High-Performance Ultraviolet-to-Infrared Broadband Perovskite

Oct 17, 2017 - Metal substrate boosts carrier injection, resulting in higher responsivity compared to the conventional devices grown on glass, whereas...
1 downloads 0 Views 3MB Size
Research Article Cite This: ACS Appl. Mater. Interfaces XXXX, XXX, XXX-XXX

www.acsami.org

High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions Norah Alwadai,†,‡ Md Azimul Haque,† Somak Mitra,† Tahani Flemban,† Yusin Pak,† Tom Wu,† and Iman Roqan*,† †

King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia ‡ Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), Riyadh 11671, Saudi Arabia S Supporting Information *

ABSTRACT: A high-performance vertically injected broadband UV-toIR photodetector based on Gd-doped ZnO nanorods (NRs)/ CH3NH3PbI3 perovskite heterojunction was fabricated on metal substrates. Our perovskite-based photodetector is sensitive to a broad spectral range, from ultraviolet to infrared light region (λ = 250−1357 nm). Such structure leads to a high photoresponsivity of 28 and 0.22 A/ W, for white light and IR illumination, respectively, with high detectivity values of 1.1 × 1012 and 9.3 × 109 Jones. Optical characterizations demonstrate that the IR detection is due to intraband transition in the perovskite material. Metal substrate boosts carrier injection, resulting in higher responsivity compared to the conventional devices grown on glass, whereas the presence of Gd increases the ZnO NRs performance. For the first time, the perovskite-based photodetector is demonstrated to extend its detection capability to IR (>1000 nm) with high room temperature responsivity across the detected spectrum, leading to a high-performance ingenious cost-effective UV-to-IR broadband photodetector design for large-scale applications. KEYWORDS: (Perovskite, ZnO, metal substrate, intraband absorption, infrared detection)



INTRODUCTION Broadband photodetectors with sensitivity over the entire spectrum from the UV to IR light region have gained significant attention in several fields due to the wide range of their potential applications, such as video imaging, optical communications, environmental monitoring, interconnectivity in biomedical sensing, and remote sensing,1−4 which has led to the development of broadband photodetectors. The discovery of solution-processed organometallic halide perovskites (MAPbX3, X = I, Br, Cl) provides a promising route for fabricating high-performance applications, such as solar cells, transistors, and photodetectors5 at a relatively low cost. Among these organometallic halide perovskites, CH3NH3PbI3, methylammonium lead iodide (MAPbI3), is particularly relevant owing to its appropriate direct bandgap,6 large absorption coefficient,7 long-range balanced electron- and hole-transport lengths,8,9 and high charge carrier mobilities.9 Xin et al. were the first to produce an organic-halide photodetector by one-step solution deposition that exhibited reasonable sensitivity.10 Strong photocurrent multiplication ability of the CH3NH3PbI3 perovskite has been reported, which justifies its application as a photodetector.11 However, most of the current photodetectors have sub-band detection spectral regions (such as visible light,12 UV light,13 and infrared14) that can be a limiting factor in some © XXXX American Chemical Society

applications. It is noteworthy that there are several oxide perovskites, which have been explored extensively as UV photodetectors.15,16 In contrast to hybrid perovskites, these oxide perovskites are generally insulating with wide bandgaps, making them particularly suitable for visible-blind UV photodetectors.17 Furthermore, broadband photodetectors based on inorganic semiconductor thin films are not practical due to the high cost of fabrication and processing, lattice-mismatch between the layers, slow response and low absorption coefficient over the entire spectrum.18 Moreover, none of the photodetector devices based on perovskite developed thus far have shown IR detection capability (>1000 nm). Perovskitebased near-infrared (NIR) (1000 nm) with high photoresponsivity comparable to the commercial IR detectors. Our device exhibits promising properties, such as high photoresponsivity and high detectivity in both white light and infrared spectral region. The present study thus paves the way for developing high-performance, low-cost, and flexible large-scale UV-to-IR broadband photodetectors with high responsivity over the entire light spectrum.



ASSOCIATED CONTENT

* Supporting Information S

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b09705. The cross-sectional SEM image of the device structure; the absorption spectrum and XRD patterns of CH3NH3PbI3 perovskite on glass substrate (PDF)



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. ORCID

Tom Wu: 0000-0003-0845-4827 Iman Roqan: 0000-0001-7442-4330 Author Contributions

All authors have given approval to the final version of the manuscript. Notes

The authors declare no competing financial interest.

■ ■

ACKNOWLEDGMENTS We thank KAUST for the financial support. REFERENCES

(1) Hu, L. F.; Yan, J.; Liao, M. Y.; Xiang, H. J.; Gong, X. G.; Zhang, L. D.; Fang, X. S. An Optimized Ultraviolet-A Light Photodetector with Wide-Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt. Adv. Mater. 2012, 24, 2305−2309. (2) Manga, K. K.; Wang, J.; Lin, M.; Zhang, J.; Nesladek, M.; Nalla, V.; Ji, W.; Loh, K. P. High-Performance Broadband Photodetector Using Solution-Processible PbSe−TiO2−Graphene Hybrids. Adv. Mater. 2012, 24, 1697−1702. (3) Tang, L.; Kocabas, S. E.; Latif, S.; Okyay, A. K.; Ly-Gagnon, D. S.; Saraswat, K. C.; Miller, D. A. Nanometre-Scale Germanium Photodetector Enhanced by a Near-Infrared Dipole Antenna. Nat. Photonics 2008, 2, 226−229. F

DOI: 10.1021/acsami.7b09705 ACS Appl. Mater. Interfaces XXXX, XXX, XXX−XXX

Research Article

ACS Applied Materials & Interfaces (24) Wang, Z. L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242−246. (25) Yu, J. C.; Chen, X.; Wang, Y.; Zhou, H.; Xue, M. N.; Xu, Y.; Li, Z. S.; Ye, C.; Zhang, J.; van Aken, P. A.; Lund, P. D.; Wang, H. A HighPerformance Self-Powered Broadband Photodetector Based on a CH3NH3PbI3 Perovskite/Zno Nanorod Array Heterostructure. J. Mater. Chem. C 2016, 4, 7302−7308. (26) Cao, F.; Tian, W.; Gu, B.; Ma, Y.; Lu, H.; Li, L. HighPerformance UV−Vis Photodetectors Based on Electrospun ZnO Nanofiber-Solution Processed Perovskite Hybrid Structures. Nano Res. 2017, 10, 2244−2256. (27) Gao, T.; Zhang, Q.; Chen, J.; Xiong, X.; Zhai, T. PerformanceEnhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnO-Nanowire Hybrid Structures. Adv. Opt. Mater. 2017, 5, 1700206. (28) Xue, M. N.; Zhou, H.; Xu, Y.; Mei, J.; Yang, L.; Ye, C.; Zhang, J.; Wang, H. High-Performance Ultraviolet-Visible Tunable Perovskite Photodetector Based on Solar Cell Structure. Science China-Materials 2017, 60, 407−414. (29) Kang, M. G.; Park, N. G.; Ryu, K. S.; Chang, S. H.; Kim, K. J. A 4.2% Efficient Flexible Dye-Sensitized TiO2 Solar Cells Using Stainless Steel Substrate. Sol. Energy Mater. Sol. Cells 2006, 90, 574−581. (30) Kessler, F.; Rudmann, D. Technological Aspects of Flexible CIGS Solar Cells and Modules. Sol. Energy 2004, 77, 685−695. (31) Lee, M.; Jo, Y.; Kim, D. S.; Jeong, H. Y.; Jun, Y. Efficient, Durable and Flexible Perovskite Photovoltaic Devices with AgEmbedded ITO as the Top Electrode on a Metal Substrate. J. Mater. Chem. A 2015, 3, 14592−14597. (32) Lee, M.; Ko, Y.; Min, B. K.; Jun, Y. Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate. ChemSusChem 2016, 9, 31−35. (33) Lee, M.; Jo, Y.; Kim, D. S.; Jun, Y. Flexible Organo-Metal Halide Perovskite Solar Cells on a Ti Metal Substrate. J. Mater. Chem. A 2015, 3, 4129−4133. (34) Jung, D. Y.; Baek, S. H.; Hasan, M. R.; Park, I. K. PerformanceEnhanced ZnO Nanorod-Based Piezoelectric Nanogenerators on Double-Sided Stainless Steel Foil. J. Alloys Compd. 2015, 641, 163− 169. (35) Weng, W.; Hsueh, T. J.; Chang, S. J.; Chang, S. P.; Hsu, C. L. Laterally-Grown ZnO-Nanowire Photodetectors on Glass Substrate. Superlattices Microstruct. 2009, 46, 797−802. (36) Gupta, D.; Wienk, M. M.; Janssen, R. A. Efficient Polymer Solar Cells on Opaque Substrates With a Laminated PEDOT: PSS Top Electrode. Adv. Energy Mater. 2013, 3, 782−787. (37) Lamouchi, A.; Slimi, B.; Ben Assaker, I.; Gannouni, M.; Chtourou, R. Correlation Between SSM Substrate Effect and Physical Properties of ZnO Nanowires Electrodeposited with or without Seed Layer for Enhanced Photoelectrochemical Applications. Eur. Phys. J. Plus 2016, 131, 201. (38) Gong, X.; Tong, M. H.; Xia, Y. J.; Cai, W. Z.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. High-Detectivity Polymer Photodetectors with Spectral Response from 300 to 1450 nm. Science 2009, 325, 1665−1667. (39) Velusamy, D. B.; Haque, M. A.; Parida, M. R.; Zhang, F.; Wu, T.; Mohammed, O. F.; Alshareef, H. N. 2D Organic-Inorganic Hybrid Thin Films for Flexible UV-Visible Photodetectors. Adv. Funct. Mater. 2017, 27, 1605554. (40) Umar, A.; Choi, Y. J.; Suh, E. K.; Al-Hajry, A.; Hahn, Y.-B. Evolution of ZnO Nanostructures by Non-Catalytic Growth Process on Steel Alloy Substrate: Structural and Optical Properties. Curr. Appl. Phys. 2008, 8, 798−802. (41) Liu, J.; Huang, X.; Li, Y.; Ji, X.; Li, Z.; He, X.; Sun, F. Vertically Aligned 1D ZnO Nanostructures on Bulk Alloy Substrates: Direct Solution Synthesis, Photoluminescence, and Field Emission. J. Phys. Chem. C 2007, 111, 4990−4997. (42) Flemban, T. H.; Singaravelu, V.; Devi, A. A. S.; Roqan, I. S. Homogeneous Vertical ZnO Nanorod Arrays with High Conductivity on an in Situ Gd Nanolayer. RSC Adv. 2015, 5, 94670−94678.

(43) Peng, W. B.; Yu, R. M.; Wang, X. F.; Wang, Z. N.; Zou, H. Y.; He, Y. N.; Wang, Z. L. Temperature Dependence of Pyro-Phototronic Effect on Self-Powered ZnO/Perovskite Heterostructured Photodetectors. Nano Res. 2016, 9, 3695−3704. (44) Tedde, S. F.; Kern, J.; Sterzl, T.; Furst, J.; Lugli, P.; Hayden, O. Fully Spray Coated Organic Photodiodes. Nano Lett. 2009, 9, 980− 983. (45) Li, Q.; Kumar, V.; Li, Y.; Zhang, H.; Marks, T. J.; Chang, R. P. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions. Chem. Mater. 2005, 17, 1001−1006. (46) Baikie, T.; Fang, Y. N.; Kadro, J. M.; Schreyer, M.; Wei, F. X.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3) Pbi3 for Solid-State Sensitised Solar Cell Applications. J. Mater. Chem. A 2013, 1, 5628− 5641. (47) Oku, T. Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds used for Solar Cells. In Solar Cells-New Approaches and Reviews, 1st ed; InTech, 2015. (48) Jung, H. S.; Park, N. G. Perovskite Solar Cells: from Materials to Devices. Small 2015, 11, 10−25. (49) Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Near-Band-Edge Optical Responses of Solution-Processed OrganicInorganic Hybrid Perovskite CH3NH3PbI3 on Mesoporous TiO2 Electrodes. Appl. Phys. Express 2014, 7, 032302. (50) Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316−319. (51) Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292, 1897−1899. (52) Wang, L.; Wang, K.; Xiao, G.; Zeng, Q. C.; Zou, B. PressureInduced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride. J. Phys. Chem. Lett. 2016, 7, 5273−5279. (53) Narra, S.; Chung, C. C.; Diau, E. W. G.; Shigeto, S. Simultaneous Observation of an Intraband Transition and Distinct Transient Species in the Infrared Region for Perovskite Solar Cells. J. Phys. Chem. Lett. 2016, 7, 2450−2455. (54) Fox, M. Optical Properties of Solids, 2nd ed; Oxford University Press: New York, 2001. (55) Grundmann, M. Physics of Semiconductors, 3rd ed; Springer International Publishing: Switzerland, 2016. (56) Saidaminov, M. I.; Haque, M. A.; Almutlaq, J.; Sarmah, S.; Miao, X. H.; Begum, R.; Zhumekenov, A. A.; Dursun, I.; Cho, N.; Murali, B.; Mohammed, O. F.; Wu, T.; Bakr, O. M. Inorganic Lead Halide Perovskite Single Crystals: Phase-Selective Low-Temperature Growth, Carrier Transport Properties, and Self-Powered Photodetection. Adv. Opt. Mater. 2017, 5, 1600704. (57) Lin, Q. Q.; Armin, A.; Burn, P. L.; Meredith, P. Filterless Narrowband Visible Photodetectors. Nat. Photonics 2015, 9, 687−694. (58) Wang, Z. N.; Yu, R. M.; Wang, X. F.; Wu, W. Z.; Wang, Z. L. Ultrafast Response p-Si/n-ZnO Heterojunction Ultraviolet Detector Based on Pyro-Phototronic Effect. Adv. Mater. 2016, 28, 6880−6886. (59) Downs, C.; Vandervelde, T. E. Progress in Infrared Photodetectors Since 2000. Sensors 2013, 13, 5054−5098. (60) Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gratzel, M. Understanding the Rate-Dependent JV Hysteresis, Slow Time Component, and Aging in CH3NH3PbI3 Perovskite Solar Cells: The Role of a Compensated Electric Field. Energy Environ. Sci. 2015, 8, 995−1004. (61) Hu, L. G.; Liu, X.; Dalgleish, S.; Matsushita, M. M.; Yoshikawa, H.; Awaga, K. Organic Optoelectronic Interfaces with Anomalous Transient Photocurrent. J. Mater. Chem. C 2015, 3, 5122−5135.

G

DOI: 10.1021/acsami.7b09705 ACS Appl. Mater. Interfaces XXXX, XXX, XXX−XXX