Chapter 12
SO Oxidation by Hydrogen Peroxide in Suspended Droplets 2
W. A. Jaeschke and G. J. Herrmann
Downloaded by CORNELL UNIV on September 5, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch012
Center for Environmental Research, J. W. Goethe-University, P.O. Box 11 19 32, D-6000 Frankfurt am Main, Federal Republic of Germany
One of the most significant reactions in the context of acidity in rainwater is the SO2-oxidation by hydrogen peroxide in aqueous solution. Therefore a dynamic flowreactor was constructed, where SO2 removal rates could be investigated in the presence of H2O-containing droplets. The diameter of the suspended droplets was in the size range between 1 μm and 25 μm which is comparable to size distributions observed in atmospheric clouds or fogs. Pseudo first order rate constants of the SO2-Oxidation were mea sured at different pH-values. The H2O2-concentration in the droplets was varied between 2 x 10-5m and 10-2m. The obtained second order rate constants were strongly pH– dependent (1,48 x 10 I mol sec at pH 2 and 1,3 x 102 I mol sec at pH 5,5). At H2O2-concent rations above 10-3 m the microphysical transfer of SO2 via droplet interface became the rate determining step. From the experiments an accomodation-coefficient for SO2 could be calculated which was greater than 10 . 5
-1
-1
-1
-1
-1
Recent measurements of g a s - and l i q u i d - p h a s e c o n c e n t r a t i o n s of h y d r o g e n p e r o x i d e i n t h e t r o p o s p h e r e (1,2) s u b s t a n t i a t e t h e n o t i o n t h a t H2O2 is t h e major oxidant leading to the generation of s u l f u r i c a c i d in atmospheric m u l t i p h a s e systems l i k e fogs a n d c l o u d s . T h e o x i d a t i o n of S ( I V ) q r e q u i r e s a p h a s e t r a n s f e r o f g a s e o u s SO2 i n t o t h e s u s p e n d e d d r o p l e t s . T h i s t r a n s f e r represents a c h a i n of c o n s e c u t i v e processes i n c l u d i n g t r a n s p o r t of (S02)g to the d r o p l e t s , p h a s e - t r a n s f e r t h r o u g h the g a s - l i q u i d i n t e r f a c e , t r a n s port of d i s s o l v e d S ( I V ) q in the l i q u i d phase and subsequent o x i d a t i o n of S ( I V ) a q t o S ( V I ) q by d i s s o l v e d H 2 O 2 . B e c a u s e o f t h e c o n s e c u t i v e n a t u r e o f t h i s m u l t i p h a s e o x i d a t i o n p r o c e s s the s l o w e s t step o f the c h a i n d e t e r m i n e s the o v e r a l l rate. Commonly the o v e r a l l rates of s u c h processes o c c u r i n g in a t m o s p h e r i c fog and c l o u d s a r e c a l c u l a t e d by l i n e a r e x t r a p o l a t i o n s f r o m k i n e t i c d a t a g a i n e d i n b u l k - s o l u t i o n e x p e r i m e n t s . It is d o u b t f u l whether the assumed l i n e a r r e l a t i o n s a r e e x i s t i n g in atmospheric systems, e s p e c i a l l y w i t h r e s p e c t t o t h e l i q u i d w a t e r c o n t e n t ( L W C ) o f fogs a n d c l o u d s b e c a u s e t h i s p a r a m e t e r is t h e r e s u l t o f t h e i n t e g r a l o v e r a s p e c t r u m a
a
a
0097-6156/87/0349-0142$06.00/0 © 1987 American Chemical Society
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
12.
S0
JAESCHKE AND HERRMANN
2
Oxidation by Hydrogen Peroxide
143
o f d r o p l e t s i n t h e r a n g e o f 1 ^im < r < 2 0 / j m . In t h i s s i z e r a n g e o f d r o p l e t s b o t h g a s - p h a s e a n d a q u e o u s - p h a s e m a s s t r a n s p o r t of S ( I V ) a q m a y b e c o m e the r a t e - d e t e r m i n i n g step b e c a u s e the o x i d a t i o n r e a c t i o n of S(IV)aq by H2O2 i s a s s u m e d t o be v e r y f a s t . In a d d i t i o n at S 0 2 - m a s s - a c c o m m o d a t i o n c o e f f i c i e n t s b e l o w 1 0 - 2 t h e i n t e r f a c i a l t r a n s p o r t o f S ( I V ) - s p e c i e s may a l s o g o v e r n the rate of the m u l t i p h a s e o x i d a t i o n r e a c t i o n (3).
Downloaded by CORNELL UNIV on September 5, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch012
Experimental In t h i s s t u d y t h e r a t e o f t h e o x i d a t i o n o f g a s e o u s SO2 by H2O2 c o n t a i n i n g d r o p l e t s in a m u l t i p h a s e s i m u l a t i o n e x p e r i m e n t was i n v e s t i g a t e d . For t h i s purpose a d y n a m i c f l o w r e a c t o r was designed in w h i c h the removal of ( S 0 2 ) g in the g a s - p h a s e and the f o r m a t i o n of S(VI)aq in the l i q u i d phase c o u l d be d e t e r m i n e d . T h e e x p e r i m e n t a l s e t u p ( F i g u r e 1) w a s s i m i l a r t o t h a t d e s c r i b e d i n p r e v i o u s p u b l i c a t i o n s ( 4 - 5 ) . C l e a n a i r , h u m i d i f i e d t o 94 % r . H . , w a s m i x e d w i t h c e r t a i n a m o u n t s o f ( S 0 2 ) g at t h e t o p o f t h e d y n a m i c t u b u l a r f l o w r e a c t o r . The r e a c t i o n m i x t u r e was led t h r o u g h the r e a c t o r w i t h a f l o w r a t e o f 25 l / m i n . D r o p l e t s c o n t a i n i n g H2O2 w e r e g e n e r a t e d by an u l t r a s o n i c d r o p l e t g e n e r a t o r and injected into the r e a c t o r . The d r o p l e t d i a m e t e r s r a n g e d f r o m 0.5 t o 1 2 . 5 Jum r a d i u s ( r ) ( F i g u r e 2 ) . A c o m p i l a t i o n o f e x p e r i m e n t a l d e t a i l s is g i v e n i n T a b l e I. T a b l e I: Pa r amete r
Provided
S0
Cyl inder
2
H 0 2
by
Stok s o l u t i o n
2
HCI
PH Droplet
Experimental
details Monitored
Range 300 2 · 10"
8500 ng/m
-
10"
2
-
5.5
0,5
-
1 2 , 5 /jm
2
3
mol/l
5
Fl u o r e s c e n c e Titration Titration
size
(radius)
Ultra sonic
Light scattering (Partoscope)
. droplet L i q u i d Water
generator
8 · 10"
3
-
7,5
ml/m
94
%
3
Calculated
content Rel.
Humid.
Water
vapour
Temperature
Thermostat.
Hum. indicator (Veisala)
sou rce 25
°C
system
In o r d e r t o a v o i d w a l l e f f e c t s by c o n d e n s a t i o n o f w a t e r v a p o u r at r.H. 100 % i t w a s n e c e s s a r y t o l o w e r t h e v a p o u r p r e s s u r e o f t h e generated droplets u s i n g a n e u t r a l s a l t . Sodium c h l o r i d e (high p u r i t y ) was c h o s e n a n d the c o n c e n t r a t i o n of the d i l u t e d r e s e r v o i r s o l u t i o n of t h i s s a l t w a s set t o 1.5 m o l l"1 s o t h a t t h e d r o p l e t s g e n e r a t e d f r o m t h i s s o l u t i o n w e r e i n t h e r m o d y n a m i c e q u i l i b r i u m w i t h t h e s u r r o u n d i n g m o i s t a i r o f 94 % r . H . i n t h e r e a c t o r . T h e p H - v a l u e o f t h e s o l u t i o n w a s a l t e r e d by a d d i t i o n o f d i f f e r e n t m l - a m o u n t s o f HCI (25%, r e a g e n t g r a d e ) . Each m e a s u r i n g point in the f l o w reactor c o r r e s p o n d s to a f i x e d t r a n s p o r t time of the m u l t i p h a s e m i x t u r e in the r e a c t o r . The t r a n s p o r t
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by CORNELL UNIV on September 5, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch012
144
THE CHEMISTRY OF ACID RAIN
ZUF/SFB73/001-1/86/D,
F i g u r e 1. Scheme of t h e e x p e r i m e n t a l set up u s e d f o r k i n e t i c s t u d i e s of the S02~oxidation in the presence of H 2 0 2 - c o n t a i n i n g d r o p l e t s . 1. C o m p r e s s o r , 2 . A i r C l e a n e r , 3 . M a s s F l o w C o n t r o l l e r , 4 . V a p o r i z e r , 5 . S 0 2 - s o u r c e , 6. N e b u l i z e r , 7. Pump, 8 . S t o c k s o l u t i o n , 9 . P a r t o s c o p e A , 10. R e a c t i o n c h a m b e r , 11. T h e r m o s t a t , 12. H u m i d i t y Sensor, 13. S 0 2 D e t e c t i o n , 14. S 0 4 - S a m p l i n g , 1 5 . R e c o r d e r .
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
12.
S0
JAESCHKE AND HERRMANN
7
dl dD 10000,25 I /min
3
\xm
-1,5
3
μπΓ ] 1
3
χ10
400·
.1,0χ10
200·
• 0 . 5 χ 103
0
cm"
3
-2,0χ10
600.
Downloaded by CORNELL UNIV on September 5, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch012
I
dD
800.
145
Oxidation by Hydrogen Peroxide
3
0 0,5
800-
l/min
• 4 χ 10
3
600-
, 3 χ 10
400-
. 2 χ10
200-
• 1 χ 10
0-
3
3
3
- 0
800 «
•2.0 χ 1 0
4
600 ·
• 1.5x10
4
400 •
• 1,0 χ 1 0
200 ·
0,5
0 ·
χ10
4
;
0
600 U5x10^ 400
H
200· 1 χ 10 10
15
20
25
ι 5
10
1 15
1 « 20
25 D ( μ π ι )
-ZUF/SFB73/001-2/86/D«
F i g u r e 2. Size d i s t r i b u t i o n of d r o p l e t s used in the k i n e t i c s t u d i e s . The s i z e d i s t r i b u t i o n w a s m e a s u r e d by a P A R T O S C O P E A at t h r e e d i f f e r e n t f l o w rates in the n e b u l i z e r .
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
146
T H E CHEMISTRY OF ACID RAIN
time is i d e n t i c a l w i t h the p e r i o d of t i m e i n w h i c h t h e ( S 0 ) g c o u l d r e a c t w i t h the H 2 0 2 - c o n t a i n i n g d r o p l e t s . C o n s i d e r i n g the flow rate and the g e o m e t r y o f t h e f l o w r e a c t o r , t h e t o t a l t r a n s p o r t t i m e w a s 340 s e c . When d i s s o l v e d S ( I V ) q i s o x i d i z e d i n t h e d r o p l e t s , t h e a b s o r p t i o n e q u i l i b r i u m between the S ( I V ) a q - c o n c e n t r a t i o n and the ( S 0 2 ) g - c o n c e n t r a t i o n i s d i s t u r b e d . It is c o n t i n u o u s l y r e - e s t a b l i s h e d f o l l o w i n g H e n r y ' s l a w a n d t h e w e l l - k n o w n d i s s o l u t i o n e q u i l i b r i a o f S(IV) i n t h e l i q u i d p h a s e . T h u s a ( S 0 2 ) g - c o n c e n t r a t i o n - g r a d i e n t between t h e i n l e t a n d t h e o u t l e t of t h e r e a c t o r is f o r m e d , w h i c h is r e l a t e d to t h e t r a v e l time of the m i x t u r e . 2
a
Theory
Downloaded by CORNELL UNIV on September 5, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch012
For
kinetic calculations only S(IV)
a
=
q
S0
the ·
2
S(IV)aq c o n c e n t r a t i o n is
H 0
+ HSO3-
2
+
considered
S0 =
(1)
3
T h e r a t i o o f t h e t h r e e S ( I V ) q s p e c i e s is p H - d e p e n d e n t . It c a n be c a l c u l a t e d f r o m the measured ( S 0 2 ) g by Henry's law e q u i l i b r i u m c o n s t a n t HSO2 " " k n o w n f i r s t a n d s e c o n d i o n i z a t i o n c o n s t a n t s KD1 a n d KD2. a
a n o
t
n
e
w
e
( S 0 S ( I V )
a
q
=
( S 0
S ( I V )
a
q
=
( S 0
2
)
g
. H
)
g
·
S
o
*
2
2
) H 0 ^ j - i g
S
K
2
H
S
(1
0 2
S ( I V )
a
=
q
( S 0
2
)
g
·
Hso
+
2
D1
K
D
( S 0
1
*
K
— [H ]
+
+
2
)
g
H ^
S
o
2
K
D
1
K
D
2
D1 D1 — — ) [ H l K
+
2
(2)
2
H S 0 i n E q u a t i o n 2 i s d e f i n e d as a p s e u d o H e n r y ' s l a w c o e f f i c i e n t that depends on the h y d r o g e n ion c o n c e n t r a t i o n and encompasses the t o t a l i t y of t h e d i s s o l v e d S ( I V ) q s p e c i e s ( 3 ) . The r a t i o between the s p a t i a l d i f f e r e n c e of S(IV)aq in the r e a c t o r , w h i c h c a n be c a l c u l a t e d f r o m t h e ( S 0 2 ) g - g r a d i e n t , a n d t h e c o r r e s p o n d i n g t r a v e l - t i m e i n t e r v a l i s e q u a l t o t h e r e m o v a l r a t e R: 2
a
d[S(IV)]
d [ S ( V I ) ]
R =
a
q
= dt
(3) dt
As the g r a d i e n t of S ( I V ) q is r e l a t e d to the o x i d a t i o n p r o d u c t S ( V I ) q a p p e a r i n g i n t h e d r o p l e t s an i n v e r s e g r a d i e n t o f t h e S ( V I ) a q - c o n c e n t r a t i o n m u s t be n o t i c e a b l e . T h e r e l a t i o n b e t w e e n S ( I V ) - a n d S ( V I ) - c o n c e n t r a t i o n a
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
a
12.
S0
JAESCHKE AND HERRMANN
Oxidation by Hydrogen Peroxide
2
gradients at any given t r a v e l time of the m i x t u r e can be expressed by the f o l l o w i n g general Equation: d[S(IV)]
d[S(VI)]
a q
R =
= dt
ki
a q
d
= ^[5(ΐν)
β ρ
]
(4)
dt
= 1st p r o p o r t i o n a l i t y factor = const.
In order t o determine k*i and the exponent oL in Equation 4 the removal of S(IV) q and the formation of S(VI)aq should be measured d u r i n g the experiments. The r a t e - c o e f f i c i e n t k i was investigated as a f u n c t i o n of d i f f e r e n t experimental c o n d i t i o n s w h i c h a r e listed below: - concentration of l i q u i d water in the reactor (L) - c o n c e n t r a t i o n of hydrogen peroxide in the droplets ([H202laq) - pH of the droplets ([H ] q) These parameters have been v a r i e d d u r i n g several separate e x p e r i mental runs. The r e l a t i v e humidity always was kept constant at 94 % and the temperature in the reactor was set to 25°C. The dependence of the o v e r a l l t r a n s f o r m a t i o n rate R in Equation 4 from the l i q u i d water content L can be expressed by an exponential dependence of k i from L:
Downloaded by CORNELL UNIV on September 5, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch012
a
+
a
ki k2 β
= k2 x \f
(5)
= 2nd p r o p o r t i o n a l i t y factor = const.
The exponent β represents a possible n o n - l i n e a r relationship between the removal rate R and the l i q u i d water content w h i c h c o u l d be caused by mass-transport-1 imitations. More precisely L is defined by the integral over the size d i s t r i b u t i o n of the droplets used in the experiments.
7Γ = ^
f D
d
3
* N
d
D
The dependence of R from the concentration of H2O2 i n the droplets can also be expressed by an exponential equation: k
k y
3
2
= k
3
χ [H 0 ] 2
2
a q
(6)
= 3 r d p r o p o r t i o n a l i t y factor = const.
were 2f represents the reaction order with respect to the concentration of the o x i d a n t . k represents the rate c o e f f i c i e n t of the o x i d a t i o n reaction in the multiphase system at.a c e r t a i n oH-value·. . 3
American chemical Society. Library 1155 16th St.,of N.W. Johnson et al.; The Chemistry Acid Rain Washington, 20036 ACS Symposium Series; American ChemicalO.C. Society: Washington, DC, 1987.
148
THE CHEMISTRY OF ACID RAIN
The i n f l u e n c e of the p r o t o n c o n c e n t r a t i o n [ H ] in the d r o p l e t s on o x i d a t i o n o f S ( I V ) q c a n be e x p r e s s e d a s :
the
+
a
ζ k
Downloaded by CORNELL UNIV on September 5, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch012
k4 ($
3
=
k
χ
4
[ H
+
l
a
(7)
q
= 4th p r o p o r t i o n a l i t y = const,
factor
w h e r e 8 represents the r e a c t i o n o r d e r w i t h respect to the c o n c e n t r a t i o n of hydroni um-ions i n t h e i n d i v i d u a l d r o p l e t s . k4 r e p r e s e n t s the rate c o e f f i c i e n t of the m u l t i p h a s e r e a c t i o n in the p H - r a n g e under i n v e s t i g a tion. In s u m m a r y the dependence of the t r a n s f o r m a t i o n of S(IV)aq to S ( V I ) a q i n t h e s y s t e m c a n be e x p r e s s e d b y c o m b i n i n g E q u a t i o n 2, 4, 5, 6 and 7 as:
-dS[(IV)]
a q
dt
=
k [(S02)gHso ] 4
2
* L *
[ H
2
0
2
l
a
q
[ H
+
l
a
(8)
q
In t h i s e q u a t i o n t h e b r a c k e t s i n d i c a t e m o l a r c o n c e n t r a t i o n s f o r l i q u i d p h a s e s p e c i e s . T h e c o n c e n t r a t i o n o f ( S 0 2 ) g m u s t be g i v e n a s p a r t i a l p r e s s u r e and H*S02 represents the e f f e c t i v e Henry's law constant of S02 c o n s i d e r i n g t h e d i s s o l u t i o n e q u i l i b r i a r e a c t i o n s o f S ( I V ) . A s t o be seen f r o m Equation 8 the t r a n s f o r m a t i o n of ( S 0 2 ) g to S ( V I ) q in a m u l t i p h a s e s y s t e m m u s t be m e a s u r e d a s a f u n c t i o n o f ( S 0 ) L, [ H 2 0 2 l a q a n d [ H ] i n o r d e r t o d e t e r m i n e t h e c o n s t a n t k4 a n d t h e e x p o n e n t s * j3 X a n d £ . a q
a
2
+
g /
/
a
q
t
Results and D i s c u s s i o n In F i g u r e 3 t h e d e c a y s o f t h e S ( I V ) q - c o n c e n t r a t i o n s at v a r i o u s l i q u i d water contents a r e plotted in a s e m i - l o g a r i t h m i c s c a l e a g a i n s t the r e a c t i o n t i m e . T h e e x p e r i m e n t s w e r e p e r f o r m e d at p H = 4 a n d [ H 2 0 2 ] a q = 1 0 " 3 m o l 1-1. T h e f o r m a t i o n o f S ( V I ) a q is p l o t t e d u s i n g t r a n s f o r m a t i o n v a r i a b l e s i n o r d e r t o g a i n c o m p a r a b l e v a l u e s w i t h t h e i n v e r s e g r a d i e n t o f S ( V I ) q . In a l l cases l i n e a r dependences a r e o b t a i n e d w h i c h means that the exponent d - i n E q u a t i o n 8 is e q u a l t o o n e . T h u s t h e S ( I V ) - r e m o v a l c a n be c o n s i d e r e d k i n e t i c a l l y as a p s e u d o - f i r s t - o r d e r r e a c t i o n w i t h r e s p e c t t o S ( I V ) q . T h e d i f f e r e n t s l o p e s o f t h e s t r a i g h t l i n e s i n F i g u r e 3 c o r r e s p o n d to d i f f e r e n t v a l u e s of the l i q u i d water c o n t e n t . These slopes d i r e c t l y represent v a l u e s of k i s i n c e i * = 1 . They a r e c o m p i l e d together w i t h the r e s p e c t i v e v a l u e s of the l i q u i d water content in the t a b l e b e y o n d F i g u r e 3. In o r d e r t o d e t e r m i n e t h e v a l u e o f t h e e x p o n e n t β i n E q u a t i o n 5 t h e values of k i a r e plotted in a l o g - l o g d i a g r a m v e r s u s the c o r r e s p o n d i n g l i q u i d water content (L) (Figure 4). From the slope of the linear a
a
a q
a
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by CORNELL UNIV on September 5, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch012
12.
JAESCHKE AND HERRMANN
S0
Oxidation by Hydrogen Peroxide
2
200
149
300 Verweilzeir ( s ]
Symbol S(IV) Ο • χ
S(VI).
ml m
-1
-3
8.3x10 9.1x10" 8.3x10" 3x10 -1 5x10" lxlOp 5xlO L
< 1 0
-4 r/c^ \ [(S0 ) 2
g
υ» τ H o ] S
2
t
=
r/c^ \ [(S0 ) 2
( L i s g i v e n as m a s s m i x i n g
g
» , H o ]
u
S
2
t ( )
e
/
-2,43x10" L[H O ] ' 2^ 7
2 2
2
[H ]t +
(9)
ratio.)
T h e p s e u d o - H e n r y ' s l a w c o e f f i c i e n t has n o i n f l u e n c e on t h e r a t e c o n s t a n t of the r e a c t i o n b e c a u s e it is not a r a t e - b u t an e q u i l i b r i u m - c o n s t a n t . The r a t e c o n s t a n t i n t h e m u l t i p h a s e s y s t e m is o n l y g o v e r n e d by t h e l i q u i d water c o n t e n t a n d the c o n c e n t r a t i o n s of t h e o x i d a n t a n d the H Ions. +
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by CORNELL UNIV on September 5, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch012
JAESCHKE AND HERRMANN
S0
2
Oxidation
by Hydrogen
io10* ίοΙ Η Ί Imol r ) J
155
Peroxide
1
1
Μ
-ZUF/SFB73/00V-7/86/D-
F i g u r e 7. L o g - l o g plot of the s e c o n d - o r d e r rate c o n s t a n t s the r e s p e c t i v e c o n c e n t r a t i o n of [ H ] a q in the d r o p l e t s .
k3 v e r s u s
+
tHj0 l, 2
q
Imoir ] 1
ZUF/SFB73/001-8/86/D-
Figure 8. P s e u d o - f i r s t - o r d e r rate constants as f u n c t i o n of the [ H 2 0 2 ] a q - c o n c e n t r a t i o n f o r h i g h H 2 0 2 - c o n c e n t r a t i o n s (> 1 0 - 3 m o l 1-1) at p H = 2 . 0 . S y m b o l s : x : L = 9.1 χ 1 0 - 3 ml m - 3 ; o : L = 2.5 χ 1 0 - 3 ml m - 3 .
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by CORNELL UNIV on September 5, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch012
156
THE CHEMISTRY OF ACID RAIN
F i g u r e 9 . S 0 2 - R e m o v a l a t a s i m u l a t e d c o n c e n t r a t i o n o f L = 0,1 [ml/m3] a n d [ H 2 O 2 ] = 1 0 - 3 m o l 1-1 a n d 3 d i f f e r e n t p H - V a l u e s .
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
12.
JAESCHKE AND HERRMANN
S0
2
Oxidation
by Hydrogen
Peroxide
157
Acknowledgments T h i s w o r k was performed w i t h i n the p r o g r a m of the D F G S o n d e r f o r s c h u n g s b e r e i c h 73 ( A t m o s p h e r i c T r a c e C o m p o n e n t s ) - P r o j e c t E i ' P h y s i c o chemistry of precipitation' -
Literature Cited 1.
Downloaded by CORNELL UNIV on September 5, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch012
2. 3. 4. 5. 6. 7.
Heikes, B.G., Lazrus, A.L. and Kok, G.L. Presented at the Seven teenth International Symposium on Free Radicals, 1985. Lind, J. NCAR private communication, 1985. Schwartz, S.E. In Chemistry of Multiphase Atmospheric Systems; W. Jaeschke, Ed; Springer-Verlag, Berlin, 1986; pp. 415-472. Jaeschke, W. Toxicol, and Env. Chem., 1985, 10, 4, 265. Berresheim, H., Jaeschke, W. J. Atm. Chem. 1986, 4, 311-334. Martin, L.R. InSO2,NO and NO2 oxidation mechanisms: Atmospheric Considerations; J.G. Calvert, Ed.; Acid Precipitation Series, Butterworth Publishers, Ann Arbor, 1984, Vol. 3, pp. 63 - 100. Hoffmann, M.R. and Jacob, D.J. In SO2, NO and NO2 oxidation mechanisms: Atmospheric Considerations; J.G. Calvert, Ed.; Acid Precipitation Series, Butterworth Publishers, Ann Arbor, 1984, Vol. 3, pp. 101 - 172.
RECEIVED
March 10, 1987
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.