6
Properties of Polyphenylene Sulfide Coatings
H. WAYNE
H I L L , JR., and J. T. E D M O N D S , JR.
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
Phillips Petroleum Co., Bartlesville, Okla. 74004
Polyphenylene
sulfide is a unique material that combines
high thermal stability with outstanding chemical resistance. This combination of properties provides unusual utility as molding resins and as protective coatings for the chemical and petroleum industries, and as release coatings in the food industry.
The synthesis of phenylene sulfide polymers is
presented here.
Coatings of polyphenylene sulfide may be
applied to a variety of substrate metals by slurry spraying, fluidized-bed
techniques, and dry-powder
lease coatings based on polyphenylene obtained by adding a small amount of lene to the coating formulation.
spraying. sulfide may
Rebe
polytetrafluoroethy-
The performance of these
release coatings on household cookware is discussed.
" P o l y p h e n y l e n e sulfide is a n u n u s u a l m a t e r i a l , c o m b i n i n g some of t h e characteristics of b o t h thermoplastics a n d thermosets w i t h a n out standing balance sistance.
of h i g h - t e m p e r a t u r e p e r f o r m a n c e
a n d chemical re
A l t h o u g h the m a t e r i a l is a n excellent m o l d i n g r e s i n , there are
e q u a l l y i m p o r t a n t a p p l i c a t i o n s as p r o t e c t i v e coatings f o r t h e c h e m i c a l a n d p e t r o l e u m industries a n d as n o n s t i c k coatings for the f o o d a n d c o o k ware industry. I n early w o r k
o n organosulfur
compounds,
Duess
(1)
and H i l -
d i t c h (2) r e p o r t e d the p r e p a r a t i o n of various a r o m a t i c disulfides b y c o n d e n s a t i o n reactions o f t h i o p h e n o l o n treatment w i t h a l u m i n u m c h l o r i d e a n d s u l f u r i c a c i d , respectively. preparation of a phenylene the
reaction
sealed vessel.
M a c a l l u m (3) was the first to r e p o r t the
sulfide p o l y m e r .
of s u l f u r , s o d i u m
carbonate,
H i s procedure
involved
a n d dichlorobenzene
in a
P o l y m e r s m a d e b y this scheme g e n e r a l l y h a v e m o r e t h a n
one s u l f u r a t o m b e t w e e n
benzene
rings, as i n d i c a t e d b y t h e structure
— ( C H 4 S ^ ) —. 6
n
L e n z a n d coworkers
(4-6) h a v e d e s c r i b e d the p r e p a r a t i o n of p o l y
p h e n y l e n e sulfide b y a n u c l e o p h i l i c s u b s t i t u t i o n r e a c t i o n i n v o l v i n g self80 In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
6.
HILL,
JR. A N D E D M O N D S , JR.
Polyphenylene
Sulfide
81
Coatings
c o n d e n s a t i o n of m a t e r i a l s s u c h as c o p p e r p - b r o m o t h i o p h e n o x i d e .
These
s u b s t i t u t i o n reactions are c a r r i e d out at 200-250°C u n d e r n i t r o g e n i n t h e s o l i d state, or i n the presence of m a t e r i a l s s u c h as p y r i d i n e as r e a c t i o n media. T h e a b o v e t w o methods as w e l l as other methods of p o l y m e r i z a t i o n have been reviewed by Smith ( 7 ) .
W e h a v e d i s c o v e r e d a n e w process
for the p r e p a r a t i o n of a w i d e v a r i e t y of p o l y a r y l e n e sulfides ( 8 ) . example, polyphenylene
sulfide m a y b e p r e p a r e d b y the r e a c t i o n
For of
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
p - d i c h l o r o b e n z e n e a n d s o d i u m sulfide i n a p o l a r solvent.
Properties I n the P h i l l i p s process, p o l y p h e n y l e n e sulfide ( P P S )
is o b t a i n e d
f r o m the p o l y m e r i z a t i o n m i x t u r e i n the f o r m of a fine w h i t e
powder,
w h i c h , after p u r i f i c a t i o n , is d e s i g n a t e d R y t o n V P P S . C h a r a c t e r i z a t i o n of this p o l y m e r is c o m p l i c a t e d b y its extreme i n s o l u b i l i t y i n most s o l vents.
A t elevated temperatures, h o w e v e r , R y t o n V P P S is soluble* to
a l i m i t e d extent i n some a r o m a t i c a n d c h l o r i n a t e d a r o m a t i c solvents a n d i n certain heterocyclic
compounds.
T h e i n h e r e n t viscosity, m e a s u r e d
at 2 0 6 ° C i n 1-chloronaphthalene, is g e n e r a l l y 0.16, i n d i c a t i n g o n l y m o d erate m o l e c u l a r w e i g h t .
T h e p o l y m e r is h i g h l y c r y s t a l l i n e , as s h o w n b y
x-ray d i f f r a c t i o n studies ( 9 ) .
T h e crystalline melting point determined
b y d i f f e r e n t i a l t h e r m a l analysis is a b o u t 2 8 5 ° C . W h e n d i e m o l t e n p o l y m e r is s u b j e c t e d to a d d i t i o n a l heat i n the presence of a i r , the m e l t darkens a n d , after a w h i l e , it gels a n d solidifies. T h e s o l i d p o l y m e r is b e l i e v e d to be c r o s s l i n k e d because i t is i n s o l u b l e i n a l l o r g a n i c solvents, even at e l e v a t e d t e m p e r a t u r e . T h e changes that o c c u r at h i g h temperatures c a n b e d e m o n s t r a t e d readily by conducted
d i f f e r e n t i a l t h e r m a l analysis ( D T A ) .
W h e n the D T A is
u n d e r n i t r o g e n to suppress c r o s s l i n k i n g , the s a m p l e c a n b e
m e l t e d , c o o l e d , a n d r e m e l t e d w i t h l i t t l e effect o n the t h e r m a l transitions. T h i s e x p e r i m e n t is i l l u s t r a t e d b y c u r v e A of F i g u r e 1, i n w h i c h b o t h the glass-transition t e m p e r a t u r e at 80 ° C p o i n t at 2 8 2 ° C are v i s i b l e .
a n d the c r y s t a l l i n e m e l t i n g
W h e n the D T A is r u n on a s a m p l e that has
b e e n h e a t e d i n a i r at 3 7 0 ° C for f o u r hours, the c r y s t a l l i n e m e l t i n g p o i n t is b a r e l y v i s i b l e i n the D T A trace.
T h e s h a r p exotherms at 125°-135°C
are i n d i c a t i v e of c r y s t a l l i z a t i o n temperatures.
In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
82
POLYMERIZATION
R E A C T I O N S A N D N E WP O L Y M E R S
W h i l e t h e l i n e a r p o l y p h e n y l e n e sulfide p o l y m e r possesses a m o d erate degree of m e c h a n i c a l strength as i t is p r o d u c e d i n t h e p o l y m e r i z a t i o n process, i t c a n b e c o n v e r t e d i n t o a m u c h tougher p r o d u c t b y t h e r m a l treatment.
A c c o r d i n g l y , w h e n t h e p o l y m e r is h e a t e d to a h i g h e n o u g h
t e m p e r a t u r e i n a i r , c h a i n extension a n d c r o s s l i n k i n g occur, p r o d u c i n g a
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
" c u r e d " p o l y m e r that is t o u g h , d u c t i l e , a n d v e r y i n s o l u b l e .
SAMPLE A-MELTED UNDER NITROGEN AND QUENCHED BEFORE DTA SAMPLE B-HEATED AT 370*C IN AIR 4 HOURS AND QUENCHED BEFORE DTA HEATING RATE, WC/MINUTE
SAMPLE A
A -
r
SAMPLE B
50 Figure
1.
100
Differential
_J_
_i_
150 200 250 TEMPERATURE, °C
300
thermal analysis of polyphenylene
350
400
sulfide in nitrogen
T h e c h e m i s t r y of this c u r i n g process involves several c o m p l e x reac tions.
I n a d d i t i o n , t h e v e r y l i m i t e d s o l u b i l i t y of t h e l i n e a r p o l y m e r a n d
the extreme
i n s o l u b i l i t y of t h e c u r e d p o l y m e r m a k e exact
assignments almost i m p o s s i b l e .
structural
It is possible to describe some of t h e
c o n t r i b u t i n g reactions i n q u a l i t a t i v e terms.
F o r example, a chain-exten
sion r e a c t i o n i n v o l v i n g t h e r m a l scission of c a r b o n - s u l f u r b o n d s n e a r t h e e n d of a p o l y m e r c h a i n , f o l l o w e d b y f o r m a t i o n of a n e w c a r b o n - s u l f u r b o n d b e t w e e n t w o large p o l y m e r residues a n d b e t w e e n t w o s m a l l p o l y m e r residues, c a n l e a d to a n o v e r a l l increase i n m o l e c u l a r w e i g h t w h e n the s m a l l molecules f o r m e d are lost b y v a p o r i z a t i o n .
T h i s process is
essentially a n exchange r e a c t i o n , as i n d i c a t e d i n this structure, w h e r e m is s i g n i f i c a n t l y l a r g e r t h a n n :
In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
6.
HILL,
Polyphenylene
JR. A N D E D M O N D S , JR.
Sulfide
83
Coatings
I
II
T h u s , II is lost at the h i g h temperatures i n v o l v e d i n the c u r i n g p r o c ess.
O t h e r possible reactions also occur.
F o r example, o x i d a t i v e c o u
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
p l i n g b e t w e e n a r o m a t i c rings ( b i p h e n y l r e a c t i o n ) ; n u c l e o p h i l i c attack o n a n a r o m a t i c r i n g of one p o l y m e r c h a i n b y a n e n d - g r o u p f u n c t i o n of a n other p o l y m e r c h a i n , or b y a c l e a v e d segment
derived from
another
p o l y m e r c h a i n ; s u l f o n i u m i o n f o r m a t i o n i n v o l v i n g a sulfide l i n k a n d a sulfur-containing end group.
Reactions of this t y p e p r o d u c e an increase
in molecular weight and crosslinking.
It is l i k e l y that several of these
reactions o c c u r s i m u l t a n e o u s l y d u r i n g the c u r i n g process. T h e r m o g r a v i m e t r i c analysis of p o l y p h e n y l e n e sulfide i n n i t r o g e n or i n a i r indicates no a p p r e c i a b l e w e i g h t loss b e l o w a b o u t 500° C .
Deg
r a d a t i o n is essentially c o m p l e t e i n air at 7 0 0 ° C , b u t i n a n inert atmos phere, about 40% of the p o l y m e r w e i g h t remains at 1000°.
In addition,
p o l y p h e n y l e n e sulfide p r e p a r e d b y the P h i l l i p s process is m o r e stable t h a n that p r e p a r e d b y the L e n z process
(6).
Comparative thermo
g r a v i m e t r i c d a t a , s h o w n i n F i g u r e 2, demonstrate that p o l y p h e n y l e n e sulfide d i s p l a y s a m u c h greater resistance to w e i g h t loss at e l e v a t e d temperatures t h a n do
either the c o n v e n t i o n a l thermoplastics or s u c h
s p e c i a l t y heat-resistant p o l y m e r s as polytetrafluoroethylene.
Mechanical
properties of m o l d e d specimens are essentially unaffected after exposure at 4 5 0 ° F i n air for four months. P o l y p h e n y l e n e sulfide also possesses u n u s u a l c h e m i c a l resistance. T o demonstrate this resistance, i n j e c t i o n - m o l d e d tensile bars of c u r e d p o l y m e r w e r e exposed to a representative groups of reagents at 2 0 0 ° F for 24 hours.
A f t e r exposure, the bars w e r e w e i g h e d to d e t e r m i n e w e i g h t
g a i n or loss, a n d the tensile strength d e t e r m i n e d .
T h e results of these
experiments are g i v e n i n T a b l e I. T h e tensile strength of the u n e x p o s e d
bars a v e r a g e d
11,000 p s i .
T h e s e tensile bars are unaffected b y gasoline, m o t o r o i l , h y d r o c a r b o n s , a n d c a r b o n t e t r a c h l o r i d e , w h i l e exposure to t r i c h l o r o e t h y l e n e results i n a s m a l l w e i g h t g a i n a n d loss i n tensile strength.
Alcohols,
esters, a n d o r g a n i c acids d o not affect the p o l y m e r .
Some nitrogenous
organic compounds—such
ketones,
as b u t y l a m i n e , p y r i d i n e , a n d a c e t o n i t r i l e —
cause a modest loss i n tensile strength.
O t h e r c h e m i c a l s , s u c h as d i -
m e t h y l a n i l i n e , e t h a n o l a m i n e , a n d n i t r o b e n z e n e , h a v e v i r t u a l l y no effect o n tensile strength or w e i g h t change.
I n general, o x i d i z i n g agents s u c h
as b r o m i n e w a t e r , a q u a r e g i a , a n d 50% c h r o m i c a c i d cause a severe loss
In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
84
POLYMERIZATION
0
200
400
REACTIONS AND N E W
600
600
POLYMERS
1000
TEMPERATURE, °C KEY:1-P0LYVINYLCHL0RIDE;2-P0LYMETHYLMETHACRYLATE 3-POLYSTYRENE; 4-POLYETHYLENE;5-P0LYTETRAFLU0R0ETHYLENE; 6-P0LYPHENYLENESULFIDE IN AIR ATMOSPHERE; 7-POLYPHENYLENE SULFIDE; 8-P0LYPHENYLENE SULFIDE (LENZ4C)|N AIR. ;
Figure
i n strength.
2.
Comparative
thermo gravimetric atmosphere )
analysis
(nitrogen
H o w e v e r , aqueous p o t a s s i u m d i c h r o m a t e does not.
S t r o n g acids, s u c h as 96% s u l f u r i c a c i d , attack the p o l y m e r rather severely; w e a k e r acids a n d a v a r i e t y o f i n o r g a n i c bases are not d e t r i mental.
T h e p o l y m e r is inert to a w i d e v a r i e t y of i n o r g a n i c salt s o l u
tions, w i t h some samples o f c o a t e d metals h a v i n g b e e n exposed i n salt w a t e r i n the G u l f of M e x i c o for one y e a r w i t h o u t d e t e r i o r a t i o n . I n fact, e v e n the u n c u r e d p o l y m e r is r e m a r k a b l y resistant to a b r o a d g r o u p o f chemicals.
Applications I n j e c t i o n - M o l d i n g R e s i n s . A h i g h m e l t viscosity r e s i n is r e c o m mended for use i n injection-molding applications. T h e mechanical
In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
6.
HILL,
Polyphenylene
JR. A N D E D M O N D S , JR.
T a b l e I.
Sulfide
C h e m i c a l Resistance of P P S T e n s i l e B a r s Exposure:
200°F for
hours Weight
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
Test
85
Coatings
Chemical
Change
(%)
Tensile (psi)
Hydrocarbons and Chlorinated H y d r o carbons Kerosene Motor Oil Carbon Tetrachloride Cyclohexane Gasoline Trichloroethylene
-0.05 -0.02 1.7 0.05 0.07 6.52
11,700 11,900 11,100 12,000 10,300 7,400
Alcohols, Ketones, Esters, and Ethers B u t y l Alcohol M e t h y l E t h y l Ketone A m y l Acetate Dioctyl Phthalate Dibutyl Ether
0.05 1.02 0.14 -0.07 0
10,500 11,200 13,300 13,100 11,400
Organic Acids Glacial Acetic Trichloroacetic F o r m i c (88%) Benzenesulfonic
0.09 0.45 0.18 -0.05
12,400 12,000 10,900 11,400
1.52 2.32 0 3.84 0.59 2.43
7,100 10,200 12,600 8,900 9,000 11,000
Nitrogenous Organic Compounds Butylamine Dimethylaniline Ethanolamine Pyridine Acetonitrile Nitrobenzene Oxidizing Agents Bromine Water A q u a Regia (Room Temperature Exposure) 5 0 % Chromic Acid 1 0 % Potassium Dichromate S o d i u m H y p o c h l o r i t e (Clorox) Inorganic A c i d s a n d Bases 10% Nitric Acid 3 7 % Hydrochloric A c i d 3 0 % Sulfuric A c i d 9 6 % Sulfuric A c i d 8 5 % Phosphoric A c i d 1 0 % Sodium Bicarbonate
a
4.34
Severe atts
18.64 0.84 0.36 0.50
Severe atta 3,300 12,300 5,400
0.32 0.57 0.14 Severe a t t a c k -0.05 0.36
12,000 10,900 11,700 Severe a t t a c k 12,500 11,600
In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
86
POLYMERIZATION
T a b l e I.
REACTIONS A N D N E W POLYMERS
Continued
Tensile (psi)
Test Chemical
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
1 0 % Sodium Carbonate 3 0 % Sodium Hydroxide 7 8 % Ammonium Hydroxide Inorganic S a l t S o l u t i o n s Saturated Sodium Chloride 1 0 % Sodium Acetate 10% Sodium Nitrate 1 0 % Sodium Sulfate Trisodium Phosphate 1 0 % Calcium Chloride
a
0.32 0.07 0.73
9,600 10,000 11,400
0.16 0.32 0.32 0.36 0.36 0.36
10,400 13,800 11,100 10,100 11,200 12,700
Tensile of unexposed specimen was 11,000 psi
a
properties
of
unfilled
a n d glass-filled i n j e c t i o n - m o l d e d
summarized in Table II.
specimens
are
T h e u n f i l l e d r e s i n is c h a r a c t e r i z e d b y h i g h
tensile strength, h i g h flexural m o d u l u s , h i g h heat-deflection t e m p e r a t u r e , a n d modest i m p a c t strength.
T h e glass-filled resin has s u p e r i o r p r o p e r
ties a n d is g e n e r a l l y
greater p r a c t i c a l a p p l i c a t i o n s t h a n is the
unfilled material.
finding
F o r e x a m p l e , the 40% glass-filled r e s i n has a tensile
strength of 21,000 p s i at r o o m t e m p e r a t u r e , a n d 4700 p s i at 4 0 0 ° F .
Its
tensile strength at 4 0 0 ° F is greater t h a n that of p o l y e t h y l e n e at r o o m temperature.
T h e flexural m o d u l u s is 2.2 X 10° p s i at r o o m t e m p e r a t u r e ,
d e c r e a s i n g g r a d u a l l y to 600,000 p s i at 4 5 0 ° F .
The
flexural
modulus
at 450° F is greater t h a n the r o o m - t e m p e r a t u r e flexural m o d u l u s of m a n y established plastics, s u c h as A B S resins, polyacetals, n y l o n s , a n d p o l y carbonates. A s a f u r t h e r c o m p a r i s o n , the
flexural
m o d u l u s of glass-filled p o l y
p h e n y l e n e sulfide at 450° F is a b o u t 10 times that of u n f i l l e d p o l y t e t r a fluoroethylene
at r o o m t e m p e r a t u r e .
T h e s e d a t a illustrate the o u t s t a n d
i n g r e t e n t i o n of stiffness of this m a t e r i a l at elevated temperatures.
The
heat-deflection t e m p e r a t u r e of p o l y p h e n y l e n e sulfide c o n t a i n i n g 40% glass fibers
is greater t h a n 425°F, a c c o u n t i n g for the excellent r e t e n t i o n of
m e c h a n i c a l properties at elevated temperatures. E l e c t r i c a l properties of p o l y p h e n y l e n e sulfide c o m p o u n d s are s u m marized in Table III.
T h e d i e l e c t r i c constant of 3.1 is l o w i n c o m p a r i s o n
w i t h m a n y other p l a s t i c materials. very low.
S i m i l a r l y , the d i s s i p a t i o n factor is
D i e l e c t r i c strength ranges f r o m a b o u t 500-600 volts p e r m i l
for the various c o m p o u n d s ;
these values are q u i t e h i g h .
Thus, both
In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
6.
HILL,
filled
JR. A N D E D M O N D S , JR.
Polyphenylene
87
Sulfide Coatings
a n d u n f i l l e d p o l y p h e n y l e n e sulfide materials are excellent e l e c t r i c a l
insulators. L i m i t i n g o x y g e n i n d e x values ( L O I )
of a n u m b e r of plastics are
shown in Table I V .
T h e L O I is the c o n c e n t r a t i o n of o x y g e n r e q u i r e d
to m a i n t a i n b u r n i n g .
P o l y p h e n y l e n e sulfide has a v a l u e of 44, a n d falls
a m o n g the least flammable types of plastics.
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
Table II.
M e c h a n i c a l P r o p e r t i e s of I n j e c t i o n - M o l d i n g C o m p o s i t i o n s Ryton PPS Glass-Filled Ryton PPS
(60/40) 1.64
1.34
Density Tensile, psi A t 70°F A t 400°F
11,000 4,700
E l o n g a t i o n (70°F),
21,000 4,700
%
3
Flexural M o d u l u s , psi A t 70°F A t 450°F
600,000
2,200,000 600,000
Flexural Strength, psi
20,000
37,000
86
92
H a r d n e s s , Shore D N o t c h e d I z o d I m p a c t , ft l b / i n A t 75°F A t 300°F H e a t Deflection Temperature @ p s i , °F
264
M a x i m u m Recommended Service T e m p e r a t u r e , °F
T a b l e III.
0.8 1.8
0.3 1.0 280
>425
500
500
E l e c t r i c a l P r o p e r t i e s of P o l y p h e n y l e n e S u l f i d e C o m p o u n d s Unfilkd PPS
40% GlassFilled PPS
Dielectric Constant 10 H e r t z 10 H e r t z
3.1 3.1
3.8 3.8
Dissipation Factor 10 H e r t z 10 H e r t z
0.0004 0.0007
0.0037 0.0066
3
6
3
6
Dielectric Strength, V o l t s / M i l
585
490
In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
88
POLYMERIZATION
Table IV.
REACTIONS AND N E W
Flammability Limiting Oxygen Index, %
M aterial
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
P o l y v i n y l chloride P o l y p h e n y l e n e sulfide N y l o n 6-6 Polycarbonate Polystyrene Polyolefins Polyacetal Coatings.
POLYMERS
47 44 28.7 25 18.3 17.4 16.2
P o l y p h e n y l e n e sulfide coatings are c h a r a c t e r i z e d b y a n
u n u s u a l c o m b i n a t i o n of t h e r m a l s t a b i l i t y a n d c h e m i c a l resistance. are
finding
They
a c c e p t a n c e as corrosion-resistant coatings for metals i n the
c h e m i c a l a n d p e t r o l e u m industries.
P o l y p h e n y l e n e sulfide coatings m a y
be a p p l i e d b y m a n y different solventless c o a t i n g systems s u c h as s l u r r y spraying,
fiuidized-bed
coating, and
flocking.
A l l of these
techniques
r e q u i r e a b a k e c y c l e to cure the p o l y m e r to o b t a i n t o u g h , coalesced coatings.
T y p i c a l b a k e cycles of 45 minutes at 7 0 0 ° F or 15 m i n u t e s
at 8 0 0 ° F i n a c i r c u l a t i n g air o v e n are u s u a l l y e n o u g h to cure of
a b o u t 5 - m i l thickness or less.
baking
to
achieve
mechanical
a sufficient
coatings
T h i c k e r coatings r e q u i r e a d d i t i o n a l
l e v e l of
c u r i n g to
provide
optimum
toughness.
Best a d h e s i o n is o b t a i n e d w h e n the m e t a l surface is g r i t - b l a s t e d before c o a t i n g .
A l u m i n u m surfaces do not r e q u i r e a n y a d d i t i o n a l s u r
face treatment for g o o d adhesion.
F o r adequate
adhesion, iron sur
faces s h o u l d be heat-treated at 7 0 0 ° F i n a i r before s l u r r y c o a t i n g , or p r i m e d w i t h a m i x t u r e of p o l y p h e n y l e n e
sulfide a n d cobalt o x i d e i n
s l u r r y f o r m before a p p l i c a t i o n of a c o a t i n g b y
fluidized-bed
techniques.
U n c u r e d p o l y m e r s h o u l d b e u s e d for a p p l i c a t i o n of t h i n coatings
(1-2
m i l s per c o a t ) b y slurry t e c h n i q u e s ; the c u r e d resins are p r e f e r r e d for a p p l i c a t i o n of t h i c k e r coatings b y
fluidized-bed
or
flocking
techniques
to a v o i d p r o b l e m s of d r i p p i n g a n d s a g g i n g d u r i n g the o p e r a t i o n .
Pig
ments s u c h as t i t a n i u m d i o x i d e , c h a n n e l b l a c k , a n d a v a r i e t y of i r o n oxide compositions m a y be used w h e n d e s i r e d . Two
typical slurry coating
f o r m u l a t i o n s are s h o w n i n T a b l e
V.
F o r m u l a t i o n A , w h i c h consists of P P S , TiO >, w a t e r , a n d a d i s p e r s i n g L
agent, is s u i t a b l e for the p r o d u c t i o n of m u l t i p l e coats a n d for a v a r i e t y of other a p p l i c a t i o n s .
F o r m u l a t i o n B contains
polytetrafluoroethylene,
a n d c a n be used to p r o d u c e single coat nonstick surface coatings, or it c a n b e a p p l i e d as a top coat to a surface a l r e a d y c o a t e d w i t h F o r m u l a tion A . R y t o n P P S coatings that are p i n h o l e free at 2-4 m i l s m a y b e t a i n e d easily b y s l u r r y - c o a t i n g procedures. are i n d i c a t e d i n T a b l e V I .
ob
Properties of these coatings
T h e s e coatings are q u i t e h a r d , w i t h a p e n c i l
In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
6.
HILL,
Polyphenylene
JR. A N D E D M O N D S , JR.
hardness of 2 H at r o o m t e m p e r a t u r e .
Sulfide
89
Coatings
T h i s hardness is m a i n t a i n e d at
temperatures u p to 300°F, a n d the c o a t i n g s t i l l has a p e n c i l hardness of 2 B at 500°F. measured
on
H a r d n e s s a n d a d h e s i o n to g r i t - b l a s t e d a l u m i n u m , as
the A r c o
respectively, for
M i c r o k n i f e , are 450-600
a coating
grams
a n d 4-5
mils,
c o n t a i n i n g 3 parts P P S a n d 1 p a r t T i O o
T h e s e coatings w i l l w i t h s t a n d f o r w a r d a n d reverse i m p a c t tests of i n c h - p o u n d s , a n d a 3 / 1 6 i n c h m a n d r e l b e n d of 180°.
160
E l o n g a t i o n of the
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
c o a t i n g is greater t h a n 32% ( l i m i t of t e s t ) , as d e t e r m i n e d o n a c o n i c a l Table V .
P o l y p h e n y l e n e S u l f i d e F o r m u l a t i o n s for Spray C o a t i n g Applications Parts by Weight
Ryton V PPS Titanium Dioxide Polytetrafluoroethylene Water Triton X-100
A
B
100 33 300 3
100 33 10 300 3
700 45
700 45
—
Cure Conditions T e m p e r a t u r e , °F Time, Minutes Table V I .
P r o p e r t i e s of P o l y p h e n y l e n e Sulfide C o a t i n g s PPS/Ti0 Coating (3/1) 2
Property Hardness, Pencil Hardness, Arco Microknife , g Adhesion, Arco Microknife , mils M a n d r e l B e n d , 180°, 3 / 1 6 " E l o n g a t i o n ( A S T M D 522), % Reverse Impact, inch-pounds A b r a s i o n Resistance, T a b e r m g loss/1000 rev., C S - 1 7 W h e e l C o n t a c t A n g l e % w a t e r , degrees C o n t a c t A n g l e , Wesson o i l , degrees Chemical Resistance Thermal Stability Color a
6
c
PPS/Ti0 / PTFE Coating (3/1/0.3) 2
2H 500 5 Pass >32 160
2H 350 4-6 Pass >32 160
50 82 41 Excellent Excellent Light T a n
57 110 68 Excellent Excellent Light T a n
A S T M 2197; measured on 1-mill coatings A S T M 2197; measured on a l u m i n u m coupons t h a t h a d been g r i t - b l a s t e d c o a t i n g (coating thickness, 1 m i l ) . M e a s u r e d w i t h a R a m e - H a r t M o d e l A - 1 0 0 goniometer a
b
c
In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
before
90
POLYMERIZATION
m a n d r e l test apparatus.
REACTIONS AND N E W
POLYMERS
T h u s hardness, toughness, a n d e x t e n s i b i l i t y are
excellent. E x c e l l e n t release coatings based o n p o l y p h e n y l e n e sulfide m a y
be
p r e p a r e d b y i n c o r p o r a t i n g a s m a l l a m o u n t of polytetrafluoroethylene i n the c o a t i n g f o r m u l a t i o n .
F o r example, a f o r m u l a t i o n of 100 parts of
R y t o n V - l , 33 parts of t i t a n i u m d i o x i d e , a n d 10 parts of polytetrafluoro ethylene i n aqueous s l u r r y p r o v i d e s a c o a t i n g that v e r y r e a d i l y releases food i n a cooking operation.
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
Hart model
C o n t a c t angle, as m e a s u r e d w i t h a R a m e -
A - 1 0 0 goniometer,
is 68°
for
w a t e r on a c o a t i n g surface of this type.
Wesson
o i l a n d 110°
for
A v a r i e t y of colors m a y be o b
t a i n e d i n release coatings b y a p p r o p r i a t e c h o i c e of p i g m e n t .
The hard
ness of these coatings is s o m e w h a t greater t h a n that of the c o n v e n t i o n a l polytetrafluoroethylene
cookware
coatings
( p e n c i l hardness of 2 H
for
the P P S coatings vs. H for polytetrafluoroethylene c o a t i n g ) . One coating
very
interesting a p p l i c a t i o n for p o l y p h e n y l e n e
cookware
n o n s t i c k coatings
for
nonstick use
are o b t a i n e d
20% polytetrafluoroethylene
(10).
when
is used.
sulfide is i n
E x c e l l e n t , scratch-resistant,
a f o r m u l a t i o n c o n t a i n i n g 10
to
R y t o n P P S coatings are v e r y i n
s o l u b l e a n d nontoxic, a n i m a l f e e d i n g studies i n d i c a t e . T a b l e V I I shows the effect of l o n g - t e r m a g i n g of coatings at 5 0 0 ° F i n air.
T h e w e i g h t loss after 10 weeks exposure is less t h a n 1% i n the
f o r m u l a t i o n c o n t a i n i n g a s m a l l a m o u n t of Table VII.
polytetrafluoroethylene.
L o n g - T e r m T h e r m a l S t a b i l i t y i n A i r at 500° F . Weight Loss, % PPS/Ti0 Coating (8/1)
PPS/TiOt/PTFE Coating (8/1/0.8)
2
Exposure Time, Days 1 4 7 9 21 30 42 49 70
0.003 0.06 0.13 0.12 0.18 0.24 0.50 0 . 4 7 (Cracked)
0.02 0.07 0.15 0.16 0.21 0.29 0.34 0.31 0.95 (Cracked)
I n other h i g h - t e m p e r a t u r e tests, R y t o n p o l y p h e n y l e n e sulfide coat ings o n a l u m i n u m w i l l pass a n 80 i n c h - p o u n d reverse i m p a c t test after exposure i n air at 6 0 0 ° F for eight days, or at 7 0 0 ° F for t w o days
(Table
VIII). R y t o n p o l y p h e n y l e n e sulfide coatings are
finding
excellent
accept
ance as corrosion-resistant, p r o t e c t i v e coatings for o i l - f i e l d p i p e , valves,
In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
6.
HILL,
JR. A N D E D M O N D S , JR.
Table V I I .
Polyphenylene
91
Sulfide Coatings
T h e r m a l S t a b i l i t y of P o l y p h e n y l e n e
Sulfide C o a t i n g s
f t
Evaluation
b
PPS/Ti0 Coating (3/1)
PPS/TiOt/PTFE Coating (3/1/0.3)
2
Exposure Conditions in Air 600°F—8 days 700°F—2 days
Pass Pass
Pass Pass
° One-mil coatings on aluminum As measured by 80 inch-pound reverse impact test
Downloaded by PENNSYLVANIA STATE UNIV on January 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch006
b
fittings,
c o u p l i n g s , t h e r m o c o u p l e w e l l s , probes, a n d other e q u i p m e n t i n
b o t h p e t r o l e u m a n d c h e m i c a l processing.
Parts of this t y p e h a v e b e e n
o p e r a t i n g satisfactorily f o r e x t e n d e d periods of t i m e i n m e d i a s u c h as l i q u i d a m m o n i a , c r u d e o i l , refined h y d r o c a r b o n s , m o t o r o i l , b r i n e , d i l u t e h y d r o c h l o r i c a n d s u l f u r i c acids, d i l u t e s o d i u m h y d r o x i d e , b u t y l acetate, chlorobenzene,
etc. I n p a r t i c u l a r , p o l y p h e n y l e n e b o t h corrosive
sulfide is p r o v i d i n g
protection
when
materials a n d h i g h temperatures a r e
involved.
T h u s , parts of c a r b o n steel c o a t e d w i t h various p o l y p h e n y l
ene sulfide resins a r e r e p l a c i n g parts f a b r i c a t e d f r o m expensive metals.
I n many
fluidized-bed ily.
cases,
corrosion-resistant
coatings
alloy
are applied b y
techniques to o b t a i n c o a t i n g thicknesses of 10-25 m i l s r e a d
H o w e v e r , w h e n t h e mass of t h e substrate m e t a l is sufficient t o
h o l d t h e heat w e l l , t h i c k coatings
may be obtained b y spraying the
hot (ca. 7 0 0 ° F ) m e t a l p a r t w i t h a n aqueous c o a t i n g s l u r r y f o r m u l a t i o n , f o l l o w e d b y a b a k e cycle.
B o t h a p p l i c a t i o n methods are b e i n g u s e d f o r
corrosion protection.
Literature
Cited
1. Duess, J. J. B., Rec. Trav. Chim., (1908) 27, 145. 2. Hilditch, T. P., J. Chem. Soc., (1910) 47, 2579. 3. Macallum, A. D . , J. Org. Chem. (1948) 13, 154; U.S. Patents 2,513,188 (June 27, 1950) and 2,538,941 (Jan. 23, 1951). 4. Lentz, R. W., and Carrington, W . K., J. Polym Sci., (1959) 41, 333. 5. Lenz, R. W., and Handlovits, C . E . , J. Polym. Sci., (1960) 43, 167. 6. Lenz, R. W., Handlovits, C. E., Smith, H . A., J. Polym Sci., (1962) 58, 351. 7. Smith, H . A., Encycl. Polymer Sci. Technol., (1969) 10, 653. 8. Edmonds, Jr., J. T., Hill, Jr., H . W., U.S. Patent 3,354,129 (Nov. 21, 1967.) 9. Tabor, B. J., Magre, E . P., Boon, J., Eur. Polym. J., (1971) 7, 1127. 10. Ray, G. C., U.S. Patent 3,492,125 (Jan. 27, 1970). R E C E I V E D April 14, 1972.
In Polymerization Reactions and New Polymers; Platzer, Norbert A. J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.