Influence of NH4Br on Solvation Behavior of Polyhydroxy Solutes in

Mar 12, 2015 - Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India. •S Supporting Information. ABSTRACT: Precise density and...
2 downloads 0 Views 3MB Size
Article pubs.acs.org/jced

Influence of NH4Br on Solvation Behavior of Polyhydroxy Solutes in Aqueous Solutions at Different Temperatures and Atmospheric Pressure Parampaul K. Banipal,* Sonika Arti, and Tarlok S. Banipal Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India S Supporting Information *

ABSTRACT: Precise density and viscosity measurements on ternary solutions (polyhydroxy solute + NH4Br + H2O) have been carried out over the temperature range (288.15 to 318.15) K at atmospheric pressure. Partial molar volumes, V°2 at infinite dilution and the Jones-Dole B-coefficients obtained from above data were utilized to estimate the transfer parameters (ΔtV2° and ΔtB) for polyhydroxy solutes. The interaction coefficients were obtained from the transfer values using the McMillan−Mayer theory of solutions. Isobaric expansion coefficients and second-order derivatives {(∂V°2 /∂T)P, (∂2V°2 /∂T2)P}, and dB/dT coefficients were also determined to study the effect of temperature. These parameters were used to understand the kosmo-/chaotropic nature of solutes and cosolute which is helpful in rationalizing the mixing effects due to interactions between them in these solutions, concomitantly keeping the stereochemical differences of the polyhydroxy solutes in view.

1. INTRODUCTION The properties of solutions of polyols and saccharides in mixed aqueous media are of considerable interest in basic research and are applied in food, pharmacy, chemical engineering, crystallization, desalination, etc.1−10 Binary and ternary aqueous solutions of saccharides, inorganic salts, alcohols, and polyols can be used as osmotic agents, and to adjust the water activity and pH in order to reduce the growth of contaminated microorganisms.11−13 Xylitol is broadly used as sweetner, and D-mannitol is used as hyperosmolar solution in the therapy of elevated intracranial pressure in brain trauma.14,15 Polyhydroxy solutes can increase the thermal stability of proteins or reduce the extent of their denaturation by other reagents. Disaccharides are used as cryoprotectants against the destabilizing and degradation of enzymes and drugs during lyophilisation properties. The organisms exploit the water structuring characteristics of the solutes in many ways, such as to modify the viscosity of cellular fluids and to protect against freezing/ dehydration.16,17 Volumetric and viscometric data provide information regarding the hydration behavior of polyhydroxy solutes and solute−solvent interactions, which will be further helpful in the study of protein stability, antidesiccation, and their taste qualities.18−21 Salt effects on water have been most commonly described in terms of the chaotropicity or kosmotropicity of the solutes. NH4Br is known22 to destabilize folded proteins and give rise to salting-in behavior. The accurate data are also useful to test the models designed to understand the hydration of ions.23 Therefore, we report here the apparent molar volumes V2,ϕ and viscosities η of various monosaccharides, their polyols, and disaccharides: (−)-D-arabinose (Ara), (+)-D-xylose (Xyl), (+)-D-mannose (Man), (+)-D-galactose (Gal), (+)-D-glucose (Glc), (−)-L-sorbose (Sor), arabitol (Arol), xylitol (Xyol), © 2015 American Chemical Society

mannitol (Maol), galactitol (Gaol), sorbitol (Srol), (+)-maltose monohydrate (Mal), and sucrose (Suc) in aqueous (0.05, 0.5, 1.0, and 2.0) mol·kg−1 ammonium bromide (NH4Br) solutions at (288.15, 298.15, 308.15, and 318.15) K and atmospheric pressure. Partial molar volumes V°2 at infinite dilution, transfer volumes ΔtV°2 , isobaric expansion coefficients (∂V°2 /∂T)P, their derivatives (∂2V2°/∂T2)P, viscosity B-coefficients, their transfer values ΔtB, the dB/dT coefficients, and interaction coefficients (VAB, VABB and ηAB, ηABB) have also been determined. Results have been discussed in terms of solute−solvent and solutecosolute interactions. The effects of ammonium salts on the taste quality of studied solutes have been discussed. An attempt has been made to interpret the data in terms of the stereochemistry of polyhydroxy solutes and further to correlate with their solvation behavior.

2. EXPERIMENTAL SECTION All the chemicals of highest purity grade (Table 1) were dried in a vacuum desiccator over anhydrous CaCl2 for 48 h, and used without further purification. A vibrating-tube digital densimeter (DMA 60/602, Anton Paar, Austria) was used to measure the densities of the solutions with reproducibility better than ± 3·10−3 kg·m−3 on average. The temperature of the water around the densimeter cell was controlled to ± 0.01 K by using an efficient constant temperature bath (Julabo F25/ Germany). The operation of the instrument was checked by determining densities of NaCl(aq) solutions, that agree very well with the literature values.24 All the solutions were prepared Received: September 24, 2014 Accepted: March 3, 2015 Published: March 12, 2015 1023

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

cases. The slopes obtained from V2,ϕ versuss mA plots show no regular trend with increase in concentration of NH4Br as well as with rise of temperature (Table 2). The densities are found to increase linearly with molalities of cosolute in all the studied solutes. However, the plots of V2,ϕ versus molality mB (plots not given) show that the V2,ϕ values decrease in all the cases at very low concentrations of NH4Br and this decrease remains continuous with further increase in concentration of cosolute in cases of pentoses, pentaols, and hexaols; however, in other cases it again starts increasing. Particularly in disaccharides the increase in slope values is more and it levels off at higher concentrations of NH4Br. Apparent molar volumes of solutes decrease when transferred from water to mB ≈ 0.05 mol·kg−1 of NH4Br, which means packing of the component molecules takes place effectively at a low concentration of cosolute, due to various types of solute− solute/solvent interactions. This can be explained using the “iceberg” model proposed by Frank and Evans.27 This efficient packing is due to the long-range order interactions in aqueous media giving rise to highly structured H-bonding network which have numerous cavities that can accommodate other species. According to Frank and Evans, the orientation of added solute molecules around the ice-like structure of H2O forms socalled “iceberg” structure which results in the stabilization of the water structure. This phenomenon continues until a concentration is reached at which all the cavities are filled with the solute molecules. The minima could be attributed to maximum interaction between water and solute molecules and hence the most stabilization of the water aggregates. Therefore, the solvent environment around the solute molecule becomes more ordered and more structured in the dilute concentration region. As the concentration of the solute increases, the V2,ϕ of the solute increases due to gradual breakdown of the less dense H-bonded structure of water. The V2,ϕ values of polyols are (6 to 10) % greater than those of respective saccharides, indicating weaker interactions with water. Apparent molar volume reflects the size of the hydrated molecules in the solution, and hence the extent of interaction of the solute molecule with water structure. A low apparent molar volume indicates better packing characteristics, hence better interaction with water structure.28 3.2. Infinite-Dilution Partial Molar Volumes and Volumes of Transfer. Partial molar volumes at infinite dilution (V2° = V2,ϕ ° ) were evaluated by least-squares fitting of the following equation to V2,ϕ data as

Table 1. Specifications of the Chemicals Used chemical name

source

mole fraction puritya

(−)-D-arabinose (+)-D-arabitol (+)-D-xylose xylitol (−)-L-sorbose D-sorbitol (+)-D-galactose galactitol (+)-D-mannose D-mannitol (+)-D-glucose sucrose (+)-D-maltose monohydrate ammonium bromide (NH4Br)

Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sisco Research Lab. Sigma Chemical Co. Sigma Chemical Co. Fluka Sigma Chemical Co Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co. Sigma Chemical Co.

0.99 ≥ 0.99 0.99 ≥ 0.99 ≥ 0.98 0.98 ≥ 0.99 ≥ 0.99 ≥ 0.99 ≥ 0.98 ≥ 0.99 ≥ 0.99 0.95 ≥ 0.99

a

As declared by supplier.

afresh by mass using a Mettler balance (model: AB265-S) (precision ± 0.01 mg) in double-distilled, deionized, and degassed water. The viscosities of solutions were measured by using an Ubbelohde-type capillary viscometer, calibrated by measuring the efflux time of water from (298.15 to 318.15) K. The efflux time was measured with a digital stopwatch having a resolution of ± 0.01 s. The average of at least four flow-time readings was used for calculating the viscosities of the solution. The temperature of the thermostatic water bath (Julabo F25/ Germany) was controlled within ± 0.01 K. The measured standard uncertainty in viscosities is 0.002 mPa·s. The densities and viscosities for pure water taken from the literature25,26 are (0.999129, 0.997047, 0.994063, 0.990244)·103 kg·m−3 and (1.1382, 0.8904, 0.7194, 0.5963) mPa·s at (288.15, 298.15, 308.15, and 318.15) K, respectively.

3. RESULTS AND DISCUSSION 3.1. Apparent Molar Volumes. The apparent molar volumes, V2,ϕ of polyhydroxy solutes in water and in mB (molality of NH4Br in water) = (0.05, 0.5, 1.0, and 2.0) mol· kg−1 NH4Br(aq) solutions at different temperatures were calculated from the density data using the following relation: V2, ϕ = {M /ρ} − {(ρ − ρo )/(mA ρρo )}

(1)

where M is the molar mass of solute, ρο is the density of solvent {H2O/(NH4Br + H2O)}, mA is the molality, and ρ is the density of solution. Density and V2,ϕ results for solutes in different molalities of cosolute (NH4Br) are given in Table 2, at temperatures studied. The densities and V2,ϕ values increase with molalities of solutes, and the densities decrease but V2,ϕ values increase with rise of temperature (the representative 3-D plots of density, ρ and V2,ϕ versus molality, mA for (−)-Lsorbose at mB = 0.5 mol·kg−1 NH4Br(aq) solutions are given in Figure 1 panels a and b, respectively as a function of temperature). The slopes obtained from plots of ρ versus mA (plots not given) show that there is no appreciable change in slope values for pentoses, pentaols, or hexaols in water and in all concentrations of NH4Br, but in hexoses (except Sor), the slopes decrease with increase in concentration of NH4Br. In the case of disaccharides, that is, Suc and Mal, there is more decrease in the values of slopes with the concentration of NH4Br. The slopes decrease with rise of temperature in all the

V2, ϕ = V 2o + Sv mA

(2)

where Sv is the slope (Table 3). The V°2 values in water are in good agreement (Table 4) with those reported by other workers.6,7,21,29−46 The V2° values of solutes in water are positive and increase with the complexity of solutes, which can be attributed33,45 to hydrophobic effects and to stronger/more extensive hydrogen bonding between hydroxyl (−OH) groups of polyhydroxy solutes and water molecules. Partial molar volumes of transfer, ΔtV2° of polyhydroxy solutes from water to aqueous ammonium bromide solutions were estimated as Δt V 2o = V 2o (in NH4Br(aq) solutions) − V 2o (in H 2O)

(3)

All the solutes studied have positive V°2 values in water and in mB = (0.05, 0.5, 1.0, and 2.0) mol·kg−1 NH4Br(aq) solutions at different temperatures. The V2° values are less (Table 3) for disaccharides in mB = 0.05 mol·kg−1, for hexoses (except Glc) 1024

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 2. Densities, ρ, and Apparent Molar volumes, V2,ϕ, of Polyhydroxy Solutes in Water and NH4Br(aq) Solutions over the Temperature Range (288.15 to 318.15) K at Pressure (p = 0.1 MPa) ρ·10−3

mAa mol·kg

−1

kg·m

−3

V2,ϕ·106 m ·mol 3

−1

T/K = 288.15

ρ·10−3 kg·m

−3

V2,ϕ·106

T/K = 298.15

0.00000 0.05173 0.07102 0.09055 0.10926 0.12441 0.14763

0.99913 1.00209 1.00318 1.00428 1.00532 1.00617 1.00745

92.66 92.73 92.81 92.88 92.94 93.03

0.00000 0.04908 0.07124 0.09381 0.11140 0.13358 0.14636

1.00105 1.00396 1.00525 1.00657 1.00758 1.00885 1.00958

90.64 90.72 90.82 90.89 90.98 91.03

0.00000 0.05202 0.07524 0.09020 0.11524 0.12656 0.14973

1.02405 1.02716 1.02853 1.02940 1.03086 1.03152 1.03285

89.40 89.49 89.57 89.65 89.71 89.80

0.00000 0.05119 0.06739 0.08410 0.10370 0.12991 0.15045

1.04901 1.05212 1.05309 1.05408 1.05523 1.05676 1.05796

87.67 87.78 87.93 88.06 88.21 88.32

0.00000 0.05258 0.07278 0.08976 0.10710 0.12741 0.14867

1.09599 1.09912 1.10031 1.10131 1.10231 1.10348 1.10470

87.18 87.24 87.30 87.38 87.46 87.56

0.05420 0.07304 0.08867 0.10528 0.13227 0.15125

1.00187 1.00282 1.00359 1.00440 1.00572 1.00664

101.28 101.36 101.47 101.55 101.69 101.79

0.05238 0.06966 0.09163 0.11088 0.12729 0.15158

1.00374 1.00462 1.00573 1.00669 1.00751 1.00871

100.49 100.54 100.61 100.68 100.75 100.84

−1

m ·mol 3

ρ·10−3 kg·m

−3

−1

m ·mol 3

T/K = 308.15

(−)-D-Arabinose (Mb = 150.13·10−3 kg·mol−1) Water 0.99705 0.99406 0.99997 93.44 0.99694 1.00105 93.55 0.99800 1.00213 93.60 0.99906 1.00317 93.66 1.00007 1.00400 93.72 1.00088 1.00526 93.82 1.00212 mBc = 0.05 mol·kg−1 0.99876 0.99575 1.00162 91.74 0.99855 1.00289 91.84 0.99981 1.00417 91.97 1.00107 1.00517 92.06 1.00205 1.00642 92.16 1.00327 1.00713 92.23 1.00397 mB = 0.5 mol·kg−1 1.02181 1.01906 1.02487 90.35 1.02207 1.02622 90.44 1.02339 1.02708 90.50 1.02424 1.02852 90.60 1.02565 1.02916 90.65 1.02628 1.03048 90.75 1.02757 mB = 1.0 mol·kg−1 1.04688 1.04331 1.04993 88.68 1.04631 1.05088 88.80 1.04725 1.05185 88.97 1.04821 1.05298 89.14 1.04933 1.05448 89.32 1.05081 1.05565 89.45 1.05196 mB = 2.0 mol·kg−1 1.09256 1.08878 1.09563 88.26 1.09179 1.09678 88.40 1.09292 1.09775 88.50 1.09387 1.09873 88.61 1.09482 1.09987 88.72 1.09593 1.10106 88.83 1.09709 (+)-D-Arabitol (M = 152.15·10−3 kg·mol−1) Water 0.99973 102.52 0.99670 1.00065 102.63 0.99761 1.00141 102.70 0.99835 1.00221 102.77 0.99914 1.00350 102.89 1.00041 1.00439 103.01 1.00130 mB = 0.05 mol·kg−1 1.00140 101.62 0.99834 1.00226 101.67 0.99918 1.00334 101.73 1.00024 1.00429 101.80 1.00117 1.00509 101.86 1.00195 1.00626 101.97 1.00311

1025

V2,ϕ·106

ρ·10−3 kg·m

−3

V2,ϕ·106 m3·mol−1

T/K = 318.15

94.45 94.60 94.70 94.81 94.90 95.01

0.99024 0.99308 0.99413 0.99518 0.99618 0.99698 0.99821

95.41 95.51 95.58 95.66 95.72 95.82

92.84 92.96 93.06 93.16 93.27 93.34

0.99291 0.99567 0.99689 0.99813 0.99909 1.00029 1.00098

94.09 94.19 94.28 94.37 94.47 94.53

91.41 91.54 91.59 91.71 91.75 91.86

1.01568 1.01863 1.01993 1.02076 1.02214 1.02276 1.02402

92.60 92.71 92.78 92.88 92.94 93.04

89.71 89.81 89.92 90.04 90.19 90.30

1.04033 1.04328 1.04420 1.04514 1.04625 1.04771 1.04885

90.79 90.88 90.95 91.03 91.15 91.23

89.45 89.59 89.70 89.84 89.96 90.07

1.08568 1.08861 1.08972 1.09064 1.09158 1.09267 1.09380

90.75 90.85 90.94 91.03 91.13 91.23

103.54 103.59 103.67 103.70 103.80 103.86

0.99283 0.99372 0.99445 0.99522 0.99646 0.99733

104.70 104.78 104.85 104.94 105.07 105.15

102.66 102.71 102.85 102.93 103.01 103.08

0.99547 0.99630 0.99735 0.99826 0.99903 1.00017

103.50 103.59 103.68 103.77 103.84 103.96

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

T/K = 288.15

T/K = 298.15

0.04802 0.06817 0.09368 0.10752 0.13451 0.14891

1.02649 1.02751 1.02878 1.02946 1.03079 1.03149

99.83 99.91 100.01 100.07 100.16 100.23

0.04908 0.07197 0.09067 0.10890 0.12774 0.14923

1.05151 1.05266 1.05359 1.05449 1.05541 1.05645

98.47 98.58 98.67 98.79 98.90 99.00

0.05056 0.07007 0.08992 0.10509 0.12677 0.14875

1.09850 1.09946 1.10042 1.10115 1.10218 1.10322

97.27 97.36 97.45 97.52 97.63 97.72

0.04910 0.07084 0.08985 0.11439 0.13026 0.14850

1.00182 1.00299 1.00402 1.00532 1.00616 1.00712

95.17 95.26 95.32 95.43 95.49 95.57

0.05025 0.07012 0.09011 0.11178 0.12838 0.15082

1.00391 1.00502 1.00611 1.00729 1.00818 1.00937

92.86 93.18 93.44 93.74 93.92 94.12

0.05259 0.06885 0.08879 0.11109 0.12936 0.14567

1.02707 1.02798 1.02909 1.03030 1.03129 1.03217

91.63 91.85 92.10 92.40 92.59 92.74

0.04743 0.07319 0.08715 0.10984 0.13147 0.14861

1.05179 1.05328 1.05408 1.05537 1.05659 1.05755

89.63 89.76 89.84 89.92 90.04 90.16

0.04585 0.07244 0.09102 0.11118 0.13056 0.15277

1.09862 1.10012 1.10115 1.10227 1.10334 1.10454

89.08 89.25 89.36 89.45 89.56 89.73

T/K = 308.15

mB = 0.5 mol·kg−1 1.02421 100.80 1.02142 1.02521 100.88 1.02240 1.02646 100.95 1.02363 1.02713 101.01 1.02429 1.02843 101.11 1.02558 1.02912 101.18 1.02626 mB = 1.0 mol·kg−1 1.04933 99.56 1.04571 1.05045 99.66 1.04681 1.05136 99.76 1.04770 1.05224 99.85 1.04857 1.05314 99.95 1.04945 1.05417 100.05 1.05045 mB = 2.0 mol·kg−1 1.09501 98.43 1.09116 1.09593 98.57 1.09207 1.09687 98.72 1.09298 1.09757 98.86 1.09367 1.09857 98.97 1.09464 1.09957 99.09 1.09562 (+)-D-Xylose (M = 150.13·10−3 kg·mol−1) Water 0.99972 95.62 0.99671 1.00089 95.67 0.99787 1.00190 95.76 0.99888 1.00321 95.82 1.00016 1.00404 95.87 1.00099 1.00500 95.94 1.00194 mB = 0.05 mol·kg−1 1.00161 93.19 0.99855 1.00270 93.64 0.99962 1.00378 94.00 1.00068 1.00494 94.35 1.00182 1.00581 94.59 1.00268 1.00698 94.93 1.00383 mB = 0.5 mol·kg−1 1.02479 92.41 1.02201 1.02569 92.64 1.02290 1.02678 92.95 1.02398 1.02797 93.31 1.02516 1.02894 93.51 1.02612 1.02980 93.71 1.02697 mB = 1.0 mol·kg−1 1.04962 90.36 1.04601 1.05109 90.48 1.04746 1.05188 90.57 1.04824 1.05316 90.66 1.04950 1.05436 90.78 1.05069 1.05532 90.84 1.05162 mB = 2.0 mol·kg−1 1.09516 89.67 1.09134 1.09665 89.77 1.09281 1.09768 89.84 1.09382 1.09879 89.91 1.09491 1.09985 89.98 1.09594 1.10106 90.07 1.09713

1026

T/K = 318.15

101.69 101.78 101.86 101.90 101.98 102.05

1.01801 1.01897 1.02018 1.02083 1.02209 1.02275

102.59 102.66 102.80 102.88 102.97 103.04

100.67 100.77 100.87 100.98 101.07 101.16

1.04268 1.04376 1.04463 1.04547 1.04634 1.04732

101.77 101.88 101.98 102.08 102.18 102.26

99.78 99.89 100.01 100.10 100.20 100.32

1.08800 1.08889 1.08978 1.09045 1.09141 1.09236

100.85 100.95 101.08 101.16 101.26 101.38

96.19 96.30 96.35 96.46 96.51 96.62

0.99287 0.99402 0.99503 0.99631 0.99713 0.99807

96.76 96.83 96.88 96.97 97.03 97.11

94.34 94.74 95.11 95.42 95.65 95.94

0.99569 0.99676 0.99782 0.99895 0.99982 1.00097

94.98 95.27 95.54 95.83 96.00 96.23

93.11 93.31 93.52 93.89 94.10 94.30

1.01859 1.01947 1.02053 1.02169 1.02264 1.02348

93.89 94.10 94.42 94.79 95.01 95.21

91.26 91.39 91.48 91.57 91.68 91.80

1.04299 1.04442 1.04519 1.04643 1.04760 1.04852

92.13 92.26 92.34 92.45 92.53 92.64

90.54 90.68 90.77 90.90 91.02 91.11

1.08820 1.08964 1.09065 1.09172 1.09274 1.09407

91.33 91.48 91.54 91.63 91.78 91.88

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

T/K = 288.15

T/K = 298.15

0.05420 0.07245 0.08520 0.10949 0.13140 0.15274

1.00189 1.00281 1.00345 1.00466 1.00574 1.00677

100.90 100.99 101.06 101.17 101.25 101.37

0.05218 0.07071 0.08996 0.11186 0.13038 0.14765

1.00374 1.00468 1.00564 1.00672 1.00763 1.00846

100.26 100.45 100.61 100.83 100.97 101.20

0.04907 0.07076 0.08999 0.10902 0.12005 0.15639

1.02657 1.02765 1.02859 1.02952 1.03005 1.03179

99.50 99.77 100.00 100.19 100.31 100.62

0.04998 0.06738 0.09000 0.11357 0.13349 0.14685

1.05155 1.05241 1.05351 1.05464 1.05559 1.05622

98.68 98.89 99.15 99.43 99.61 99.72

0.04991 0.07076 0.08880 0.11214 0.13013 0.15083

1.09844 1.09943 1.10027 1.10135 1.10216 1.10310

97.81 98.11 98.35 98.60 98.80 98.96

0.05105 0.06584 0.08815 0.10728 0.13168 0.15053

1.00268 1.00370 1.00522 1.00651 1.00814 1.00938

110.18 110.29 110.46 110.62 110.81 110.94

0.05149 0.07011 0.09283 0.11184 0.13107 0.15259

1.00466 1.00595 1.00750 1.00879 1.01009 1.01153

109.62 109.79 109.91 110.05 110.19 110.32

0.05278 0.07189 0.08686 0.11009 0.13269 0.15278

1.02775 1.02907 1.03010 1.03168 1.03320 1.03455

108.72 108.80 108.92 109.09 109.23 109.31

T/K = 308.15

Xylitol (M = 152.15·10−3 kg·mol−1) Water 0.99975 102.14 0.99672 1.00065 102.25 0.99760 1.00127 102.37 0.99822 1.00244 102.48 0.99937 1.00349 102.61 1.00041 1.00450 102.72 1.00141 mB = 0.05 mol·kg−1 1.00142 100.98 0.99837 1.00234 101.19 0.99929 1.00329 101.42 1.00022 1.00436 101.59 1.00127 1.00525 101.74 1.00216 1.00608 101.87 1.00297 mB = 0.5 mol·kg−1 1.02429 100.27 1.02152 1.02536 100.51 1.02257 1.02630 100.72 1.02350 1.02722 100.91 1.02440 1.02774 101.04 1.02493 1.02945 101.36 1.02663 mB = 1.0 mol·kg−1 1.04937 99.48 1.04577 1.05022 99.72 1.04661 1.05131 100.01 1.04769 1.05242 100.24 1.04879 1.05335 100.43 1.04971 1.05397 100.56 1.05033 mB = 2.0 mol·kg−1 1.09495 98.80 1.09114 1.09592 99.06 1.09209 1.09675 99.33 1.09290 1.09780 99.58 1.09393 1.09861 99.75 1.09472 1.09952 99.93 1.09561 (−)-L-Sorbose (M = 180.16·10−3 kg·mol−1) Water 1.00057 110.93 0.99756 1.00157 111.11 0.99856 1.00306 111.37 1.00004 1.00433 111.57 1.00130 1.00594 111.76 1.00289 1.00717 111.94 1.00410 mB = 0.05 mol·kg−1 1.00234 110.37 0.99929 1.00361 110.55 1.00056 1.00514 110.75 1.00208 1.00642 110.89 1.00334 1.00770 111.02 1.00460 1.00912 111.15 1.00601 mB = 0.5 mol·kg−1 1.02539 109.53 1.02268 1.02677 109.71 1.02397 1.02779 109.80 1.02497 1.02935 109.96 1.02652 1.03085 110.08 1.02800 1.03217 110.25 1.02931 1027

T/K = 318.15

103.13 103.24 103.29 103.44 103.50 103.61

0.99286 0.99373 0.99433 0.99546 0.99648 0.99746

104.17 104.28 104.35 104.51 104.61 104.71

101.78 101.98 102.21 102.41 102.54 102.71

0.99551 0.99641 0.99733 0.99836 0.99923 1.00004

102.59 102.80 103.04 103.25 103.43 103.56

100.86 101.16 101.37 101.57 101.66 101.95

1.01811 1.01916 1.02006 1.02096 1.02147 1.02313

101.59 101.83 102.12 102.36 102.46 102.89

100.27 100.43 100.70 100.96 101.12 101.23

1.04277 1.04359 1.04465 1.04574 1.04665 1.04726

100.92 101.16 101.44 101.68 101.83 101.94

99.67 100.00 100.26 100.51 100.69 100.90

1.08799 1.08894 1.08973 1.09075 1.09153 1.09240

100.51 100.71 101.02 101.26 101.45 101.68

111.57 111.64 111.97 112.20 112.44 112.62

0.99372 0.99470 0.99617 0.99741 0.99898 1.00018

112.15 112.36 112.72 113.00 113.26 113.48

111.09 111.25 111.48 111.64 111.79 111.96

0.99643 0.99769 0.99920 1.00045 1.00170 1.00308

111.74 111.88 112.08 112.28 112.49 112.71

110.31 110.53 110.60 110.78 110.91 111.04

1.01927 1.02054 1.02153 1.02306 1.02453 1.02581

111.07 111.29 111.40 111.60 111.77 111.98

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

T/K = 288.15 0.04993 0.07010 0.08940 0.11081 0.12833 0.14766

1.05249 1.05388 1.05519 1.05664 1.05781 1.05909

107.99 108.15 108.26 108.40 108.51 108.63

0.05245 0.06889 0.08931 0.10811 0.13001 0.15168

1.09956 1.10066 1.10202 1.10325 1.10468 1.10608

107.35 107.50 107.64 107.78 107.91 108.04

0.05068 0.07063 0.09024 0.10570 0.12999 0.14653

1.00238 1.00363 1.00483 1.00577 1.00724 1.00823

117.67 118.02 118.36 118.60 118.90 119.07

0.05039 0.07361 0.08806 0.11005 0.13183 0.15026

1.00435 1.00583 1.00674 1.00810 1.00944 1.01057

116.34 116.63 116.91 117.23 117.48 117.66

0.04933 0.07146 0.09066 0.10954 0.13678 0.15026

1.02727 1.02869 1.02992 1.03111 1.03282 1.03365

115.33 115.46 115.57 115.70 115.81 115.92

0.04958 0.06974 0.09044 0.10712 0.13162 0.15377

1.05222 1.05349 1.05478 1.05581 1.05731 1.05866

114.54 114.78 115.01 115.21 115.41 115.57

0.04940 0.06200 0.08383 0.11070 0.13117 0.15027

1.09910 1.09987 1.10120 1.10281 1.10402 1.10513

113.57 113.74 114.01 114.29 114.48 114.65

0.05096 0.06903 0.09042 0.11018 0.13216 0.15518

1.00270 1.00395 1.00542 1.00677 1.00826 1.00981

109.76 109.86 109.94 110.03 110.13 110.22

T/K = 298.15

T/K = 308.15

mB = 1.0 mol·kg−1 1.05032 108.80 1.04672 1.05169 108.97 1.04808 1.05299 109.08 1.04936 1.05442 109.22 1.05078 1.05557 109.35 1.05192 1.05685 109.44 1.05318 mB = 2.0 mol·kg−1 1.09609 108.12 1.09228 1.09718 108.24 1.09336 1.09852 108.39 1.09468 1.09974 108.54 1.09589 1.10115 108.67 1.09729 1.10254 108.77 1.09866 −3 D-Sorbitol (M = 182.18·10 kg·mol−1) Water 1.00023 119.12 0.99720 1.00146 119.37 0.99841 1.00265 119.55 0.99959 1.00358 119.74 1.00051 1.00503 119.95 1.00195 1.00601 120.09 1.00293 mB = 0.05 mol·kg−1 1.00200 117.53 0.99894 1.00346 117.89 1.00039 1.00435 118.08 1.00127 1.00571 118.31 1.00261 1.00703 118.50 1.00393 1.00815 118.68 1.00503 mB = 0.5 mol·kg−1 1.02597 116.62 1.02218 1.02735 116.85 1.02355 1.02854 117.10 1.02472 1.02970 117.26 1.02587 1.03135 117.45 1.02750 1.03216 117.60 1.02830 mB = 1.0 mol·kg−1 1.05003 115.66 1.04642 1.05129 115.82 1.04767 1.05256 116.07 1.04892 1.05357 116.22 1.04993 1.05506 116.40 1.05140 1.05638 116.57 1.05271 mB = 2.0 mol·kg−1 1.09561 114.70 1.09179 1.09637 114.79 1.09254 1.09767 115.06 1.09383 1.09926 115.29 1.09541 1.10046 115.45 1.09659 1.10156 115.59 1.09768 (+)-D-Galactose (M = 180.16·10−3 kg·mol−1) Water 1.00058 110.54 0.99756 1.00182 110.67 0.99879 1.00327 110.76 1.00022 1.00461 110.85 1.00154 1.00608 110.96 1.00300 1.00761 111.05 1.00451 1028

T/K = 318.15

109.52 109.67 109.83 109.94 110.09 110.22

1.04371 1.04506 1.04633 1.04773 1.04887 1.05012

110.17 110.31 110.46 110.61 110.74 110.84

108.83 108.97 109.13 109.29 109.41 109.53

1.08914 1.09021 1.09152 1.09272 1.09410 1.09545

109.51 109.65 109.84 109.98 110.14 110.28

120.32 120.44 120.62 120.75 120.88 120.98

0.99333 0.99453 0.99570 0.99661 0.99804 0.99900

121.44 121.54 121.64 121.76 121.88 121.99

118.64 118.81 119.00 119.21 119.41 119.55

0.99607 0.99749 0.99837 0.99970 1.00100 1.00208

119.53 119.84 119.97 120.16 120.31 120.48

117.60 117.81 117.98 118.16 118.35 118.46

1.01876 1.02011 1.02127 1.02241 1.02403 1.02481

118.49 118.74 118.92 119.05 119.21 119.36

116.55 116.73 116.96 117.09 117.26 117.41

1.04341 1.04464 1.04589 1.04689 1.04834 1.04964

117.29 117.45 117.64 117.78 117.94 118.08

115.61 115.74 115.95 116.15 116.30 116.40

1.08865 1.08939 1.09066 1.09222 1.09339 1.09447

116.44 116.58 116.78 116.95 117.07 117.19

111.42 111.48 111.63 111.71 111.81 111.92

0.99370 0.99491 0.99633 0.99764 0.99907 1.00057

112.34 112.42 112.55 112.65 112.81 112.91

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

T/K = 288.15 0.05172 0.07047 0.08325 0.09721 0.13044 0.15099

1.00471 1.00601 1.00689 1.00786 1.01013 1.01152

109.09 109.24 109.31 109.39 109.55 109.66

0.05140 0.06681 0.08784 0.10593 0.12877 0.15307

1.02762 1.02868 1.03012 1.03136 1.03290 1.03454

109.31 109.35 109.37 109.41 109.44 109.47

0.05248 0.07516 0.08750 0.09905 0.13339 0.15606

1.05247 1.05395 1.05475 1.05549 1.05768 1.05911

111.37 111.48 111.54 111.61 111.75 111.84

0.04721 0.06954 0.08879 0.10797 0.12646 0.14549

1.09894 1.10031 1.10148 1.10263 1.10374 1.10486

112.20 112.32 112.40 112.51 112.62 112.74

0.05086 0.07350 0.08768 0.10662 0.12786 0.14570

1.00235 1.00375 1.00462 1.00578 1.00707 1.00814

118.61 118.76 118.91 119.06 119.19 119.30

0.04817 0.07110 0.09336 0.12094 0.13459 0.15222

1.00412 1.00556 1.00694 1.00864 1.00947 1.01054

118.07 118.18 118.34 118.49 118.57 118.68

0.04354 0.07261 0.08539 0.10625 0.12459 0.14986

1.02679 1.02859 1.02938 1.03065 1.03176 1.03329

117.65 117.76 117.82 117.92 117.99 118.09

0.05122 0.07213 0.09127 0.10912 0.12874 0.14675

1.05216 1.05343 1.05459 1.05566 1.05683 1.05790

117.37 117.43 117.45 117.50 117.56 117.61

T/K = 298.15

T/K = 308.15

mB = 0.05 mol·kg−1 1.00239 109.66 0.99935 1.00368 109.80 1.00063 1.00456 109.90 1.00150 1.00551 110.00 1.00244 1.00776 110.19 1.00466 1.00914 110.29 1.00603 mB = 0.5 mol·kg−1 1.02536 109.90 1.02257 1.02641 109.92 1.02362 1.02784 109.99 1.02503 1.02906 110.03 1.02623 1.03059 110.08 1.02775 1.03221 110.15 1.02934 mB = 1.0 mol·kg−1 1.05031 111.95 1.04672 1.05178 112.06 1.04818 1.05256 112.15 1.04896 1.05330 112.21 1.04969 1.05547 112.38 1.05185 1.05688 112.50 1.05326 mB = 2.0 mol·kg−1 1.09547 112.81 1.09168 1.09683 112.97 1.09303 1.09799 113.11 1.09418 1.09913 113.21 1.09532 1.10022 113.32 1.09640 1.10133 113.45 1.09751 Galactitol (M = 182.18·10−3 kg·mol−1) Water 1.00021 119.76 0.99718 1.00160 119.87 0.99855 1.00246 119.96 0.99939 1.00360 120.07 1.00052 1.00488 120.17 1.00177 1.00594 120.29 1.00281 mB = 0.05 mol·kg−1 1.00179 119.08 0.99874 1.00321 119.19 1.00014 1.00457 119.32 1.00149 1.00624 119.48 1.00315 1.00706 119.58 1.00396 1.00812 119.66 1.00500 mB = 0.5 mol·kg−1 1.02451 118.62 1.02174 1.02628 118.80 1.02349 1.02706 118.87 1.02425 1.02831 118.98 1.02549 1.02940 119.10 1.02656 1.03089 119.25 1.02804 mB = 1.0 mol·kg−1 1.04999 118.24 1.04639 1.05124 118.35 1.04763 1.05237 118.43 1.04876 1.05343 118.49 1.04980 1.05458 118.55 1.05094 1.05563 118.62 1.05197

1029

T/K = 318.15

110.38 110.52 110.65 110.78 111.01 111.14

0.99648 0.99775 0.99861 0.99954 1.00175 1.00310

111.20 111.30 111.46 111.58 111.78 111.89

110.60 110.63 110.73 110.80 110.89 110.98

1.01916 1.02019 1.02158 1.02278 1.02427 1.02585

111.38 111.47 111.56 111.66 111.78 111.87

112.54 112.62 112.71 112.76 112.91 113.01

1.04370 1.04514 1.04592 1.04664 1.04877 1.05016

113.34 113.43 113.52 113.60 113.76 113.90

113.36 113.49 113.64 113.74 113.85 113.93

1.08854 1.08987 1.09100 1.09212 1.09319 1.09428

114.09 114.27 114.46 114.60 114.71 114.86

120.85 120.98 121.11 121.21 121.35 121.45

0.99333 0.99468 0.99551 0.99663 0.99786 0.99889

121.77 121.91 122.03 122.12 122.26 122.37

119.92 120.07 120.22 120.38 120.46 120.57

0.99588 0.99727 0.99859 1.00023 1.00102 1.00204

120.67 120.86 121.09 121.27 121.40 121.55

119.29 119.49 119.58 119.75 119.89 120.01

1.01834 1.02008 1.02082 1.02204 1.02310 1.02455

119.87 120.15 120.35 120.56 120.71 120.92

118.95 119.06 119.13 119.21 119.32 119.43

1.04338 1.04461 1.04572 1.04674 1.04786 1.04887

119.58 119.75 119.91 120.08 120.20 120.32

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

T/K = 288.15 0.05062 0.06864 0.08553 0.10126 0.12565 0.14876

1.09896 1.10001 1.10099 1.10189 1.10329 1.10460

117.06 117.08 117.09 117.11 117.13 117.15

0.05278 0.07151 0.09003 0.10650 0.12772 0.14877

1.00276 1.00403 1.00528 1.00639 1.00781 1.00921

111.09 111.13 111.16 111.22 111.27 111.34

0.05065 0.07265 0.09160 0.10958 0.13240 0.14696

1.00524 1.00674 1.00802 1.00923 1.01075 1.01172

110.88 110.91 111.00 111.06 111.12 111.17

0.04789 0.07021 0.09066 0.11988 0.14299 0.15983

1.02823 1.02975 1.03113 1.03309 1.03462 1.03574

110.09 110.13 110.18 110.22 110.27 110.30

0.05203 0.07039 0.09080 0.10997 0.12928 0.15026

1.05129 1.05244 1.05370 1.05487 1.05605 1.05730

113.71 113.87 114.03 114.15 114.29 114.50

0.05206 0.06992 0.09049 0.10996 0.13070 0.15453

1.09908 1.10012 1.10130 1.10240 1.10357 1.10490

114.71 114.86 115.05 115.19 115.31 115.48

0.04909 0.06889 0.09002 0.11345 0.12660 0.14687

1.00230 1.00356 1.00491 1.00638 1.00719 1.00845

117.26 117.33 117.38 117.50 117.57 117.66

0.05137 0.07005 0.08416 0.10474 0.12837 0.14987

1.00437 1.00555 1.00643 1.00770 1.00916 1.01046

117.20 117.44 117.64 117.83 118.02 118.21

T/K = 298.15

T/K = 308.15

mB = 2.0 mol·kg−1 1.09549 117.86 1.09169 1.09652 117.90 1.09271 1.09748 117.95 1.09366 1.09837 117.98 1.09454 1.09975 118.02 1.09588 1.10104 118.06 1.09715 (+)-D-Mannose (M = 180.16·10−3 kg·mol−1) Water 1.00064 111.76 0.99763 1.00190 111.88 0.99887 1.00314 111.94 1.00009 1.00423 112.01 1.00117 1.00563 112.11 1.00256 1.00701 112.19 1.00392 mB = 0.05 mol·kg−1 1.00313 111.39 1.00013 1.00462 111.52 1.00160 1.00589 111.60 1.00286 1.00708 111.71 1.00404 1.00859 111.80 1.00553 1.00955 111.87 1.00647 mB = 0.5 mol·kg−1 1.02588 110.45 1.02204 1.02739 110.52 1.02354 1.02876 110.59 1.02489 1.03071 110.69 1.02681 1.03223 110.77 1.02831 1.03333 110.83 1.02940 mB = 1.0 mol·kg−1 1.04958 114.05 1.04617 1.05072 114.27 1.04730 1.05196 114.56 1.04855 1.05311 114.81 1.04970 1.05427 114.97 1.05085 1.05550 115.16 1.05210 mB = 2.0 mol·kg−1 1.09565 114.84 1.09187 1.09669 114.93 1.09291 1.09788 115.06 1.09410 1.09899 115.16 1.09522 1.10017 115.26 1.09639 1.10152 115.37 1.09773 −3 D-Mannitol (M = 182.17·10 kg·mol−1) Water 1.00012 119.38 0.99707 1.00134 119.57 0.99827 1.00262 119.74 0.99954 1.00404 119.89 1.00093 1.00482 120.00 1.00171 1.00603 120.10 1.00290 mB = 0.05 mol·kg−1 1.00199 119.00 0.99893 1.00314 119.24 1.00007 1.00399 119.42 1.00092 1.00524 119.65 1.00215 1.00665 119.85 1.00355 1.00792 120.01 1.00481 1030

T/K = 318.15

118.57 118.64 118.67 118.76 118.87 118.96

1.08856 1.08957 1.09050 1.09136 1.09269 1.09394

119.19 119.27 119.41 119.53 119.68 119.78

112.54 112.66 112.77 112.87 112.98 113.09

0.99378 0.99502 0.99623 0.99730 0.99867 1.00002

113.23 113.34 113.46 113.58 113.70 113.81

111.98 112.16 112.31 112.45 112.59 112.72

0.99622 0.99768 0.99892 1.00009 1.00157 1.00249

112.54 112.81 112.99 113.16 113.30 113.47

110.92 111.12 111.27 111.42 111.59 111.68

1.01822 1.01970 1.02104 1.02293 1.02441 1.02548

111.42 111.73 111.99 112.27 112.48 112.61

114.24 114.47 114.75 114.95 115.16 115.29

1.04219 1.04333 1.04458 1.04575 1.04690 1.04816

114.45 114.60 114.79 114.94 115.15 115.25

115.12 115.22 115.35 115.44 115.56 115.68

1.08875 1.08979 1.09097 1.09208 1.09325 1.09458

115.54 115.61 115.72 115.88 115.98 116.13

120.81 120.89 121.00 121.13 121.22 121.29

0.99322 0.99441 0.99565 0.99703 0.99780 0.99897

121.77 121.86 122.01 122.11 122.19 122.32

120.07 120.16 120.35 120.51 120.67 120.84

0.99608 0.99720 0.99804 0.99926 1.00065 1.00190

120.63 120.89 121.01 121.24 121.42 121.58

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

T/K = 288.15 0.04715 0.07068 0.08766 0.10359 0.13113 0.15876

1.02709 1.02858 1.02965 1.03065 1.03236 1.03406

116.21 116.30 116.37 116.43 116.53 116.62

0.04715 0.07068 0.08766 0.10359 0.13113 0.15674

1.05201 1.05348 1.05454 1.05552 1.05720 1.05875

115.49 115.62 115.73 115.83 115.98 116.07

0.05185 0.07222 0.08341 0.10983 0.13042 0.15220

1.09918 1.10042 1.10108 1.10265 1.10386 1.10513

114.68 114.76 114.88 115.03 115.15 115.29

0.05146 0.07233 0.09244 0.10959 0.12412 0.14563

1.00266 1.00408 1.00544 1.00659 1.00757 1.00900

111.15 111.19 111.21 111.26 111.29 111.34

0.05058 0.07092 0.08897 0.11081 0.12826 0.14942

1.00449 1.00585 1.00705 1.00848 1.00962 1.01099

111.78 111.94 112.08 112.25 112.36 112.46

0.05078 0.07090 0.08919 0.10634 0.12737 0.14765

1.02739 1.02870 1.02987 1.03096 1.03229 1.03357

112.80 112.89 113.04 113.19 113.33 113.44

0.05003 0.06844 0.09043 0.10559 0.12231 0.14564

1.05220 1.05336 1.05473 1.05567 1.05669 1.05811

113.44 113.51 113.63 113.73 113.83 113.94

0.05153 0.06678 0.09109 0.10897 0.12566 0.14827

1.09906 1.09995 1.10137 1.10241 1.10337 1.10466

114.57 114.60 114.65 114.69 114.73 114.79

T/K = 298.15

T/K = 308.15

mB = 0.5 mol·kg−1 1.02478 117.58 1.02199 1.02625 117.69 1.02344 1.02730 117.74 1.02447 1.02827 117.80 1.02544 1.02996 117.88 1.02709 1.03163 117.95 1.02874 mB = 1.0 mol·kg−1 1.04980 117.01 1.04620 1.05124 117.17 1.04763 1.05227 117.30 1.04865 1.05322 117.40 1.04961 1.05486 117.57 1.05124 1.05636 117.73 1.05274 mB = 2.0 mol·kg−1 1.09568 115.96 1.09186 1.09688 116.11 1.09305 1.09754 116.19 1.09369 1.09907 116.36 1.09520 1.10025 116.48 1.09637 1.10149 116.60 1.09759 (+)-D-Glucose (M = 180.16·10−3 kg·mol−1) Water 1.00054 112.05 0.99752 1.00194 112.12 0.99890 1.00327 112.24 1.00022 1.00441 112.30 1.00134 1.00536 112.38 1.00228 1.00677 112.47 1.00366 mB = 0.05 mol·kg−1 1.00218 112.13 0.99915 1.00355 112.18 1.00050 1.00475 112.23 1.00169 1.00619 112.31 1.00313 1.00734 112.39 1.00427 1.00871 112.50 1.00564 mB = 0.5 mol·kg−1 1.02513 113.38 1.02235 1.02642 113.51 1.02364 1.02759 113.62 1.02480 1.02868 113.71 1.02588 1.03000 113.84 1.02719 1.03126 113.96 1.02845 mB = 1.0 mol·kg−1 1.05209 114.01 1.04645 1.05323 114.10 1.04759 1.05459 114.21 1.04894 1.05552 114.31 1.04986 1.05653 114.41 1.05086 1.05794 114.51 1.05227 mB = 2.0 mol·kg−1 1.09560 115.05 1.09181 1.09649 115.08 1.09269 1.09790 115.17 1.09409 1.09893 115.22 1.09511 1.09988 115.28 1.09606 1.10116 115.36 1.09733

1031

T/K = 318.15

118.58 118.64 118.69 118.74 118.85 118.95

1.01859 1.02001 1.02103 1.02199 1.02362 1.02523

119.22 119.44 119.51 119.60 119.74 119.89

117.88 117.98 117.98 118.05 118.16 118.27

1.04320 1.04460 1.04561 1.04655 1.04816 1.04964

118.51 118.70 118.75 118.86 119.02 119.11

116.93 117.06 117.14 117.31 117.44 117.54

1.08872 1.08989 1.09052 1.09201 1.09316 1.09435

117.67 117.86 118.00 118.19 118.31 118.50

112.90 113.02 113.18 113.26 113.32 113.43

0.99366 0.99503 0.99633 0.99744 0.99837 0.99974

113.83 113.96 114.04 114.13 114.22 114.34

112.69 112.75 112.87 112.92 112.98 113.05

0.99629 0.99762 0.99880 1.00022 1.00134 1.00270

113.39 113.54 113.62 113.72 113.83 113.91

114.01 114.09 114.19 114.25 114.39 114.49

1.01895 1.02023 1.02138 1.02246 1.02377 1.02503

114.61 114.69 114.73 114.80 114.87 114.93

114.69 114.78 114.88 114.99 115.09 115.17

1.04344 1.04457 1.04591 1.04682 1.04782 1.04921

115.36 115.46 115.54 115.64 115.74 115.84

115.64 115.71 115.74 115.79 115.85 115.90

1.08867 1.08954 1.09092 1.09194 1.09287 1.09413

116.39 116.44 116.49 116.53 116.59 116.66

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

T/K = 288.15

0.04820 0.06821 0.08888 0.10948 0.12860 0.14948

1.00540 1.00796 1.01058 1.01317 1.01555 1.01813

211.06 211.11 211.16 211.19 211.23 211.26

0.05086 0.06976 0.09320 0.11025 0.13023 0.14340

1.00765 1.01007 1.01303 1.01517 1.01765 1.01928

211.05 211.09 211.14 211.16 211.21 211.25

0.04952 0.06758 0.08966 0.10771 0.13373 0.14780

1.03016 1.03236 1.03501 1.03716 1.04022 1.04186

215.31 215.36 215.41 215.46 215.54 215.61

0.04795 0.06739 0.09041 0.11427 0.13028 0.15159

1.05477 1.05706 1.05976 1.06252 1.06435 1.06677

215.95 216.00 216.04 216.10 216.13 216.17

0.05108 0.06734 0.09338 0.10836 0.13352 0.15261

1.10180 1.10361 1.10647 1.10810 1.11081 1.11283

216.59 216.71 216.82 216.92 217.01 217.12

0.05070 0.06908 0.08999 0.10870 0.13329 0.14932

1.00582 1.00820 1.01087 1.01323 1.01631 1.01829

226.97 227.09 227.30 227.44 227.62 227.73

0.05062 0.06812 0.08830 0.10802 0.12859 0.14265

1.00774 1.01001 1.01259 1.01509 1.01767 1.01942

226.65 226.73 226.93 227.09 227.18 227.30

0.05065 0.07100 0.09052 0.11066 0.12439 0.15060

1.03037 1.03286 1.03522 1.03763 1.03926 1.04234

231.44 231.54 231.63 231.74 231.81 231.93

T/K = 298.15

T/K = 308.15

Sucrose (M = 342.30·10−3 kg·mol−1) Water 1.00328 212.03 1.00026 1.00582 212.12 1.00279 1.00842 212.20 1.00537 1.01099 212.28 1.00792 1.01335 212.36 1.01027 1.01590 212.43 1.01280 mB = 0.05 mol·kg−1 1.00533 211.82 1.00228 1.00774 211.85 1.00467 1.01069 211.88 1.00760 1.01282 211.90 1.00972 1.01529 211.94 1.01217 1.01691 211.97 1.01378 mB = 0.5 mol·kg−1 1.02792 215.55 1.02517 1.03012 215.56 1.02736 1.03277 215.63 1.03001 1.03492 215.68 1.03217 1.03799 215.74 1.03523 1.03963 215.79 1.03687 mB = 1.0 mol·kg−1 1.05264 216.04 1.04907 1.05494 216.07 1.05136 1.05764 216.09 1.05403 1.06041 216.11 1.05677 1.06225 216.14 1.05859 1.06467 216.16 1.06098 mB = 2.0 mol·kg−1 1.09837 216.85 1.09461 1.10018 216.94 1.09642 1.10305 217.10 1.09930 1.10467 217.23 1.10093 1.10738 217.37 1.10365 1.10940 217.49 1.10568 (+)-D-Maltose Monohydrate (M = 360.31·10−3 kg·mol−1) Water 1.00368 228.18 1.00063 1.00605 228.28 1.00297 1.00871 228.34 1.00559 1.01107 228.42 1.00792 1.01413 228.51 1.01096 1.01611 228.59 1.01290 mB = 0.05 mol·kg−1 1.00541 227.63 1.00233 1.00766 227.81 1.00457 1.01023 227.96 1.00712 1.01271 228.08 1.00958 1.01528 228.21 1.01213 1.01701 228.34 1.01385 mB = 0.5 mol·kg−1 1.02810 232.39 1.02530 1.03057 232.49 1.02776 1.03292 232.58 1.03009 1.03532 232.66 1.03247 1.03693 232.76 1.03407 1.03999 232.86 1.03710 1032

T/K = 318.15

212.98 213.07 213.13 213.27 213.33 213.46

0.99641 0.99892 1.00149 1.00402 1.00635 1.00887

214.01 214.12 214.19 214.35 214.48 214.55

212.82 212.88 212.95 212.99 213.05 213.10

0.99941 1.00179 1.00471 1.00682 1.00926 1.01087

213.76 213.79 213.81 213.84 213.87 213.89

215.81 215.87 215.93 215.96 216.04 216.09

1.02178 1.02397 1.02663 1.02877 1.03182 1.03346

216.19 216.27 216.34 216.43 216.54 216.58

216.57 216.70 216.87 217.04 217.14 217.31

1.04609 1.04838 1.05106 1.05381 1.05563 1.05803

216.84 216.97 217.05 217.19 217.29 217.40

217.07 217.14 217.26 217.37 217.50 217.60

1.09149 1.09330 1.09617 1.09780 1.10051 1.10253

217.52 217.68 217.80 217.94 218.05 218.20

229.91 229.98 230.12 230.21 230.29 230.43

0.99671 0.99899 1.00155 1.00380 1.00674 1.00862

232.37 232.69 233.09 233.45 233.73 234.04

229.14 229.24 229.37 229.47 229.56 229.69

0.99940 1.00161 1.00412 1.00655 1.00907 1.01076

231.32 231.42 231.52 231.62 231.72 231.82

233.49 233.62 233.70 233.84 233.93 234.05

1.02189 1.02433 1.02665 1.02902 1.03062 1.03364

234.52 234.64 234.72 234.81 234.89 235.01

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 2. continued mAa

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

ρ·10−3

V2,ϕ·106

mol·kg−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

kg·m−3

m3·mol−1

T/K = 288.15

T/K = 298.15

0.04910 0.06897 0.08887 0.10940 0.13173 0.14882

1.05491 1.05726 1.05958 1.06196 1.06451 1.06644

232.91 232.93 232.99 233.03 233.10 233.15

1.05275 1.05508 1.05738 1.05973 1.06226 1.06417

0.04948 0.06882 0.09004 0.11132 0.12693 0.15310

1.10158 1.10371 1.10603 1.10832 1.10998 1.11274

233.62 233.75 233.83 233.94 234.04 234.14

1.09811 1.10023 1.10253 1.10481 1.10646 1.10919

T/K = 308.15

mB = 1.0 mol·kg−1 233.75 233.83 233.94 234.07 234.16 234.24 mB = 2.0 mol·kg−1 234.59 234.68 234.82 234.96 235.05 235.18

T/K = 318.15

1.04915 1.05147 1.05376 1.05611 1.05863 1.06053

234.76 234.82 234.92 235.01 235.08 235.17

1.04612 1.04841 1.05069 1.05300 1.05549 1.05738

236.09 236.23 236.28 236.40 236.50 236.61

1.09430 1.09641 1.09869 1.10096 1.10259 1.10531

235.73 235.82 235.92 236.03 236.16 236.27

1.09113 1.09321 1.09547 1.09770 1.09933 1.10200

237.19 237.34 237.41 237.56 237.65 237.83

a

mA is the molality of solute in water or water + NH4Br. bM is the molar mass of solute. cmB is the molality of NH4Br in water. Standard uncertainties, u are u(T) = 0.01 K, u(m) = 2.8·10−6 mol·kg−1, u(ρ) = 3.72·10−3 kg·m−3, and the combined uncertainty, Uc in V2,ϕ values is Uc (V2,ϕ) = 0.26 10−6 m3·mol−1 at mB = 0.04 mol·kg−1 and Uc (V2,ϕ) = 0.04·10−6 m3·mol−1 at mB = 0.16 mol·kg−1 (level of confidence = 0.95, k ≈ 2) concentration of the solute.

in mB = (0.05 and 0.5) mol·kg−1, and for all pentoses and polyols in all concentrations of NH4Br, than their corresponding values in water, which result in the negative ΔtV2° values (representative plots of ΔtV°2 vs mB are given in Figure 2). Overall, the ΔtV°2 values decrease with molality of NH4Br for Ara and Xyl (both pentoses), Sor (ketohexose), and their respective polyols (Arol, Xyol, and Srol) at all studied temperatures (Figure 2a). The magnitude of ΔtV2° values increase with the rise of temperature for Ara, Xyl, and Sor (Figure 2a), but these values decrease with temperature in the case of polyols (Figure 2b), except Arol. Both positive and negative ΔtV°2 values are observed for Gal, Man, and Glc (aldohexoses) (Figure 2c,d), but the values are negative for their respective polyols, Gaol and Maol, at all concentrations of NH4Br (representative Figure 2e). In the case of Gal (Figure 2c), a minimum in ΔtV2° value occurs at mB ≈ 0.1 mol·kg−1, whereas in Man (Figure 2d), it lies at mB ≈ 0.45 mol·kg−1 of NH4Br, and then the values become positive afterward in both the cases. The ΔtV2° values decrease with the rise of temperature in aldohexoses, and their polyols. In disaccharides, the ΔtV°2 values are slightly negative at mB ≈ 0.05 mol·kg−1, and positive thereafter. These values increase with concentration of NH4Br and tend to level off after mB ≈ 0.5 mol·kg−1 in the case of sucrose (Figure 2f). The ΔtV2° values (given as Supporting Information in Table S1) decrease with temperature at all studied concentrations of NH4Br. Overall, the decrease in volumes with temperature is observed to be more in polyols than saccharides. Chavez and Birch47 have also reported an increase in apparent molar volumes of polyols with concentration in aqueous solutions, except for 1,2-propanediol and ethylene glycol, where V2,ϕ values were found to decrease with increasing concentration, and minima were observed at specific concentrations. To explain this phenomenon, the formation of icebergs (open structures) around nonpolar (hydrophobic) solute molecules in water has been postulated, the solute fills interstitial cavities that would normally be formed. The loss of free space during hydrophobic hydration is more than the

increase in volume accompanying the increase in ice-likeness; as a consequence a net decrease in volume occurs. The volumetric results can be rationalized in terms of interactions between solute and cosolute and by considering their other characteristics. The possible types of interactions occurring in the ternary (solute + NH4Br + H2O) solution are (I) hydrophilic−ionic interactions among the hydrophilic (−OH, −CO, −O−) groups of the polyhydroxy solutes and ions (NH4+, Br−) of the cosolute; (II) hydrophobic−ionic interactions among the hydrophobic (R = CH3, CH2, CH) groups of the solutes and ions of cosolute. The cosphere overlap model48 emphasizes that overlap of hydration cospheres due to type I interactions lead to positive volume change, whereas overlap due to type II interactions lead to negative volume change. Therefore, the negative transfer volumes obtained in pentoses and polyols at all concentrations of cosolute, indicate that hydrophobic-ionic type interactions due to the overlap of hydration cospheres of hydrophobic alkyl groups of solutes and ions (NH4+, Br−) predominate. The magnitude of ΔtV2° values increase with molality of NH4Br at all studied temperatures, indicating that hydrophobic-ionic interactions become stronger with increase in concentration of cosolute. In aldohexoses (Man and Gal), the ΔtV°2 values are negative at low concentrations (minima lie at mB ≈ 0.05 and 0.5 mol·kg−1 of cosolute), and values become positive afterward. This indicates that the hydrophobic−ionic interactions are more predominant at low concentrations and their strength decreases with an increase in concentration of cosolute. Similar solvation behavior of pentoses and few derivatives (methyl α-Dxylopyranoside and methyl β-D-xylopyranoside) was noticed in ΔtV°2 values at mB ≈ 0.5 mol·kg−1 LiCl.8 The negative contributions to ΔtV°2 values (at low concentrations) from hydrophobic−ionic interactions decreased with the increase in temperature and concentration of cosolute. The positive transfer volumes obtained in Glc, Suc, and Mal (except at mB = 0.05 mol·kg−1) and in Man and Gal (except at mB = 0.05 and 0.5 mol·kg−1 of cosolute), indicate that hydrophilic-ionic type interactions predominate. Further an increase in their values with an increase in concentration of 1033

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

structure-breaker”/chaotrope. The chaotropicity correlates with the charge density, that is, NH4+ ion with a low charge density has smaller effects on the local H-bonding. On the other hand, chaotropic Br− ion results in disturbance of the H-bonding network. Because of the interactions between ions of NH4Br and polyhydroxy solutes, their effects on the water structure is decreased. The negative transfer volumes obtained in polyols and pentoses at all concentrations of cosolute indicate that hydrophobic−ionic interactions due to the overlap of hydration cospheres of hydrophobic alkyl groups of solutes and ions (NH4+, Br−) predominate and become more stronger with increase in concentration of cosolute. However, the positive transfer volumes obtained in saccharides (Glc, Suc, and Mal) indicate that hydrophilic-ionic type interactions predominate and further increase with concentration of NH4Br. The solvation behavior of polyhydroxy solute molecule in aqueous and mixed aqueous media is related to the stereochemical and conformational effects. Among the pentoses, the ΔtV2° values are higher for Xyl than Ara, and within the polyol series, Xyol has higher ΔtV2° values than Arol. Among the hexoses, Glc and Man have higher ΔtV2° values than Gal, and within the polyol series, Srol has higher ΔtV°2 values than Maol and Gaol. NMR studies52 show that Xyol and Srol possess nonplanar sickle conformation, whereas Arol, Gaol, and Maol have planar zigzag conformations in aqueous solutions. Therefore, Xyol and Srol with nonplanar sickle structures, being less compatible with the water structure, interact more with NH4Br, hence exhibiting higher ΔtV°2 values. However, Arol, Maol, and Gaol with planar zigzag structures, being more compatible with the water structure, interact less with NH4Br, hence exhibiting smaller ΔtV2° values. Birch47 related the % increase in molar mass with V2° of polyols and their corresponding saccharides at 293.15 K. We also found that the % increase in V°2 is more than the corresponding % increase in molar mass and the volumes increase with rise of temperature from (288.15 to 318.15) K (Table 5). It can be noticed that the % increase in volumes is more for Arol among the pentoses and for Gaol among the hexoses. These differences were attributed to the linear open structures of polyols than the cyclic structures of their parent saccharides.47 Arol and Gaol with planar zigzag structures, being more compatible with the water structure, interact less with ions of NH4Br. The comparison of ΔtV°2 values obtained in NH4Br with earlier reported values in (NH4)2SO4 (available only for disaccharides)24 indicates the strong influence of 1:2 salt (Table 6) in comparison to 1:1 salt, due to strong interactions of disaccharides with ions of (NH4)2SO4 than NH4Br, which is in accordance with the Hofmeister series. Because of a high charge density as well as ionic strength, the SO42− ions undergo more hydration than Br− ions, thus resulting in large ΔtV2° values in the case of (NH4)2SO4. In addition to the conformational and stereochemical aspects of the solutes, the size of ion also plays a crucial role in effective complexation with solutes. NH4+ and Br− ions have small crystal/ionic radii (radius of NH4+ = 1.48 Å, radius of Br− = 1.96 °A) than SO42− ions (radius = 2.30 °A). The structure of water changes, when ions are introduced in it. The effective53,54 radii of hydrated ions (radius of NH4+ = 3.31 °A, radius of Br− = 3.30 °A, and radius of SO42− = 3.79 Å) in solution are appreciably greater than their crystal radii and further, the SO42− ion is more heavily hydrated than NH4+ and Br− ions. Therefore,

Figure 1. (a) Plot of density, ρ, vs molality, mA, for (−)-L-sorbose in mB = 0.50 mol·kg−1 NH4Br(aq) solutions at (288.15, 298.15, 308.15, and 318.15) K. (b) Plot of apparent molar volume, V2,ϕ, vs molality, mA, for (−)-L-sorbose in mB = 0.50 mol·kg−1 NH4Br(aq) solutions at (288.15, 298.15, 308.15, and 318.15) K.

NH4Br points toward a strengthening of the hydrophilic-ionic type interactions. The ΔtV2° values increase with rise of temperature for Ara, Xyl, and Sor, indicating that the negative contributions to ΔtV°2 values from hydrophobic−ionic interactions decrease. The ΔtV2° values decrease with temperature in the cases of aldohexoses, polyols, and disaccharides, hence suggesting that the negative contributions to ΔtV°2 values from hydrophobic−ionic interactions increase with the rise of temperature. Polyhydroxy compounds are known to be “water structure makers”/kosmotropes, as these enhance the strength of the Hbonding network of bulk water.49−51 They are strongly hydrated and have stabilizing and salting-out effects on proteins and macromolecules. Further the difference between polyols and saccharides has been assigned to the large surface exposure of polyols to the solvent through less restricted rotation. The decrease in volume accompanying ring formation is a consequence of increased overlap of van der Wall’s surfaces in the molecule. It has been described that large and singly charged ions (NH4+) cause some reduction in the partially ordered structure of water, whereas, Br− ions are increasingly structure-breakers. Therefore, NH4Br acts as a “net water 1034

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 3. Partial Molar Volumes, V2° at Infinite Dilution of Polyhydroxy Solutes in Water and in NH4Br(aq) Solutions over the Temperature Range (288.15 to 318.15) Ka V2°·106/m3·mol−1

V2°·106/m3·mol−1

mB

T/K

T/K

T/K

T/K

T/K

T/K

T/K

T/K

mol·kg−1

288.15

298.15

308.15

318.15

288.15

298.15

308.15

318.15

0.0 0.05 0.5 1.0 2.0

92.45(3.89)b 90.43(4.09) 89.18(4.13) 87.34(6.61) 86.95(3.95)

95.20(4.18) 93.86(4.51) 92.36(4.50) 90.57(4.39) 90.49(5.01)

100.99(5.33) 100.29(3.61) 99.64(3.88) 98.19(5.37) 97.03(4.67)

0.0 0.05 0.5 1.0 2.0

94.96(4.06) 92.27(12.62) 91.01(12.12) 89.38(5.11) 88.81(5.89)

96.57(3.49) 94.38(12.51) 93.12(14.48) 91.90(4.86) 91.09(5.11)

100.65(4.67) 99.75(9.88) 99.02(10.43) 98.15(10.91) 97.29(11.42)

111.49(13.49) 111.21(9.70) 110.63(8.75) 109.82(7.03) 109.11(7.84)

116.98(14.76) 115.68(13.55) 115.05(5.81) 114.08(9.99) 113.08(10.65)

112.04(5.66) 110.84(7.14) 111.14(4.84) 113.04(5.45) 113.74(7.78)

118.24(7.47) 117.78(5.91) 117.47(4.16) 117.24(2.46) 117.01(0.95)

112.91(6.11) 112.11(9.29) 110.98(10.52) 114.01(8.46) 115.21(5.92)

117.04(4.14) 116.74(10.07) 116.04(3.72) 115.24(5.49) 114.34(6.24)

113.55(5.36) 113.15(5.19) 114.45(3.28) 115.10(5.11) 116.25(2.74)

210.97(1.99) 210.94(2.08) 215.15(2.99) 215.85(2.14) 216.35(6.23)

0.0 0.05 0.5 1.0 2.0

109.78(7.74) 109.28(6.84) 108.38(6.39) 107.68(6.45) 107.01(6.87)

0.0 0.05 0.5 1.0 2.0

109.54(4.40) 108.84(5.53) 109.24(1.51) 111.14(4.53) 111.94(5.36)

0.0 0.05 0.5 1.0 2.0

110.94(2.61) 110.71(3.15) 110.01(1.83) 113.31(7.46) 114.34(7.45)

0.0 0.05 0.5 1.0 2.0

111.04(1.99) 111.44(7.03) 112.43(6.94) 113.16(5.37) 114.44(2.32)

0.0 0.05 0.5 1.0 2.0

226.58(7.79) 226.28(7.21) 231.18(4.99) 232.78(2.44) 233.38(5.02)

(−)-D-Arabinose 93.26(3.73) 94.17(5.73) 91.48(5.08) 92.59(5.09) 90.13(4.05) 91.18(4.48) 88.29(7.88) 89.41(5.99) 87.96(5.91) 89.11(6.51) (+)-D-Xylose 95.45(3.20) 95.98(4.17) 92.92(0.34) 93.65(15.77) 91.68(14.15) 92.4(13.05) 90.13(4.87) 91.01(5.20) 89.49(3.78) 90.27(5.52) (−)-L-Sorbose 110.45(10.09) 110.98(11.04) 110.01(7.70) 110.65(8.66) 109.19(6.86) 109.98(7.01) 108.49(6.60) 109.18(7.05) 107.79(6.65) 108.48(7.10) (+)-D-Galactose 110.31(4.88) 111.16(4.93) 109.36(6.35) 109.99(7.73) 109.77(2.47) 110.34(3.88) 111.67(5.34) 112.24(4.62) 112.52(6.36) 113.09(5.93) (+)-D-Mannose 111.55(4.36) 112.25(5.74) 111.15(4.93) 111.61(7.57) 110.28(3.46) 110.64(6.64) 113.48(11.49) 113.71(10.92) 114.57(5.27) 114.84(5.44) (+)-D-Glucose 111.81(4.54) 112.63(4.61) 111.91(3.77) 112.50(3.78) 113.08(5.98) 113.74(5.01) 113.74(5.36) 114.42(5.27) 114.88(3.17) 115.51(2.60) (+)-D-Maltose Monohydrate 227.99(4.00) 229.65(5.09) 227.29(7.32) 228.85(5.74) 232.15(4.73) 233.20(5.71) 233.49(5.09) 234.55(4.15) 234.29(5.92) 235.45(5.36)

(+)-D-Arabitol 102.26(4.86) 103.35(3.37) 101.42(3.47) 102.43(4.45) 100.62(3.66) 101.54(3.41) 99.30(5.00) 100.42(5.02) 98.31(0.13) 99.51(5.47) Xylitol 101.84(5.88) 102.88(4.80) 100.54(9.24) 101.31(9.63) 99.78 (10.21) 100.43(10.03) 98.97(10.95) 99.77(10.50) 98.28(11.22) 99.13(11.99) D-Sorbitol 118.63(10.14) 119.97(7.04) 117.03(11.23) 118.15(9.97) 116.19(9.46) 117.21(8.40) 115.23(8.89) 116.17(8.29) 114.26(9.05) 115.26(7.83) Galactitol 119.47(5.51) 120.53(6.40) 118.80(5.71) 119.62(6.25) 118.37(5.88) 118.99(6.97) 118.06(3.85) 118.69(4.92) 117.76(2.09) 118.35(4.04) D-Mannitol 119.05(7.34) 120.55(5.13) 118.52(10.25) 119.65(8.04) 117.44(3.29) 118.41(3.36) 116.71(6.57) 117.71(3.44) 115.65(6.32) 116.61(6.02) Sucrose 211.84(3.99) 212.74(4.67) 211.74(1.60) 212.67(2.94) 215.41(2.53) 215.68(2.73) 215.99(7.21) 216.23(5.46) 216.52(6.24) 216.78(5.79)

104.44(4.71) 103.26(4.58) 102.37(4.57) 101.52(5.05) 100.58(5.40) 103.88(5.47) 102.08(10.26) 101.00(12.24) 100.14(10.50) 99.93(11.70) 121.13(5.85) 119.13(9.11) 118.13(8.19) 116.93(7.65) 116.13(7.26) 121.46(6.26) 120.27(8.39) 119.46(10.01) 119.19(7.80) 118.87(6.30) 121.49(5.56) 120.19(9.52) 118.99(5.77) 118.29(5.39) 117.29(8.03) 213.73(5.58) 213.68(1.46) 215.99(4.07) 216.59(6.48) 217.22(6.30)

231.55(16.73) 231.05(5.32) 234.28(4.81) 235.85(5.03) 236.89(6.06)

Standard deviations for fitting of equation 2 lie in the range of ± (0.01 to 0.05)·106 m3·mol−1. bParentheses contain SV (m3·kg·mol−2) values. The standard uncertainties, in V2°, u(V2°) = 0.01·10−6 m3·mol−1 at low and u(V2°) = 0.19 ·10−6 m3·mol−1 at high concentration of solute.

a

16.91)·106 m3·mol−1, and for polyols (Arol→Gaol and Xyol→ Srol) are (16.79 and 17.13)·106 m3·mol−1 in H2O. In mB = 2.0 mol·kg−1 of NH4Br, the contributions on average for aldohexose series are (25.31 and 24.20)·106 m3·mol−1 and for polyols are (17.88 and 17.25)·106 m3·mol−1 at (288.15 and 318.15) K, respectively. This reveals that the magnitude of V°2 values is greater in the presence of cosolute (NH4Br) than in pure H2O due to more positive contributions of −OH groups toward volume in NH4Br. Further, the comparison shows that change in volumes is more for saccharides than polyols in NH4Br solutions. Overall, the contributions to V2° values due to

interactions of ions with solutes make positive contributions to volumes. The fragmental contributions to partial molar volumes of saccharides by comparing values of molecules in homologous series or molecular analogues in water have been reported.45 We obtained the contributions to V2° per −CHOH group addition by comparing V2° values of analogues (Gal with Ara, and Glc with Xyl) among saccharides, and (Gaol with Arol, and Srol with Xyol) among polyols in the presence of water and ammonium bromide solutions. The contributions due to the −CHOH group addition on average at (288.15 and 318.15) K for aldohexose series (Ara→Gal and Xyl→Glc) are (16.55 and 1035

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

T/K

95.06 ± 0.01j, 94.98c

(+)-D-arabitol (+)-D-xylose

galactitol (+)-D-mannose

1036

T/K

110.24 ± 0.01j, 110.52 ± 0.02n, 110.20d, 111.90 ± 0.3q, 110.29 ± 0.04h, 110.50 ± 0.3i, 109.80 ± 0.3a, 111.10 ± 0.2g, 110.64k, 110.70h 119.3 ± 0.3d, 119.07 ± 0.03u 111.67 ± 0.0j, 111.59c, 111.5 ± 0.3i, 111.96k, 111.3 ± 0.3q, 111.7 ± 0.5l, 111.3 ± 0.3m, 111.1 ± 0.3a, 112.60 ± 0.6g, 111.70 ± 0.5q 119.48r, 119.53t, 119.71s, 119.4 ± 0.3d, 118.8 ± 0.5e, 119.44 ± 0.01t

T/K

Reference 38.

113.57 ± 0.01j, 113.50c, 112.90o 114.20 ± 0.2g 213.80 ± 0.01j, 213.77c 213.50o, 212.69f 231.30 ± 0.02j, 231.20c, 211.29f

112.81 ± 0.02j,112.51c,112.70o 113.50 ± 0.1g 212.75 ± 0.02j, 212.64c 213.20o, 211.54f 229.70 ± 0.02j, 229.77c, 211.61h, 209.85f

m

112.96 ± 0.01j, 112.88c 114.10 ± 0.5g 121.47r

111.90 ± 0.01j, 111.84 ± 0.01h 112.50 ± 0.4g

111.38 ± 0.01j 121.06r

96.74 ± 0.01j, 96.84c 97.50 ± 0.3g

95.20 ± 0.01j, 95.15 ± 0.01h 96.00 ± 0.2g

318.15

112.28 ± 0.01j, 112.21c 113.40 ± 0.6g 120.36r

110.92 ± 0.01j, 110.85 ± 0.04h 111.90 ± 0.3g

92.20a, 93.29 ± 0.01j, 93.23 ± 0.02n, 93.20 ± 0.3d, 93.43 ± 0.05h, 93.70 ± 0.3i,, 94.20 ± 0.2g,94.00k 94.06 ± 0.03j, 94.00 ± 0.09h 95.10 ± 0.2g 103.0 ± 0.3d 95.66 ± 0.02j, 95.55c, 95.40 ± 0.30i,95.60k,95.40 ± 0.30d 95.50 ± 0.20m, 95.00 ± 0.30a, 95.51 ± 0.01b, 96.18 ± 0.01j, 96.19c 97.1 ± 0.3g 96.40 ± 0.03g, 94.80 ± 0.4q 102.4 ± 0.3d 110.56 ± 0.01j, 110.60q, 111.50k 110.96 ± 0.02j 118.97r, 119.26t, 119.16s, 119.9 ± 0.3d, 119.15 ± 0.02u, 118.4 ± 0.3e 119.68r

308.15

Reference 6. bReference 7. cReference 20. dReference 29. eReference 30. fReference 31. gReference 32. hReference 33. iReference 34. jReference 35. kReference 36. lReference 37. Reference 39. oReference 40. pReference 41. qReference 42. rReference 43. sReference 44. tReference 45. uReference 46.

n

a

(+)-D-maltose monohydrate

sucrose

(+)-D-glucose

T/K 298.15

116.86r, 118.29 ± 0.02u 111.04 ± 0.02j, 110.82c 111.89 ± 0.02j, 111.59c,112.00 ± 0.1i, 111.7k, 111.7 ± 0.3d, 112.2 ± 0.4l, 111.70 ± 0.3m, 110.90 ± 0.3a, 110.16p, 111.99 ± 0.01n, 112.70 ± 0.1g j 211.00 ± 0.02 , 211.87 ± 0.02j, 211.59c, 211.6d, 211.6 ± 0.3l,m, 211.39k, 209.92f 210.77c, 208.16f 226.57 ± 0.02j, 228.08 ± 0.01j, 228.20c, 227.78k, 208.80 ± 0.80q, 210.0d, 210.07h, 208.06f 226.66c, 205.76f

117.90 ± 0.04u 111.01 ± 0.01j, 110.95c

(+)-D-galactose

D-mannitol

109.51 ± 0.01j 116.88r, 117.82 ± 0.02u 109.50 ± 0.01j

xylitol (−)-L-sorbose D-sorbitol

92.53 ± 0.01j

288.15

(−)-D-arabinose

solute

V°2 ·106/m3·mol−1

Table 4. Literature Values of Partial Molar Volumes, V°2 , at Infinite Dilution of Polyhydroxy Solutes in Water at Various Temperatures

Journal of Chemical & Engineering Data Article

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Figure 2. Partial molar volumes of transfer at infinite dilution, ΔtV°2 vs, molalities, mB of NH4Br(aq) of (a) (+)-D-xylose, (b) xylitol, (c) (+)-Dgalactose, (d) (+)-D-mannose, (e) galactitol, and (f) sucrose at ◆, 288.15 K; ■, 298.15 K; ▲, 308.15 K; ×, 318.15 K.

−T(∂2V°2 /∂T2)P, by which qualitative information on hydration of a solute could be obtained from the thermal expansion of an aqueous solution. The sign of the left-hand side of the above equation {(∂Cp,2°/∂P)T < 0, (∂Cp,2°/∂P)T > 0} provides a direct probe of kosmotropic and chaotropic properties of stabilization or destabilization, respectively. Therefore, the positive (∂2V°2 /∂T2)P values obtained on right-hand side of above equation for saccharides (except Sor) suggest that saccharides are kosmotropic in nature, and negative (∂2V°2 / ∂T2)P values for polyols suggest that polyols act as chaotropic in water and ammonium bromide solutions. 3.4. Interactions Coefficients. Applying the McMillan− Mayer theory of solutions56,57 that permits the formal separation of the effects due to interactions between pair or more solute molecules, the partial molar volumes of transfer can be expressed as

the −CHOH group decrease with rise of temperature in mixed aqueous solutions. 3.3. Partial Molar Expansibilities. Isobaric expansion coefficients, (∂V2°/∂T)P and their second-order derivatives, (∂2V°2 /∂T2)P have been calculated by fitting the V°2 data as a function of temperature using the method of least-squares to the following equation: V 2° = a + bT + cT 2

(4)

where a, b, and c are constants. The (∂V2°/∂T)P values increase with the rise of temperature for pentoses, hexoses (except Sor), and disaccharides, but these values decrease with temperature for polyols, studied in water and ammonium bromide solutions (Supporting Information, Table S2). The decrease in values is more sharp in D-mannitol (Figure 3) than other polyols. Hepler55 used the thermodynamic relation: (∂Cp,2 ° /∂P)T = 1037

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 5. Relationship between % Increase in Molar Mass and V°2 of Saccharides and Their Corresponding Polyols V2° m ·mol 3

solute (−)-D-arabinose (+)-D-arabitol (+)-D-xylose xylitol (−)-L-sorbose D-sorbitol (+)-D-galactose galactitol +)-D-mannose D-mannitol (−)-D-arabinose (+)-D-arabitol (+)-D-xylose xylitol (−)-L-sorbose D-sorbitol (+)-D-galactose galactitol +)-D-mannose D-mannitol

V2° −1

% increase in V°2

T/K = 288.15 92.45 9.24 100.99 94.96 5.99 100.65 109.78 6.56 116.98 109.54 7.94 118.24 110.94 5.50 117.04 T/K = 308.15 94.17 9.75 103.35 95.98 7.19 102.88 110.98 8.10 119.97 111.16 8.43 120.53 112.25 7.39 120.55

−1

m ·mol 3

% increase in V°2

T/K = 298.15 93.26 9.65 102.26 95.45 6.69 101.84 110.45 7.41 118.63 110.31 8.30 119.47 111.55 6.72 119.05 T/K = 318.15 95.20 9.71 104.44 96.57 7.57 103.88 111.49 8.65 121.13 112.04 8.41 121.46 112.91 7.60 121.49

% increase in molar mass 1.3 1.3 1.1 1.1 1.1

Figure 3. Partial molar expansion coefficients (∂V°2 /∂T)P vs T of Dmannitol in ◆, mA = 0.00 mol·kg−1; ■, mA = 0.05 mol·kg−1; ▲, mA = 0.50 mol·kg−1; ×, mA = 1.00 mol·kg−1; −, mA = 2.00 mol·kg−1.

1.3 1.3

pair interaction coefficients for Glc and disaccharides increase linearly, whereas the negative contributions of triplet coefficients vary nonlinearly (Figure 4a). This suggests that pairwise interactions occur due to the overlap of hydration spheres of the solutes and NH4+/Br− ions. The temperature dependence of the VAB coefficients indicates that pairwise interactions are more favorable at low temperatures in the cases of Glc and disaccharides. The positive values for VAB in Glc and disaccharides show the presence of solvophilic−ionic interactions between solute and cosolute, while negative values for VABB give some indication about the presence of solvophobic− ionic interactions between polyhydroxy solutes and ions of ammonium bromide. The negative contributions of pair coefficients for pentoses, hexoses (except Glc), and all polyols, increase linearly, whereas, the positive triplet coefficients vary nonlinearly (Figure 4b) at all temperatures, indicating that pairwise interactions are less favorable. The variation of the VAB coefficients with temperature indicates that pairwise interactions are more favorable at higher temperatures in pentoses, hexoses, and polyols. It may be noted that the VAB values increase, whereas the VABB values decrease with complexity of saccharides, that is, from pentoses to hexoses to disaccharides. It may be noted as the higher orders interaction coefficients contain the contributions from the lower order coefficients, their interpretation is very difficult. The VAB values are higher for Xyl than Ara, which indicates that Xyl (1e2e3e4e) containing equatorial 2-OH and 4-OH groups interacts strongly with cosolute ions than Ara (1e2e3e4a) with equatorial 2-OH and axial 4-OH groups. Owing to similar reasons, Glc (1e2e3e4e6e) has the highest VAB values among the hexoses, interacting strongly, and Gal (1e2e3e4a6e) has the lowest values of VAB, interacting weakly with NH4+ and Br− ions. Presently, for hexaols, the VAB values follow the trend Srol > Maol > Gaol (at 288.15 and 298.15) K and Maol > Srol > Gaol (at 308.15 and 318.15) K. This indicates that Srol with nonplanar sickle conformation interacts more, and Gaol with planar zigzag structure interacts less with ions of NH4Br, and gets support from the NMR studies.52 However, among pentaols, the VAB values are higher for Arol than Xyol, which indicates that Xyol with nonplanar sickle conformation has less interactions with ions, than Arol with planar zigzag structures. Therefore, more studies are required to

1.1 1.1 1.1

Table 6. Partial Molar Volumes of Transfer, ΔtV°2 at Infinite Dilution of Disaccharides in Solutions of Ammonium Salts. ΔtV°2 /m3·mol−1 T/K solute

288.15

T/K 298.15

T/K 308.15

mB = 0.5 mol·kg−1 NH4Br (+)-D-maltose monohydrate 4.60 4.16 3.55 sucrose 4.18 3.57 2.94 mB = 1.0 mol·kg−1 NH4Br (+)-D-maltose monohydrate 6.20 5.50 4.90 sucrose 4.88 4.15 3.49 a mB = 0.49850 mol·kg−1 (NH4)2SO4 (+)-D-maltose monohydrate 3.96 5.44 7.00 sucrose 1.01 1.96 4.70 a mB = 0.99705 mol·kg−1 (NH4)2SO4 (+)-D-maltose monohydrate 7.41 10.21 14.56 sucrose 2.34 3.54 10.00 a

T/K 318.15 2.73 2.26 4.30 2.86 10.85 8.08 28.77 15.10

Reference 21.

Δt V 2° = 2VABmB + 3VABBmB 2

(5)

where A and B denote solute and cosolute, respectively. The pair volumetric interaction coefficients VAB are positive for Glc and disaccharides at all temperatures and for hexoses {Man and Gal, at (288.15 and 298.15) K}, but their triplet interaction coefficients VABB are negative (except Gal and Man) at all temperatures (Supporting Information, Table S3). The VAB coefficients are negative for pentoses, hexoses (except Glc), and all the polyols (penta- and hexa-ols), and their VABB coefficients are positive at all the studied temperatures. The relative weightings of the coefficients may be judged from their contributions to transfer volumes. The positive contributions of 1038

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Figure 4. Contributions of volumetric interaction coefficient to ΔtV2° at various molalities, mB of NH4Br of (a) sucrose, (b) xylitol at (◆,∗) 288.15, (■,●) 298.15, (▲,+) 308.15, and (×,−) 318.15 [◆, ■, ▲, × (VAB) and ∗, •, +, − (VABB)].

concentration of cosolute. The viscosities of solutions decrease at (288.15, 298.15, and 308.15) K, but increase at 318.15 K with increase in concentration of NH4Br. The viscosities of polyols are higher than their respective saccharides at all temperatures, except in cases of Gal and Gaol where the values are almost the same (Table 7). The B-coefficients for NH4+ ions in water58,59 are (−0.007, −0.008, and −0.003) dm3·mol−1, and for Br− ions are (−0.058, −0.033, −0.026, and −0.014) dm3·mol−1 at (288.15, 298.15, 308.15, and 318.15) K, respectively. Therefore, the Bcoefficients for NH4Br are negative (−0.065, −0.041, and −0.029) dm3·mol−1 at (288.15, 298.15, and 308.15) K respectively, and decrease with temperature. The B-coefficients are positive for the systems studied in water and in NH4Br(aq) solutions (Supporting Information, Table S5). The Bcoefficients increase with the rise of temperature and complexity of solutes that is, from mono- to disaccharides. Further, the B-coefficients of polyols are higher than their corresponding penta-or hexa-oses. Therefore, the increase in size of solute molecules results in larger B-coefficients. The magnitude of B-values for the studied solutes are larger in NH4Br solutions than in water (except at mB = 0.05 mol·kg−1), which indicates that the presence of cosolute strengthens the structure of the solution at higher concentrations. The dB/dT is known to be a better criterion60 for determining the structuremaking or -breaking nature of any solute. The dB/dT coefficients (Supporting Information, Table S6) are negative in water, but positive in NH4Br(aq) solutions (except at mB = 0.05 mol·kg−1) and increase with concentration of cosolute. This indicates that polyhydroxy solutes that behave as “structure-makers” in water, behave as “structure-breakers” in ammonium bromide solutions. The viscosities B coefficients of transfer, ΔtB were calculated using the equation analogous to equation 3. Plots of viscosity Bcoefficients of transfer, ΔtB versus mB, the molality of NH4Br (represented in Figure 6a−d) show that the ΔtB values are positive (except at mB ≈ 0.05 mol·kg−1) and increase with concentration of cosolute. In disaccharides, the negative ΔtB values show a dip at mB ≈ 0.05 mol·kg−1 and the values become positive afterward (Figure 6c). In Sor (ketohexose) (Figure 6d) and disaccharides, the values tend to level off at higher concentrations. The ΔtB values increase with temperature in each case (Supporting Information, Table S7). The ΔtB values

rationalize the solvation behavior of polyhydroxy solutes in terms of their stereochemistry. 3.5. Apparent Massic Volumes and Taste Behavior. The influence of ammonium bromide on the taste behavior of various solutes can be analyzed61 on the basis of apparent massic volumes, vϕ calculated as vϕ = V2,ϕ/M. The vϕ values of all the studied saccharides lie in the clean sweet taste quality range (0.61 to 0.65)·10−3 m3·kg−1 in water and in the presence of NH4Br (0.58 to 0.66)·10−3 m3·kg−1 (Supporting Information, Table S4). The vϕ values of polyols lie in the sweet taste quality range (0.64 to 0.69)·10−3 m3·kg−1 in water and in presence of NH4Br (0.62 to 0.68)·10−3 m3·kg−1. This suggests that NH4+ and Br− ions do not change the taste quality of the polyhydroxy solutes. Earlier reported24 vϕ values of Suc (disaccharide) lie in the sweet-bitter taste quality range (0.64 to 0.72)·10−3 m3·kg−1 in the presence of (NH4)2SO4. This suggests that with an increase in charge/size of anion, the taste quality of saccharides deviates from the sweet taste range. 3.6. Viscosity and Viscosity B-Coefficients. Viscosity Bcoefficients were determined by fitting the relative viscosities, ηr (ηr = η/ηo, where ηo and η are the viscosities of solvent and solution, respectively) data to the Jones−Dole equation: ηr = 1 + Bc

(6)

where c is the molarity (calculated from the molality and density data) of the solution in mol·dm−3. The viscosities η of the solutes in water are higher than that of pure water and increase with concentration of solute (Table 7). The viscosities decrease with rise of temperature in all cases (a representative 3-D plot of η vs molality, mA for xylitol in mB = 0.5 mol·kg−1 NH4Br(aq) solutions is given in Figure 5 as a function of temperature). The values of slopes obtained from plots of η vs mA (plots not given) show a decrease at mB = 0.05 mol·kg−1 in almost all cases particularly at 288.15 K, and the values further increase with increase in the concentration of NH4Br. However, the slopes decrease with rise of temperature. Further the slope values increase with an increase in the complexity of solute, that is, from pentoses to disaccharides. Thus the changes in slope values at mB = 0.05 mol·kg−1 are in line with the observations from volumetric data that there may be an effective packing of the component molecules at low concentrations of cosolute. The viscosities of all the solutes in NH4Br(aq) solutions are higher than solutions in water, which also vary linearly with 1039

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 7. Viscosities, η of Polyhydroxy Solutes in Water and NH4Br(aq) Solutions over the Temperature Range (288.15 to 318.15) K at Pressure (p = 0.1 MPa) η/mPa·s mAa mol·kg

T/K −1

288.15

T/K 298.15

η/mPa·s T/K 308.15

mAa

T/K 318.15

mol·kg

−1

T/K

T/K

T/K

T/K

288.15

298.15

308.15

318.15

(−)-D-Arabinose

(+)-D-Arabitol Water

0.00000 0.05178 0.06950 0.08979 0.10770 0.12667 0.15097

1.138 1.157 1.164 1.170 1.177 1.182 1.191

0.890 0.905 0.909 0.915 0.920 0.925 0.932

0.719 0.730 0.734 0.738 0.741 0.745 0.750

0.00000 0.05080 0.07050 0.08658 0.11212 0.12813 0.15060

1.132 1.149 1.156 1.161 1.169 1.174 1.182

0.888 0.902 0.907 0.912 0.918 0.923 0.929

0.719 0.730 0.735 0.739 0.745 0.748 0.754

0.00000 0.04815 0.07221 0.09113 0.11332 0.12994 0.14929

1.096 1.118 1.132 1.140 1.150 1.157 1.169

0.870 0.889 0.899 0.908 0.916 0.922 0.931

0.710 0.728 0.737 0.744 0.752 0.758 0.765

0.00000 0.04883 0.07146 0.08773 0.11224 0.12944 0.14719

1.057 1.089 1.105 1.116 1.133 1.146 1.155

0.853 0.882 0.898 0.907 0.919 0.929 0.940

0.697 0.720 0.731 0.741 0.752 0.761 0.769

0.00000 0.05181 0.07038 0.08185 0.10728 0.12756 0.15038

1.002 1.041 1.057 1.066 1.085 1.105 1.122

0.04924 0.06784 0.09005 0.10384 0.12852 0.15100

1.161 1.167 1.176 1.183 1.190 1.201

0.904 0.911 0.917 0.921 0.929 0.936

0.730 0.735 0.740 0.743 0.749 0.754

0.05029 0.06964 0.09139 0.11025 0.12830 0.14914

1.153 1.162 1.170 1.180 1.187 1.195

0.903 0.909 0.916 0.923 0.930 0.936

0.731 0.737 0.742 0.747 0.751 0.757

0.827 0.866 0.879 0.886 0.904 0.915 0.931 (+)-D-Xylose

0.678 0.708 0.720 0.726 0.741 0.753 0.767

0.596 0.604 0.608 0.611 0.614 0.616 0.621 mBb = 0.597 0.607 0.612 0.615 0.620 0.623 0.628 mB = 0.598 0.614 0.623 0.630 0.637 0.643 0.650 mB = 0.600 0.618 0.629 0.637 0.647 0.655 0.665 mB = 0.602 0.629 0.640 0.646 0.659 0.671 0.683

0.05025 0.06886 0.09155 0.10611 0.12582 0.15071 0.05 mol·kg−1

1.162 1.172 1.183 1.189 1.198 1.209

0.906 0.913 0.920 0.925 0.931 0.940

0.730 0.735 0.740 0.744 0.748 0.754

0.604 0.608 0.611 0.613 0.617 0.621

0.04907 0.06706 0.09117 0.10522 0.12446 0.14695 0.5 mol·kg−1

1.154 1.163 1.173 1.180 1.189 1.199

0.904 0.911 0.919 0.923 0.930 0.938

0.732 0.737 0.743 0.746 0.752 0.757

0.608 0.612 0.616 0.620 0.624 0.629

0.05071 0.07083 0.08928 0.11307 0.13123 0.15146 1.0 mol·kg−1

1.127 1.141 1.151 1.166 1.176 1.188

0.895 0.906 0.913 0.924 0.932 0.941

0.732 0.739 0.747 0.756 0.762 0.772

0.616 0.624 0.630 0.638 0.644 0.651

0.04887 0.07016 0.08941 0.10557 0.12591 0.14797 2.0 mol·kg−1

1.098 1.115 1.130 1.142 1.158 1.176

0.886 0.900 0.912 0.924 0.937 0.951

0.724 0.737 0.746 0.753 0.763 0.778

0.622 0.632 0.641 0.649 0.659 0.669

0.04602 0.06888 0.08267 0.10425 0.12338 0.14504

1.046 1.069 1.083 1.103 1.121 1.139

0.868 0.887 0.897 0.914 0.930 0.947 Xylitol

0.712 0.727 0.735 0.749 0.764 0.782

0.632 0.646 0.656 0.669 0.682 0.697

1.164 1.173 1.183 1.191 1.204 1.212

0.909 0.915 0.922 0.930 0.939 0.945

0.733 0.738 0.743 0.747 0.755 0.760

0.607 0.611 0.615 0.619 0.624 0.628

1.153 1.164 1.174 1.183 1.189 1.198

0.905 0.911 0.919 0.928 0.932 0.938

0.731 0.737 0.742 0.748 0.753 0.757

0.606 0.611 0.616 0.621 0.625 0.628

Water 0.605 0.04981 0.609 0.06784 0.612 0.08897 0.615 0.10587 0.620 0.13133 0.624 0.15007 mB = 0.05 mol·kg−1 0.608 0.04722 0.611 0.06984 0.617 0.09022 0.621 0.11213 0.626 0.12794 0.629 0.14749

1040

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 7. continued η/mPa·s

η/mPa·s

mAa

T/K

T/K

T/K

mol·kg−1

288.15

298.15

308.15

0.04956 0.07093 0.09230 0.11549 0.13064 0.15150

1.118 1.127 1.137 1.147 1.154 1.164

0.886 0.894 0.902 0.910 0.915 0.922

0.724 0.731 0.738 0.744 0.748 0.754

0.04434 0.07119 0.08831 0.11446 0.13337 0.14739

1.078 1.091 1.100 1.109 1.117 1.124

0.870 0.880 0.887 0.898 0.903 0.910

0.711 0.720 0.725 0.733 0.738 0.744

0.04238 0.06945 0.09072 0.11823 0.12763 0.14765

1.026 1.044 1.056 1.072 1.077 1.089

0.04909 0.07040 0.08456 0.10915 0.12886 0.15074

1.162 1.173 1.182 1.195 1.206 1.216

0.907 0.916 0.923 0.931 0.939 0.947

0.733 0.738 0.743 0.750 0.756 0.762

0.05278 0.06618 0.09056 0.10727 0.13022 0.14968

1.154 1.159 1.169 1.177 1.185 1.196

0.905 0.910 0.918 0.924 0.931 0.937

0.733 0.737 0.743 0.748 0.755 0.761

0.05064 0.07231 0.09040 0.11053 0.12994 0.14875

1.129 1.142 1.153 1.166 1.178 1.190

0.896 0.908 0.918 0.928 0.937 0.947

0.732 0.742 0.750 0.759 0.769 0.777

0.05725 0.07227 0.08846 0.10811 0.13016 0.14828

1.104 1.115 1.129 1.146 1.162 1.176

0.892 0.903 0.914 0.928 0.942 0.955

0.732 0.742 0.752 0.762 0.778 0.789

0.04963 0.07354 0.08101 0.10617 0.12429 0.15005

1.046 1.062 1.073 1.088 1.106 1.126

0.864 0.881 0.889 0.907 0.918 0.937

0.709 0.728 0.734 0.748 0.760 0.774

0.847 0.862 0.872 0.886 0.890 0.900 (−)-L-Sorbose

0.696 0.709 0.719 0.731 0.734 0.743

T/K

mAa

T/K

T/K

T/K

T/K

318.15

mol·kg−1

288.15

298.15

308.15

318.15

1.123 1.135 1.144 1.157 1.165 1.173

0.891 0.901 0.909 0.919 0.924 0.931

0.727 0.736 0.742 0.751 0.756 0.762

0.614 0.621 0.627 0.633 0.638 0.641

1.088 1.100 1.112 1.128 1.136 1.149

0.880 0.889 0.897 0.911 0.919 0.927

0.717 0.725 0.734 0.746 0.753 0.757

0.619 0.626 0.633 0.643 0.649 0.656

0.703 0.712 0.722 0.735 0.743 0.750

0.625 0.633 0.642 0.656 0.660 0.669

mB = 0.5 mol·kg−1 0.610 0.04949 0.615 0.07229 0.621 0.08996 0.628 0.11516 0.631 0.12925 0.635 0.14514 mB = 1.0 mol·kg−1 0.613 0.04963 0.622 0.06840 0.626 0.08689 0.636 0.11399 0.641 0.13005 0.644 0.14615 mB = 2.0 mol·kg−1 0.618 0.05060 0.629 0.06909 0.638 0.08811 0.650 0.11590 0.655 0.12914 0.662 0.14615 Water 0.606 0.04790 0.611 0.06467 0.615 0.08656 0.620 0.10595 0.624 0.12494 0.629 0.14514 mB = 0.05 mol·kg−1 0.610 0.05152 0.614 0.07245 0.618 0.09072 0.623 0.11009 0.627 0.12661 0.632 0.14603 mB = 0 0.5 mol·kg−1 0.618 0.04868 0.626 0.06798 0.633 0.08660 0.641 0.10156 0.651 0.12615 0.658 0.14880 mB = 1.0 mol·kg−1 0.632 0.05500 0.641 0.07380 0.649 0.08957 0.661 0.09974 0.673 0.12775 0.681 0.14807 mB = 2.0 mol·kg−1 0.633 0.04908 0.647 0.07272 0.654 0.08016 0.669 0.10505 0.680 0.12723 0.694 0.14165

1041

1.037 1.050 1.062 1.079 1.092 1.105

0.857 0.867 0.879 0.894 0.902 0.912 D-Sorbitol

1.169 1.183 1.197 1.210 1.226 1.239

0.914 0.921 0.932 0.942 0.951 0.959

0.736 0.742 0.750 0.756 0.765 0.772

0.609 0.614 0.620 0.624 0.631 0.635

1.165 1.178 1.190 1.200 1.212 1.224

0.913 0.925 0.935 0.944 0.951 0.961

0.741 0.749 0.758 0.765 0.771 0.779

0.617 0.623 0.630 0.636 0.641 0.649

1.133 1.148 1.164 1.176 1.194 1.210

0.900 0.913 0.926 0.934 0.949 0.961

0.735 0.746 0.754 0.762 0.776 0.787

0.620 0.629 0.638 0.645 0.656 0.666

1.109 1.127 1.139 1.151 1.176 1.193

0.900 0.911 0.922 0.931 0.949 0.964

0.734 0.746 0.756 0.763 0.782 0.796

0.632 0.644 0.653 0.661 0.679 0.690

1.056 1.084 1.091 1.118 1.139 1.155

0.875 0.896 0.901 0.922 0.945 0.957

0.717 0.736 0.743 0.761 0.779 0.791

0.637 0.653 0.659 0.678 0.695 0.703

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 7. continued η/mPa·s

η/mPa·s

mAa

T/K

T/K

T/K

mol·kg−1

288.15

298.15

308.15

T/K

mAa

T/K

T/K

T/K

T/K

318.15

mol·kg−1

288.15

298.15

308.15

318.15

(+)-D-Galactose

Galactitol Water

0.05001 0.07068 0.09059 0.10985 0.12891 0.15126

1.166 1.178 1.189 1.199 1.208 1.220

0.910 0.919 0.927 0.935 0.941 0.951

0.734 0.741 0.747 0.753 0.758 0.766

0.05059 0.07568 0.08913 0.10893 0.12969 0.14887

1.159 1.172 1.179 1.189 1.200 1.210

0.907 0.918 0.924 0.931 0.940 0.947

0.734 0.743 0.748 0.755 0.761 0.768

0.04996 0.06957 0.08883 0.10890 0.13137 0.14885

1.124 1.138 1.149 1.160 1.174 1.184

0.895 0.904 0.913 0.923 0.932 0.942

0.730 0.739 0.746 0.753 0.763 0.769

0.04965 0.07074 0.08762 0.11265 0.12980 0.15217

1.093 1.109 1.123 1.140 1.152 1.168

0.883 0.896 0.906 0.921 0.931 0.943

0.721 0.733 0.740 0.753 0.762 0.773

0.04883 0.06684 0.08769 0.10690 0.12766 0.14283

1.043 1.060 1.079 1.097 1.113 1.126

0.05010 0.07151 0.09353 0.11230 0.13185 0.15151

1.168 1.181 1.191 1.201 1.214 1.225

0.912 0.920 0.929 0.936 0.945 0.952

0.735 0.742 0.749 0.756 0.761 0.766

0.05107 0.06861 0.09010 0.10812 0.13018 0.14861

1.162 1.172 1.184 1.195 1.204 1.213

0.905 0.915 0.923 0.929 0.939 0.946

0.733 0.738 0.744 0.751 0.758 0.764

0.04970 0.06959 0.08728 0.11474 0.13069 0.14968

1.130 1.143 1.153 1.169 1.178 1.191

0.895 0.909 0.916 0.931 0.938 0.946

0.735 0.744 0.751 0.761 0.769 0.777

0.865 0.878 0.893 0.906 0.922 0.933 (+)-D-Mannose

0.707 0.720 0.734 0.746 0.759 0.768

0.607 0.05030 0.612 0.07104 0.617 0.08872 0.621 0.10907 0.625 0.12825 0.630 0.14679 mB = 0.05 mol·kg−1 0.610 0.05010 0.616 0.06871 0.620 0.08867 0.625 0.10914 0.630 0.12811 0.635 0.14699 mB = 0.5 mol·kg−1 0.616 0.05003 0.622 0.06924 0.628 0.08989 0.636 0.10837 0.644 0.13080 0.649 0.14673 mB = 1.0 mol·kg−1 0.622 0.05142 0.631 0.06930 0.640 0.08940 0.651 0.10935 0.660 0.13245 0.669 0.14521 mB = 2.0 mol·kg−1 0.633 0.04829 0.642 0.06848 0.654 0.08729 0.664 0.10875 0.675 0.12766 0.685 0.14037 Water 0.608 0.05269 0.613 0.07011 0.619 0.09107 0.624 0.10974 0.628 0.12934 0.634 0.15001 mB = 0.05 mol·kg−1 0.609 0.05535 0.614 0.06940 0.619 0.08852 0.624 0.10356 0.630 0.12817 0.635 0.14969 mB = 0.5 mol·kg−1 0.619 0.05205 0.626 0.07058 0.635 0.08814 0.645 0.10839 0.650 0.13032 0.657 0.14782 1042

1.164 1.175 1.185 1.196 1.204 1.215

0.909 0.916 0.921 0.928 0.935 0.941

0.732 0.737 0.743 0.747 0.752 0.757

0.605 0.609 0.612 0.616 0.619 0.622

1.160 1.171 1.183 1.193 1.205 1.214

0.908 0.916 0.924 0.933 0.940 0.948

0.734 0.741 0.747 0.752 0.760 0.766

0.610 0.615 0.619 0.625 0.630 0.636

1.127 1.135 1.150 1.161 1.171 1.178

0.895 0.901 0.912 0.918 0.930 0.940

0.729 0.737 0.745 0.752 0.762 0.768

0.615 0.622 0.628 0.634 0.641 0.647

1.095 1.109 1.123 1.137 1.153 1.163

0.885 0.898 0.908 0.918 0.931 0.941

0.723 0.732 0.743 0.753 0.764 0.770

0.623 0.630 0.639 0.650 0.658 0.664

0.708 0.721 0.733 0.747 0.759 0.767

0.630 0.642 0.652 0.665 0.675 0.683

1.045 1.064 1.080 1.099 1.113 1.126

0.862 0.877 0.893 0.904 0.921 0.930 D-Mannitol

1.176 1.189 1.203 1.217 1.230 1.246

0.918 0.927 0.936 0.945 0.955 0.964

0.740 0.747 0.754 0.761 0.765 0.774

0.611 0.617 0.621 0.627 0.633 0.639

1.168 1.179 1.191 1.200 1.214 1.226

0.914 0.921 0.930 0.938 0.948 0.960

0.738 0.744 0.752 0.756 0.765 0.773

0.616 0.620 0.626 0.631 0.639 0.646

1.141 1.156 1.165 1.185 1.201 1.212

0.903 0.913 0.924 0.937 0.953 0.961

0.738 0.747 0.758 0.767 0.778 0.788

0.621 0.630 0.637 0.647 0.658 0.666

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 7. continued η/mPa·s

η/mPa·s

mAa

T/K

T/K

T/K

mol·kg−1

288.15

298.15

308.15

0.05159 0.06974 0.08758 0.11298 0.12730 0.14755

1.098 1.111 1.125 1.144 1.157 1.174

0.04675 0.06544 0.08783 0.11070 0.12724 0.15035

1.043 1.059 1.078 1.098 1.112 1.133

0.05130 0.06904 0.09026 0.11143 0.12939 0.14897

1.167 1.176 1.188 1.200 1.212 1.219

0.911 0.918 0.926 0.935 0.942 0.951

0.735 0.741 0.747 0.755 0.759 0.764

0.04957 0.07026 0.09022 0.11888 0.12775 0.15007

1.156 1.166 1.176 1.189 1.196 1.203

0.908 0.915 0.924 0.933 0.937 0.946

0.735 0.744 0.751 0.762 0.765 0.773

0.04641 0.06822 0.08276 0.12128 0.12896 0.14964

1.123 1.134 1.141 1.165 1.174 1.183

0.894 0.905 0.913 0.930 0.935 0.943

0.731 0.741 0.748 0.764 0.768 0.777

0.05237 0.06760 0.09001 0.11078 0.12963 0.14922

1.099 1.112 1.124 1.142 1.155 1.169

0.891 0.900 0.910 0.926 0.938 0.949

0.727 0.737 0.751 0.765 0.775 0.785

0.05078 0.07095 0.08932 0.10886 0.13349 0.15062

1.056 0.875 0.716 1.074 0.890 0.732 1.097 0.906 0.748 1.106 0.919 0.760 1.135 0.945 0.781 1.151 0.956 0.790 (+)-D-Maltose Monohydrate Water 1.203 0.936 0.756 1.225 0.956 0.770 1.251 0.974 0.785 1.269 0.988 0.795 1.299 1.012 0.815 1.320 1.026 0.825

0.04995 0.06787 0.08933 0.10424 0.12981 0.14725

0.886 0.898 0.908 0.924 0.933 0.946 0.863 0.876 0.892 0.907 0.917 0.936 (+)-D-Glucose

0.724 0.734 0.743 0.757 0.765 0.776 0.706 0.718 0.733 0.746 0.755 0.770

T/K

mAa

T/K

T/K

T/K

T/K

318.15

mol·kg−1

288.15

298.15

308.15

318.15

1.104 1.124 1.141 1.158 1.181 1.196

0.891 0.906 0.920 0.935 0.950 0.961

0.728 0.739 0.754 0.765 0.778 0.788

0.628 0.638 0.650 0.662 0.672 0.681

1.060 1.076 1.097 1.115 1.137 1.158

0.876 0.888 0.904 0.922 0.941 0.961 Sucrose

0.721 0.732 0.747 0.758 0.771 0.785

0.642 0.653 0.665 0.675 0.689 0.701

1.198 1.221 1.242 1.264 1.286 1.310

0.934 0.951 0.969 0.984 1.001 1.019

0.751 0.766 0.780 0.793 0.805 0.819

0.621 0.632 0.645 0.654 0.666 0.675

1.182 1.199 1.217 1.234 1.250 1.269

0.924 0.937 0.952 0.967 0.978 0.995

0.745 0.755 0.768 0.781 0.791 0.802

0.618 0.630 0.638 0.648 0.657 0.664

1.148 1.168 1.192 1.219 1.241 1.264

0.914 0.931 0.953 0.970 0.986 1.000

0.748 0.758 0.777 0.792 0.805 0.821

0.630 0.640 0.656 0.666 0.679 0.692

1.113 1.136 1.162 1.190 1.208 1.232

0.901 0.917 0.941 0.961 0.977 0.992

0.734 0.747 0.771 0.783 0.795 0.815

0.634 0.646 0.665 0.676 0.685 0.700

1.066 1.087 1.109 1.133 1.153 1.180

0.881 0.898 0.914 0.937 0.954 0.976

0.721 0.736 0.754 0.771 0.787 0.805

0.642 0.657 0.671 0.686 0.700 0.715

mB = 1.0 mol·kg−1 0.624 0.04984 0.633 0.06906 0.639 0.08923 0.652 0.10873 0.660 0.13218 0.668 0.14732 mB = 2.0 mol·kg−1 0.630 0.05694 0.641 0.07060 0.654 0.09064 0.667 0.10692 0.674 0.12720 0.685 0.14747 Water 0.609 0.05054 0.613 0.06969 0.618 0.09107 0.623 0.10980 0.627 0.12932 0.632 0.14969 mB = 0.05 mol·kg−1 0.613 0.05096 0.619 0.06928 0.625 0.09120 0.634 0.11115 0.636 0.12956 0.643 0.15140 mB = 0.5 mol·kg−1 0.618 0.04987 0.628 0.06643 0.635 0.09045 0.648 0.10938 0.653 0.12817 0.660 0.15021 mB = 1.0 mol·kg−1 0.632 0.04867 0.641 0.06605 0.652 0.09083 0.664 0.11033 0.672 0.12791 0.683 0.15010 mB = 2.0 mol·kg−1 0.638 0.05195 0.653 0.06954 0.665 0.08935 0.677 0.11018 0.696 0.12740 0.708 0.15143

0.626 0.636 0.649 0.657 0.671 0.681 1043

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Table 7. continued η/mPa·s

η/mPa·s

mAa

T/K

T/K

T/K

mol·kg−1

288.15

298.15

308.15 0.751 0.762 0.777 0.785 0.798 0.814

0.623 0.633 0.644 0.653 0.664 0.673

0.751 0.766 0.786 0.798 0.812 0.830

0.630 0.642 0.660 0.671 0.687 0.700

0.738 0.751 0.776 0.786 0.808 0.824

0.636 0.650 0.667 0.676 0.696 0.710

0.724 0.746 0.764 0.775 0.795 0.809

0.647 0.665 0.681 0.692 0.706 0.721

0.05004 0.06964 0.08883 0.10607 0.13054 0.14993

1.187 1.207 1.222 1.246 1.268 1.287

0.05076 0.06594 0.09181 0.10668 0.12884 0.14878

1.156 1.179 1.213 1.229 1.256 1.281

0.04955 0.06496 0.09168 0.10329 0.12863 0.14923

1.121 1.140 1.175 1.192 1.224 1.248

0.04991 0.07257 0.09177 0.10693 0.12884 0.14589

1.070 1.098 1.123 1.141 1.168 1.188

mB = 0.05 mol·kg−1 0.927 0.944 0.959 0.973 0.993 1.005 mB = 0.5 mol·kg−1 0.920 0.934 0.961 0.977 0.998 1.012 mB = 1.0 mol·kg−1 0.906 0.923 0.951 0.962 0.988 1.007 mB = 2.0 mol·kg−1 0.885 0.908 0.926 0.943 0.963 0.986

T/K

mAa

T/K

T/K

T/K

T/K

318.15

mol·kg−1

288.15

298.15

308.15

318.15

a

mA is the molality of solute in water + NH4Br (solvent). bmB is the molality of NH4Br in water. Standard uncertainties are u(T) = 0.01 K, u(m) = 2.8·10−6 mol·kg−1 and u(η) = 0.002 mPa·s.

cosolute, which offers greater resistance to the movement of solute molecules resulting in higher ΔtB values. Overall the pair viscometric interaction coefficients, ηAB [calculated using equation analogous to equation (5)] are positive, but triplet coefficients, ηABB are negative with small magnitudes (Supporting Information, Table S8). The ηAB coefficients increase with temperature, whereas the change in ηABB coefficients is insignificant with temperature. The contributions of pair interaction coefficients, ηAB increase linearly, whereas, those of triplet, ηABB coefficients vary nonlinearly at all temperatures. This suggests that interactions between solute and cosolute are mainly pair wise and become strengthen with rise of temperature. This behavior is similar to that observed from volumetric coefficients. The interaction coefficients follow the similar trend as ΔtB values, that is, do not vary with complexity of saccharides. The values of interaction coefficients are higher for polyols than respective saccharides and increase with temperature. Among the polyols, the ηAB values follow the trend Arol > Srol > Gaol > Maol > Xyol, which indicates that Arol has greater interactions with cosolute, as observed from volumetric results also.

Figure 5. Plot of viscosity, η vs molality, mA, for xylitol in mB = 0.5 mol·kg−1 NH4Br(aq) solutions at (288.15, 298.15, 308.15, and 318.15) K.

4. CONCLUSIONS All the solutes studied have positive V2,ϕ and B-coefficients in water and in NH4Br(aq) solutions and these are higher for polyols than their corresponding penta- or hexa-oses. The variation of V2,ϕ values with mB hints toward the differences in

are higher for polyols than their respective saccharides. The ΔtB values do not increase with the complexity of the solutes and follow the order Glc > Sor > Ara > Gal > Man > Xyl > Mal > Suc. Among the saccharides, Glc interacts strongly with the 1044

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Figure 6. Viscosity B-coefficients of transfer, ΔtB vs molalities, mB of NH4Br of (a) (−)-D-arabinose, (b) (+)-D-arabitol, (c) (+)- maltose monohydrate, (d) (−)-L-sorbose at ◆, 288.15 K; ■, 298.15 K; ▲, 308.15 K; ×, 318.15 K.



solvation behavior of solutes studied. This also indicates that the packing of the component molecules is more effective at lower concentration of cosolute. The viscosity studies also provide similar clues. The ΔtV2° results indicate that hydrophilic−ionic type interactions predominate in disaccharides and Glc, which are strengthened with concentration of NH4Br. However, in pentoses and polyols (in all concentrations of NH4Br) and for hexoses (at low concentrations of cosolute), hydrophobic−ionic-type interactions between solutes and NH4+/Br− ions predominate. The magnitude of ΔtV°2 values increases in pentoses, whereas it decreases in aldohexoses, polyols, and disaccharides with a rise of temperature. Generally, the decrease is more in polyols than respective saccharides. The pairwise interactions due to the overlap of hydration spheres of the solutes (Glc and disaccharides) and NH4+/Br− ions are more favorable at low temperatures, and for pentoses, hexoses (except Glc), and polyols are more favorable at higher temperatures. Xyol and Srol with nonplanar sickle structures, being less compatible with the the water structure, interact more with NH4Br, hence exhibiting higher ΔtV°2 values than Arol, Maol, and Gaol with planar zigzag structures. However, the VAB values indicate that Xyol has less interaction with ions than Arol. The present study also suggests that the increase in charge/size of the ions of the cosolute can modulate the taste quality of the saccharides. Both the volumetric and viscometric studies suggest the formation of the icebergs (open structures) at low concentration of NH4Br, hence reflecting that solvent around solute molecules are more ordered and structured in dilute concentration region.

ASSOCIATED CONTENT

S Supporting Information *

Table S1, partial molar volumes of transfer ΔtV°2 at infinite dilution of polyhydroxy solutes in NH4Br(aq) solutions over the temperature range (288.15, 298.15, 308.15 and 318.15) K; Table S2, partial molar expansion coefficients (∂V2°/∂T)P and second-order derivatives, (∂2V°2 /∂T2)P of polyhydroxy solutes in water and NH4Br(aq) solutions over the temperature range (288.15, 298.15, 308.15 and 318.15) K; Table S3, pair VAB and triplet VABB interaction coefficients of polyhydroxy solutes in water and NH4Br(aq) solutions over the temperature range (288.15, 298.15, 308.15 and 318.15) K; Table S4, apparent massic volumes vϕ of polyhydroxy solutes in water and NH4Br(aq) solutions over the temperature range (288.15, 298.15, 308.15 and 318.15) K; Table S5, viscosity B-coefficients of polyhydroxy solutes in water and in NH4Br(aq) solutions from T = (288.15, 298.15, 308.15 and 318.15) K; Table S6, dB/ dT values of polyhydroxy solutes in NH4Br(aq) solutions; Table S7, viscosity B-coefficients of transfer, ΔtB at infinite dilution of polyhydroxy solutes in NH4Br(aq) solutions over the temperature range (288.15, 298.15, 308.15 and 318.15) K; Table S8, pair ηAB and triplet ηABB interaction coefficients of polyhydroxy solutes in water and NH4Br(aq) over the temperature range (288.15, 298.15, 308.15 and 318.15) K. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Author

*Tel.: +91 183 2451357. Fax: +91 183 2258819/20. E-mail: [email protected]. 1045

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Funding

(18) Aroulmoji, V.; Mathlouthi, M.; Feruglio, L.; Murano, E.; Grassi, M. Hydration Properties and Proton Exchange in Aqueous Sugar Solutions Studied by Time Domain Nuclear Magnetic Resonance. Food Chem. 2012, 132, 1644−1650. (19) Banipal, P. K.; Singh, V.; Banipal, T. S. Volumetric and Viscometric Studies on Saccharide−Disodium Tetraborate (Borax) Interactions in Aqueous Solutions. J. Chem. Eng. Data 2013, 58, 2355− 2374. (20) Banipal, P. K.; Aggarwal, N.; Banipal, T. S. Study on Interactions of Saccharides and Their Derivatives with Potassium Phosphate Monobasic (1:1 Electrolyte) in Aqueous Solutions at Different Temperatures. J. Mol. Liq. 2014, 196, 291−299. (21) Banipal, P. K.; Singh, V.; Kaur, G.; Kaur, M.; Banipal, T. S. Thermodynamic and Transport Properties of Some Disaccharides in Aqueous Ammonium Sulfate Solutions at Various Temperatures. J. Chem. Eng. Data 2008, 53, 1713−1724. (22) Nucci, N. V.; Vanderkooi, J. M. Effects of Salts of the Hofmeister Series on the Hydrogen Bond Network of Water. J. Mol. Liq. 2008, 143, 160−170. (23) Hunt, J. P. Metal Ions in Aqueous Solution; W.A. Benjamin, Inc.: New York, 1965; Chapter 3, pp 19−44. (24) Millero, F. J. The Apparent and Partial Molal Volume of Aqueous Sodium Chloride Solutions at Various Temperatures. J. Phys. Chem. 1970, 74, 356−362. (25) Kell, G. S. Density, Thermal Expansivity, and Compressibility of Liquid Water from (0 to 150)°C. Correlations and Tables for Atmospheric Pressure and Saturation Reviewed and Expressed on 1968 Temperature Scale. J. Chem. Eng. Data 1975, 20, 97−105. (26) Korson, L.; Hansen, W. D.; Millero, F. J. Viscosity of Water at Various Temperatures. J. Phys. Chem. 1969, 73, 34−39. (27) Frank, H. S.; Evans, M. W. Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molar Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes. J. Chem. Phys. 1945, 13, 507−532. (28) Jamal, M. A.; Khosa, M. K.; Rashad, M.; Bukhari, I. H.; Naz, S. Studies on Molecular Interactions of Some Sweeteners in Water by Volumetric and Ultrasonic Velocity Measurements at T = (20.0− 45.0°C). Food Chem. 2014, 146, 460−465. (29) Hoiland, H.; Holvik, H. Partial Molal Volumes and Compressibilities of Carbohydrates in Water. J. Sol. Chem. 1978, 7, 587−596. (30) Edward, J. T.; Farrell, P. G.; Shahidi, F. Partial Molar Volumes of Organic Compounds in Water Part 1−Ethers, Ketones, Esters and Alcohols. J. Chem. Soc. Faraday Trans.1. 1977, 73, 705−714. (31) Brown, B. R.; Ziemer, S. P.; Niederhauser, T. L.; Woolley, E. M. Apparent Molar Volumes and Apparent Molar Heat Capacities of Aqueous D(+)-Cellobiose, D(+)-Maltose, and Sucrose at Temperatures from (278.15 to 393.15) K and at the Pressure 0.35 MPa. J. Chem. Thermodyn. 2005, 37, 843−853. (32) Paljk, S.; Klofutar, C.; Kac, M. Partial Molar Volumes and Expansibilities of Some D-Pentoses and D-Hexoses in Aqueous Solution. J. Chem. Eng. Data 1990, 35, 41−43. (33) Banipal, P. K.; Banipal, T. S.; Lark, B. S.; Ahluwalia, J. C. Partial Molar Heat Capacities and Volumes of some Mono-, Di- and Trisaccharides in Water at 298.15, 308.15 and 318.15 K. J. Chem. Soc. Faraday Trans.1. 1997, 93, 81−87. (34) Goldberg, R. N.; Tewari, Y. B. Thermodynamic and Transport Properties of Carbohydrates and Their Monophosphates: The Pentoses and Hexoses. J. Phys. Chem. Ref. Data 1989, 18, 809−880. (35) Banipal, P. K.; Singh, V.; Banipal, T. S. Effect of Sodium Acetate on the Volumetric Behavior of Some Mono-, Di-, And Tri-Saccharides in Aqueous Solutions over Temperature Range (288.15 to 318.15) K. J. Chem. Thermodyn. 2010, 42, 90−103. (36) Jasra, R. V.; Ahluwalia, J. C. Enthalpies and Heat Capacities of Dissolution, Apparent Molar Heat Capacities, and Apparent Molar Volumes of Some Mono-, Di-, Tri-, and Tetra-saccharides in Water. J. Chem. Thermodyn. 1984, 16, 583−590. (37) Cesaro, A. Thermodynamics of Carbohydrate Monomers and Polymers in Aqueous Solution. In Thermodynamic Data for

S.A. is grateful to the Council of Scientific & Industrial Research (Scheme No.: 01/2518 /11-EMR-II), New Delhi, India, for financial support. Notes

The authors declare no competing financial interest.



REFERENCES

(1) Jiang, X.; Zhu, C.; Ma, Y. Densities and Viscosities of Erythritol, Xylitol, and Mannitol in L-Ascorbic Acid Aqueous Solutions at T = (293.15 to 323.15) K. J. Chem. Eng. Data 2013, 58, 2970−2978. (2) Sun, H.; Zhao, P.; Peng, M. Application of Maltitol to Improve Production of Raw Starch Digesting Glucoamylase by Aspergillus Niger F-08. World J. Microbiol. Biotechnol. 2008, 24, 2613−2618. (3) Jha, N. S.; Kishore, N. Thermodynamics of the Interaction of a Homologous Series of Amino Acids with Sorbitol. J. Sol.Chem. 2010, 39, 1454−1473. (4) Blodgett, M. B.; Ziemer, S. P.; Brown, B. R.; Niederhauser, T. L.; Woolley, E. M. Apparent Molar Volumes and Apparent Molar Heat Capacities of Aqueous Adonitol, Dulcitol, Glycerol, Meso-Erythritol, Myo-Inositol, D-Sorbitol, and Xylitol at Temperatures from (278.15 to 368.15) K and at the Pressure 0.35 MPa. J. Chem. Thermodyn. 2007, 39, 627−644. (5) Longinotti, M. P.; Mazzobre, M. F.; Buera, M. P.; Corti, H. R. Effect of Salts on the Properties of Aqueous Sugar Systems in Relation to Biomaterial Stabilization. Part 2. Sugar Crystallization Rate and Electrical Conductivity Behavior. Phys. Chem. Chem. Phys. 2002, 4, 533−540. (6) Chalikian, T. V. Ultrasonic and Densimetric Characterizations of the Hydration Properties of Polar Groups in Monosaccharides. J. Phys. Chem. B. 1998, 102, 6921−6926. (7) Shekaari, H.; Kazempour, A. Density and Viscosity in Ternary DXylose + Ionic Liquid (1-Alkyl-3-Methylimidazolium Bromide) + Water Solutions at 298.15 K. J. Chem. Eng. Data 2012, 57, 3315−3320. (8) Banipal, P. K.; Hundal, A. K.; Aggarwal, N.; Banipal, T. S. Studies on the Interactions of Saccharides and Methyl Glycosides with Lithium Chloride in Aqueous Solutions at (288.15 to 318.15) K. J. Chem. Eng. Data 2014, I59, 2437−2455. (9) Banipal, P. K.; Singh, V.; Aggarwal, N.; Banipal, T. S. Hydration Behaviour of Some Mono-, Di-, and Tri-saccharides in Aqueous Sodium Gluconate Solutions at (288.15, 298.15, 308.15 and 318.15) K. Food Chem. 2015, 168, 142−150. (10) Sormoli, M. E.; Das, D.; Langrish, T. A. G. Crystallization Behavior of Lactose/Sucrose Mixtures during Water-Induced Crystallization. J. Food. Eng. 2013, 116, 873−880. (11) Furlan, L. T. R.; Lecot, J.; Padilla, A. P.; Campderrós, M. E.; Zaritzky, N. Stabilizing Effect of Saccharides on Bovine Plasma Protein: A Calorimetric Study. Meat Science 2012, 91, 478−485. (12) Schiffman, S. S.; Miller, E. A. S.; Graham, B. G.; Bennett, J. L.; Booth, B. J.; Desai, N.; Bishay, I. Effect of Temperature, pH and Ions on Sweet Taste. Physiol. Behav. 2000, 68, 469−481. (13) Banipal, P. K.; Gautam, S.; Dua, S.; Banipal, T. S. Effect of Ammonium Salts on the Volumetric and Viscometric Behavior of D(+)-Glucose, D(−)-Fructose and Sucrose in Aqueous Solutions at 25°C. J. Sol. Chem. 2006, 35, 815−844. (14) Dong, L.; Liu, M.; Chen, A.; Sun, D. Enthalpies of Dilution, Volumetric Properties, and Refractive Indices of N, N′-Hexamethylenebisacetamide in Aqueous Xylitol or D-Mannitol Solutions at T = 298.15 K. J. Chem. Eng. Data 2012, 57, 2456−2464. (15) Donato, T.; Shapira, Y.; Artru, A.; Powers, K. Effect of Mannitol on Cerebrospinal Fluid Dynamics and Brain Tissue Edema. Anesth. Analg. 1994, 78, 58−66. (16) Longinotti, M. P.; Corti, H. R. Electrical Conductivity and Complexation of Sodium Borate in Trehalose and Sucrose Aqueous Solutions. J. Sol. Chem. 2004, 33, 1029−1040. (17) Cardoso, M. V. C.; Carvalho, L. V. C.; Sabadini, E. Solubility of Carbohydrates in Heavy Water. Carbohydr. Res. 2012, 353, 57−61. 1046

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047

Journal of Chemical & Engineering Data

Article

Biochemistry and Biotechnology; Hinz, H. J. Ed.; Springer-Verlag: 1986; pp 177−203. (38) Galema, S. A.; Hoiland, H. Stereochemical Aspects of Hydration of Carbohydrates in Aqueous Solutions; Density and Ultrasound Measurements. J. Phys. Chem. 1991, 95, 5321−5326. (39) Zhuo, K.; Liu, Q.; Wang, Y.; Ren, Q.; Wang, J. Volumetric and Viscosity Properties of Monosaccharides in Aqueous Amino Acid Solutions at 298.15 K. J. Chem. Eng. Data 2006, 51, 919−927. (40) Dhondge, S. S.; Pandhurnekar, C. P.; Garade, S.; Dadure, K. Volumetric and Transport Behavior of Different Carbohydrates in Aqueous and Aqueous Urea Mixtures at different Temperatures. J. Chem. Eng. Data 2011, 56, 3484−3491. (41) Jin, H. X.; Chen, H. Y. Volumetric Properties of 1-Butyl-3Methylimidazolium Tetrafluoroborate−Glucose−Water System. J. Chem. Eng. Data 2012, 57, 1134−1138. (42) Shahidi, F.; Ferrell, P. G.; Edwards, J. T. Partial Molar Volumes of Organic Compounds in Water III. Carbohydrates. J. Sol. Chem. 1976, 5, 807−816. (43) Banipal, T. S.; Sharma, S.; Lark, B. S.; Banipal, P. K. Thermodynamic and Transport Properties of Sorbitol and Mannitol in Water and in Mixed Aqueous Solutions. Indian J. Chem. 1999, 38, 1106−1115. (44) DiPaola, G.; Belleau, B. Polyol−Water Interactions. Apparent Molal Heat Capacities and Volumes of Aqueous Polyol Solutions. Can. J. Chem. 1977, 55, 3825−3830. (45) Jasra, R. V.; Ahluwalia, J. C. Thermodynamics of Transfer of Sorbitol and Mannitol from Water to Aqueous Solutions of Urea, Guanidine Hydrochloride and Sodium Chloride. J. Chem. Soc. Faraday Trans. 1. 1982, 78, 1677−1687. (46) Wurzburger, S.; Sartorio, R.; Guarino, G.; Nisi, M. Volumetric Properties of Aqueous Solutions of Polyols between 5 °C and 25 °C. J. Chem. Soc. Faraday Trans. 1. 1988, 84, 2279−87. (47) Chavez, L. A.; Birch, G. G. The Hydrostatic and Hydrodynamic Volumes of Polyols in Aqueous Solutions and Their Sweet Taste. Chem. Senses 1997, 22, 149−161. (48) Gurney, R. W. Ionic Processes in Solution; McGraw Hill: New York, 1953; Vol. 3, Chapter 1, pp 1−20. (49) Nostro, P. L.; Ninham, B. W.; Milani, S.; Nostro, A. L.; Pesavento, G.; Baglioni, P. Hofmeister Effects in Supramolecular and Biological Systems. Biophys. Chem. 2006, 124, 208−213. (50) Zhang, Y.; Cremer, P. S. Interactions between Macromolecules and Ions: The Hofmeister Series. Curr. Opin. Chem. Biol. 2006, 10, 658−663. (51) Frank, H. S.; Quist, A. S. Pauling’s Model and the Thermodynamic Properties of Water. J. Chem. Phys. 1961, 34, 604− 611. (52) Angyal, S. J.; Fur, R. L. The 13C-N.M.R. Spectra of Alditols. Carbohydr. Res. 1980, 84, 201−209. (53) Marcus, Y. The Standard Partial Molar Volumes of Aqueous Ions at 298.15 K. J. Chem. Soc. Faraday Trans. 1993, 89, 713−718. (54) Nightingaljer, E. R. Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. 1959, 63, 1381−1387. (55) Hepler, L. G. Thermal Expansion and Structure in Water and Aqueous Solutions. Can. J. Chem. 1969, 47, 4613−4617. (56) Kozak, J. J.; Knight, W.; Kauzmann, W. Solute−Solute Interactions in Aqueous Solutions. J. Chem. Phys. 1968, 68, 675−696. (57) McMillan, W. G., Jr; Mayer, J. E. The Statistical Thermodynamics of Multicomponent Systems. J. Chem. Phys. 1945, 13, 276− 305. (58) Wen, W.-Y. Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes; Horne, R. A., Ed.; Wiley: New York, 1972; Chapter 15. (59) Donald, H.; Jenkins, B.; Marcus, Y. Viscosity B-Coefficients of Ions in Solution. Chem. Rev. 1995, 95, 2695−2724. (60) Tyrrell, H. J. V.; Kennerley, M. Viscosity B-Coefficients between 5° and 20° for Glycolamide, Glycine, and N-Methylated Glycines in Aqueous Solution. J. Chem. Soc. (A) 1968, 2724−2728. (61) Parke, S. A.; Birch, G. G.; Dijk, R. Some Taste Molecules and Their Solution Properties. Chem. Senses 1999, 24, 271−279. 1047

DOI: 10.1021/je500886a J. Chem. Eng. Data 2015, 60, 1023−1047