2 The Umami Taste
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
SHIZUKO YAMAGUCHI Central Research Laboratories, Ajinomoto Co., Inc., Kawasaki, Japan
The characteristic taste of monosodium glutamate and 5'-ribo nucleotides is called "umami" in Japanese. It plays a predominant role in the flavor of foods, such as meats, poultry, fish and other sea foods, dairy products, or vegetables. The taste was first discovered by Ikeda (1908) (1), and has been studied by a large number of researchers from different points of view (refer to, e.g. 2-9). We have systematically investigated the umami taste using psychometric procedures. In this paper, a part of our studies will be outlined. Umami Substances Most typical umami substances are divided into two series of compounds. One is a group of L-α-amino acids represented by mono sodium glutamate (MSG) (Table I) (10-15), and another is that including 5'-ribonucleotides and their derivatives, represented by disodium 5'-inosinate (IMP) or disodium 5'-guanylate (GMP) (Table II) (16, 17, 18, 19). The latter group of substances have only very Table I. Umami Substances Related to MSG R e l a t i v e umami i n t e n s i t y Monosodium L-glutamate H 0 Monosodium DL-iforeo-P-hydroxy glutamate H 0 Monosodium DL-homocystate H 0 Monosodium L - a s p a r t a t e H 0 Monosodium L-a-amino a d i p a t e H 0 L-Tricholomic a c i d (erythro form) L-Ibotenic a c i d
1 0.86
2
2
2
2
2
a
a
0.77 0.077 0.098 5-30 5-30
Table from Yamaguchi et al. (38). From T e r a s a k i et al. (14, 15). a
0-8412-0526-4/79/47-115-033$05.00/0 © 1979 American Chemical Society In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
34
FOOD TASTE CHEMISTRY
Table I I . Umami Substances R e l a t e d t o IMP , ^ Substance (Disodium s a l t ) /TV
1f
R e l a t i v e potency ^ i
N
o
1
5 -Inosinate.7.5H20 5'-Guanylate.7H 0 5'-Xanthylate.3H 0 5'-Adenylate Deoxy 5'-guanylate.3H2O 2-Methyl-5 -inosinate.6H2O 2-Ethyl-5 -inosinate.1.5H 0 2-Phenyl-5'-inosinate.3H20 2-Methylthio-5'-inosinate.6H2O 2-Ethylthio-5 -inosinate.2H2O 2-Ethoxyethylthio-5'-inosinate 2-Ethoxycarbonylethylthio-5 -inosinate 2-Furfurylthio-5 -inosinate.H2O 2-Tetrahydrofurfurylthio-5 -inosinate.H2O 2 - I s o p e n t e n y l t h i o - 5 - i n o s i n a t e (Ca) 2-(3-Methallyl)thio-5 -inosinate 2-(Y-Methallyl)thio-5 -inosinate 2-Methoxy-5'-inosinate.H2O 2-Ethoxy-5'-inosinate 2-i-Propoxy-5 -inosinate 2-n-Propoxy-5'-inosinate 2 - A l l y l o x y - 5 - i n o s i n a t e (Ca) O.5H2O 2-Chloro-5 -inosinate.1.5H2O N -Methyl-5 -guanylate.5.5H 0 N , N -Dimethyl-5'-guanylate.2.5H2O N ^ M e t h y l - S ' - i n o s i n a t e . H2O Ν -Methy1-5'-guanylate.H2O Ν -Methy1-2-methy11hio-5'-ino s i n a t e 6-Chloropurine r i b o s i d e 5'-phosphate.H2O 6-Mercaptopurine r i b o s i d e 5'-phosphate.6H2O 2-Methyl-6-mercaptopurine r i b o s i d e 5'-phosphate. H2O 2-Methylthio-6-mercaptopurine r i b o s i d e 5'phosphate.2.5H2O 2',3'-0-Isopropylidene 5 ' - i n o s i n a t e 2',3'-0-Isopropylidene 5'-guanylate 2
2
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
1
1
2
a
1
a
f
f
a
a
l
a
l
a
f
a
f
a
a
1
a
a
t
a
1
2
1
2
2
2
1
1
u m a m
1 2.3 0.61 0.18 0.62 2.3 2.3 3.6 8.0 7.5 13 12 17 8 11 10 11 4.2 (3.7) 4.9 4.5 2 6.5 3.1 2.3 2.4 0.74 1.3 8.4 2 3.4 8 7.9 0.21 0,35
From Yamaguchi et al. (38). From Imami et al. (19). a
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
2. YAMAGucHi
The Umami Taste
35
weak tastes. It is notable, however, that they synergistically increase the umami of the former substances (17, 20). In addition to these two groups, some peptides have been reported to have tastes similar to MSG (21, 22). Some researchers regard the taste of succinic acid (23, 24) or theanine (25) as umami, although their taste qualities are considerably different from that of MSG.
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
Fundamental Taste P r o p e r t i e s o f Umami Threshold Value. The t h r e s h o l d values of umami and the other four t a s t e substances have been reported by many researchers (e.g. 1 26, 27, 28, 29). However, because o f the measurement c o n d i t i o n s are d i f f e r e n t , p r e c i s e comparisons w i t h one another a r e d i f f i c u l t . We have measured the d e t e c t i o n thresholds o f MSG and the four t a s t e substances simultaneously as c a r e f u l l y as p o s s i b l e , u s i n g a s i n g l e panel under i d e n t i c a l experimental c o n d i t i o n s , 30). The panel was composed o f 30 l a b o r a t o r y members between the ages o f 20 and 40. T r i a n g l e t e s t s were used, where each t r i a n g l e c o n s i s t e d o f two samples of pure water and one sample of a t e s t s o l u t i o n . The p a n e l i s t s were asked t o s e l e c t the odd sample. A s e r i e s o f t r i a d s were presented i n descending order. The lowest c o n c e n t r a t i o n which could be s i g n i f i c a n t l y d i s t i n g u i s h e d from pure water was obtained f o r each t e s t substance (Table I I I ) . Table I I I . MSG
Detection Sucrose
0.012
0.086
Concentrations
Thresholds f o r F i v e Taste Subsatnces (n = 30) Quinine Tartaric Sodium sulfate acid chloride 0.0037
given as g/100ml.
0.00094
0.000049
From Yamaguchi and Kimizuka(9).
The d e t e c t i o n t h r e s h o l d f o r MSG was as low as 0.012 g/100ml or 6.25 χ 1 0 " % . I t was higher than that o f quinine s u l f a t e o r t a r t a r i c a c i d , lower than t h a t of sucrose and almost the same as that of sodium c h l o r i d e i n the molar c o n c e n t r a t i o n . Some umami substances have lower t h r e s h o l d s than that of MSG. S u b j e c t i v e I n t e n s i t y Scale f o r Umami. Thresholds do not always express the r e l a t i v e potency o f d i f f e r e n t t a s t e s t i m u l i , because the i n t e n s i t y o f t a s t e does not increase w i t h concentra t i o n i n the same manner f o r each substance. Several kinds o f t a s t e i n t e n s i t y s c a l e s have been e s t a b l i s h e d f o r the four t a s t e s . T y p i c a l examples a r e the gust s c a l e by Beebe-Center (31) and the τ s c a l e by Indow (32). I n order t o deal w i t h the umami on the same b a s i s w i t h the four t a s t e s , we newly e s t a b l i s h e d a new s u b j e c t i v e t a s t e i n t e n s i t y s c a l e f o r umami as w e l l as f o r the four t a s t e s (9, 30). S i x s o l u t i o n s f o r each o f the f i v e t a s t e substances were prepared. The t a s t e i n t e n s i t y o f
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
36
FOOD TASTE CHEMISTRY
each s o l u t i o n was r a t e d by the 30 panel members. The p a n e l i s t s kept 10 ml of the sample i n t h e i r mouths f o r 10 seconds. Then they were asked to assess the i n t e n s i t y of the t a s t e on a 100 p o i n t s c a l e w i t h 0 being no d i s c e r n i b l e t a s t e and 100 the h i g h e s t i n t e n s i t y . The p a n e l i s t s r a t e d a l l the samples twice. The r e s u l t s are shown i n Figure 1 using mean v a l u e s of a t o t a l of 60 ratings. The r e l a t i o n s h i p between the c o n c e n t r a t i o n and the perceived t a s t e i n t e n s i t y of MSG was l o g a r i t h m i c a l l y l i n e a r l i k e those of the four common t a s t e s , although the slope f o r MSG was somewhat l e s s steep than the others. I t means that Weber-Fechner s law holds f o r a l l of the f i v e t a s t e substances. The r e l a t i o n of the t a s t e i n t e n s i t y (S) to the c o n c e n t r a t i o n (x) can be expressed by
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
1
S =
α log
2
(x/3),
where α represents the increase of t a s t e i n t e n s i t y by doubled con c e n t r a t i o n and, 3, the c o n c e n t r a t i o n at the p o i n t of i n t e r s e c t i o n of the e x t r a p o l a t e d l i n e w i t h the c o n c e n t r a t i o n a x i s , seen i n Figure 1. This equation was a p p l i e d to the f i v e t a s t e substances and the r e s u l t s were: MSG
S
M
=
9.69
log
2
(x
M
/0.0195),
Sucrose
S
s
= 14.98
log
2
(x
s
/0.873),
Sodium c h l o r i d e
S
s c
= 15.50
log
2
(x /0.0943),
Tartaric acid
S
T
= 14.45
log
2
(χ
Quinine s u l f a t e
SQ
= 14.16
log
2
(XQ /0.000169),
sc
τ
/0.00296),
where χ i s given i n terms of g/100 ml. In t h i s experiment, only the i n t e n s i t y of t a s t e was r a t e d and the q u a l i t y of t a s t e was d i s r e g a r d e d . Consequently, the same v a l u e of S i n the above mentioned equations represents the same i n t e s n i t y of t a s t e . Beebe-Center defined the u n i t of t a s t e i n t e n s i t y as gust. One gust means the t a s t e i n t e n s i t y of 1% sucrose s o l u t i o n . However, the gust s c a l e i s not always convenient be cause i t does not d e f i n e the upper l i m i t of the s c a l e . In our s c a l e , the u n i t of S was adjusted so that the v a l u e of S i s zero at the c o n c e n t r a t i o n β and 100 at the saturated sucrose c o n c e n t r a t i o n at 20°C (89.27g/100ml). I n t e r a c t i o n s between Umami and the Four Tastes. Interaction of t a s t e s i s another important problem i n the study of phenomena of t a s t e s . In order to examine the e f f e c t of umami on the four common t a s t e s , the i n f l u e n c e of MSG on the thresholds of the four t a s t e s has been examined by s e v e r a l researchers (27, 28, 33), but the r e s u l t s are c o n f l i c t i n g . In order to c l a r i f y the i s s u e , the thresholds of the four t a s t e substances were measured again i n 5mM
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
2.
YAMAGucHi
37
The Umami Taste
s o l u t i o n of MSG o r IMP (9, 30). The panel and experimental cond i t i o n s were e x a c t l y the same as that i n the aforementioned experiment. The d e t e c t i o n t h r e s h o l d of q u i n i n e s u l f a t e was s l i g h t l y r a i s e d by the presence o f 5mM of IMP. The t h r e s h o l d o f t a r t a r i c a c i d was c o n s i d e r a b l y r a i s e d by both umami substances, no doubt because o f the change i n pH. No e f f e c t was observed on the t h r e sholds o f sucrose and sodium c h l o r i d e (Table I I I and I V ) .
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
Table IV.
D e t e c t i o n Thresholds f o r the Four Taste Substances i n S o l u t i o n of Umami Substance (n = 30) Quinine Tartaric Sodium Sucrose Base s o l u t i o n sulfate acid chloride
0.094g/100 ml MSG
a
0.086
0.0037
0.0019
0.000049
0.26g/100 ml
a
0.086
0.0037
0.03
0.0004
IMP
Concentrations g i v e n as g/100ml. 5mM. From Yamaguchi and Kimizuka ( 9 ) .
a
The S y n e r g i s t i c E f f e c t s o f Umami Substances Q u a n t i t a t i v e a n a l y s i s o f the s y n e r g i s t i c e f f e c t . When f r u c tose and sucrose are mixed together, the sweetness of the mixture becomes s l i g h t l y g r e a t e r than the sum of the sweetness o f the separate substances (34). Such phenomenon i s c a l l e d the s y n e r g i s t i c e f f e c t . A c l e a r and p r e c i s e d e f i n i t i o n o f the s y n e r g i s t i c e f f e c t along w i t h s e v e r a l n u m e r i c a l l y t r e a t e d examples has been presented elsewhere (34). The magnitude o f the s y n e r g i s t i c e f f e c t between the two groups o f umami substances i s u n p a r a l l e l e d . F i g u r e 2 shows the r e l a t i o n s h i p between the i n t e n s i t y of umami and the p r o p o r t i o n of IMP i n the mixture of MSG and IMP (35). The t o t a l c o n c e n t r a t i o n was kept constant a t 0.05 g/100ml and the p r o p o r t i o n of IMP was v a r i e d from 0 t o 100%. Since the umami i n t e n s i t i e s of the samples on both extremes are very weak and almost the same, the curve would have proven to be h o r i z o n t a l l y l i n e a r i f the s y n e r g i s t i c e f f e c t had been absent. The symmeLric curve i l l u s t r a t e s the remarkable s y n e r g i s t i c e f f e c t . I n t h i s curve, t h e i n t e n s i t y of umami at i t s maximum i s e q u i v a l e n t t o that o f 0.78g/ 100 ml of MSG alone. The mixture i s 16 times as s t r o n g as that o f MSG. This a m p l i f i c a t i o n f a c t o r i s concentration-dependent, and becomes higher w i t h i n c r e a s i n g c o n c e n t r a t i o n . The s y n e r g i s t i c e f f e c t between MSG and IMP can be expressed by means of the f o l l o w i n g simple equation: y = u + 1200 uv
(1)
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
FOOD TASTE CHEMISTRY
876
M S G + I M P : 0.05g/ml
5 4
3 2 1 1
10
,
20
,
30
,
40
,
50
,
60
,
70
,
80
,
90
5
100
{%)
Proportion of IMP Journal of Food Science
Figure 2.
Refotionship between umami intensity and mixing ratio of MSG and IMP (35)
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
2.
YAMAGucHi
The
Umami Taste
39
where u and ν are the r e s p e c t i v e c o n c e n t r a t i o n s of MSG and IMP i n the mixture and y i s the equi-umami c o n c e n t r a t i o n of MSG a l o n e ( 3 5 ) . The s y n e r g i s t i c e f f e c t can be demonstrated between any conb i n a t i o n of substances i n Table I and Table I I ; and the i n t e n s i t y of umami can a l s o be expressed by an equation e s s e n t i a l l y equal to e q u a t i o n (1) (36, 37, 3*0 . The i n t e n s i t i e s of a l l substances i n Table I are always p r o p o r t i o n a l to that of MSG. Therefore, u'g/ 100ml of any substance i n Table I i s r e p l a c e a b l e w i t h cru g/100ml of MSG. The constant α f o r each substance i s l i s t e d i n Table I . On the other hand, the t a s t i n g a c t i v i t i e s of a l l n u c l e o t i d e s i n Table I I are c o n s i s t e n t l y p r o p o r t i o n a l to that of IMP. Hence, v'g/lOOml of any n u c l e o t i d e i s r e p l a c e a b l e w i t h 3v g/100ml of IMP. The constant 3 f o r each n u c l e o t i d e i s l i s t e d i n Table I I . Therefore, the umami i n t e n s i t y of the mixture of any combination of substances i n Table I and Table I I can be c a l c u l a t e d by s u b s t i t u t i n g 0) Ο
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32.
Whole aroma Meaty aroma Aroma d e r i v e d from(...) Whole aroma Meaty f l a v o r F l a v o r d e r i v e d from(...) F l a v o r of s p i c e Whole t a s t e Salty taste Salty taste Sweet t a s t e Sour t a s t e B i t t e r taste Meaty t a s t e Taste d r i v e d from(...) Oily or f a t t y Foreign f l a v o r Contimuity Simple Watery Mouthfullness Development Flat Light Poor Thin Harsh Crude Balance Punch Unfavorable Palatability
/ / / / / / / / / / / / / / / / 1 /
CeO (0
rH
4J CO
rH CO
rH CO
-2 -1 weak · • weak 1 weak ι 1 bad ι 1 weak * 1 weak · 1 weak » 1 weak » 1 weak 1 rough ι 1 weak ι 1 weak ι 1 weak ι 1 weak ι 1 weak ι 1 weak ι • weak ι 1 short « 1 1
1
1ι 1 weak * / narrow ι ι 1 I I I
ι / bad ι / weak ι ι I bad ι
11
1 1 1 1 1 1 1 1 1 1
1 1
0 1ι 1ι 1ι 1ι 1ι 1 1 1 1 » 1 1 » » » * ^ *
rH 4-1
43 00 •H rH CO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l· * \
• ν
h V V r
h τ
Η ν r
rH
c
•H CO 4J u
ο 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 » 1 y
strong strong strong good strong strong strong strong strong smooth strong strong strong strong strong strong strong long Compl< Concei strong broad Body Heavy Rich Thick Mild Aged good strong Tasty good Raven Press
Figure 3.
Evaluation sheet for flavor profile test (9)
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
The Umami Taste
YAMAGucHi
B E E F CONSOMME +0.05%MSG 1
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
I .
0
+1
+0.2%MSG 0
+ 1
+ B e e f broth (twice) 0
+1 evaluation
AROMA Whole
+ 2 score
aroma
Meaty Vagetable-like Acceptability II . B A S I C
TASTE
Whole taste Salty Sweet Sour Bitter III . F L A V O R
CHARACTER
Continuity Mouthfullness Impact Mildness Thickness IV.
OTHER
FLAVOR
Spicy Oily Meaty Vegetable-like V.
WHOLE
PREFERENCE
Palatabilitv 1
+ 1
0
+1
+ 1
+
2
Raven Press
Figure 4.
Effects of MSG and beef broth on flavor of beef consommé (9)
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
46
FOOD TASTE CHEMISTRY
BKKF NaCl.
1.2%for0.8% + 1
NaCl, \ 2
0.8%for0.2% 0
+1
+ 2
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
0
CONSOMME
+ 2
Raven Press Figure 5.
Effect of NaCl on flavor of beef consommé (9)
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
2.
YAMAGUCHI
The Umami Taste
47
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
0.8 g/100ml enhanced p a l a t a b i l i t y and increased the f l a v o r c h a r a c t e r i s t i c s of c o n t i n u i t y , mouth f u l l n e s s , impact, and so on (Figure 5 ) . In comparing t h e d i f f e r e n t sucrose contents of bavarian cream between 5% and 10%, the l a t t e r e l i c i t e d l a r g e r e v a l u a t i o n scores of c o n t i n u i t y , mouth f u l l n e s s , impact, mildness and t h i c k n e s s , as w e l l as increased sweetness (Figure 6 ) . Thus, i n some cases, both NaCl and sugar not only i n c r e a s e t h e i r i n t r i n s i c t a s t e s , but a l s o enhance the f l a v o r c h a r a c t o r measures. Preference of Food and Content of Umami Substnces. I n order t o show the r e l a t i o n s h i p between the preference of food and i t s content of umami substances, the v a l u e of y i n equation (1) was c a l c u l a t e d s u b s t i t u t i n g u and ν by the v a l u e s of chemical a n a l y s i s f o r glutamate and n u c l e o t i d e s , r e s p e c t i v e l y , of each food presented i n the f l a v o r p r o f i l e t e s t s . A p a r t of the r e s u l t s i s shown i n Table V I I I . The y v a l u e of beef consomme w i t h no a d d i t i o n a l MSG was 0.15. By i n c r e a s i n g beef b r o t h c o n c e n t r a t i o n , the y v a l u e increased t o 0.59 w i t h a preference score of 0.80. The a d d i t i o n of 0.05g/100ml MSG t o the beef consomme increased the y v a l u e t o 0.91 by the s y n e r g i s t i c e f f e c t of both IMP and GMP, which were contained n a t u r a l l y i n the food i t s e l f , and gave 0.85 of the preference score. The a d d i t i o n of a s m a l l amount of MSG gave a l a r g e y v a l u e t o t h i s food, as d i d the i n c r e a s e of beef b r o t h concentra t i o n , and increased the preference score. The c l o s e r e l a t i o n s h i p was observed between the preference of food and the content of umami substances, i n terms of the y v a l u e , whether they a r e added i n t e n t i o n a l l y t o food o r contained n a t u r a l l y i n food. R e l a t i o n s h i p between P a l a t a b i l i t y and Umami. Yamanaka et ai. (40) c o l l e c t e d words expressing " p a l a t a b i l i t y " . They d i d t h i s by a s k i n g people t o w r i t e down t h e i r d e f i n i t i o n of p a l a t a b i l i t y , e x c l u d i n g appearance, aroma and t e x t u r e . From the t o t a l of 1900 expressions obtained, 38 of them were s e l e c t e d as important. The s i m i l a l i t y between each p a i r of the expressions was measured on a 5-point s c a l e u s i n g a mass p a n e l . The data obtained were analyzed by p r i n c i p a l component a n a l y s i s and c l u s t e r a n a l y s i s . As a r e s u l t , concrete expressions of p a l a t a b i l i t y were c l a s s i f i e d i n t o t h e f o l l o w i n g f i v e groups: (1) F u l l o f body, concentrated, broad development, m i l d , aged, etc. (2) Sharp, hot, s p i c y , pungent, e t c . (3) R e f r e s h i n g , c o o l , c l e a r , e t c . (4) O i l y , f a t t y , greasy, e t c . (5) R e f i n e d , h i g h grade, modern, e t c . Apart from t h e Group 5, our study demonstrated t h a t the umami substances c o n t r i b u t e mainly t o the Group 1.
American Chemical Society Library 1155 16th St. N. W. Washington, D. C. 20036 In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
FOOD TASTE CHEMISTRY
BAVARIAN C R E A M Sugar,10%for 5 % -
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
I .
1
AROMA Whole
0
+1
+2
evaluation
score
+1
+
aroma
Egg-like Milky Acceptability II .
BASIC
TASTE
Whole
taste
Salty Sweet Sour Bitter III.
FLAVOR
CHARACTER
Continuity Mouthfullness Impact M ildness Thickness IV.
OTHER
FLAVOR
Spicy Oily Egg-like Milky \
.
WHOLE
PREFERENCE
Palatability
1 -
1
2
Raven Press Figure 6.
Effect of sugar on flavor of bavarian cream (9)
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979. 9 9
0.074
9 9
n.d.
/ 9
9 9
n.d.
0.011 0.012 0.122
9 9
n.d.
9 9
0.0003 n.d. 0.0006
9 9
0.0005 0.0006 0.0001 0.0002
0.07
9 9
0.02 0.01 0.32
9 9
0.31 0.05 0.02 0.06
9 9
9 9
9 9
9 9
0.0097 0.0023 0.0014 0.0005
9 9
9 9
9 9
0.023 0.010 0.008 0.026
9 9
9 9
9 9
9 9
9 9
/ 9
0.15
9 9
9 9
0.0002
(%)
GMP
/ 9
0.0113
(%)
(%)
0.010
IMP
MSG
Chemical a n a l y s i s
C o n t r o l (A)
Γ
%
0.05 0.17 0.18 0.05
-
0.05 0.10 0.20 0.40
Chicken b r o t h MSG 0.18 0.50 9 9 0.30 9 9 Chicken b r o t h MSG 0.30
9 9
/ /
MSG
9 9
9 9
/ 9
Beef b r o t h MSG
Ο
(g/lOOml,
Additional
Test sample (B)
1.01 0.83 0.63 0.16 0.21 0.30 0.51 1.11 0.92 0.37
0.59 0.91 1.67 3.19 6.08
R e l a t i o n s h i p between y Value and P a l a t a b i l i t y of Food
From Yamaguchi and Kimizuka ( 9 ) .
Japanese miso soup
Vichyssios Onion soup Cream of tomato soup
Chicken consommé Cream of c h i c k e n soup Chicken noodle soup Cream of v e g e t a b l e soup
Beef consomme
Item
Table V I I I .
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
Raven Press
0.54 0.85 0.87 0.49 0.71 0.58 0.85 0.17 0.08 0.56
0.80 0.85 0.62 0.67 0.03
S c o r e
Preference
Β to A
D i f f e r e n c e of
50
FOOD TASTE CHEMISTRY
In t h i s work, we have c l a r i f i e d psychometric a l l y both the fundamental t a s t e p r o p e r t i e s of umami i n i t s e l f and i t s f l a v o r e f f e c t s on foods. Umami i s a kind of t a s t e q u a l i t y d i f f e r e n t from the t r a d i t i o n a l f o u r t a s t e s . Umami substances added to food i n c r e a s e not only t h e i r own t a s t e , "umami", but a l s o the f l a v o r c h a r a c t e r i s t i c s such as c o n t i n u i t y , mouth f u l l n e s s , impact, mildness and t h i c k n e s s . Thus they i n c r e a s e the p a l a t a b i l i t y of foods.
Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
Acknowledgement The auther wishes to express her a p p r e c i a t i o n t o Drs. J . Kirimura, Y. Komata and A. Kimizuka f o r t h e i r c o n t i n u i n g guidance and encouragement. The author i s a l s o g r a t e f u l to D r s . J.C. Boudreau and Y. S u g i t a f o r t h e i r c r i t i c a l reading of the manuscript.
Literature Cited 1. 2.
3.
4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
Ikeda, K. J. Tokyo Chem. Soc., 1909, 30, 820. "Flavor and Acceptability of Monosodium Glutamate" (Proceed ings of the First Symposium on Monosodium Glutamate); The Quartermaster Food and Container Institute for the Armed Forces and Associates, Food and Container Institute, Inc.: Chicago, 1948. "Monosodium Glutamate: A Second Symposium" (Proceedings of the Second Symposium on Monosodium Glutamate); The Research and Development Associates, Food and Container Institute, Inc.: Chicago, 1955. Kuninaka, Α.; Kibi, M.; Sakaguchi, K. Food Technol., 1964, 18, 287. Amerine, M.A.; Pangborn, R.M.; Roessler, E.B., Ed. "Principals of Sensory Evaluation of Food"; Academic Press: New York, 1965; p. 115. Motozaki, S., Ed. "Chemical Seasonings"; Korin-shoin: Tokyo, 1969. Ogata, K.; Kinoshita, S.; Tsunoda, T.; Aida, K., Ed. "Microbial Production of Nucleic Acid-Related Substances"; Wiley: New York, 1976; p. 299. Kare, M.R.; Mailer, O., Ed. "The Chemical senses and Nutrition"; Academic Press: New York, 1977; p. 343. Filer, L.J. Jr.; Garattini, S.; Kare, M.R.; Reynolds, W.A., Ed. "Glutamic Acid: Advances in Biochemistry and Physiology"; Raven Press: New York, 1979. Akabori, S. J. Jpn. Biochem. Soc., 1939, 14, 185. Keneko, T.; Yoshida, R.; Katsura, H. J. Chem. Soc. Jpn., 1959, 80, 316. Kaneko, T. J. Chem. Soc. Jpn. , 1938, 59, 433. Kaneko, T.; Yoshida, R.; Takano, I. The Abstract Papers of the
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
2. YAMAGucHi
14. 15. 16. 17. 18. Downloaded by UCSF LIB CKM RSCS MGMT on November 30, 2014 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch002
19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.
The Umami Taste
51
14th Annual Meeting of the Chemical Society of Japan (Tokyo), 1961; p. 305. Terasaki, M.; Fujita, E.; Wada, S.; Nakajima, T.; Yokobe, T. J. Jpn. Soc. Food Nutr., 1965, 18, 172. Terasaki, M.; Wada, S.; Takemoto, T.; Nakajima, T.; Fujita, E.; Yokobe, T. J. Jpn. Soc. Food Nutr., 1965, 18, 222. Kodama, S. J. Kokyo Chem. Soc., 1913, 34, 751. Kuninaka, A. J. Agric. Chem. Soc. Jpn.,1960, 34, 489. Yamazaki, Α.; Kumashiro, I.; Takenishi, T. Chem. Pharm. Bull., 1968, 16, 338. Imai, K.; Marumoto, R.; Kobayashi, K.; Yoshioka, Y.; Toda, J.; Honjo, M. Chem. Pharm. Bull., 1971, 19, 576. Toi, B.; Maeda, S.; Ikeda, S.; Furukawa, H. The Abstract Papers of the General Meeting of the Agricultural Chemical Society of Japan (Tokyo), 1960. Kaneko, T. Kagaku to Kogyo (Chemistry and Chemical Industry), 1971, 24, 846. Arai, S.; Yamashita, M.; Fujimaki, M. Agric. Biol. Chem., 1972, 36,1253. Takahashi, T. J. Brew. Soc. Jpn., 1912, 7(12), 7. Aoki, K. J.Agric. Chem. Soc. Jpn., 1932, 8.867. Sakato, Y. J.Agric. Chem. Soc. Jpn., 1949, 23, 262. Knowles, D.; Johnson, P.E. Food Res., 1941, 6, 207. Lockhart, E.E.; Gainer, J.M. Food Res., 1950, 15,459. Mosel, J.N.; Kantrowitz, G. Am. J. Psychol., 1952, 65, 573. Pfaffmann, C. The sense of taste. In "Handbook of Physiology" (Magoun, Ed.); Am. Physiol. Soc; Washington, D.C., 1959; p. 507. Le Magnen, J.; MacLeod, P., E. "Olfaction and Taste VI"; Information Retrieval: London, Washington D.C., 1977; P. 493. Beebe-Center, J.G. J. Psychol., 1949, 28, 411. Indow, T. Jpn. Psychol. Res., 1966, 8, 136. Pilgrim, F . j . ; Schutz, H.G.; Peryam, D.R. Food Res., 1955, 20, 310. Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. Agric Biol. Chem., 1970, 34, 187. Yamaguchi, S. J. Food Sci., 1967, 32, 473. Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. J. Agric. Chem. Soc. Jpn., 1968, 42, 378. Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. Agric. Biol. Chem., 1968, 32, 797. Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. J. Food Sci., 1971, 36, 846. Osgood, C.E.; Suci, G.J.; Tannenbaum, P.E. "The Measurement of Meaning"; University of Illinois Press: Chicago, 1957. Yamanaka, M.; Okayasu, S.; Tanaka, H. Unpublished data.
RECEIVED
August 7, 1979.
In Food Taste Chemistry; Boudreau, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.