K , a n d is thus m u c h less satisfactory, t h o u g h often u s e d i n e a r l y w o r k . I n p r a c t i c e , the c e n t r o i d of t h e N p A l s p e c t r u m at 4.2 K is n o r m a l l y u s e d as z e r o isomer shift. A s n o t e d before, the m a g n e t i c a l l y s p l i t spectra o f N p A l can provide simultaneously a convenient velocity calibration. 2
2
2
2
2
Detectors. T w o detectors are i n u s e — N a l ( T l ) s c i n t i l l a t i o n crystals a n d G e ( L i ) s e m i c o n d u c t o r s , a n d b o t h are satisfactory. T h e detector i n c u r r e n t use at S a v a n n a h R i v e r L a b o r a t o r y is a n N a l ( T l ) s c i n t i l l a t i o n counter. T h i s c o u n t e r has b e e n q u i t e satisfactory o v e r several years of service a n d a v o i d s the l i q u i d - n i t r o g e n c o o l i n g necessary f o r G e ( L i ) detectors. T h e w i n d o w of the s i n g l e - c h a n n e l a n a l y z e r is a d j u s t e d to a c c e p t t h e 59.54 k e V p h o t o p e a k f o r a l l three detectors. Absorbers. N p c a n b e o b t a i n e d i n g r a m q u a n t i t i e s to p r e p a r e absorbers for s t u d y . T h e specific a c t i v i t y of N p is 1.57 X 1 0 a d / m i n m g , a n d q u a n t i t i e s greater t h a n a f e w m g s h o u l d be h a n d l e d i n a g l o v e box or other f o r m of c o n t a i n m e n t to p r e v e n t c o n t a m i n a t i o n of t h e l a b o r a t o r y w i t h a l p h a a c t i v i t y . M o s t n e p t u n i u m o r g a n o m e t a l l i c c o m p o u n d s are d e c o m p o s e d b y w a t e r a n d o x y g e n ( o f t e n v i o l e n t l y ) , so p r e p a r a t i o n of t h e c o m p o u n d s , absorbers, etc., is p e r f o r m e d i n a n i n e r t - a t m o s p h e r e g l o v e box. T h e absorbers are u s u a l l y p r e p a r e d b y ( 1 ) p a c k i n g t h e p o w d e r e d s a m p l e i n a p l a s t i c h o l d e r , ( 2 ) c o v e r i n g the p o w d e r w i t h a p l a s t i c p l u g , a n d ( 3 ) w r a p p i n g t h e a s s e m b l y w i t h a d h e s i v e p o l y e s t e r tape. T h e a b s o r b e r is r e m o v e d f r o m the g l o v e box a n d w r a p p e d w i t h a n a d d i t i o n a l l a y e r of p l a s t i c t a p e to p r e v e n t the s p r e a d of a l p h a a c t i v i t y . N o r m a l l y , a b o u t 50 m g N p / c m is a d e q u a t e f o r most m a t e r i a l s . C r y s t a l l i n e solids, s u c h as N p C l , N p B r , N p C l , etc., h a v e l a r g e r recoilless fractions t h a n the essentially a m o r p h o u s n e p t u n i u m o r g a n o m e t a l l i c c o m p o u n d s , w h i c h c a n r e q u i r e 3-4 days to d e v e l o p a n a c c e p t a b l e s p e c t r u m . 2 3 7
2 3 7
6
2
4
4
3
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, John G., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
354
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
Compounds. The neptunium organometallic compounds used i n this s t u d y w e r e p r e p a r e d ( m o s t f o r the first t i m e ) b y u s i n g t h e g e n e r a l p r o c e d u r e s d e v e l o p e d i n t h e synthesis of t h e analogous u r a n i u m c o m p o u n d s . S o m e m o d i f i c a t i o n of t h e p r o c e d u r e s w a s necessary since N p is m o r e easily r e d u c e d t h a n U . T h e b a s i c r e a c t i o n u s e d i n n e a r l y a l l p r e p a r a t i o n s is 4 +
4 +
N p halide + M ligand - » N p ligand + M halide w h e r e M is a n a l k a l i or T l . I n g e n e r a l , m e t a l l a t e d l i g a n d s are s t r o n g r e d u c i n g agents, so often a n N p o r g a n o m e t a l l i c is t h e m a j o r p r o d u c t r a t h e r t h a n the d e s i r e d N p o r g a n o m e t a l l i c . A d j u s t m e n t of e x p e r i m e n t a l c o n d i t i o n s o c c a s i o n a l l y w a s successful i n o b t a i n i n g t h e d e s i r e d N p product.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 11, 2016 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch015
3 +
4 +
4 +
Np
237
Isomer Shift and Covalency T h e first a c t i n i d e o r g a n o m e t a l l i c
N p C p X Compounds. 3
compound
prepared was tris(cyclopentadienyl) u r a n i u m ( I V ) chloride, U ( C H ) C 1 5
(hereafter C H " is a b b r e v i a t e d C p ) 5
5
c e e d e d b y the p r e p a r a t i o n of C p c o m p o u n d s of the 3 + a c t i n i d e ions u p to C f
(20).
3 +
5
3
( 1 9 ) , a n d its p r e p a r a t i o n w a s suc and
W i t h f e w exceptions, t h e
4+-valent
organometallic
c o m p o u n d s of t h e a c t i n i d e s i n c l u d e the C p l i g a n d i n t h e i r s t r u c t u r e ; b y reacting U C p C l (or N p C p C l ) w i t h an alkali metal ligand 3
compound,
3
s u c h as L i B u , L i P h , N a O B u , etc., the l i g a n d replaces the c h l o r i d e i o n , w
forming N p C p
3
n
B u , N p C p P h , N p C p O B u , etc. 3
3
Q u i t e a v a r i e t y of c o m
p o u n d s h a v e b e e n p r e p a r e d i n this m a n n e r f r o m U C p C l , most of w h i c h 3
c a n also be p r e p a r e d f r o m N p C p C l .
S u b s t i t u t e d C p l i g a n d s , s u c h as
C H — C 5 H 4 " ( M e C p ) , f o r m analogous
compounds.
3
3
T h e i s o m e r shifts i n
2 3 7
N p M o s s b a u e r spectra of these c o m p o u n d s
n o r m a l l y are d i s p l a c e d f r o m a n i o n i c N p i s o m e r shift.
d e r i v a t i v e s of the N p C p comparison from their
4 +
i s o m e r shift t o w a r d t h e N p
3 +
U s i n g the v a r i e t y of c o m p o u n d s t h a t c a n b e p r e p a r e d as 3
+
moiety a n d selecting appropriate standards, a
of the b o n d i n g p r o p e r t i e s o f t h e l i g a n d s c a n b e
2 3 7
N p M o s s b a u e r spectra.
C p ligands per N p
i o n also h a v e b e e n p r e p a r e d .
4 +
obtained
C o m p o u n d s c o n t a i n i n g one or t w o
afford a m e a s u r e of t h e effect o n t h e
2 3 7
These
compounds
N p i s o m e r shift of a d d i n g one,
t w o , or three C p l i g a n d s . U n f o r t u n a t e l y , the are s t r o n g l y affected counter
2 3 7
N p M o s s b a u e r spectra of N p C p X c o m p o u n d s
by
3
i n t e r m e d i a t e r e l a x a t i o n effects.
r e l a x a t i o n effects
by
Attempts
synthesizing compounds that
to
substitute
M e C p for C p or C H C H 5 f o r — C H , etc., often s u c c e e d e d i n o b t a i n i n g 6
4
2
6
5
i n t e r p r e t a b l e , a l t h o u g h n o t necessarily i d e a l , spectra. F i g u r e 6 shows t h e spectra of
NpCp BH 3
4
and
N p ( M e C p ) B H , illustrating 3
4
a
successful
e x a m p l e w h e r e a n i s o m e r shift c o u l d b e o b t a i n e d f r o m the s p e c t r u m of the s u b s t i t u t e d c o m p o u n d b u t not f r o m t h e p a r e n t c o m p o u n d .
Analysis
of the results i n terms of t h e l i g a n d ' s p r o p e r t i e s i n v o l v e s t h e a s s u m p t i o n
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, John G., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
15.
Neptunium-237
KARRAKER
Mossbauer
355
Spectroscopy
125, 35 125. 30
NpCp BH 3
125. 25 —
4
.-•v%.;. ".**.*'..•;.' ..v.
£ g 125. 201 ' 15 — , 2 5
c I 261, 95 o 90 Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 11, 2016 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch015
Q.
w 261.85 c 3 261. 80
Np(MeCp) BH 3
4
261, 75 261, 70 261,,65
-4
0
4
Velocity, cm/sec
Figure 6.
Mossbauer spectra of NpCp BH s
and
4
Np(MeCp) BH^ 3
that the effect of s u b s t i t u t e d l i g a n d s a n d u n s u b s t i t u t e d l i g a n d s o n the i s o m e r shifts is the same; d a t a g i v e n l a t e r i n this c h a p t e r s u p p o r t this assumption.
The
2 3 7
N p M o s s b a u e r s p e c t r u m of N p C p O C H ( C H ) 3
s h o w n i n F i g u r e 7, a n d spectra for N p ( a c a c ) C l 2
C H 3 C O C H C O C H 3 ) and N p ( a c a c ) ( M e C p ) 2
2
3
is
2
• T H F (acac
2
=
are s h o w n i n F i g u r e s 8 a n d
9, r e s p e c t i v e l y . T h e latter t w o s p e c t r a a l l o w a c o m p a r a t i v e i s o m e r shift for
Cp NpX 2
NpCp X . n
4
n
2
compounds
to
be
derived.
Mossbauer parameters
for
c o m p o u n d s are s h o w n i n T a b l e I.
T o c o m p a r e the c o n t r i b u t i o n s of the l i g a n d s , the a s s u m p t i o n is m a d e that C I " a n d B H " ions m a k e n o c o v a l e n t c o n t r i b u t i o n s , a n d t h a t N p C p C l 4
3
or N p ( M e C p ) B H a n d N p C ^ c a n b e u s e d as reference c o m p o u n d s . 3
4
d e t e r m i n e the effect of t w o C p l i g a n d s , N p ( a c a c ) C l 2
2
To
• T H F was used
as a reference, since the acac l i g a n d s m a d e a s t r o n g n e g a t i v e c h a n g e i n the n o r m a l N p
4 +
i s o m e r shift. T h e i s o m e r shifts assigned to e a c h l i g a n d
are s h o w n i n T a b l e I I .
-4
0
4
Velocity, cm/sec
Figure 7.
Mossbauer
spectrum of
NpCp OCH(CH ) 3
3 2
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, John G., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
356
M O S S B A U E R SPECTROSCOPY A N D ITS C H E M I C A L A P P L I C A T I O N S
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 11, 2016 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch015
134.4
-4
-8
Figure 8.
Mossbauer
0 Velocity, cm/sec
2
Isomer Shift"
3
4
2
5
3
3
3
2
3
3
2
2
2
Parameters
S(cm/s)
: 1.0 1.4 :0.4 1.45 0.07 0.27 0.28 0.42 0.93 : 0.07 0.86 0.2 0.79 0.3 0.86: 0.3 -0.31 : 0.07 -1.47 : 0.07 -0.53 : 0.07 -0.35 : 0.05 3.54 : 0.05
4
3
e
• THF
g
Mossbauer
NpCpaCl Np(MeCp) BH NpCp "Bu NpCp C H C H Np(MeCp),0*Pr NpCp 0*Pr NpCp OCH(CF ) NpCp 'Bu Np(MeCp)Cl • 2THF Np(acac) Cl • T H F * Np(MeCp) (acac) NpCV NpCV 3
12
spectrum of Np(acac) Cl Table I.
Compound
4
2
' Referred to NpAI = 0. 2
Table II. Bond
2 3 7
N p Isomer
Compound
Cp-NpZ Cp2-NpZ Cpr-NpX
Np(MeCp)Cl • 2THF Np(acac) (MeCp) NpCp,Cl Np(MeCp) BH NpCp "Bu NpCp C H C H Np(MeCp) 0*Pr NpCp 0 Pr NpCp OCH(CF ) NpCp 0'Bu
3
3
2
R-NpCp Ar-NpCp RO-NpCp
2
2
3
3
4
3
3
3
3
6
4
2
5
3
3
3
4
3
2
3
(acac)2-NpCl
2
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, John G., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 11, 2016 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch015
Figure 9. for N p - C p - X _ n
4
n
Mossbauer spectrum of
±
Magnetic Hyperfine Constant gow H e / / (cm/s)
1.0
0.97 ± 0.15 -0.42 0.49 6
± ±
2
Compounds
Quadrupole Coupling Constant eqQ/4 (cm/s)
5.0
Np(acac) (MeCp)