Equations of State in Engineering and Research - American Chemical

PAUL M. MATHIAS and JOHN P. O'CONNELL. Department of Chemical Engineering, University of Florida,. Gainesville, FL 32611. Concentration derivatives of...
1 downloads 0 Views 798KB Size
5

A Predictive Method for PVT and Phase Behavior of Liquids Containing Supercritical

Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch005

Components PAUL M. MATHIAS and JOHN P. O'CONNELL Department of Chemical Engineering, University of Florida, Gainesville, FL 32611

Concentration derivatives of fugacities are given in terms of statistical-mechanical direct-correlation function integrals which are insensitive to the detailed nature of the intermolecular forces in dense fluids. From this, a simple method is given for the properties of liquids containing supercritical components using only two pure-component parameters and a binary parameter for each pair. With good solvent density data, Henry's constants and easily estimated binary parameter values, we describe high-pressure vapor-liquid equilibrium in such systems as hydrogen-benzene and nitrogenammonia. Also, using a reference-solvent Henrys constant, values can be found for different pure and mixed solvents. These can be used for high-pressure vapor-liquid equilibrium, e.g., for hydrogen in coal oils knowing only hydrogen in quinoline and pure solvent densities.

M

o d e r n c h e m i c a l p r o c e s s i n g d e m a n d s m u c h better estimates o f p h y s i c a l p r o p e r t i e s t h a n i n p r e v i o u s eras because t h e costs of excessive

d e s i g n a r e n o w often too great. H i g h - p r e s s u r e systems a r e of p a r t i c u l a r c o n c e r n , a n d t h e y are b e c o m i n g m o r e p r e v a l e n t as i n c o a l gasification a n d l i q u e f a c t i o n a n d i n F i s c h e r - T r o p s c h syntheses. A w e a k l i n k i n estim a t i o n t e c h n i q u e s f o r these

systems is t h e v a p o r - l i q u i d e q u i l i b r i u m

d i s t r i b u t i o n of c o m p o n e n t s at t e m p e r a t u r e s w e l l a b o v e t h e c r i t i c a l t e m p e r a t u r e of o n e o r m o r e of t h e species p r e s e n t a n d b e l o w t h e c r i t i c a l t e m p e r a t u r e o f t h e others. 0-8412-0500-0/79/33-182-097$05.00/l © 1979 American Chemical Society

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

98

EQUATIONS O F STATE

P r a u s n i t z (1,2)

has d i s c u s s e d this p r o b l e m extensively, b u t t h e

most successful t e c h n i q u e s , w h i c h are b a s e d o n e i t h e r c l o s e d

equations

of state, s u c h as discussed i n this s y m p o s i u m , o r o n d i l u t e l i q u i d s o l u t i o n reference

states s u c h as i n P r a u s n i t z a n d C h u e h ( 3 ) , are l i m i t e d to

systems c o n t a i n i n g n o n p o l a r species o r d i l u t e q u a n t i t i e s o f w e a k l y p o l a r substances.

T h e p u r p o s e of this c h a p t e r is to d e s c r i b e a n o v e l m e t h o d

f o r c a l c u l a t i n g t h e p r o p e r t i e s of l i q u i d s c o n t a i n i n g s u p e r c r i t i c a l c o m ­ ponents w h i c h r e q u i r e s r e l a t i v e l y f e w d a t a a n d is of g e n e r a l a p p l i c a b i l i t y . U s e d w i t h a v a p o r e q u a t i o n of state, t h e v a p o r - l i q u i d e q u i l i b r i u m f o r these systems c a n b e p r e d i c t e d to a h i g h degree of a c c u r a c y e v e n t h o u g h Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch005

the l i q u i d m a y b e 30 m o l % or m o r e of the s u p e r c r i t i c a l species a n d t h e pressure m o r e t h a n 1000 b a r .

General

Expression

T h e basis of the m e t h o d lies i n t h e m o l e c u l a r t h e o r y w h i c h relates integrals

of

the s t a t i s t i c a l - m e c h a n i c a l d i r e c t

correlation function

to

d e r i v a t i v e s of t h e t o t a l pressure a n d the f u g a c i t y of e a c h species

with

respect to t h e c o n c e n t r a t i o n of the species of t h e system (4,5,6).

In

e q u a t i o n f o r m these are

(1)

^(τ;Τ )άν^-0^(Τ )/ )£



Ρ

and

dP/RTl d

Pj

where

=

P i

N

\

T

t

P

k

^

=

x , x is t h e m o l e f r a c t i o n , iP

(2)

Σ Χ Λ Ι - C , )

is t h e f u g a c i t y , a n d c

t

y

is t h e

d i r e c t c o r r e l a t i o n f u n c t i o n . T h e essence of o u r m e t h o d is to express t h e d i r e c t c o r r e l a t i o n f u n c t i o n i n t e g r a l s , C y , i n terms of r e d u c e d t e m p e r a t u r e a n d d e n s i t y , i n t e g r a t e E q u a t i o n 2 f r o m a s u i t a b l e reference state T , P , r

p , x to t h e final state Γ, P , x* to solve f o r the final d e n s i t y , p , a n d t h e n r

r

f

f

integrate E q u a t i o n 1 f o r a l l species i n t h e system to o b t a i n t h e final state fugacity,

f r o m t h e reference

state f u g a c i t y (fi/Xi) .

U s i n g a single

r

d u m m y i n t e g r a t i n g v a r i a b l e , t, t h e equations b e c o m e In p = In x{ + In ( ? , / * , ) ' + In (pVp ) r

£



W

- p% ) r

-

T)/P

]

D

T

In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

(

3

)

5.

MATHiAS AND O'CONNELL

Phase Behavior

of

99

Liquids

and

^

-

1

w

-

- / ; [ Σ ^ . 4 > ] *}

{-

A w



w h e r e , i n the integrals

P =

P

' +

(6)

Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch005

T o c o m p l e t e t h e c a l c u l a t i o n , the m o d e l f o r t h e C

i ;

( w h i c h is a f u n c ­

t i o n of T , p, a n d χ t h r o u g h Τ , T , a n d ^ defined b e l o w ) needs to b e i ;

specified, t h e c h o i c e of reference state m a d e , a n d t h e i n p u t p a r a m e t e r and

p r o p e r t y values n e e d to b e g i v e n . E a c h of these s h a l l b e d e s c r i b e d

b e l o w f o r t h e representative cases w h i c h w e h a v e e x a m i n e d . Direct

Correlation

Function

Integrals

W e use a p e r t u r b a t i o n t h e o r y as t h e basis f o r a corresponding-states expression f o r t h e c o r r e l a t i o n f u n c t i o n i n t e g r a l s , t h e major p o r t i o n b e i n g that f r o m r i g i d spheres a n d a m i n o r c o n t r i b u t i o n f r o m a n a d d e d v i r i a l coefficient

t e r m . ( T h i s c o n c e p t h a d b e e n chosen

second

previously b y

B i e n k o w s k i et a l . ( 7 ) i n another context w h i l e a p p l i c a t i o n of t h e p r i n c i p l e of c o r r e s p o n d i n g states f o r t h e c o r r e l a t i o n f u n c t i o n integrals h a d b e e n examined b y Gubbins a n d O'Connell (8).)

- C V ' & f l

Ο (Τ,Τ ρ) υ

φ

- 2 V » [-iîiL P

-

i ;

yÇ-

(£?)] (7)

S p e c i f i c a l l y , w e h a v e u s e d t h e C a r n a h a n - S t a r l i n g E q u a t i o n (9) f o r r i g i d spheres. E q u a t i o n s 1 a n d 9-18 o f R e f . 9 w e r e u s e d t o o b t a i n E q u a t i o n 8 here. -

Ç0

=

(σ, + σ , ) / ( 1 -

ίβ) + [3σ*Μ

8

+ 3fj (σ#,,)*(σ, + ) + 9(σ,σ&) » / (1 - &)

4

2

+

6ί ( σ ·) 2

σ ί

;

2

In (1 -

h)

2

3

(8)

3

+ [6 + & ( —15 +

(σ, + σι) & [ 6 + £ , ( - 1 5 + 1%) ] / & +

(

+ & (σ,σ,) V (1 - ξ )

Χ {9£ (σ, + σι) + 6 W ;

+

2

+ fo W l / ( 1 -

σ}

-

(σ, + σ , ) + σ σ,]

9&)]/&

2

21 + &(26 - 14&) ) ] / & ( 1 - f » ) } 3

&){£,

-

(σ, + σ,)& + & σ