3 Rates of Physical and Chemical Processes
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003
in a Carbonate Aquifer WILLIAM BACK and BRUCE B. HANSHAW U. S. Geological Survey, Washington, D. C. 20242
For much
of the Tertiary
carbonate
ida, the velocity
of ground-water
meters per year.
Water
calcite
in about 4000 carbon-14
dolomite amount
it attains
produced
processes with carbon-14 the total entropy production The
equilibrium
values
from thermal
for the system as a function range from
about
Flor
undersatu-
As the
water
with respect
years and with years.
respect
Combining
chemical
ages provides
(excluding
area is
and dolomite.
in about 15,000 carbon-14 of entropy
system of
ranges from 2 to 8
in the recharge
rated with respect to both calcite moves downgradient,
aquifer
flow
and
to to the
physical
an approximation
of
energy from heat flow) of time and
—2 to 7
years for various flow paths of about 100
distance.
mcal/kg/°K/1000 km.
A g e n e r a l reference base for i r r e v e r s i b l e processes is p r o v i d e d b y e n t r o p y p r o d u c t i o n w h i c h serves as a u n i f y i n g c o n c e p t r e l a t i n g changes i n b o t h p h y s i c a l a n d c h e m i c a l energy. D i s t r i b u t i o n of e n t r o p y p r o d u c t i o n p r o v i d e s a n i n t e g r a t i n g v a r i a b l e for use i n e v a l u a t i n g the r e l a t i v e i m p o r tance of p h y s i c a l a n d c h e m i c a l processes at p o i n t s w i t h i n a system or b e t w e e n t w o h y d r o l o g i e systems. B e c a u s e the c o n c e p t of e n t r o p y is g e n e r a l l y not f a m i l i a r to h y d r o l o gists, a b r i e f i n t r o d u c t i o n is p r o b a b l y i n order. A t h o r o u g h a n d rigorous e x p l a n a t i o n c a n b e o b t a i n e d f r o m s t a n d a r d w o r k s s u c h as those b y F a s t ( I ) , Fitts (2), Katchalsky and Curran ( 3 ) , Klotz (4), L e w i s and R a n dall (5), and Prigogine (6).
A statement of the s e c o n d l a w of t h e r m o
d y n a m i c s is g e n e r a l l y u s e d as a d e f i n i t i o n of e n t r o p y of a system as f o l l o w s : dS ^ DQ/T,
w h e r e dS is a n i n f i n i t e s i m a l c h a n g e i n e n t r o p y for
a n i n f i n i t e s i m a l p a r t of a process c a r r i e d out r e v e r s i b l y , DQ
is the heat
a b s o r b e d , a n d Τ is the absolute t e m p e r a t u r e at w h i c h the heat is a b sorbed.
I n one sense, e n t r o p y is a m a t h e m a t i c a l f u n c t i o n for the t e r m 77 In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
78
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
DQ/T,
w h i c h is a n exact d i f f e r e n t i a l , whereas DQ
alone cannot b e i n t e -
g r a t e d w i t h o u t h a v i n g a p a t h specified (4, p. 1 0 1 ) . T h a t is, DQ/T
is b o t h
a n extensive v a r i a b l e a n d a t h e r m o d y n a m i c f u n c t i o n a n d merits a s y m b o l a n d name—i.e., e n t r o p y , w h i c h comes f r o m the G r e e k w o r d m e a n i n g "evolution." T h e s e c o n d l a w of t h e r m o d y n a m i c s is often stated to be the l a w of d i s s i p a t i o n or d e g r a d a t i o n of energy; h o w e v e r , this c a n l e a d to c o n f u s i o n Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003
because it seems to v i o l a t e the first l a w of t h e r m o d y n a m i c s , a statement of c o n s e r v a t i o n of energy.
W h e n the second l a w is stated i n the a b o v e
f o r m , i t is r e a l l y r e f e r r i n g to the d e g r a d a t i o n of the " u s e a b l e " energy of a system. E n t r o p y is therefore a n i n d i c a t i o n of the d e g r a d a t i o n of a system or a n i n d e x of the exhaustion of a system (4, p. 1 3 0 ) . It f o l l o w s l o g i c a l l y that the c o m b i n a t i o n of a l l spontaneous
reactions
w i t h i n a n a t u r a l system w i l l t e n d to increase the e n t r o p y of that system, a n d this is the basis for the statement that e n t r o p y of the u n i v e r s e is s t r i v i n g t o w a r d a m a x i m u m . A l t h o u g h energy a n d e n t r o p y are expressed i n s o m e w h a t s i m i l a r u n i t s , calories per m o l e for energy a n d calories p e r m o l e per degree for e n t r o p y , c o n f u s i o n arises i f t h e y are t h o u g h t of as h a v i n g s i m i l a r attributes or characteristics. A s K l o t z (4, p. 129)
points
out, one c a n t h i n k of energy as b e i n g a k i n d of m a t e r i a l f l u i d , a n d h e n c e it flows f r o m one area to another a n d is conserved.
E n t r o p y , o n t h e other
h a n d , m u s t b e v i e w e d as a n i n d e x of c o n d i t i o n o r character r a t h e r t h a n as the measure of content of some i m a g i n a r y f l u i d a n d is the i n d e x of c a p a c i t y for spontaneous change.
E n t r o p y s u m m a r i z e s i n a concise f o r m
the possible w a y s i n w h i c h the v a r i a b l e s of t e m p e r a t u r e , pressure, a n d c o m p o s i t i o n m a y c h a n g e i n n a t u r a l processes. O n e of the f u n d a m e n t a l tasks r e q u i r e d to a c h i e v e the u l t i m a t e g o a l of h y d r o g e o l o g y is to u n d e r s t a n d the controls o n energy d i s t r i b u t i o n a n d t r a n s f o r m a t i o n w i t h i n a n a q u i f e r system. If this is a c c e p t e d , it t h e n becomes the h y d r o l o g i s t s ' role to b r i n g together i n t o one c o n c e p t the fluxes a n d forces of the c h e m i c a l reactions, of the h y d r o d y n a m i c flow paths, a n d of heat.
T h i s idea was clearly articulated a n d developed b y G . B.
M a x e y (7, p. 1 4 5 ) , w h o stated i n p a r t : " A q u i f e r systems h a v e b e e n s t u d i e d b y three separate m e t h o d s of analysis: (1) h y d r o d y n a m i c , utilizing a distributed potential system; (2) h y d r o c h e m i c a l , u s i n g parameters of w a t e r q u a l i t y ; a n d ( 3 ) h y d r o t h e r m a l , u s i n g d i s t r i b u t i o n a n d gradients of t e m p e r a t u r e . T h e v a r i o u s approaches h a v e b e e n d i c t a t e d l a r g e l y b y the s p e c i a l i z e d t r a i n i n g a n d experience of the i n d i v i d u a l research w o r k e r . H o w e v e r , the c o m p l e x i t y of present h y d r o l o g i e p r o b l e m s n o w requires b r i n g i n g together the v a r i o u s aspects i n t o a single c o n c e p t of a f u n c t i o n i n g s y s t e m . " It f o l l o w s that one of the f u n d a m e n t a l objectives of
hydrogeochem-
istry is to evaluate the r e l a t i v e significance of v a r i o u s processes that c o n t r o l the t o t a l e n e r g y d i s t r i b u t i o n a n d energy d i s s i p a t i o n w i t h i n a h y -
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
BACK A N D HANSHAW
drologic
system.
Carbonate
79
Aquifer
Classical "thermostatics" c a n provide
description of the functioning of a hydrogeochemical
only a partial
system, a n d i t is
necessary to a p p l y t h e p r i n c i p l e s of i r r e v e r s i b l e or n o n e q u i l i b r i u m t h e r modynamics. I n t h e f u n c t i o n i n g of a carbonate a q u i f e r , r a i n f a l l infiltrates t h r o u g h the s o i l zone, becomes c h a r g e d w i t h c a r b o n d i o x i d e , moves to t h e w a t e r table, dissolves
soluble m i n e r a l s of t h e a q u i f e r , increases
i n chemical
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003
c o n c e n t r a t i o n , a n d continues to m o v e to d e e p e r parts o f the a q u i f e r , e v e n t u a l l y to discharge to t h e ocean. A l l of these c h e m i c a l a n d p h y s i c a l p r o c esses a r e i r r e v e r s i b l e reactions a n d c a n b e t h o r o u g h l y u n d e r s t o o d
only
b y t h e a p p l i c a t i o n of p r i n c i p l e s of i r r e v e r s i b l e t h e r m o d y n a m i c s .
The
processes a n d reactions c o u l d b e f o r m u l a t e d a n d expressed
i n energy
terms, b u t i t i n t u i t i v e l y a p p e a r e d m o r e s i m p l e to us to b r i n g
together
the p r o d u c t s o f these processes t h r o u g h t h e c o n c e p t o f e n t r o p y r a t h e r t h a n t h r o u g h a n energy f u n c t i o n .
Line of equal head above \ sea level, in meters Area of principal recharge
Figure
1.
Pnncipal artesian aquifer of central Florida, major recharge (after Ref. 9, plate 12)
showing
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
area of
80
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
Hydrogeology C e r t a i n p r i n c i p l e s of i r r e v e r s i b l e t h e i m o d y n a m i c s c a n be a p p l i e d b y c o n s i d e r i n g the interrelations b e t w e e n geology, g r o u n d - w a t e r
flow
pat-
tern, a n d c h e m i c a l character of w a t e r i n the F l o r i d i a n p e n i n s u l a .
The
p r i n c i p a l artesian a q u i f e r of F l o r i d a consists chiefly of T e r t i a r y limestone, w i t h m i n o r amounts of d o l o m i t e , a n d ranges i n age f r o m m i d d l e E o c e n e Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003
to m i d d l e M i o c e n e .
It is one of the most extensive limestone aquifers
i n the U n i t e d States. T h e T e r t i a r y limestones c r o p out i n n o r t h - c e n t r a l F l o r i d a and i n a broad belt extending from western F l o r i d a through southeastern A l a b a m a , G e o r g i a , a n d southeastern C a r o l i n a , a p p r o x i m a t e l y p a r a l l e l i n g the F a l l L i n e . T h e O c a l a L i m e s t o n e of late E o c e n e age is one of the most p r o d u c t i v e w a t e r - b e a r i n g formations of the p r i n c i p a l a q u i f e r (8, p. 3 1 ) . F i g u r e 1 shows the height of the energy surface i n meters a b o v e sea level.
T w o m o u n d s t e n d to d o m i n a t e the g r o u n d - w a t e r flow of c e n t r a l
F l o r i d a : one near the center of the m a p that is 40 meters a b o v e sea l e v e l a n d another smaller one to the west that is about 25 meters a b o v e sea level. T h e g e n e r a l p a t t e r n of flow is p r i m a r i l y d o w n the p o t e n t i o m e t r i c g r a d i e n t a n d p e r p e n d i c u l a r to the contours. A l s o s h o w n is the area of p r i n c i p a l recharge.
N o r t h of the
two
m o u n d s , the o v e r l y i n g sediments that f o r m the c o n f i n i n g b e d are t h i n to nonexistent, a n d because of exposed limestone i n this area, a large a m o u n t of recharge occurs; h o w e v e r , the p o t e n t i o m e t r i c surface is l o w o w i n g to r a p i d discharge of the w a t e r . T h i s is a r e g i o n i n w h i c h a great d e a l of w a t e r is d i s c h a r g e d t h r o u g h m a n y springs, s u c h as S i l v e r a n d R a i n b o w S p r i n g s , that exist i n the area of the g r o u n d - w a t e r saddle f o r m e d b y the c e n t r a l m o u n d a n d a p o t e n t i o m e t r i c h i g h n o r t h of the s t u d y area. A l t h o u g h the p o t e n t i o m e t r i c surface has essentially the same g r a d i e n t a n d shape n o r t h a n d south of the m o u n d s , less recharge occurs i n s o u t h ern parts of the elongated d o m e t h a n i n the n o r t h e r n part because of a t h i c k e r c o n f i n i n g b e d a n d l o w e r t r a n s m i s s i v i t y of the a q u i f e r to the south. W a t e r that flows s o u t h w a r d discharges u p w a r d t h r o u g h the c o n f i n i n g b e d a n d also to the ocean a n d gulf.
T h e m a x i m u m g r a d i e n t of the p o -
t e n t i o m e t r i c surface of c e n t r a l F l o r i d a is about 2.5 meters per k i l o m e t e r w i t h a n average g r a d i e n t of about 1 meter per k i l o m e t e r . T h e g r o u n d w a t e r of c e n t r a l F l o r i d a comprises one major h y d r o l o g i e system, a n d it has r e c e n t l y b e e n s h o w n that a g e o c h e m i c a l coexistent w i t h the h y d r o l o g i e system (10, 11).
system is
D e p t h s of w e l l s s a m p l e d
d u r i n g this s t u d y range f r o m about 100 to 500 meters.
A b o d y of salt
w a t e r that u n d e r l i e s the entire F l o r i d a p e n i n s u l a ranges i n d e p t h f r o m near sea l e v e l at parts of the shoreline to about 700 meters i n c e n t r a l F l o r i d a . T h e interface b e t w e e n the fresh w a t e r a n d salt w a t e r forms one
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
BACK A N D HANSHAW
Carbonate
81
Aquifer
of the b o u n d a r i e s of the fresh-water system. G e o c h e m i c a l m a p p i n g , i n c l u d i n g d i s t r i b u t i o n of c h l o r i d e , sulfate, c a l c i u m , m a g n e s i u m , a n d c a r bon-14 concentrations, shows a systematic p a t t e r n of increase d o w n g r a dient. It w a s c o n c l u d e d that, a l t h o u g h the w e l l s h a v e a range of t o t a l depths a n d o p e n i n t e r v a l s , t h e y are s a m p l i n g parts of the same h y d r o -
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003
l o g i c a l l y - c o n n e c t e d g e o c h e m i c a l system
Figure
2.
(11).
Principal artesian aquifer, showing areas of under saturation ground water with respect to calcite and dolomite
of
Chemical Reactions I n the carbonate a q u i f e r system of c e n t r a l F l o r i d a , t w o major controls o n the c h e m i c a l c h a r a c t e r of the w a t e r are s o l u t i o n of c a l c i t e a n d of dolomite.
O n e w a y to evaluate the significance of these reactions as
c h e m i c a l controls is to d e t e r m i n e the d e p a r t u r e f r o m e q u i l i b r i u m of the w a t e r w i t h respect to e a c h of the m i n e r a l s . T o c a l c u l a t e d e p a r t u r e f r o m e q u i l i b r i u m , s o l u b i l i t y p r o d u c t s of 10"
8 3 5
and 2 Χ
10"
17
w e r e u s e d for
calcite a n d d o l o m i t e , r e s p e c t i v e l y . T h e d e p a r t u r e f r o m e q u i l i b r i u m w i t h
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
82
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
respect to c a l c i t e is s h o w n i n F i g u r e 2. T h e area of u n d e r s a t u r a t i o n c o i n cides closely w i t h the area of m a j o r r e c h a r g e ( F i g u r e 1 ) . T h e e q u i l i b r i u m b o u n d a r y outlines the e l o n g a t e d d o m e o n the p o t e n t i o m e t r i c m a p , w h i c h i n d i c a t e s that some w a t e r is r e c h a r g e d i n t o the a q u i f e r a l o n g the t o p of the d o m e a n d is t h e r e b y l o w e r i n g the a m o u n t of s a t u r a t i o n i n this area. A p r e l i m i n a r y m a p of d e p a r t u r e f r o m e q u i l i b r i u m w i t h respect
to
d o l o m i t e is also s h o w n i n F i g u r e 2. T h e area of u n d e r s a t u r a t i o n is larger Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003
for d o l o m i t e t h a n for calcite. B e c a u s e the d o l o m i t e v a l u e is exactly one h a l f that of c a l c i t e , i t f o l l o w s that i n o r d e r for a w a t e r that is i n e q u i l i b r i u m w i t h c a l c i t e to b e c o m e saturated w i t h respect to d o l o m i t e , it is o n l y necessary f o r the m a g n e s i u m c o n c e n t r a t i o n to e q u a l the c a l c i u m c o n c e n t r a t i o n ( 1 2 , 13, 14).
T h e area of recharge a n d the area of highest
p o t e n t i o m e t r i c surface s h o w that the w a t e r is u n d e r s a t u r a t e d w i t h respect to
dolomite;
downgradient,
it p r o g r e s s i v e l y
attains e q u i l i b r i u m w i t h
d o l o m i t e a n d e v e n t u a l l y becomes supersaturated. I n m a k i n g t h e r m o d y n a m i c c a l c u l a t i o n s to d e t e r m i n e d e p a r t u r e f r o m equilibrium, thermodynamic dolomite were used.
d a t a for p u r e s t o i c h i o m e t r i c c a l c i t e
and
H o w e v e r , minéralogie a n d x-ray e x a m i n a t i o n of
a q u i f e r m a t e r i a l has s h o w n that the c a l c i t e m a y h a v e several m o l e percent m a g n e s i u m ; the d o l o m i t e t h a t occurs i n the system is g e n e r a l l y c a l c i u m r i c h (IS).
T h e r e f o r e , b o t h of these m i n e r a l s i n the n a t u r a l state have a
h i g h e r free e n e r g y a n d h e n c e a s o m e w h a t h i g h e r s o l u b i l i t y t h a n the p u r e minerals.
T h u s , p a r t of the s u p e r s a t u r a t i o n that w e
have
calculated
m a y be more apparent than real. Rates of Flow and Chemical Reactions F o r the past several years, w e h a v e b e e n w o r k i n g to evaluate the r a d i o c a r b o n t e c h n i q u e for d a t i n g g r o u n d w a t e r ; that is, to d e t e r m i n e the a m o u n t of t i m e the w a t e r has b e e n out of contact w i t h the ( 1 5 , 1 6 , 17).
atmosphere
T h i s is d o n e b y means of the carbon-14 a c t i v i t y of the d i s -
s o l v e d c a r b o n a t e species.
Results of p a r t of this w o r k give t h e age
w a t e r as a f u n c t i o n of p o s i t i o n i n the a q u i f e r system.
of
I n the recharge
area, there are waters of m i x e d o r i g i n , a n d the age varies a c c o r d i n g to the a m o u n t of m i x i n g of e x c e e d i n g l y y o u n g w a t e r w i t h s o m e w h a t
older
w a t e r . H o w e v e r , d o w n g r a d i e n t f r o m the area of p r i n c i p a l r e c h a r g e , the age of the w a t e r increases i n a systematic m a n n e r . T h u s , b y c o m b i n i n g results f r o m r a d i o c a r b o n c o n c e n t r a t i o n w i t h changes i n the c h e m i c a l a n d p h y s i c a l parameters of the system, rates of c h e m i c a l a n d p h y s i c a l p r o c esses w h i c h o c c u r w i t h i n a system m a y be d e r i v e d . W i t h i n the recharge area, the m a x i m u m a p p a r e n t age of the m i x e d w a t e r is a p p r o x i m a t e l y 5000 years.
D o w n g r a d i e n t f r o m the recharge a r e a , the w a t e r increases
to a p p r o x i m a t e l y 30,000 years before present, w h i c h is the oldest f o u n d i n that p a r t of the a q u i f e r system.
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
age
3.
BACK A N D HANSHAW
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003
83°
83°
Carbonate 82°
83
Aquifer 81°
82°
801
81°
80°
Figure 3. Residence time of water within the aquifer and velocity of ground-water flow; values at the arrow tips are averages for entire flow paths
T h e values o n the flow lines i n F i g u r e 3 w e r e c a l c u l a t e d f r o m r a d i o c a r b o n dates a n d i n d i c a t e velocities i n meters per year for v a r i o u s segments a l o n g p a r t i c u l a r flow p a t h s , w h i c h are s h o w n b y the h e a v y lines w i t h a r r o w s . T h e average values for the entire p a t h r a n g e f r o m
about
2.5 meters per year to 6.5 meters per year. A l o n g short reaches, the range of velocities is a b o u t 1.5 to 8.5 meters per year. I n a d d i t i o n to e s t i m a t i n g v e l o c i t y of g r o u n d - w a t e r
flow,
carbon-14
concentrations p e r m i t e s t i m a t i o n of the rate of s o l u t i o n a n d p r e c i p i t a t i o n of c a r b o n a t e m i n e r a l s . T h e a q u i f e r is c o m p o s e d of a p p r o x i m a t e l y
2/3
calcite a n d 1 / 3 d o l o m i t e d i s t r i b u t e d t h r o u g h o u t the section. S a t u r a t i o n w i t h respect to c a l c i t e occurs rather r a p i d l y , a n d it is o n l y i n areas of p r i n c i p a l recharge that u n d e r s a t u r a t e d waters are g e n e r a l l y f o u n d ( F i g ures 1 a n d 2 ) .
H o w e v e r , the k i n e t i c s of d o l o m i t e f o r m a t i o n a n d d i s s o l u -
t i o n are q u i t e slow, a n d the area of u n d e r s a t u r a t i o n extends
farther
d o w n g r a d i e n t t h a n does the area of calcite u n d e r s a t u r a t i o n . B y
com-
b i n i n g age of w a t e r f r o m F i g u r e 3 w i t h s a t u r a t i o n b o u n d a r i e s of c a l c i t e a n d d o l o m i t e f r o m F i g u r e 2, a n a p p r o x i m a t i o n c a n be o b t a i n e d for the
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
84
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
t i m e r e q u i r e d for w a t e r to b e c o m e saturated w i t h these m i n e r a l s .
The
results s h o w that w a t e r attains e q u i l i b r i u m w i t h respect to calcite i n a b o u t 4000 carbon-14 years a n d w i t h respect to d o l o m i t e i n about
15,000
carbon-14 years. Rate of Entropy
Production
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003
T h u s f a r i n this d i s c u s s i o n , these
fluid-filled
formations of
Florida
h a v e b e e n c o n s i d e r e d as p a r t of a geologic system, a h y d r o l o g i e system, a n d as a c o e x i s t i n g g e o c h e m i c a l system. It w o u l d seem d e s i r a b l e to c o m b i n e the results of the v a r i o u s n a t u r a l processes i n t o one u n i f y i n g concept. T h e i n p u t to the c o m b i n e d system occurs o n the p o t e n t i o m e t r i c h i g h s i n the f o r m of r a i n f a l l c o n t a i n i n g m i n o r amounts of t o t a l d i s s o l v e d solids. I n i t i a l changes i n w a t e r c h e m i s t r y o c c u r w i t h i n the s o i l zone w h e r e the w a t e r is c h a r g e d w i t h large amounts of C 0
2
gas.
This C 0 - r i c h water
percolates into the g r o u n d - w a t e r system w h e r e the C 0
2
2
attacks the car
bonate m i n e r a l s . T h i s is a n i r r e v e r s i b l e c h e m i c a l process w h e r e b y C0
2
the
i n the w a t e r reacts w i t h the m i n e r a l s a n d b r i n g s t h e m i n t o solution. Likewise, simple gravitational movement
of w a t e r f r o m
potentio
m e t r i c highs to oceanic base l e v e l is a n i r r e v e r s i b l e p h y s i c a l process w h i c h p r o d u c e s a loss of p o t e n t i a l energy.
T h e basis for e v a l u a t i n g energy d i s
t r i b u t i o n of a g r o u n d - w a t e r system is the p o t e n t i a l theory best e x p l a i n e d in a classical paper b y H u b b e r t ( 8 ) .
P o t e n t i a l is c o m p o s e d of the s u m
of t w o terms, a g r a v i t a t i o n a l p o t e n t i a l energy a n d a pressure energy.
Po
t e n t i a l is e q u a l to the w o r k r e q u i r e d to t r a n s f o r m a u n i t of mass of
fluid
f r o m a n a r b i t r a r i l y chosen s t a n d a r d state to the state at the p o i n t u n d e r c o n s i d e r a t i o n (18,
p. 7 9 7 - 8 ) .
F o r the s t a n d a r d state, it is c o n v e n i e n t to
use a n e l e v a t i o n of zero, a pressure of 1 a t m , a n d a v e l o c i t y of zero.
Po
t e n t i a l , φ, for g r o u n d w a t e r c a n be expressed as f o l l o w s (19, p. 1959) Φ =
gz +
7
(1)
w h e r e g is a c c e l e r a t i o n o w i n g to g r a v i t y , ζ is e l e v a t i o n , Ρ is gage pressure, a n d ρ is density.
I n almost a l l instances, the k i n e t i c energy of
g r o u n d w a t e r is n e g l i g i b l e because of the l o w velocities of
flow.
flowing "Total
h e a d " as u s e d b y h y d r o l o g i s t s is r e l a t e d to " p o t e n t i a l " b y the expression φ =
gh, w h e r e h is h e a d . A l t h o u g h it m a y i n t u i t i v e l y seem that the t o t a l
p o t e n t i a l c o u l d i n c l u d e terms other t h a n g r a v i t y a n d pressure to reflect c h e m i c a l a n d t h e r m a l energy changes,
H u b b e r t s p o t e n t i a l c o n c e p t is
r e s t r i c t e d to m e c h a n i c a l energy o n l y a n d is so u s e d i n this p a p e r . H e a d is a n intensive state v a r i a b l e a n d is i n d e p e n d e n t of the process that p r o d u c e s a c h a n g e i n h e a d . T h u s , to c a l c u l a t e energy loss f r o m
flow,
a k n o w n r e v e r s i b l e process c a n replace the u n k n o w n i r r e v e r s i b l e process.
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
BACK A N D HANSHAW
Carbonate
Aquifer
85
H e a d loss thus represents useable energy lost f r o m the system a n d m a y be t h o u g h t of as a measure of c h a n g e i n e n t r o p y . L i k e w i s e , the i r r e v e r s i b l e process of d i s s o l v i n g m i n e r a l s i n the a q u i f e r system has a n e n t r o p y c h a n g e associated w i t h i t . O n e w a y i n w h i c h t h e p h y s i c a l a n d c h e m i c a l processes w i t h i n s u c h a system c a n be c o m p a r e d is t h r o u g h use of e n t r o p y concepts. B e c a u s e none of the p o t e n t i a l energy of a g r o u n d - w a t e r system is Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003
c o n v e r t e d to k i n e t i c energy, a l l the e n e r g y is t r a n s f o r m e d to heat w h i c h is a b s o r b e d b y the system. T h e r e f o r e , changes i n e n t r o p y o w i n g to h e a d loss, w h i c h c a n b e t r e a t e d as a r e v e r s i b l e process, are o b t a i n e d b y c a l c u l a t i n g the changes i n p o t e n t i a l energy associated w i t h flow t h r o u g h the system. T h i s p r o v i d e s a d e t e r m i n a t i o n of m i n i m u m e n t r o p y p r o d u c t i o n c a u s e d b y c h a n g e i n a l t i t u d e . W h e n i t becomes possible to separate a l l sources of heat to the system ( e a r t h heat flow, solar r a d i a t i o n , heats of s o l u t i o n a n d p r e c i p i t a t i o n , a n d f r i c t i o n a l heat p r o d u c t i o n ) , the a d d i t i o n a l
Figure
4.
Distribution
of entropy change resulting from head loss within the aquifer
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
86
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
e n t r o p y p r o d u c t i o n c a n b e c o m b i n e d w i t h the m i n i m u m to o b t a i n t o t a l e n t r o p y p r o d u c e d f r o m p h y s i c a l processes. K i l o g r a m - m e t e r s c a n b e c o n v e r t e d r e a d i l y to m i l l i c a l o r i e s ( m e a l ) p e r k i l o g r a m as f o l l o w s 1 k g - m e t e r = 2.34 Χ 1 0 m e a l
(2)
3
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003
T o convert to e n t r o p y b e t w e e n a n y t w o p o i n t s Ammeters] X 2.34 Χ 1 0 m e a l 3
Entropy [mcal/kg/°K] =
O
R
k
g
"
m
e
t
e
r
(3)
S
w h e r e Ah is loss i n h e a d b e t w e e n t w o p o i n t s . T h e t e m p e r a t u r e of g r o u n d w a t e r i n this system ranges f r o m a b o u t 23 ° C i n the r e c h a r g e area to a m a x i m u m of a b o u t 28 ° C i n the deepest p a r t of the system. A s i m p l e sensitivity test c a n b e m a d e as f o l l o w s : If Τ = =
30 m , t h e n f o r Τ =
m e a l ; for Τ = a n d for Τ =
298.16° db 2 ° K a n d h e a d
296.16°K ( 2 3 ° C ) , the c a l c u l a t e d e n t r o p y is 237.0
298.16°K ( 2 5 ° C ) , the c a l c u l a t e d e n t r o p y is 235.5 m e a l ; 300.16°K ( 2 7 ° C ) , the c a l c u l a t e d e n t r o p y is 234.0 m e a l .
T h i s suggests t h a t o v e r the n a r r o w r a n g e of o b s e r v e d t e m p e r a t u r e s , the e n t i r e system m a y b e a p p r o x i m a t e d b y a s s u m i n g a n i s o t h e r m a l system at 25 ° C . F o r this p r e l i m i n a r y s t u d y , the a s s u m p t i o n of a n i s o t h e r m a l system p e r m i t s n e g l e c t i n g t h e r m a l energy transfer f r o m sources m e n t i o n e d above. T h i s topic w i l l be
rigorously
e v a l u a t e d i n a subsequent s t u d y .
T h e results of c a l c u l a t i n g e n t r o p y p r o d u c t i o n f r o m h e a d values r a n g i n g b e t w e e n elevations of 40 meters to a b o u t sea l e v e l are s h o w n o n F i g u r e 4. N o t e that the h i g h p o i n t o n the p o t e n t i o m e t r i c surface is d e s i g n a t e d as h a v i n g a zero e n t r o p y l e v e l . T h i s is the i n p u t b o u n d a r y of the system, a n d b y o u r d e f i n i t i o n , the e n t r o p y of the w a t e r a t t r i b u t e d to p o s i t i o n is zero at this p o i n t . T h e r e f o r e i n o r d e r to d e p i c t t h e e n t r o p y increase a t t r i b u t e d to d o w n g r a d i e n t flow, the e q u a t i o n w a s m o d i f i e d to , . , Change in entropy = p
,, (ft x ma
, ν 2.34 Χ 1 0 m e a l K) 0^
, . (4)
3
A s the w a t e r flows d o w n the p o t e n t i o m e t r i c surface, e n t r o p y is p r o g r e s s i v e l y p r o d u c e d b y this p h y s i c a l process to a b o u t 300 m c a l / k g / ° K . T h e m i n e r a l o g y of the F l o r i d i a n a q u i f e r consists of a p p r o x i m a t e l y 6 5 % c a l c i t e a n d 3 4 % d o l o m i t e , w i t h m i n o r amounts of g y p s u m scattered t h r o u g h the f o r m a t i o n . G y p s u m m a y b e l o c a l l y a b u n d a n t i n some parts o f the a q u i f e r system. T h e r e f o r e , o n l y three c h e m i c a l reactions n e e d b e c o n s i d e r e d to d e s c r i b e the m a j o r c h e m i c a l changes i n this system. is the s o l u t i o n of c a l c i t e b y means of w a t e r a n d s o i l C 0
2
First
gas; s e c o n d is
the s o l u t i o n of d o l o m i t e , also b y means of w a t e r a n d s o i l C 0
2
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
gas; a n d
3.
Carbonate
BACK A N D HANSHAW
Table I.
87
Aquifer
Standard Entropy Values" s°
Cal/°K/Mole -13.2 -28.2 22.7 29.0 16.716 4.1 22.2 37.09 46.36
Ca + aq. Mg + aq. 2
2
HCO3-
C 0 aq. H 0 S0 C a C 0 [calcite] C a M g ( C 0 ) [dolomite] C a S 0 - 2 H 0 [gypsum] 2
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003
2
4
2
3
3
4
6
2
2
Values from Rossini et al. (20) except where noted. Value for dolomite from Stout et al. {21).
0
6
t h i r d is s o l u t i o n of g y p s u m ( C a S 0
· 2H 0)
4
t o f o r m c a l c i u m ions, s u l
2
fate ions, a n d w a t e r . A l t h o u g h sulfate r e d u c t i o n occurs w i t h i n t h e system, the s i m p l i f y i n g a s s u m p t i o n has b e e n m a d e t h a t t h e decrease i n sulfate c o n c e n t r a t i o n is n o t significant f o r these c a l c u l a t i o n s . I n o r d e r to deter m i n e t h e c h e m i c a l e n t r o p y p r o d u c t i o n of t h e system, t h e e n t r o p y of e a c h of these three reactions w a s c a l c u l a t e d u s i n g values i n T a b l e I as f o l l o w s : Calcite CaC0
+ H 0 + C0
3
2
=
Abaction
-
= Ca + + 2 H C 0 2
2 a q
(5)
3
35.7 c a l / ° K / m o l e
Dolomite CaMg(C0 ) 3
2
+ 2H 0 + 2C0 2
=
^reaction
-
= Ca + + Mg + + 4 H C 0 2
2 a q
2
3
(6)
79.9 c a l / ° K / m o l e
Gypsum CaS0
+ 2 H 0 = Ca + + S 0
4
2
2
AS eaction = r
-
4
2
" +
2H 0 2
(7)
22.1 c a l / ° K / m o l e
T h e c h a n g e i n e n t r o p y at a n y p o i n t , i , i n t h e system o w i n g to the a b o v e three equations is g i v e n b y t h e f o l l o w i n g r e l a t i o n s h i p s ASi.calcite =
AStf.calcite [m
^'St'.dolom ite ASt.gypeum ^ Ο chem
=
=
AS, alcite
Ca
—
(^Mg +
omite X AStf,gypsum
^S0 )] 4
Wjiir
X m