Relation of Polymer Chemical Composition to Acoustic Damping

The purpose of this chapter is to review the relation between the chemical .... provided the measurements are not made too close to the damping peak, ...
0 downloads 0 Views 2MB Size
Chapter 2

Relation of Polymer Chemical Composition to Acoustic Damping Bruce Hartmann

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

Polymer Physics Group, Naval Surface Warfare Center, Silver Spring, MD 20903-5000

Acoustic damping i n polymers i s shown t o be dominated by the glass t r a n s i t i o n occurring i n the amorphous portions of the polymer. Thus to tailor damping c h a r a c t e r i s t i c s f o r a p a r t i c u l a r application requires an understanding of the r e l a t i o n between chemical composition and glass t r a n s i t i o n temperature. Glass t r a n s i t i o n temperature depends on a number of variables, including backbone flexibility, steric effects, p o l a r i t y , pendant groups, c r y s t a l l i n i t y , p l a s t i c i z e r s , c r o s s l i n k density, and co-polymerization. While the glass t r a n s i t i o n damping peak can be located at almost any desired temperature, there are l i m i t a t i o n s on the height and width that can be achieved i n any r e a l polymer. The purpose of t h i s chapter i s t o review the r e l a t i o n between the chemical composition of polymers and the acoustic damping produced by these polymers. After defining the necessary acoustic terms, the chapter w i l l begin with a description of the experimental data f o r various polymeric systems, i n p a r t i c u l a r the temperature and frequency dependence of the damping. I t w i l l be seen that acoustic damping properties are dominated by the glass t r a n s i t i o n i n the polymer. The extensive l i t e r a t u r e on the r e l a t i o n between chemical composition and glass t r a n s i t i o n temperature w i l l then be b r i e f l y reviewed, establishing the connection between chemical composition and the location of the damping peak. The discussion w i l l then turn from the location of the damping peak to the height and width of the peak. I t This chapter not subject to U.S. copyright Published 1990 American Chemical Society

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

24

SOUND AND VIBRATION DAMPING WITH POLYMERS

w i l l be p o i n t e d out t h a t the h e i g h t and width cannot be chosen a r b i t r a r i l y , even i n p r i n c i p l e . The m a t e r i a l i n t h i s chapter i s based p r i m a r i l y on r e f e r e n c e s 1-5. To understand what f o l l o w s , some a c o u s t i c terms must f i r s t be d e f i n e d . The propagation o f an a c o u s t i c wave through a s o l i d polymer can be c h a r a c t e r i z e d by two parameters: sound speed and sound a b s o r p t i o n . Sound speed, c, i n u n i t s o f m/s, i s the r a t e a t which sound waves t r a v e l through the s o l i d . Sound a b s o r p t i o n , a, i n u n i t s o f dB/cm, i s a measure of t h e l o s s i n energy o f the sound wave as i t t r a v e l s through the s o l i d . The energy of t h e sound wave i s converted i n t o random thermal motion or heat, u s u a l l y with a n e g l i g i b l e r i s e i n temperature of the s o l i d . The u n i t s o f a can be e x p l a i n e d i n the f o l l o w i n g manner. The change i n energy o f an a c o u s t i c s i g n a l i s u s u a l l y expressed i n terms of the common l o g (base ten) o f the amplitude a t two d i f f e r e n t p o s i t i o n s . T h i s u n i t i s c a l l e d a B e l a f t e r Alexander Graham B e l l . Since t h i s u n i t i s r a t h e r small f o r most a p p l i c a t i o n s , i t i s more common t o use the d e c i B e l , o r dB, which i s obtained by m u l t i p l y i n g the B e l by t e n , dB

=

10

(Ia/IJ

log

= 10 l o g ( A ^ A J

(la) 2

(lb)

= 20 l o g (A /A!)

(lc)

2

where I and I are the a c o u s t i c energies a t the two l o c a t i o n s , A and A are the amplitudes o f the sound wave a t these l o c a t i o n s , and Equation l b makes use o f the f a c t t h a t the energy i n a sound wave i s p r o p o r t i o n a l t o the square o f the amplitude of the wave (6). With these u n i t s f o r the change i n energy between two p o s i t i o n s , a b s o r p t i o n o f a c o u s t i c energy per u n i t d i s t a n c e o f t r a v e l then has dimensions o f dB/cm. In some cases, r a t h e r than r e f e r r i n g t o a b s o r p t i o n per u n i t d i s t a n c e i n dB/cm, i t i s more convenient t o r e f e r t o t h e a b s o r p t i o n per wavelength o r aA, where A i s the wavelength. The u n i t s o f aA are then dB. In an unbounded, i s o t r o p i c s o l i d there a r e only two independent modes of a c o u s t i c propagation: l o n g i t u d i n a l and shear. In the l o n g i t u d i n a l mode, the p a r t i c l e motion i s p a r a l l e l t o the d i r e c t i o n of propagation, while i n the shear mode, the p a r t i c l e motion i s p e r p e n d i c u l a r t o the d i r e c t i o n o f propagation. A s s o c i a t e d with each of these modes o f propagation t h e r e i s an a b s o r p t i o n . Thus, four parameters a r e r e q u i r e d t o c h a r a c t e r i z e the s o l i d : l o n g i t u d i n a l sound speed, c , shear sound speed, c , longitudinal absorption, a and shear a b s o r p t i o n , a . Some experimental techniques y i e l d a modulus r a t h e r than a sound speed, but the u n d e r l y i n g p h y s i c a l p r o p e r t i e s a r e the same. In a t o r s i o n a l pendulum, f o r example, the shear modulus, G, i s measured w h i l e i n a Rheovibron, Young's modulus, E, i s measured. When t h e r e x

2

x

2

x

s

lt

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

s

2.

HARTMANN

Polymer Composition and Acoustic Damping

25

i s n e g l i g i b l e a b s o r p t i o n , the r e l a t i o n s between sound speed and modulus are p a r t i c u l a r l y simple, c c

x

=

s

=

(2)

1 2

(G/p) '

(K + 4 G / 3 ) / ) P

where K i s bulk modulus and p i s d e n s i t y . r e l a t e d through the standard equations

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

E = 2G(l+i/)

(3)

1 / 2

The moduli

= 3K(l-2i/)

are (4)

where u i s Poisson's r a t i o . A b s o r p t i o n i s taken i n t o account by assuming t h a t the modulus i s complex G* = G' + i G "

(5)

where G* i s the complex shear modulus, G' i s the r e a l p a r t of the modulus, and G i s the imaginary p a r t of the modulus. S i m i l a r r e l a t i o n s h o l d f o r Young's and bulk moduli. Since G' i s u s u a l l y much l a r g e r than G", the a b s o l u t e v a l u e of G* i s approximately equal t o G , and G' i s o f t e n taken t o be the modulus G, w r i t t e n without the prime (7), as i n Equation 2. The p h y s i c a l s i g n i f i c a n c e of G' i s t h a t i t represents an e l a s t i c storage of mechanical energy and i t i s a l s o c a l l e d the storage modulus. G'' i s a measure of a b s o r p t i o n and i s a l s o c a l l e d the l o s s modulus. When t h e r e i s a b s o r p t i o n , the s t r a i n l a g s ( i n time) behind the a p p l i e d s t r e s s by a phase angle 6 as shown i n F i g u r e 1. From F i g u r e 1, i t can be seen t h a t 7 /

;

(6)

tan 6 = G"/G'

where tan g 0.840

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

0.835 L-L

12

16 20 24 28 32 36 40 TEMPERATURE (°C)

F i g u r e 8. S p e c i f i c volume v s temperature f o r poly(vinyl acetate). (Reproduced with p e r m i s s i o n from Ref. 17. Copyright 1957 Royal S o c i e t y o f Chemistry.) Resin: BDGE = butanediol diglycidyl ether O O / \ / \ CH - CHCH 0(CH )40CH CH - CH 2

2

2

2

2

Curing agents: PDA = 1,3 propanediamine H N(CH ) NH 2

2 3

2

HDA =1,6 hexanediamine H N(CH ) NH 2

2 6

2

DDA =1,12 dodecanediamine H N(CH ) NH 2

2 12

2

F i g u r e 9. Epoxy polymer chemical components used f o r varying crosslink density.

14001—i 0

1 1 1 1 20 40 60 80 TEMPERATURE (°C)

L_-' 10C

F i g u r e 10. L o n g i t u d i n a l sound speed v s temperature f o r polyepoxides o f v a r y i n g c r o s s l i n k d e n s i t y . (Reproduced with permission from Ref. 22. Copyright 1981 Butterworth & Co. Ltd.)

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

35

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

36

SOUND AND VIBRATION DAMPING WITH POLYMERS

oi—i

0

1

—i—

20 40 60 80 TEMPERATURE (°C)

1

1

1

100

F i g u r e 11. L o n g i t u d i n a l sound a b s o r p t i o n v s temperature f o r polyepoxides of v a r y i n g c r o s s l i n k d e n s i t y . (Reproduced with permission from Ref. 22. Copyright 1981 Butterworth & Co. Ltd.)

T-T {°C) g

F i g u r e 12. S h i f t e d curve f o r l o n g i t u d i n a l sound speed of polyepoxides of v a r y i n g c r o s s l i n k d e n s i t y . (Reproduced with permission from Ref. 22. Copyright 1981 Butterworth & Co. Ltd.)

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

2. HARTMANN

37

Polymer Composition and Acoustic Damping

to o b t a i n s u p e r p o s i t i o n ; the curves were s h i f t e d by the g l a s s t r a n s i t i o n temperature, which was determined independently from the a c o u s t i c measurements. For an aromatic c u r i n g agent (m-phenylene diamine) however, the data i s s h i f t e d by more than i t s g l a s s t r a n s i t i o n temperature and the a b s o r p t i o n curve i s lower and broader than f o r the a l i p h a t i c s . Thus, the s u b s t i t u t i o n o f an aromatic c u r i n g agent f o r an a l i p h a t i c one changes more than j u s t the g l a s s t r a n s i t i o n temperature

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

Co-Polymerization and A d d i t i v e P r o p e r t i e s A random co-polymer or a blend o f compatible polymers w i l l have a s i n g l e g l a s s t r a n s i t i o n temperature intermediate between those of the two homopolymers. An example i s shown i n F i g u r e 14 f o r n i t r i l e - b u t a d i e n e rubber (23.) . The s p e c i f i c weight percents shown are those o f commercial i n t e r e s t f o r NBR. In c o n t r a s t , most polymer blends, g r a f t and block copolymers, and i n t e r p e n e t r a t i n g polymer networks (IPN's) are phase separated (5) and e x h i b i t two separate g l a s s t r a n s i t i o n s from the two separate phases. Phase separated systems w i l l not be considered here. Various t h e o r i e s have been proposed f o r the co-polymer equation (24) . The s i m p l e s t i s a l i n e a r combination o f the T 's o f the homopolymers i n the form g

T

g

=

a T

+ b T

gl

(12)

g2

where a and b are constants t h a t vary with the theory and the polymer. T h i s equation a r i s e s from the simple r u l e of mixtures and has a l s o been d e r i v e d on the b a s i s o f the f r e e volume theory o f the g l a s s t r a n s i t i o n . In some t h e o r i e s , the constants a and b are the weight f r a c t i o n s of the two components while i n other approaches the number o f main chain atoms i s used (12)• A second commonly used theory i n v o l v e s the r e c i p r o c a l temperatures 1/T = a/T g

+ b/T

gl

(13)

g2

where now a and b are d i f f e r e n t constants than above. T h i s equation can be d e r i v e d from an energy theory o f the glass transition. F i n a l l y , a l o g a r i t h m i c form f o l l o w s from the entropy theory o f the g l a s s t r a n s i t i o n (26) i n the form In T

g

= a In T

gl

+ b In T

g2

(14)

In t h i s case, the constants are r e l a t e d t o the heat c a p a c i t y changes a t the g l a s s t r a n s i t i o n o f the homopolymers. While the above three equations have r a t h e r d i f f e r e n t o r i g i n s and appear t o be q u i t e d i f f e r e n t , over the range of many measurements, the r e s u l t s do not d i f f e r s i g n i f i c a n t l y . Couchman (26) has

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

38

SOUND AND VIBRATION DAMPING WITH POLYMERS

T-T (oC) g

F i g u r e 13. S h i f t e d curve f o r l o n g i t u d i n a l a b s o r p t i o n of polyepoxides of v a r y i n g c r o s s l i n k d e n s i t y . (Reproduced with permission from Ref. 22. Copyright 1981 Butterworth & Co. Ltd.)

)l i i i 1 1 0 0.2 0.4 0.6 0.8 1.0 WEIGHT FRACTION OF POLYACRYLONITRILE

F i g u r e 14. Glass t r a n s i t i o n temperature vs n i t r i l e content f o r a c r y l o n i t r i l e - b u t a d i e n e co-polymers.

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

2. HARTMANN

Polymer Composition and Acoustic Damping

39

shown t h a t the l i n e a r and r e c i p r o c a l r e l a t i o n s are both approximations o f the l o g equation. While more accurate and d e t a i l e d co-polymer equations are a v a i l a b l e , f o r the q u a l i t a t i v e understanding d e s i r e d here, the simple l i n e a r equation i s s u f f i c i e n t . I t should be p o i n t e d out t h a t the above co-polymer equations are w r i t t e n as the sum o f two terms i n d i c a t i n g t h a t two components are i n v o l v e d , but more terms can simply be added t o the equations i f there a r e more components. Ter-polymers are sometimes encountered and t h e r e i s no reason i n p r i n c i p l e t h a t even more components c o u l d not be added. The e f f e c t of c o - p o l y m e r i z a t i o n on T i s o f s i g n i f i c a n t p r a c t i c a l importance and i s a l s o a s t a r t i n g p o i n t f o r an e m p i r i c a l procedure f o r p r e d i c t i n g T known as the method o f a d d i t i v e p r o p e r t i e s . In t h i s procedure, T i s estimated knowing only the molecular s t r u c t u r e o f the polymer. Such estimates are u s e f u l i n p r o v i d i n g guidance as t o what new polymers should be s y n t h e s i z e d i n order t o achieve d e s i r e d a c o u s t i c p r o p e r t i e s and i n p r o v i d i n g i n s i g h t i n t o the competing f a c t o r s t h a t are important i n the p r o p e r t i e s o f e x i s t i n g polymers. The method o f a d d i t i v e p r o p e r t i e s has been a p p l i e d t o d e n s i t y , g l a s s t r a n s i t i o n temperature, and many other polymer p r o p e r t i e s by Van Krevelen (25). The b a s i c idea i s t h a t the p r o p e r t i e s o f each chemical group i n the polymer are n e a r l y independent o f the other groups. Because o f this., each group can be assigned a c o n t r i b u t i o n t o the g l a s s t r a n s i t i o n temperature, f o r example, and the T o f a polymer i s the sum o f the c o n t r i b u t i o n s of a l l the groups,

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

g

g

g

g

T

g

= a T

gl

+ b T

g2

+ c T

g3

+ . . .

(15)

where T^ i s the group c o n t r i b u t i o n t o the g l a s s t r a n s i t i o n temperature and a, b, c, ... a r e the number of atom d i s t a n c e s along the main c h a i n o f the group d i v i d e d by the t o t a l number of atoms along the main c h a i n of the polymer repeat u n i t . For example, the polymer repeat u n i t f o r p o l y d i m e t h y l s i l o x a n e c o n s i s t s o f two components: - S i ( C H ) - and -0-. The number o f atom d i s t a n c e s along the main c h a i n i s one i n both cases. Thus, a = 1/2 and b = 1/2. In order t o make use of Equation 15, one must f i r s t determine the group c o n t r i b u t i o n s t o T . T h i s i s done by a n a l y z i n g the measured T of polymers with known molecular s t r u c t u r e . Some t y p i c a l values are l i s t e d i n Table I I , taken from Van Krevelen (25). Two v a l u e s are l i s t e d f o r the methylene group c o n t r i b u t i o n (-CH -) depending on whether hydrogen bonding i s present ( f o r polyamides, polyureas, and polyurethane the h i g h e r v a l u e i s used while f o r a l l other polymers, the lower v a l u e i s used). Likewise, the p-phenylene group (-pC H -) v a r i e s depending on the type o f polymer. 3

2

g

g

2

6

A

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

40

SOUND AND VIBRATION DAMPING WITH POLYMERS

Table I I . Group C o n t r i b u t i o n s t o T Group

T ,

-CH -CH(CH )"C(CH ) -CH(C HJ-pC H -CHC1-0-Si(CH ) -

170, 270 336 226 576 300 t o 550 538 280 20

gi

2

3

3

2

6

6

A

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

3

2

g

K

Using r e s u l t s such as these, c.ie can p r e d i c t the T of any polymer f o r which the group c o n t r i b u t i o n s are known. The g l a s s t r a n s i t i o n temperature f o r p o l y d i m e t h y l s i l o x a n e , f o r example, i s T = (1/2) 20 + (1/2) 280 = 150 K = -123°C. The approach was o r i g i n a l l y a p p l i e d t o l i n e a r polymers but has been extended t o c r o s s - l i n k e d polymers as w e l l (24.) • Note the somewhat d i f f e r e n t i n t e r p r e t a t i o n o f the values i n Equation 15 as compared with Equation 12. In Equation 12, the homopolymer g l a s s t r a n s i t i o n temperatures are known and the m u l t i p l y i n g c o e f f i c i e n t s are determined by f i t t i n g t o experimental data. In Equation 15, the m u l t i p l y i n g c o e f f i c i e n t s are known from the s t r u c t u r e of the polymer and the group c o n t r i b u t i o n s are determined by f i t t i n g t o experimental data. Also, the group c o n t r i b u t i o n values do not e x i s t independently. For example, the group c o n t r i b u t i o n f o r oxygen (-0-) i s 280 K, but t h i s does not imply t h a t oxygen polymer e x i s t s , only t h a t t h i s i s the c o n t r i b u t i o n t h a t oxygen makes when i t i s a component of a polymer. g

g

Height-Width L i m i t a t i o n s The d i s c u s s i o n thus f a r has been confined t o the l o c a t i o n of the damping peak, but not the height or width of the peak. In many cases, an a c o u s t i c designer wants t o provide high damping over a wide range of frequencies. T h i s may not be p o s s i b l e s i n c e the height and width of the damping peak cannot be adjusted independently. No r e a l polymer can have an a r b i t r a r i l y high and broad l o s s factor. In general, a c o u s t i c design r e l y i n g on the g l a s s t r a n s i t i o n of a polymer i n v o l v e s a t r a d e - o f f between height and width. While i t i s d i f f i c u l t t o be s p e c i f i c , some g e n e r a l i t i e s can be pointed out. Experimentally, i t i s g e n e r a l l y observed t h a t when the frequency range of the t r a n s i t i o n i s broad, the damping peak i s low and when the t r a n s i t i o n i s sharp, the damping peak i s high. One explanation f o r t h i s observation i s t h a t the i n t e g r a t e d area under the damping vs temperature curve has been shown (1) t o be p r o p o r t i o n a l t o the a c t i v a t i o n energy of the t r a n s i t i o n

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

2. HARTMANN

Polymer Composition and Acoustic Damping AH = (G„-G )R7r [/G''d(l/T)] - l

41 (16)

2

0

where G^ i s the h i g h frequency (glassy) modulus, G i s the low frequency (rubbery) modulus, R i s t h e gas constant, G'' i s the imaginary p a r t o f t h e shear modulus, and T i s absolute temperature. For t r a n s i t i o n s whose a c t i v a t i o n energies a r e not too d i f f e r e n t , broadening the t r a n s i t i o n comes a t the expense o f lowering t h e h e i g h t . Another approach t o r e l a t i n g the width and h e i g h t o f the damping peak i s through the use o f an a n a l y t i c a l model o f the t r a n s i t i o n (27). Assuming, as commonly observed, t h a t the g l a s s y modulus o f most polymers i s f a i r l y s i m i l a r but the rubbery modulus v a r i e s by two o r more decades, one can determine the a l l o w a b l e h e i g h t and width combinations. In t h i s manner, the t r a d e - o f f s between h e i g h t and width can be examined. One u s e f u l a n a l y t i c a l model used t o d e s c r i b e the data i s based on the Cole-Cole equation o r i g i n a l l y proposed f o r d i e l e c t r i c r e l a x a t i o n (28.) but which can a l s o be used f o r dynamic mechanical r e l a x a t i o n (1,29.30). The Cole-Cole equation a p p l i e d t o shear modulus i s given by

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

0

(Go-GJ/fG'-GJ

=

l+(iur)

a

(17)

where a i s a dimensionless constant f o r a g i v e n polymer with a v a l u e between zero and one. (This parameter should not be confused with sound a b s o r p t i o n , which u n f o r t u n a t e l y has the same symbol.) I t can be shown t h a t the value o f a i s a measure o f the width o f the a b s o r p t i o n : the l a r g e r the value o f a, the sharper the transition. For a = 1, we have the sharpest p o s s i b l e t r a n s i t i o n , t h a t f o r a s i n g l e r e l a x a t i o n time. A p l o t of the Cole-Cole equation with parameters t y p i c a l f o r a polymer i s shown i n F i g u r e 15. The s p e c i f i c v a l u e s used are: G = 2 x 10 Pa, G«, = 6 x 10 Pa, r = 0.1 /xs, and a = 0.6. The shape o f the curve shown i n F i g u r e 15 i s a reasonably good f i t t o experimental data f o r many polymers and can be used t o i l l u s t r a t e the t r a d e - o f f s between h e i g h t and width. D e f i n i n g height as the maximum value o f the l o s s f a c t o r and width as the number o f decades o f frequency between the h a l f height values, we can c a l c u l a t e from Equation 17 the r e l a t i o n between h e i g h t and width f o r g i v e n v a l u e s o f G and G*. The r e s u l t s are shown i n F i g u r e 16. Here we have f i x e d the v a l u e o f Goo a t 1 GPa, which i s t y p i c a l f o r many polymers, and considered two constant v a l u e s f o r G : 10 Pa and 10 Pa. For f i x e d v a l u e s of G and G*, there i s a d i f f e r e n t h e i g h t and width f o r each value o f a. The value o f r does not enter the c a l c u l a t i o n s i n c e i t only determines the l o c a t i o n of the t r a n s i t i o n along the frequency a x i s and not the h e i g h t o r width. While the two curves shown i n F i g u r e 16 show a l l the values mathematically p o s s i b l e , a c t u a l v a l u e s tend t o have lower G when t h e r e i s a narrower 6

8

0

0

7

0

0

0

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

SOUND AND VIBRATION DAMPING WITH POLYMERS

LOG FREQUENCY (HERTZ)

F i g u r e 15. Complex shear modulus i n the modified Cole-Cole model.

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

2.

HARTMANN

Polymer Composition and Acoustic Damping

43

t r a n s i t i o n and t o have h i g h e r G v a l u e s when the t r a n s i t i o n i s broader. Some a c t u a l v a l u e s f o r s e v e r a l polyurethanes are shown i n F i g u r e 16 as s o l i d dots. 0

Downloaded by EAST CAROLINA UNIV on September 4, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch002

Modulus-Loss F a c t o r L i m i t a t i o n s Another l i m i t a t i o n on a c o u s t i c p r o p e r t i e s i s expressed by the Kramers-Kronig (KK) r e l a t i o n s , which are general r e l a t i o n s between the r e a l and imaginary p a r t s of a complex f u n c t i o n . These r e l a t i o n s were o r i g i n a l l y d e r i v e d f o r o p t i c s but can be a p p l i e d i n many other areas as w e l l . The essence of the r e l a t i o n s i s t h a t the r e a l and imaginary p a r t s of the f u n c t i o n are not independent of each other but one may be c a l c u l a t e d from an i n t e g r a l of the other. As a p p l i e d t o complex modulus, the s p e c i f i c form of the r e l a t i o n s i s given elsewhere i n t h i s book ( J . J a r z y n s k i , A Review of the Mechanisms of Sound Attenuation i n Materials). The KK r e l a t i o n s express the r e a l p a r t of the modulus as an i n t e g r a l over a l l frequencies of the imaginary p a r t of the modulus, and the imaginary p a r t of the modulus as an i n t e g r a l over a l l frequencies of the r e a l p a r t . T h i s i s a general mathematical r e s u l t t h a t f o l l o w s from c a u s a l i t y (the e f f e c t cannot precede the cause). An a l t e r n a t e way of viewing these r e l a t i o n s t h a t i s more f a m i l i a r t o polymer s c i e n t i s t s i s based on e x p r e s s i n g G' as an i n t e g r a l over a d i s t r i b u t i o n of r e l a x a t i o n times. Since G " can a l s o be expressed as an i n t e g r a l over the same d i s t r i b u t i o n of r e l a x a t i o n times, i t i s apparent t h a t G' and G'' are not independent. E q u i v a l e n t l y , G' and tan 6 are not independent. Knowing G' i n terms of the d i s t r i b u t i o n of r e l a x a t i o n times, there i s no freedom l e f t t o choose the value of tan