Chapter 11
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch011
Direct Kinetic and Mechanistic Study of the OH-Dimethyl Sulfide Reaction Under Atmospheric Conditions A. J. Hynes and P. H. Wine Molecular Sciences Branch, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA 30332 A pulsed l a s e r p h o t o l y s i s - p u l s e d l a s e r induced f l u o r e s cence t e c h n i q u e was employed to study the OH + CH3SCH3 r e a c t i o n in N2, air, and O2 b u f f e r g a s e s . Complex kinetics were o b s e r v e d in the p r e s e n c e o f O2. A four s t e p mechanism i n v o l v i n g hydrogen a b s t r a c t i o n , reversible a d d i t i o n to the sulfur atom, and s c a v e n g i n g o f the ( t h e r m a l i z e d ) adduct by O2 is r e q u i r e d to e x p l a i n all experimental observations. I n one atmosphere o f air, the effective b i m o l e c u l a r r a t e constant decreases m o n o t o n i c a l l y from 1.58 x 10 to 5.2 x 10 cm3 molecule-1 -1 o v e r the l o w e r t r o p o s p h e r i c t e m p e r a t u r e range 250-310K. Over the same t e m p e r a t u r e range the b r a n c h i n g ratio for h y d r o g e n a b s t r a c t i o n i n c r e a s e s m o n o t o n i c a l l y from 0.24 to 0 . 8 7 . -11
-12
S
On a g l o b a l s c a l e , n a t u r a l e m i s s i o n s o f reduced s u l f u r compounds account f o r about 50% o f the t o t a l s u l f u r f l u x i n t o the atmosphere (1-3). Hence, i t i s i m p o r t a n t to u n d e r s t a n d the n a t u r a l s u l f u r c y c l e i n o r d e r t o e s t a b l i s h a "base l i n e " f o r a s s e s s i n g the s i g n i f i c a n c e o f a n t h r o p o g e n i c p e r t u r b a t i o n s ( p r i m a r i l y SO2 e m i s s i o n s ) . DimethyIsulf i d e (DMS) i s the predominant r e d u c e d s u l f u r compound e n t e r i n g t h e atmosphere from t h e oceans ( 4 - 9 ) , and DMS o x i d a t i o n r e p r e s e n t s a major g l o b a l s o u r c e o f S ( V I ) . The a t m o s p h e r i c o x i d a t i o n o f DMS can be i n i t i a t e d by r e a c t i o n w i t h e i t h e r OH o r NO3. I n marine e n v i r o n m e n t s , however, NO3 l e v e l s a r e t y p i c a l l y v e r y low and DMS i s d e s t r o y e d p r i m a r i l y by OH:
OH +
->
CH3SCH2 + H 0
(la)
->
CH S(OH)CH
(lb)
2
CH3SCH3
3
3
0097-6156/87/0349-0133$06.00/0 © 1987 American Chemical Society
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
THE CHEMISTRY OF ACID RAIN
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch011
134
A number o f k i n e t i c s s t u d i e s of R e a c t i o n 1 have been r e p o r t e d (10-17). I n a d d i t i o n , s e v e r a l s t e a d y s t a t e photοlys i s - e n d p r o d u c t a n a l y s i s s t u d i e s have r e c e n t l y been r e p o r t e d where c o n c l u s i o n s were drawn c o n c e r n i n g the r e l a t i v e importance o f h y d r o g e n a b s t r a c t i o n and a d d i t i o n t o the s u l f u r atom as r e a c t i o n pathways (18-20). Despite the r a t h e r l a r g e d a t a base, n e i t h e r t h e r a t e c o n s t a n t nor t h e b r a n c h i n g r a t i o f o r R e a c t i o n 1 i s w e l l d e f i n e d . V a l u e s f o r k i have been measured d i r e c t l y u s i n g b o t h f l a s h p h o t o l y s i s (10,11,13,17) and d i s charge f l o w (14,16) t e c h n i q u e s , w i t h r e p o r t e d 298K r a t e c o n s t a n t s r a n g i n g from 3.2 t o 9.8 χ 10~12cm3molecule~l-s~l- and r e p o r t e d a c t i v a t i o n e n e r g i e s r a n g i n g from -352 to +274 c a l m o l e " . A l l direct measurements were c a r r i e d out i n the absence o f t h e p o t e n t i a l l y r e a c t i v e gas 02· Two c o m p e t i t i v e k i n e t i c s s t u d i e s (12,15), b o t h of w h i c h employed one atmosphere o f a i r as t h e b u f f e r gas, r e p o r t 298K r a t e c o n s t a n t s i n agreement w i t h t h e h i g h e r v a l u e s r e p o r t e d i n t h e direct studies. W h i l e t h e r e seems t o be g e n e r a l agreement t h a t the b r a n c h i n g r a t i o f o r Channel l a i s s i g n i f i c a n t , the c o n t r i b u t i o n from Channel l b remains p o o r l y d e f i n e d . 1
We have employed a p u l s e d l a s e r p h o t o l y s i s - p u l s e d l a s e r i n d u c e d f l u o r e s c e n c e t e c h n i q u e t o c a r r y o u t d i r e c t , r e a l time s t u d i e s o f OH r e a c t i o n s w i t h DMS and DMS-dfc i n N 2 , a i r , and O 2 b u f f e r gases. Both temperature and p r e s s u r e dependencies have been i n v e s t i gated. We f i n d t h a t the o b s e r v e d r a t e c o n s t a n t ( k b = d[0H]/[0H] [DMS]dt) depends on t h e O 2 c o n c e n t r a t i o n . Our r e s u l t s a r e c o n s i s t e n t w i t h a mechanism w h i c h i n c l u d e s an a b s t r a c t i o n r o u t e , a r e v e r s i b l e a d d i t i o n r o u t e , and an adduct + O 2 r e a c t i o n w h i c h competes w i t h adduct d e c o m p o s i t i o n under a t m o s p h e r i c c o n d i t i o n s . Q
s
Experimental A s c h e m a t i c o f t h e apparatus i s shown i n F i g u r e 1. OH was produced by 248 nm ( o r 266 nm i n some e x p e r i m e n t s ) p u l s e d l a s e r p h o t o l y s i s o f H 2 O 2 and d e t e c t e d by o b s e r v i n g f l u o r e s c e n c e e x c i t e d by a p u l s e d t u n a b l e dye l a s e r . F l u o r e s c e n c e was e x c i t e d i n t h e 0 Η ( Α 2 Σ - X^ir) 0-1 band a t 282 nm and d e t e c t e d i n the 0-0 and 1-1 bands a t 309+5 nm. K i n e t i c d a t a was o b t a i n e d by e l e c t r o n i c a l l y v a r y i n g t h e time d e l a y between t h e p h o t o l y s i s l a s e r and the p r o b e l a s e r . S u l f i d e concentra t i o n s were measured i n s i t u i n t h e slow f l o w system by UV photometry a t 228.8 nm. +
Results A l l experiments were c a r r i e d o u t under p s e u d o - f i r s t o r d e r c o n d i t i o n s w i t h DMS i n l a r g e excess o v e r OH. E x p o n e n t i a l OH decays were ob s e r v e d under a l l e x p e r i m e n t a l c o n d i t i o n s i n v e s t i g a t e d . P l o t s o f k ( t h e p s e u d o - f i r s t o r d e r OH decay r a t e ) v e r s u s DMS c o n c e n t r a t i o n were linear. V a l u e s f o r k b were o b t a i n e d from l i n e a r l e a s t squares d e t e r m i n a t i o n s of t h e s l o p e s o f k v e r s u s [DMS] p l o t s . Measured values f o r k ^ as a f u n c t i o n o f temperature, p r e s s u r e , and O 2 con c e n t r a t i o n a r e summarized i n T a b l e I . Important o b s e r v a t i o n s c o n c e r n i n g t h e d a t a r e p o r t e d i n T a b l e I a r e summarized below 1. I n the absence o f 0 , DMS r e a c t s s i g n i f i c a n t l y more r a p i d l y w i t h OH t h a n does DMS-dfc. T h i s s u g g e s t s t h a t under t h e s e experimen t a l c o n d i t i o n s (no O 2 ) h y d r o g e n a b s t r a c t i o n i s t h e dominant r e a c t i o n !
0
s
f
Q
s
2
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch011
11.
HYNES AND WINE
The OH and Dimethyl Sulfide Reaction
135
F i g u r e 1. Schematic o f t h e a p p a r a t u s . A C - a b s o r p t i o n c e l l , BPFbandpass f i l t e r , CdL-cadmium lamp, C M - c a p a c i t a n c e manometer, IDf r e q u e n c y d o u b l e r , DG-three c h a n n e l d e l a y g e n e r a t o r , DC-dye l a s e r , EM-emergy m o n i t o r , GI-gas i n l e t , HS-harmonic s e p a r a t o r , HV-high v o l t a g e , ΡA-picoammeter, PD-photodiode, PM-photomultip l i e r , PL-photolysis l a s e r , RC-reaction c e l l , SA-signal a v e r a g e r , T - c h r o t t l e , YL-Nd:YAG l a s e r , 7-54F-Corning 7-54 g l a s s filter.
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
136
THE CHEMISTRY OF ACID RAIN
Table I.
Observed B i m o l e c u l a r Rate C o n s t a n t s as a F u n c t i o n o f Temperature, P r e s s u r e , and 0 Concentration 9
Sulfide
T(K)
P(Torr)
M
Range o f .. k (s ) 1
( a )
k , +2a obs (10- cm molecule^ls" ) -
12
3
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch011
1
CH SCH 3
CD SCD 3
3
3
+
1.7
9.53
+
0.28
160-•13700
4.80
+
0.11
53-•7500
4.75
+
0.15
262
700
air
498- •24900
1?.5
279
700
air
372- •24200
298
40
298
500
N
2
SF
6
298
50
air
151-•8610
4.68
+
0.08
298
130
air
1960- •21800
5.04
+
0.14
298
340
air
310-•28900
5.18
0.34
298
590
air
596- •56100
5.80
+
298
750
air
1850- •65700
6.28
+
0.10
321
700
air
420-•22300
5.43
+
0.30
261
700
air
1080- •50500
11.6
+
1.1
854- •48500
13.5
+
1.2 2.0
266
700
275
700
276 287 287
700
298
450
298
100
°2
0.16
606-•54200
11.9
+
700
°2 air
1650- •47300
9.63
± 0.63
700
air
777-•20100
5.29
+
0.44
593-•23100
6.99
+
0.53
1520- •18900
1.82
+
0.11
193- •19800
2.10
+
0.15
°2 N
2 air
298
300
air
336-•17300
2.68
+
0.09
298
500
air
804-•11700
2.97
+
0.13
298
700
air
672-•18900
3.40
+
0.13
1290- •21200
6.50
+
0.72
817-•16500
3.02
+
0.18
298
700
317
700
321
700
340
700
340
700
361
700
(a) e r r o r s a r e 2σ and r e p r e s e n t
°2 air °2 air °2 air
0.27
620-•13600
3.72
1030- -11470
2.32
+
0.11
547--7880
2.30
+
0.28
1110- -15200
2.66
cision
only
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
0.11
11.
HYNES AND
137
The OH and Dimethyl Sulfide Reaction
WINE
pathway. We have c a r r i e d out c o n v e n t i o n a l FP-RF k i n e t i c s t u d i e s o f OH r e a c t i o n s w i t h a s e r i e s of s u l f i d e s i n argon b u f f e r gas ( 2 1 ) ; r e a c t i v i t y t r e n d s and a c t i v a t i o n e n e r g i e s o b s e r v e d i n t h e s e e x p e r i ments s u p p o r t t h e dominance o f Channel l a when no O 2 i s p r e s e n t . 2. A t 298K, k b i n c r e a s e s as a f u n c t i o n of a i r p r e s s u r e f o r b o t h DMS and DMS-d6 r e a c t i o n s w i t h OH. The s l o p e s o f k b versus ^ a i r pl°ts a r e v i r t u a l l y e q u a l f o r t h e two s u l f i d e s . 3. I n b o t h a i r and O 2 a t 700 T o r r t o t a l p r e s s u r e , k ^ in c r e a s e s d r a m a t i c a l l y w i t h d e c r e a s i n g temperature. A l l experimental o b s e r v a t i o n s are c o n s i s t e n t w i t h the f o l l o w i n g mechanism ( w r i t t e n f o r C H 3 S C H 3 b u t i d e n t i c a l f o r C D 3 S C D 3 ) : 0
s
Q
s
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch011
0
OH
+
CH3SCH3
>
CH3SCH2
OH + C H 3 S C H 3 + M CH S(OH)CH
3
+ M
CH S(OH)CH
3
+ 0
3
3
>
H0
(la)
2
CH S(OH)CH 3
+ M
3
(lb)
OH + C H 3 S C H 3
> >
2
+
g
(-lb)
products
(2)
> l o s s by r e a c t i o n w i t h H 2 O 2 and d i f f u s i o n from the d e t e c t o r f i e l d of view
OH
(3)
As mentioned above, i n the absence of O 2 a l l o b s e r v e d OH removal ap p e a r s t o be v i a t h e a b s t r a c t i o n r o u t e , i . e . R e a c t i o n l a . A p p a r e n t l y , R e a c t i o n - l b i s v e r y f a s t compared to the time s c a l e o f our e x p e r i ments. However, the adduct l i f e t i m e must be l o n g enough t h a t i t can be scavenged by O 2 i n c o m p e t i t i o n w i t h d e c o m p o s i t i o n b a c k to r e a c t ants. The d r a m a t i c dependence o f k ^ on temperature i s q u a l i t a t i v e l y c o n s i s t e n t w i t h the above mechanism. The a c t i v a t i o n energy f o r R e a c t i o n - l b i s e x p e c t e d t o be q u i t e l a r g e , s o t h e f r a c t i o n o f adduct m o l e c u l e s scavenged by O 2 can i n c r e a s e d r a m a t i c a l l y o v e r a r e l a t i v e l y s m a l l temperature range. A t h i g h O 2 l e v e l s , t h e adduct can be assumed to be i n s t e a d y state. A p p l y i n g the s t e a d y s t a t e a p p r o x i m a t i o n t o t h e above mechan ism, one o b t a i n s : 0
,
_
obs
s
k, (T) + X C O i k , (T) + k ( T ) } [ 0 j la la lb l_ 1 T
1 + X(T)[0 ]
γ/ \
'
2
M
1
k (T) * 9
=
" k_ (T) lb
We assume t h a t o v e r the l i m i t e d temperature range 260 r a t e c o n s t a n t s can be e x p r e s s e d i n A r r h e n i u s form: = A
k (T) ±
1
exp
//>
τ
;
- 360K, a l l
(-E /RT).
(5)
±
We have t a k e n the 13 r a t e c o n s t a n t s f o r OH + DMS-d5 measured i n 700 T o r r a i r and 700 T o r r 0 ( T a b l e I) and f i t k g ( T , [ 0 D to E q u a t i o n 4 u s i n g a l e a s t squares f i t t i n g c r i t e r i o n . The s u p e r s c r i p t D i n d i c a t e s the C D 3 S C D 3 a n a l o g o f e q u a t i o n s 1-4. V a l u e s f o r k ^ ( T ) were 2
b s
2
a
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
138
T H E CHEMISTRY OF ACID RAIN
taken from the FP-RF results (21). A j , Α^(Ξ A ^ / A ^ ) and Εχ(Ξ E^-E^ ) were taken as independent variables. By analogy with known activation energies f o r OH addition to C H 3 S H (22), C H 3 S D (22), and C H 3 S S C H 3 (13)» E Ç was fixed at -0.7 kcal/mole. As shown i n Figure 2, equation 4 f i t s the experimental data very well (median residual = 5.3%); we conclude, therefore, that the proposed mechanism does include a l l important reactions. Best f i t parameters are A Ç ^ = 3.04 χ 10~l cm molecule~ls~l, A5 = 5.53 χ 10" cm molecule , and E§/R = 7460K. b
b
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch011
2
3
31
3
_1
Implications f o r Atmospheric Chemistry Our results demonstrate that both the e f f e c t i v e rate constant ( k ) and the branching r a t i o (addition versus abstraction) f o r reaction (1) change dramatically as a function of temperature over the lower tropospheric temperature range 250-310K. I t should be be kept i n mind that, f o r purposes of atmospheric modeling, addition followed by decomposition back to OH + C H 3 S C H 3 i s treated as no reaction. The " e f f e c t i v e " addition pathway represents only those adduct molecules which are scavenged by O 2 . A majority of our experiments employed DMS-dg as the s u l f i d e reactant because more information concerning elementary reaction rates could be obtained i n this matter (this aspect of our study i s not discussed i n d e t a i l i n this paper). However, enough experiments were carried out with DMS to demonstrate that, within experimental uncertainty, k values for OH reactions with DMS and DMS-dg d i f f e r only by the difference i n the abstraction rates. The pressure dependence data i n a i r at 298K strongly supports t h i s approximation. Substituting the appropriate Arrhenius parameters into equation 4 leads to the following expression for the temperature dependence of obs 760 Torr a i r (units are cm molecule^s"!) : o b g
o b g
k
f
o
r
t
h
e 0
H
+
D
M
S
r
e
a
c
t
i
o
n
i
n
3
1Q
k
=
°
1Q
Texp(-234/T) +8.64x10 exp(7230/T) + 2.68x10 exp(7810/T)
b S
n
1 . 0 4 x l 0 T + 88.1exp(7460/T) (6)
Values f o r k at ten degree i n t e r v a l s have been calculated from equation 6, as have branching ratios f o r abstraction ( B ) and addition ( B ^ ) . The branching ratios were calculated from the relationships Q b g
a b s
a
B
k
/ k
12
abs - l a o b s " 9. 6 x l O - e x p ( - 2 3 4 / T ) / ^ ^
Β ΑΆ = 1 - Β , add abs The results are tabulated i n Table I I .
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
(7)
(8)
139
The OH and Dimethyl Sulfide Reaction
HYNES AND WINE
2 op
1
1
1
I
I
1
1
I
I
Γ
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch011
~Ο····02
IL
I
2.6
3.0
3.4
I
=1
3.8
1000/T0O F i g u r e 2. R e s u l t s o b t a i n e d from u s i n g e q u a t i o n 4 t o s i m u l a t e t h e dependence o f k b on L O 2 ] l t e m p e r a t u r e f o r t h e OH + CD3SCD3 reaction. A l l b i m o l e c u l a r r a t e c o n s t a n t s were measured at a t o t a l p r e s s u r e o f 700 T o r r . The b e s t f i t parameters A Ç , A^, and E^/R a r e g i v e n i n t h e t e x t . E r r o r b a r s a r e 2σ, p r e c i s i o n only. a
0
n
(
s
B
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
140
THE CHEMISTRY OF ACID RAIN Table I I .
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch011
τ (Κ)
10^k
Values
f o r Κ , , Β , , and Β ,, obs abs add
, (cm^molecule "'"s obs
250 260 270 280 290 300 310
B
15.8 14.5 12.5 9.8 7.4 5.9 5.2
abs
B
0.24 0.27 0.32 0.42 0.58 0.75 0.87
add
0.76 0.73 0.68 0.58 0.42 0.25 0.13
Under a t m o s p h e r i c c o n d i t i o n s t h e a b s t r a c t i o n r o u t e i s thought t o r e s u l t i n production o f CH3S + H C 0 v i a the f o l l o w i n g r e a c t i o n sequence ( 1 7 , 2 0 ) : 2
OH + C H S C H 3
CH SCH 3
+ 0
2
CH SCH 0 3
2
2
2
3
—
->
2
4- M
>
+ NO
->
2
3
CH SCH 0 3
2
2
(la)
2
+ M
CH SCH 0 + N 0
(9)
2
(10)
CH S + CH 0 + M
(11)
3
>
CH SCH 0 + M 3
H 0 + CH SCH
2
3
2
The u l t i m a t e f a t e o f C H 3 S i s unknown, a l t h o u g h B a l l a , e t a l . (23) report d i r e c t k i n e t i c evidence that t h i s r a d i c a l reacts very r a p i d l y w i t h NO and N 0 b u t n e g l i g i b l y s l o w l y w i t h 0 . P o s s i b l e r o u t e s f o r the adduct + 0 r e a c t i o n i n c l u d e t h e f o l l o w i n g : 2
2
2
-> C H S C H 3
3
+ H0
(12a)
2
(DMSO)
OH
I
CH SCH 3
3
+ 0
2
-> C H 0 3
2
+ CH S0H
(12b)
3
C H S 0 H i s p r o b a b l y c o n v e r t e d t o C H S 0 H ( m e t h a n e s u l f o n i c a c i d ) by r e a c t i o n w i t h 0 w h i l e t h e a t m o s p h e r i c f a t e o f DMSO i s u n c l e a r . DMSO has a v e r y low v a p o r p r e s s u r e and may be r a p i d l y removed v i a heterogeneous processes. A t 298K o u r r e s u l t s demonstrate t h a t r e a c t i o n 1 i n one atmos p h e r e o f a i r p r o c e e d s 70% v i a a b s t r a c t i o n and 30% v i a ( i r r e v e r s i b l e ) addition. P h o t o o x i d a t i o n s t u d i e s have been r e p o r t e d by N i k i , e t a l . (18) and Hatakeyama and Akimoto (19), where 298K S 0 y i e l d s from OH i n i t i a t e d o x i d a t i o n o f C H 3 S C H 3 were r e p o r t e d t o b e 22% and 21%, respectively. L a r g e y i e l d s o f m e t h a n e s u l f o n i c a c i d were o b s e r v e d i n both studies. At present, there i s i n s u f f i c i e n t information to a l l o w S 0 p r o d u c t i o n t o be a s s o c i a t e d w i t h e i t h e r t h e a b s t r a c t i o n 3
3
3
2
2
2
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
11.
HYNES AND WINE
The OH and Dimethyl Sulfide Reaction
141
r o u t e o r the a d d i t i o n r o u t e . However, i t s h o u l d be n o t e d t h a t o u r r e s u l t s s u g g e s t t h a t a b s t r a c t i o n i s the dominant r e a c t i o n pathway f o r Τ > 300K w h i l e a d d i t i o n i s the dominant pathway f o r Τ < 270K. Hence, temperature dependent p r o d u c t a n a l y s i s s t u d i e s s h o u l d shed some l i g h t on t h e d e t a i l e d pathways f o r S 0 and CH^SO^H p r o d u c t i o n . 2
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch011
Acknowledgment T h i s work was s u p p o r t e d by t h e N a t i o n a l S c i e n c e g r a n t n o . ATM-82-17232.
Foundation through
Literature Cited 1. 2. 3. 4.
Cullis, D. F.; Hirschler, M. M. Atmos. Environ. 1980, 14, 1263. Moller, D. Atmos. Environ. 1984, 18, 19. Moller, D. Atmos. Environ. 1984, 18, 29. Barnard W. R.; Andreae, M. O.; Watkins, W. E.; Bingemer, H; Georgii, H.-W. J. Geophys. Res. 1982, 87, 8787. 5. Andreae, M. O.; Barnard, W. R.; Amnions, J . M. Ecol. Bull. 1983, 35, 167. 6. Andreae, M. O.; Raemdonck, H. Science 1983, 221, 744. 7. Cline, J . D.; Bates, T. S. Geophys. Res. Lett. 1983, 10, 949. 8. Turner, S. M.; Liss, P. S. J. Atmos. Chem. 1985, 2, 223. 9. Andreae, M. O.; Ferek, R. J.; Bermond, F.; Byrd, K. P.; Engstrom, R. T.; Hardin, S.; Houmere, P. D.; Le Marres, F.; Raemdonck, H.; Chatfield, R. B. J. Geophys. Res. 1985, 90, 12891. 10. Atkinson, R.; Perry, R. Α.; Pitts, Jr., J . Ν. Chem. Phys. Lett. 1978, 54, 14. 11. Kurylo, M. J. Chem. Phys. Lett. 1978, 58, 233. 12. Cox, R. Α.; Sheppard, D. Nature 1980, 289, 330. 13. Wine, P. H.; Kreutter, Ν. M.; Gump, C. Α.; Ravishankara, Α. R. J. Phys. Chem. 1981, 85, 2660. 14. MacLeod, H.; Poulet, G.; LeBras, G. J . Chem Phys. 1983, 80, 287. 15. Atkinson, R.; Pitts, Jr., J. N.; Aschmann, S. M. J. Phys. Chem. 1984, 88, 1584. 16. Martin, D.; Jourdain, J . L . ; LeBras, G. Int. J. Chem. Kinet. 1985, 17, 1247. 17. Wallington, T. J.; Atkinson, R.; Tuazon, E. C.; Aschmann, S. M. Int. J. Chem. Kinet. 1986, 18, 837. 18. Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P. Int. J. Chem. Kinet. 1983, 15, 647. 19. Hatakeyama, S.; Akimoto, H. J. Phys. Chem. 1983, 87, 2387. 20. Grosjean, D. Environ. Sci. Tech. 1984, 18, 460. 21. Hynes, A. J.; Wine, P. H.; Semmes, D. H. J. Phys. Chem. 1986, 90, 4148. 22. Wine, P. H.; Thompson, R. J.; Semmes, D. H. Int. J . Chem. Kinet. 1984, 16, 1623. 23. Balla, R. J.; Nelson, H. H.; McDonald, J. R. Chem. Phys. 1986, 109, 101. RECEIVED June 2, 1987
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.