(60) Lustenberger, N., Lange, H. W.. Hempel, K.. Angew. Chem., lnt. Ed. Engl., 11, 227-9 (1972). (61) Matveeva, I. V., Zh. Anal. Khim., 27, 1172-6 (1972). (62) Millon, E., C. R. Acad. Sci., 2 8 , 4 0 (1849). (63) Mishmash, H. E., Meioan, C. E., Anal. Chem., 44,835-6 (19 7 2 ) . (64) Murzakov, B. G., Zh. Prikl. Khim. (Leningrad), 46,217-18 (1973). (65) Mutsaars, P. M., Van Steen, J. E.. J. lnst. Petrol., London, 58, 102-7 (1972). (66) Nara, Y., Tuzimura, K., Bunseki Kagaku, 22,451-2 (1973). (67) Obtemperanskaya, S. I., Kalinina, N. N., Zh. AnalKhlm., 26, 2252-4 (1971). (68) Obtemperanskaya, S. I., Kalinina, N. N., Sizoi, M. N., Zh. Anal. Khim.,28, 399-401 (1973). (69) Ohtaki, T., Ozaki, H.. Yata, N., Itoh, M., Suzuki, A., Nippon Kagaku Kaishi, 1972, 934-9. (70) Pal'yanova, M. V., Tatarinskii, V. S.,Fedyachkin, M. M., Zavod. Lab., 38, 532-3 (1972). (71) Pellerin, F., Bartos. J., Pesez, M., "A Survey of Some Recommended Methods for the Identification and Determination of the Phenol Group," IUPAC Technical Reports -Number 7, August 1973. (72) Pesez, M., Union Pharm., 77, 257 ( 1 9 3 6 ) . (73) Pesez, M., Bartos, J., Analusis, 1, 257-62 (1972). (74) Pesez, M., Bartos, J., Ann. Pharm. f r . , 23, 281 (1965). (75) /bid., 25, 577 ( 1 9 6 7 ) . (76) Pfeiffer, M. A.. Doyle, R. J., Microchem. J... 17. 508-11 (1972). - -,. (77) Plugge, P. C., Arch. Pharm., 228, 9 (1890). (78) Plugge, P. C . , Z. Anal. Chem., 11, 173 (1872). \
(79) Rabenstein, D. L.. Anal. Chem., 43, (97) Tagami, S., Imai, M., Nakano, T., Shiho, 1599-605 (1971). D., Yakugaku Zasshi, 93,654-7 (1973). (80) Rogers, D. W.. Sasiela. R. J., Talanta, 30, (98) Theilemann, H., Sci. Pharm., 40, 58-62 232-6 ( 1 973). (1972). (81) Ronkainen. P.. Brummer. S., Suom. Kem- (99) Tiwari, R. D., Pande. U. C., Microchem. J., istilehti, 44,320-2 (1971). 17, 476-9 (1972). (82) Scott, W. J., Svehla, G., Analyst (London), (100) Tomlinson, G., Cruickshank, W. H.. Viswanatha. T.. Anal. Biochem... 44. 670-9 96,785-97 (1971). (1972). (83) Selig, W., Mikrochim. Acta, 1973,453-66. (84) Sherman, F. B.. Ch'ang, M. P., Klimova, 101) Toniolo, C., Nisato, D., Biondi, L., Signor, A., J. Chem. SOC., Perkin Trans., 1, V. A., lzv. Akad. Nauk SSSR, Ser. Khim., 1182-4 ( 1 9 7 2 ) . 1972,942-4. 102) Veibel, S., "Determination of Hydroxyl (85) /bid., pp 1001-3. Groups," Academic Press, New York, (86) Shevchenko. 2 . A , , Rurnyantseva, E. G., N.Y.. 1972. Favorskaya. I. A,, Nikitina, A. A,, Vestn. 103) Vikic, H. J., Dross, H.. Kewitz, H., Klin. Leningrad, Univ., f i z . , Khim., 46, 141-3 Chem. Klin. Biochem., 10, 156-9 (1972) (1972). 104) Volodina, M. A., Karandi. I . V., Vestn. (87) Shinkarenko, L. S.,Dmitriev, S. M., BaviMosk. Univ., Khim., 13, 121-2 (1972). ka, L. I., Neftepererab. Neflekhlm. (Mos105) Vrestal, J., Havir, J., Chem. Prum., 23, COW), 1971,40-1. 135-7 (1 973). (88) Shkorbatova. T. L., Kochkin, D. A,, Sirak, 106) Weigele, M.. DeBernardo, S. L.. Tengi, J. L. D., Khavalits, T. V., Zh. Anal. Khim., P., Leimgruber, W., J. Amer. Chem. SOC., 26, 1521-6 (1971). 94, 5927-8 (1972). (89) Shkrebets, A. I., Borisova, N. N., Kulnev- 107) Weiler-Feilchenfeld, H., "Chemistry of ich, V. G., Tr. Krasnodar. Politek. lnst., Acyl Halides," 5. Patai, Ed., Interscience, 1970, 159-63. London, 1972. (90) Shukla, V. K. S.,Pande, U. C., Sharma, J. 108) Wenck, H., Schwabe, E., Schneider, F., P., fresenius' Z. Anal. Chem., 260, 359Flohe, L.. Fresenius' Z. Anal. Chem., 258, 61 ( 1 9 7 2 ) . 267-72 (1972). (91) sigov, 0. V., Volkov, R. N., Rogozina, T. 109) Wesp, E. F., Brode, W. R . , J. Amer. Chem. SOC.,56, 1037 ( 1 9 3 4 ) . E., Zavod. Lab., 37,1043-4 ( 1 9 7 1 ) . (92) Singer, A. J., Stern, E. R., Anal. Chem., 110) White, D. C., Analyst (London), 96, 72833 (1971). 23,1511 ( 1 9 5 1 ) . 111) Whitlock. L. R., Siggia, S.,Smola, J. E., (93) Smith, R. V., Garst, M. J., Anal. Chim. Anal. Chem., 44, 532-6 ( 1 9 7 2 ) . Acta, 65,69-75 (1973). 112) Wilbraham, A. C., Owen, T. C.. Johnson, (94) Smits, M. M., Hoefman, D., Anal. Chem., B. G., Roach, J. A. G., Talanta, 18, 97744.1688-90 (1972). . . 81 (1971). (95) Stage, R. B., Stanley, J. B., Moseley, P. (113) Yamaguchi, R . , Takechi. M., Hoshi Yakka B., J. Amer. Oil Chem. SOC., 49, 87-9 Daigaku Kujo, 1972, 42-7. (1972). (114) Zimmermann, H., Becker, D., f a s e r (96) Suhara, Y., Yukagaku, 21, 9-13 (1973). torsch. Textiltech., 22, 458-62 (1971).
.~
Ion Exchange Harold F. Walton Department of Chemistry, University of Colorado, Boulder, Colo. 80302 This Review was prepared in the same way as the 1972 review of ion exchange. References were correlated with those cited in 1972 to avoid repetition. Analytical Abstracts were scanned through November 1973; Chemical Abstracts through December. To decide whether to include a paper in this Review we asked, "Does it concern the analytical use of ion-exchanging materials?" A paper on liquid chromatography, for example, was examined to see what material was used as the stationary phase. If it was an ion-exchange resin, the paper was included in the review. If it was porous silica or an unsubstituted styrene-divinylbenzene polymer, the paper was not included. This distinction is unfortunate for the reader of this review who seeks a method that will work for his compounds, and does not particularly care whether it uses an ion exchanger or not. This reader will, of course, consult the review on Chromatography, but, to make things easier, we have included a few references to the general technique of high-performance liquid chromatography even though they do not specifically involve ion exchange. We have stretched the definition of ion exchange to include, for example, the use of immobilized organic chelating agents to absorb metal ions and the use of solid salts to absorb olefins. "Liquid ion exchangers" are properly considered under analytical solvent extraction, but a few key references are cited here, particularly to illustrate the use of such liquids absorbed on solid supports for column chromatography. 398R
T o keep the review within bounds, we have not tried to include every paper that mentions an analytical use of ion exchange. This would have been an impossible task, and a n unnecessary one. Ion exchange is a common laboratory process, and there is little point in citing repeated examples of its routine use. The commonest use of ion-exchange chromatography is for amino-acid analysis, and so many variations are possible with commercial amino-acid analyzers that a considerable number of papers are published on this subject. We have included many of them here, because (to judge from reprint requests) most of our readers work in biochemical and medical laboratories, but complete coverage was not attempted. In several instances, two or more papers are combined under one reference number to save space. Thus the number of papers cited is more than in 1972. Areas of increased activity include inorganic ion exchangers, selective absorbents including optically active absorbents, ion exchange of metals in mixed solvents, and, of course, high-performance column chromatography.
BOOKS, REVIEWS The book by Dorfner ( A 3 ) carries extensive compilations of commercial ion exchangers and their properties, and, as a handbook of data, should be on the desk of every chemist who works with these materials. For reviews of special aspects of ion exchange, the two volumes edited by Marinsky and Marcus ( A l l ) are recommended. Volume 4
A N A L Y T I C A L C H E M I S T R Y , V O L . 46, NO. 5, A P R i L 1974
Harold F. Walton joined the staff of the University of Colorado in 1947. His research interests in ion exchange date from 1938 when he went to work for the Permutit Go. as a research chemist; from there he went to Northwestern University in 1940. He obtained the BA and DPhil degrees at Oxford University. He is the author of three textbooks on inorganic and analytical chemistry and coauthor with William Rieman I l l of “Ion Exchange in Analytical Chemistry” published in 1970. He has contributed chapters on the physical and analytical chemistry of ion exchange to several cooperative works. In 1961 he was chairman of the Gordon Research Conference on Ion Exchange. Dr. Walton spent the 1966-67 academic year and half of 1970 as a Fulbright visiting professor at the University of Trujillo, Peru. He is a member of the Advisory Board of Analytical Chemistry.
has chapters on ion exchange in nonaqueous and mixed solvents by Marcus, on ligand-exchange chromatography by Walton, and on liquid ion exchange technology by Kunin; Volume 5 has accounts of inorganic ion exchangers by Clearfield, Nancollas, and Blessing; of ion exchange in elemental analysis by Strelow; and on pellicular ion exchange resins by Horvath. A good short account of ion exchange in analytical chemistry is t h a t by Inczedy in the Chemical Rubber Publishing Company’s review series ( A 6 ) . The International Union of Pure and Applied Chemistry has published the report of a committee on ion-exchange nomenclature, consisting of 0 . Samuelson, E. Bayer, and F. G. Helfferich ( A 7 ) . In the Russian language, two books on ion exchange have appeared (A9, A 1 8 ) . Both books were reviewed in the Russian Journal of Analytical Chemistry ( Z h . Anal. K h i m . ) . Another significant Russian book is t h a t edited by Sladkov ( A 1 9 ) , which has a chapter by Davankov, Rogozhin, and Semechkin on ligand-exchange chromatography and another by Rogozhin, Davankov, and Peslayakas on the chromatographic separation of optical isomers, Reviews on chelating ion exchangers (A13) and complex-ion formation in exchange resins (A17) have also appeared. A paper by Gurvich (188) describes the use of organic complexing agents incorporated into absorbants like charcoal. A German review (AIO) is aptly titled “Ion Exchangers -Active Polymers.” Recent progress in ion-exchange chromatography is reviewed in Japanese ( A 1 4 ) . An English-language book reflecting the author’s own research and interest is t h a t by Muzzarelli ( A 1 2 ) . The latest volume of “Chromatographic Reviews,” now published as a n integral part of the Journal of Chromatography, includes two chapters on a very timely topic, the chromatography of organic compounds on ion-exchange resins ( A 8 ) . Compounds discussed include carboxylic acids, sulfonic and phosphonic acids, esters, and phenols. Another extensive review describes the chromatography of proteins and other constituents of milk ( A 2 1 ) . Inorganic ion exchangers are reviewed by Fuller ( A 4 ) , Qureshi ( A 1 6 ) , and Vesely ( A 2 0 ) . The last review is in two parts, one covering hydrous oxides, the other heteropoly acids, ferrocyanides, and aluminosilicates. Another article ( A 2 ) covers thin-layer chromatography of inorganic ions, including ion exchange but not limited to this mechanism. Liquid ion exchangers are the subject of three reviews ( A I , A5, A 1 5 ) .
EQUILIBRIUM, KINETICS, EXCHANGER PROPERTIES Thermodynamic and kinetic studies have been made of several inorganic exchangers, particularly zirconium phosphate. Crystalline zirconium phosphate has two kinds of exchange sites, evident in the equilibrium curves for the potassium-hydrogen (83) and potassium-sodium (12, 84) exchanges. The effect of temperature on ion-exchange equilibria has been studied in zirconium phosphate (447, 453) and oxide (448). At low pH, zirconium oxide exchanges anions, and the pair of anions, sulfate and chloride, shows a selectivity reversal between 25” and 80”. A t lower temperatures, chloride is preferred to sulfate; a t higher temperatures, sulfate is preferred. Both ions were
exchanged with nitrate (448).Selectivity orders in crystalline cerium(1V) phosphate show a strong preference for Na+ a t p H 4, and a preference for Li+ at p H 8. The crystal structure and thermal behavior of this material were studied ( 7 ) . Crystalline cerium(1V) phosphate sulfate shows a marked sieve effect toward exchangeable cations; only ions below a certain size can enter the lattice (263). Rates of cation exchange were measured with zirconium oxide (189), and the crystal structure of basic zirconium molybdate was studied ( 8 2 ) . The review by Fuller ( A 4 ) gives fundamental data on several hydrous oxides, particularly hydrous antimony pentoxide, which has come into common use as a selective absorbent for sodium ions. At low pH its selectivity order is Na, Rb, Cs, K, Li. The selectivity of this exchanger has been studied in different acids and in aqueous ammonia ( 4 7 ) . Turning to organic exchangers, two selectivity studies have been made of phosphonic acid resins. Various divalent ions were compared over a range of pH, and high selectivity was found for uranium ( 2 1 3 ) .The calcium-sodium exchange was studied in 10-5070phosphoric acid (552) and in water a t different pH values; calcium is more strongly held in alkaline solutions than in neutral solutions (242). Rates of exchange in iminodiacetate chelating resins were measured; divalent-univalent (344) and divalent-divalent exchanges (517 ) are governed by diffusion, but the Ce(II1)-Na exchange has a much higher activation energy and appears to be chemically controlled (344). Selectivities in mixed aqueous-nonaqueous solvents have been studied from a mechanistic point of view by many workers (148, 238, 375, 489, 531, 547). Metal ions are more strongly absorbed with respect to hydrogen ions as the proportion of nonaqueous solvent (methanol, ethanol, acetone) rises. With dimethyl sulfoxide-water mixtures, a careful study was made of Rb+-Mgz+-H+ selectivities, relating them with the Walden product (ionic mobility times viscosity) and thus with hydration (489). A correlation was found at lower DMSO concentrations, but above 70% DMSO by weight, the solvent structure changes and the correlation breaks down. There is much interest in aqueous-nonaqueous solvent mixtures from the point of view of achieving better separations of metals by anion and cation exchange. This matter will be discussed later. Pellicular and macroporous (macroreticular) resins are now used routinely, but there is little information on their basic thermodynamic properties and how they compare with gel-type resins. It seems that their attractive mechanical properties and fast reactions have obscured potential disadvantages of lower selectivity and non-uniformity. Pellicular anion- and cation-exchange resins appear to bind nonionic solutes by adsorption at the interface between the resin and the underlying support (405). Distributions and exchange rates of inorganic ions in macroporous resins were compared with those in gel resins ( 5 ) . The behavior of a 2-methyl-5-vinylpyridine polymer has been further studied by Freeman and coworkers (142, 143). This polymer binds alcohol through hydrogen bonding, and the strength of binding can be correlated with the strength of the alcohols (or other electron donors) as Lewis acids, Competition with electron-donating solvent molecules, such as CHC13, is evident. The state of association of water molecules in macroporous and gel resins was studied by NMR (41, 70, 141), by heats of immersion (179, 547), and microscopically ( 5 4 7 ) . The heat of immersion falls with the water content of resins a t low levels (179).The resistance of different resins to radiation temperature and solvents was studied (356);the deterioration of polystyrene-based resins on storage was studied by mass spectroscopy (18). Pyrolysis gas chromatography is used to distinguish sulfonic from carboxylic cation exchangers ( 4 3 ) .
NEW EXCHANGERS Inorganic. A great variety of inorganic ion exchangers have been prepared in the past two years. Most are amorphous, prepared by precipitation. The general practice was to experiment with different proportions of reactants and different treatments, then study the distribution ratios for many cations, in the hope of finding special selec-
A N A L Y T I C A L C H E M I S T R Y , VOL. 46, N O . 5, A P R I L 1 9 7 4
399R
Table I. Inorganic Ion Exchangers Titanium phosphate phosphate silicate arsenate antimonate vanadate molybdate tungstate selenite Zirconium oxide phosphate phosphate silicate phosphomolybdate molybdate arsenate Cerium (IV) polyphosphate phosphate sulfate antimonate tungstate Chromium(II1) oxide, arsenate, antimonate, molybdate, tungstate phosphate Tin(I1) ferrocyanide Tin(1V) oxide phosphate arsenate antimonate molybdate selenite ferrocyanide Tantalum phosphate antimonate Miscellaneous Ammonium phosphomolybdate Antimony pentoxide Antimony phosphoric oxide Bismuth tellurate Cobalt potassium ferrocyanide Zinc ferrocyanide Calcium fluoride Barium iodate Lanthanum oxalate Lead strontium phosphate
(112, 529) 1377) (426, 433) (433) (428) (433) (220, 431, 433) (418, 433) (189, 448) (12, 13, 16, 83, 84, 337, 447, 453, 529) (28, 370) (544 (82) (458) (7, 263) (264) (172) (520) (419) (6) (430, 432) (49, 438) (114, 423) (114, 219, 427) (420) (425) (422) (173) (386) (421 (64, 164, 203) (47, 65, 410, 529, 558) (63) (434) (545) (165) (441) (301) (97) (134)
tivities. Some exchangers were studied by thermal analysis. Some were used in paper chromatography, after impregnating filter paper with the exchangers in question. Table I lists the exchangers studied; many of them were prepared for the first time by the ihvestigators cited. Among the notable selectivities reported are the following (see Table I for references): ceric antimonate and tungstate for Hg(I1); zinc and cobalt ferrocyanides for Ag; tin(1V) arsenate and chromium(II1) phosphate for alkalimetal ions; titanium selenite for Cd; titanium vanadate for Sr; chromium molybdate for Pb. Other separations by inorganic exchangers will be noted in Table 11, and their use in paper and thin layers will be noted below. Certain of the materials listed in Table I are ion exchangers in a very restricted sense. Lead strontium phosphate is actually a hydroxyapatite which selectively absorbs fluoride ions; lanthanum oxalate exchanges lanthanum ions for those of other rare earths; barium iodate is used to determine sulfate in an ingenious procedure where sulfate ions displace their equivalent of iodate ions, which then are titrated by thiosulfate. Organic. An important trend in liquid chromatography is the bonding of chemically active coatings to an inert support. A specially interesting example has dithiocarba400R
mate groups, NHCSSNa, attached to glass by a siliconcarbon-nitrogen chain (201). Glass fiber filters are used as the carrier, and the product is used to “filter” traces of heavy metals out of water. The metal ions, being adsorbed on the surface, may then be identified and determined by electron spectroscopy (ESCA), The 8-hydroxyquinoline molecule was grafted to silica gel by the bridging group OSi( OC2H5)20C3HsNHC,jH4NH and the product used to absorb trace metals (207). The molecules of 8-hydroxyquinoline (540) and 2-pyridylazoresorcinol (PAR) (123) were grafted to macroporous styrene-divinylbenzene copolymers. The advantage to grafting active groups onto a macroporous resin is that the product is more permeable to solvents than gel-type resins, less deformable under pressure, and suffers less volume chan e when solvents are chan ed. Simple pjyglycine peptides were s o n d e d to pellicular resins and to porous silica supports, and the product was used for the chromatography of amino acids, phenols, and aromatic amines (181). Nucleotides were bonded to silica to give packings for the chromatography of other nucleotides (200). Several new polymers and condensation products are reported that contain selective functional groups. A methacrylate polymer that carries borate groups is an absorbent for ribonucleosides (461).A guanidine resin based on polystyrene t h a t absorbs palladium much more strongly than platinum is described (185), and the older types of guanidine resin find use in separating the platinum metals (101). Resins carrying iminodiacetate groups along with amino acid groups provide selectivity between Al, Ti, Fe (202).Iminodiacetate groups were introduced into dextran (371). Polymers with other combinations of amino, hydroxy, and carboxyl groups were prepared and found to be selective for uranium (226), palladium, and mercury (510). A series of chelating absorbents was made by introducing various functional groups into styrene-divinylbenzene polymer (372) and into cross-linked dextran (373). Polyamine-polyurea resins were prepared from polyethyleneimine and toluene diisocyanate; these are selective absorbents for heavy metal ions, especially Cu and Ni (107). A condensation product of polyhydric phenols is highly selective for germanium (BO),and so is a gelatintannin combination (15). A condensation product of triaminophenyl with glyoxal binds nickel (563);another aminophenol polymer containing nitro groups is selective for palladium (110). A new bifunctional resin with phenolic and sulfonic groups was made (553), and a series of anionexchange resins made from aromatic polyamines is described (127). Conventional styrene-divinylbenzene anion exchangers, treated with an excess of iodine in KI, become absorbents that are selective for I, Hg, and Au (206).They have been used to concentrate traces of mercury in fish (355). Mercurated resins were used in the chromatography of dicarboxylic acids (511). A new approach to preparing selective absorbents has been developed in Russia and is the subject of a comprehensive review (188).Absorbents such as alumina or activated carbon are impregnated with a variety of selective precipitants, such as dithizone, phenylarsonic acid, or dimethylglyoxine. Another novel class of absorbents, developed in Hungary, are ion-exchanging foams, which may be homogeneous or heterogeneous (50) and can have redox properties (51). Chelating groups have been described which is useful for thin-layer chromatography of biogenic amines (374); other functional groups were attached to cellulose (362) and agarose (459) to give absorbents for the chromatography of proteins. The separation of optical isomers on resins with asymmetric functional groups continues to be attempted, and progress is being made; see the review in Chapter 2 of (A19).A natural ion-exchanging absorbent, polygalacturonic acid, separated the forms of an amino acid (414). The molecule of N-carboxymethyl-1-valine was attached to a styrene-divinylbenzene resin, and the product, which has functional COOH groups, was converted to its copper(I1) form. The resulting metal-loaded exchanger retailed l-valine in preference to d-valine (492).The same principle, of attaching an optically active amino acid residue to a polystyrene matrix and then adding Cu(II), was used by Da-
A N A L Y T I C A L C H E M I S T R Y , VOL. 46, NO. 5, APRIL 1974
Table 11. Inorganic Applications" Elements
Alkali metals Alkali metals Alkali metals Li Na
Separated from
Each other, Ca, Sr, Ba Each other
Na Na Na Na Na, K
Divalent, trivalent Brines Acids, Zn, Se Biol. samples Water K Li, K , Cs Others
Rb, Sr CS cu
Eluent
Exchanger
Elution order
Ref.
Notes
I (ZrP)
NHdC1
Li first
Automated
(16 )
C
HCl
Li first
Radiotracers
(121, 217)
...
Li-Cs absd.
(6)
Li absd. N a absd.
Special resin
(312) 165, 558)
N a absd. N a absd. N a first N a absd. Li, Na, K R b , Sr Cs absd. Cu last
...
I (CrP) C 1(Sb20d
, . .
... ...
1(SbsOs) C I I C
HCl
Others Others Others
c, 1
HCl
cu cu cu Cu, Co, Zn Cu, Mn
Brass Others Bi, T e Mn, Mo Ca salts
AP C A A C
" 0 3
Cu, F e
AI alloy
cu
I C
...
... " 0 3
HC1-50% acetone HCI NHEOHCl
CU first Cu first
...
1410, 529) (557) (63) (7) 1504)
PH 4 I n rocks Age detd, rocks MOP-silica gel U comes with cu Two-dimensional As Cu(1) ... Urinary stones Carboxylic resin Coulometric monitoring
(401, 472) (64) (505) (471) (473) 1452, 454) I 306) (518)
HCl
...
...
Cu absd.
C
HBr
Cu, Fe
Zn
C
Cu, Zn
Ag Ag
Sea water Others
A I
Oxalate, HCI Thiourea
...
Ag' absd.
Ag
Ag Ag
Hg, Cu, Ni Pd Water
C A C
EDTA HBr-Br2 NH;SCN
Ag absd. Ag, P d
Au Au
Others Pt
A A
Au absd. Au, Pt
Au
Others
A
HC1-HNO, HC1acetone HC1-TBP
Absd. from HOAc Activation Activation
Au passes
Plus solvent extr.
Au Au Be Be Ca
Others Others Others Al, Fe, U POa, etc.
A Chel. A, c A C
Thiourea
...
Absd. from HCl Org. solvent
Ca Sr
C I (TiV)
Sr Sr, R a
Sr Mg, Ca, Ba Y , milk Pb, etc.
Be' first Be first Fe, K , Ca Sr, Ca Sr. absd.
A, C C
Citrate Lactate
Ca, Sr Ca, Sr, Ra
(27) ( 1 78)
Zn
Cu, P b
C
Zn Zn Zn Zn, P b
A C A A
Zn, Cu, Pb Zn first
Others absd. Absd. fr. HOAc Absd. fr. 0 . 5 M Cr, Mo, Bi sep.
(486) (343)
Cd
Hg, P b , Cd Water Fertilizer Alloy steel Zn, Ca, A1
HOAc, NaCl KI NH3C1 HC1 HC1
Y absd. by A Environmental P b el. by acetate Zn el. by HOAc
I (TiSe)
NHaCl
Cd Cd
Water Cu, Zn, Ag
A A
HOAc HCl
Cd Cd
Pb, Sn In
A A
HC1 HC1,
Hg
Zn, etc.
A,
Hg Hg B B, Si
Fish Other elts. Cations GaAs
c
A I tCeSb) C A
...
(177)
Absd. from SCN Ferrocyanide exchangers Elute w. HNO,
(247) ( 165, 545) 1478) 336) (546)
(
(383) [ 380)
...
...
Acid EDTA Citrate, HCl Complexing "03
... ...
Fe, Zn, Pb Zn, Cd ... Cu, Zn, Cd Cd, P b I n , Cd
(236)
Micrograms
(259, P 117) (261) 1373) ( 382) (53) (85, 21 8) (19) (428)
(384, 483)
1416)
Zn el. by HNOa Very selective Absd. fr. C N Radiochemical I n solder
(268, 291, 292) (418, 435) 120, 519) (379)
...
1335) (245)
Zn, Hg
Mixed solvent
(187, 334)
...
...
Various HCl HF
...
Iodinated resin Hg absd. I n rocks Ga, As pass
(355) ( 172) (450) (394)
0.2M "03,
NH~OAC
B passes B, Si absd.
A N A L Y T I C A L C H E M I S T R Y , VOL. 46, NO.
5,
A P R I L 1974
401 R
Table I1 (Continued) Elements
Separated from
Exchanger
Eluent
Eluticn order
Notes
Ref.
A1
Fe, Ti
Chel.
H,SO,
A1 Al, Ga
Steel In, T1, As
C C
sc
Others
A, C
HC1 HCl-acetone Various
sc sc Y
Y, La Y, La, T h Fe
C C C
H,SO, H:jPO: Complexing
Sc el. sc, Y Fe, Y
Y Y Ce
Ce, L a Ce, La Alloys
C C A
iNH4)LSOI
Complexing HNOj-NLH,
Pm
Fission products Actinides
C
NTA
. . .
. . .
180)
Liq.
Complexing
L a absd.
Elute La w. HNOj
(9)
Lanthanides Lanthanides Lanthanides
Fe, Ti absd. A1 passes T1, In, Ga, A1
T o purify A1 salt Nonaqueous I n semiconductors
(202)
...
Oxalate, citrate, acetone
(32, 56, 224) i237, 407)
F e el. by HClEtOH I n garnets
(521)
Ce, Y Varies
...
. . .
Absd. from HNO1-KBrO.l
14) (265, 289) ( 133)
(391) (506)
(406)
C C
HCl Complexing
... , . .
For traces
(326) (237, 279)
Lanthanides Lanthanides
Meteorite Rocks, lunar Each other Each other
C A
...
...
Rapid sep. Solvent gradient
(69, 482) 176, 299,
Lanthanides Lanthanides Ga Ga
Each other Each other Others Al, In, F e
C PC A, c A
Complexing MeOHHN0.j Complexing Lactate H,SO, Na.CO.I
, . .
Displacement
114, 55) (119) (475, 476) 1129)
Ga Ga Ga
Biological Meteorites Others
A A, C
In
Others
A
In
Others
A
HCl HCl HC1dioxane HzS0,MeOH HC1
In
Others
C
HCl
In
U, Mo, etc.
A
In
T1, As
C
T1
Zn, Co, Cd
C
HzSO4HLh HC1acetone HBr
T1
Rocks
A
"03-
...
H?O? NaHC03
, . .
c
c
551, 555) ...
... Al, Ga, In
Fe; Ga ...
... T1, In, Th In, Cr, Ga In, U, Mo T1, I n
...
Acetone-HiO Cd, P b also sep. Ga absd. Isotopes det. Dioxane concn. critical Acetone also
(565) (111)
Absd. from malonate Absd. from NH,
(484)
HC1 also used
(295)
Increasing HC1 concn T1 strongly absd. Absd. from HCl-Br2 Batch method for silicates H?O, favored absn.
(506)
(437, 439) (109)
(539)
(408) 18)
Si
P, Ti
A,
Ti
Al, Mg, C r
A
H?SO,
T i last
Ti
Fe, U, V
C
Ti first
Zr
A
...
Absd. from NH,F
1287)
Zr
Fission prod. Pb, U
Tartaric acid HCl
A
HCl
I n zircon
(285)
Zr
T h , La
C
HBr
La, T h Others As Various
I I 1TiP) C A
. . . ...
Ge eluted Ge eluted
Also T B P extr.
Sn Sn Sn
Rocks Mn, I n BusSnCl from BupSnCL Steel Various Biological Pottery
A C C
H,O HNOs pH 6 HC1glycol H,SO: HF HCI-EtOH
Cross-linking studied Z r eluted Zr, N b absd.
(501)
Zr Zr, N b Ge Ge
Zr, P b , U La, Ar, Th
Pb Pb Pb Pb 402R
A A A AP
HC1, 12M HCl, 10M H2O
...
A N A L Y T I C A L C H E M I S T R Y . V O L . 46, N O . 5, A P R I L 1974
(389) 1295) (429)
f 173) (377) (117) 1259,
P 101) ...
Sn absd. Bus, Bu? P b first P b first ... , . .
Absd. from HCI Activation ...
(250, 488) (332) 1548)
Automated Absd. from HCl Absd. from HCl
(268, 467) 1468) (329) (513)
Table I1 (Continued) Elements
P
Separated from
Sugar, detergents Detergents
P
Exchanger
A,
Eluent
c
Elution order
Notes
... ...
A
Ref.
1126, 392)
A
KCl
...
TLC
NaCl
...
...
(222, 286)
V V
Polyphosphates, oxo-anions sep. Polyphosphates Sea water Ti, N b
Poly phosphates, automated Automated
A C
HC1 HNOs
... Nb, V
Absd. fr. SCN Formic acid elutes V
(253) (429)
V
Fe, Mo, U
A
V
I (TaSb)
N b , Ta N b , Ta Ta
Al, Ti, Fe Zr, etc. Ores Zr, M o
MeOHHC1 "01
A A A
HCl-HF Oxalate HCl-HF
Pa As
Ac, Nb, P u Cu, Zn
A A
HC1-HF HCl-HzO
As
Bi, S b
A
Sb
Fe, Zn, Cd
A
HCIHClOi HClO,
Sb
Be, Ch, etc.
A
HC1-TBP
Sb, Bi, cu
Sb, Bi
Steel
A
HISO,-
...
P
P
134) (258, 528, 535)
V, Mo, U
(275)
V first
(421
Nb, T a
Org. solvents
...
Ta absd.
Solvent xtr. used
...
, . .
As, Cu, Zn As, Bi, Sb S b last
I n milk
(252) 138) (136) (113)
1300)
Automated
1468)
H2CIOaremoves Zn, Cd Plus methyl glycol Absd. from HCl
(40) (259)
(268)
"03
Sb Bi
U, Sn In, Fe, Zn
I (ZrP) C
Bi
U, T h , Mo
Cell.
Air, water
A
SWIS) SOC,
sos
I, c
HCl HClO4dioxane HCI NaOH 3"
U, S b Bi eluted
(13, 337) (485)
U, T h , Bi ... SO, abs.
Org. solvents
(293, 294)
Micro On alumina
(398) (128)
...
Also on carbon Automated Traces NaOH elutes A1 Selective
(74, 395) (145) (319) (361)
I n alloys
(288, 290)
...
(5611 (293, 298, 366) (495) (397)
s 2 0 3
A A Chel. A Chel.
Various NaCIOa
M O
Each other Steel Others A1 Sea water
Mo
W, Nb, F e
A
Mo Mo, W
Others Others
Mo, W W
Others Mo
A, c DEAEcell. Chel. A
H F , then HNOI Various H3POa
Se, T e
Bi
C
S anions Cr Cr CrO,
Na?C03 "(4) zCO3
...
... ...
MO first Fe, W, Mo
MO,W absd.
pH 9 H,PO,HC1 "01
Mo, W not absd.
W,' Mo Se, Te,
Anion resin
Bi
Se Halides
Mn
Te Each other, SCN Others Others Biological fluids Se matrix Ni, Cd, etc. F e matrix
Tc
M0
Tc Re Re
Mo soot Mo, W
A C I fSnO?) A I (SnO?)
Fe
Various
A,
Fe Fe(I1)
Steel Fe(II1)
A
F F Br, I
I Mn
I (SnO?) A
"01 NaOH
Te, Se
A I 1PbSrP) A
NaOH
...
Calorimetric
...
NaN03
... C1, Br, I
C A
HzSO, HOAHCl HCl HOAc
c A, c
...
"03
HNOjacetone HClOa, HzSOa Various Citrate
(25) (49) (494)
, . .
Ni, Mn, Cd Mn, F e Tc, Mo Tc, M o R e absd. R e first
1366)
Activation Catalytic Decreasing HOAc conc. Pre-irradiation Radiochemical
(235, 338) (134) (205) (131) (94)
Fibm H N O ~ Mo, W absd.
(496) 1234) (49, 438) (340) (438)
...
Plus alcohols
(108, 526)
... 11,' I11
Other eluents
(167) (451, 560)
A N A L Y T I C A L CHEMISTRY, V O L . 46, NO. 5, A P R I L 1974
403R
Table I1 ( C o n t i n u e d ) Elements
Separated from
Exchanger
Eluent
co
Alloy steel
A
HCl
co
Ni, Cr, Cu Zn, etc. Pd
A C Chel.
Platinum metals Ir
Base metals
C
HC104 Various H,SO4HC1 HCl
Pt, Pd
A
HC1
Ir, Pt, Au Th
Meteorites
A
La, Zr
C
HCl, thiourea HC1
Th
U, Zr
A
"03
Th
U, La, Y
C
"03-
Th Th
U Others
A A-Cell.
Th Th
U U, La, F e
I (CeW) A
Th, U U
Lunar soil Urine
A A
HCl, 1M
... ...
U U
A A
H804 HCl
... ...
U U
Water Soils, rock Others Others
A A
HCl HCl
...
U
Others
Chel.
"01
...
U
Others
HOAc
...
Transuranium elts.
Fission prod. Fission prod. Others Urine
DEAECell. A
HCl
I
Various
p u , Np, U Various
"03
Pu, N P
Ni Rh
Np, p u Pu Pu Bk Cf, Cm
Others Pu, cs, Ce Am, P u
A AP A I (ZrPSi) A,
c
Notes
Elution order
Ni, Co Fe Co last .
.
I
P d , absd.
... Ir, Pd, Pt Ir, Au, Pt La, Zr, Th u, Zr, Th T h first
DMSO HC1, 12M
T h first T h absd.
"03-
MeOH pH 2-3 H*SOi, HCl
... ...
Plus alcohols Shaken with resin Pt eluted Elute P d , Pt with thiourea Acid conc., temp. studied Diluted "01 elutes T h Radiochem.
U, T h Th, U
...
...
NZHsClHCl "01
Absd. from organic solvent mixture Nonaq. solvents Nonaq. solvents Absd. from carbonate Absd. from 3M NaCl Absd. from SCN-HCl-MeOH ...
Absd. fr. HNO,
...
"03
...
Complexing
Cf, Cm Am
'The order of elements is based on the periodic table, with the actinides last. Abbreviations: A, anion exchanger; C, cation exchanger; I, inorganic; Chel., chelating or special resin; Cell., cellulose-based exchanger: P, paper; T, thin layer; Liq., liquid ion exchanger.
vankov and coworkers (102, 442) to separate d- and 1forms of proline, isoleucine, and mandelic acid, using ammonia eluents. The natural amino-sugar polymers chitin and chitosan are selective absorbents for heavy metals, and their properties and uses continue to be explored (368, A12). They are fairly resistant to radiation and can therefore be used to treat radioactive waste (367, 369). Vinylpyridine resins are selective absorbents for Cu, Ag, and other heavy metals (455, 456). L I Q U I D I O N EXCHANGERS These materials are widely used in chromatographic separations, absorbed or retained on porous solid supports, and they will undoubtedly be used by the new technique of liquid-liquid countercurrent chromatography. Because their use is more properly described as solvent extraction rather than ion exchange, we have included only a few references. Reviews were cited ( A I , A5, A I S ) . A study of more than passing interest describes the chromatography of actinides on Celite impregnated with di-(2404R
ethylhexy1)phosphoric acid, and reports the effects of temperature, column dimensions, and proportion of the liquid phase on plate heights and resolution (212). The same absorbent was used to separate plutonium and promethium from irradiated nuclear fuel (240). Trioctyl phosphate ( 4 5 ) , tributyl phosphate (509), and tributylamine (35) have been used in columns, and a general survey of distribution ratios has been reported (204). NONCHROMATOGRAPHIC APPLICATIONS Individual resin beads have been used for sensitive spot tests for some years, following the lead of Fujimoto, who notes t h a t traces of iron persist in highly purified anionexchange resins and modify the colors (149). He describes a new test for copper, using bathocuproine sulfonate (514). Resin spot tests are reviewed and compared with ring-oven tests (169). Chelating resins absorb transitionmetal ions, T i , V, Cr, Mo, Ce, and U, and these are made visible by hydrogen peroxide (345);similar tests are made on carboxylated cellulose papers (263). Resin beads and
A N A L Y T I C A L C H E M I S T R Y , VOL. 46, NO. 5 , A P R I L 1974
inorganic exchangers are used t o carry indicators in micro titrations (424). Ion-exchange resins were used, years ago, to bring into solution sparingly-soluble salts like calcium a n d barium sulfate. This principle has been developed for routine silicate rock analysis. T h e rock is fused with lithium borate and t h e glassy melt is rolled into thin sheets. These are crushed and stirred with powdered cation-exchange resin plus 0.01M “ 0 3 . Lithium salt is added as internal standard. After three hours, t h e resin is separated, washed and dried, a n d fed on tape into a carbon arc for spectrographic determination of major and minor metallic constituents (176). Fusion with lithium borate followed by ion-exchange dissolution is also used t o determine silica in rocks (389). Trace-metal cations, especially Cu, Zn, and Mn, are stripped from soils by shaking them with a cation-exchange resin, then eluted and determined by atomic absorption ( 3 ) . An element may be concentrated a n d collected from solution by simply shaking the solution with a n ion-exchange resin. Thus Be, Zr, Hf, Nb, and Ta were absorbed on a pyrogallol-formaldehyde resin (359),platinum metals on a special chelating resin (110), and T h , Ce, and U (225), Cd (ZO), N p (388), T e (62) on anion-exchange resins. If desired, the metals can be determined directly in the resin by X-ray fluorescence, emission spectroscopy, or radioactivity. Chelating resins were moulded into hard, coherent, translucent disks for X-ray fluorescence by compressing them a t 150”(44). Ion-exchange papers and membranes are used to collect trace elements from solution, sometimes by filtering the solution through a paper disk, sometimes by stirring a piece of paper or membrane with t h e solution. Thus Sc, Y, La were collected for X-ray fluorescence analysis (122); P u was collected from urine (81), P b from a n acetic acid extract of glazed dinnerware (513). An improved technique is to use paper impregnated with mixed anion- and cation-exchange resins (21I ) . Circles of membranes, mounted in rivers, were used to collect trace metal ions (322). A novel use of a n ion-exchanging membrane is to wrap it around a n ion-selective electrode. Between the membrane and the electrode surface is a concentrated solution. The wrapped electrode is placed in a dilute solution of the ions to be measured, for example NH4+. If these ions have the same charge sign as t h e membrane counter-ions, they distribute themselves across the membrane to become much more concentrated inside the membrane, magnifying t h e electrode response (42). Shaken with hydrogen-form resins, salts are converted to their equivalent of acid, which is then titrated. This is a useful way to find the concentration of salt solutions t h a t cannot be evaporated without hydrolysis. It has been applied to metal perchlorates (499), sodium fluoroacetate and chloroacetate (175), gallium and indium sulfates (283), and alkaloid salts (232). T o remove interfering cations, free organic acids were liberated from plant material by shaking with a hydrogen-form resin (357); As(C6H5)4Re04, extracted by chloroform, was converted into HRe04 (120). T o remove salts from urine preparatory to thin-layer chromatography, some authors recommend mixed-bed deionization (542) while others prefer an ionretardation resin (195). A few complex-ion studies are reported. The method of Fronaeus for measuring formation constants has been refined (390) and used t o study the association of Co with a-nitroso-&naphthol (333);visible a n d infrared spectroscopy was used to identify uranyl sulfate (198) and cobalt and uranyl chloride (435) complexes absorbed on a resin; monomeric, dimeric, and polymeric Cr(II1) species, produced by neutron irradiation, were separated by cation exchange (86). Transition metal-ammonia complexes were formed on a weak-base anion exchanger (270) and on a phosphonate cation exchanger (346).
PAPER AND THIN-LAYER CHROMATOGRAPHY Two-dimensional paper chromatography has been a p plied to t h e analysis of brass (471). A strong-base anionexchange paper was used, with hydrochloric acid of two different concentrations, 2M and 8 M . Tin, zinc, lead,
iron, copper, and nickel were resolved. Ion-exchange papers with solvents containing tributyl phosphate and thenoyltrifluoroacetone separated over 20 metals (203). The RF values of 38 cations were measured on paper impregnated with titanium tungstate, using various solvent mixtures and buffers (220). This paper was also used to separate magnesium and palladium from many ions by paper electrophoresis (431). With the interest in inorganic exchangers, many inorganic exchangers, new and old, have been tested in papers (423, 425-427, 432). Tin arsenate (229) and ceric phosphate sulfate (264) have been used in thin layers. Papers impregnated with liquid ion exchangers are useful for separating metals (A15). The effect of perchlorate ions on ion-exchanging papers of four types was studied; the migration rate of the Au(II1) and Pd(I1) chloride complexes was increased in every base (308). More orthodox examples of ion-exchange paper chromatography are separations of lanthanides ( 119) and organic acids (155, 284, 327). Papers whose fibers carry ionic groups were used for amino sugars (92) and for a qualitative spot test for cerium (orange color with alkaline H202) (163). Cotton threads containing cellulose phosphate, borate, or carboxymethylcellulose were used to determine microgram quantities of Cu, Ni, Co, and Fe by using t h e thread as a wick in descending chromatography. The thread is sprayed with a color-producing reagent and the length of the colored zone indicates the amount of metal (130). Thin-layer chromatography of inorganic ions is performed on ion-exchanging cellulose (293, 296, 313, 326) as well as on resins ( A 2 ) . Resin-coated plates resolve inorganic phosphate ions and phosphoric amides (286), also amino sugars and amino acids (216). Thin-layer chromatography of nucleic acid derivatives (314, 527), diamines (315),biogenic amines (374),and amino acids (106, 135) is described. Silica gel plates impregnated with silver nitrate (221) and cadmium acetate (556) separate sterol acetates and aromatic amines, respectively.
COLUMNS, DETECTORS Great advances have been made recently in the technique of high-efficiency liquid chromatography, using controlled flow a t high pressures, continuous detection, and, above all, highly uniform absorbents of small, uniform particle size. Ion-exchanging absorbents are used among others. These may be gel-type resins, macroporous, or pellicular resins. Gel-type resins are more uniform, giving distribution ratios t h a t depend the least on loading, and are therefore capable of giving narrow elution bands and high resolution. They are slower to react than the other types, because of longer diffusion paths, and the less highly cross-linked resins are soft and do not tolerate large pressure gradients. Pellicula resins give very rapid mass transfer, but have relatively low capacities. A discussion of different exchanger types and packings for liquid chromatography is given by Leitch and De Stefan0 (321), with a table of commercial absorbents. There are advantages to using gel-type resins of very small particle diameter, 10 microns and less, but these are hard to pack into columns. The “balanced slurry” method is favored (508). The handling and performance of pellicular resins is discussed by Kirkland (255) and Horvath ( A l l ) .A way to combine the advantages of pellicular and gel resins is shown by Scott and Lee (464).A very complex mixture, like urine, is roughly resolved on a small column of gel resin, taking advantage of the high capacity of this resin, then the effluent from the small column passes into a long column of pellicular resin. Because of the preliminary resolution, the pellicular resin is not overloaded. Other coupled-column techniques use first an anion-exchange resin, then a cation-exchange resin, or vice versa (78, 79, 360, 463). Parallel columns permit simultaneous analysis and comparison of several samples (409, 462, 465). A glass column, encased in stainless steel to allow its use under high pressure, is described (493). Macroporous resins stand high pressure and may offer more selectivity than pellicular resins (243). On the other hand, when dealing with unstable biological materials, high speed may be essential to the analysis, and pellicular
A N A L Y T I C A L C H E M I S T R Y , V O L . 46, N O . 5. A P R I L 1974
405R
resins are essential ( 5 4 ) . Choosing the right chemical type of resin for the purpose a t hand, Freeman’s article “Gels for Liquid Chromatography” (242) is useful. Experimental conditions like column length and flow rate, and their effects on resolution, are discussed by Snyder (491).The dependence of theoretical-plate heights on resin diameter and flow rates has been studied for displacement chromatography of inorganic ions a t high linear flow rates (228, 229), and a theory is offered (72). Eluent programming for optimal separation of several components is discussed mathematically, with reference to inorganic ions (341, 342) and in general terms (31, 490); so is computer acquisition of liquid chromatography d a t a (73). Several examples of modern liquid chromatography in ion-exchange separations are cited in Table 111, and a few in Table 11. High-efficiency techniques are hot easily adapted to inorganic separations, because the eluents are often acids t h a t corrode stainless steel, they have to be changed frequently, and automatic detection is often difficult. Nevertheless, some applications to inorganic ions have been made. Metals eluted by HC1 as chloride complexes can be detected by their absorption in the ultraviolet (468) or by mixing with a color-producing reagent (248). Radiochemical monitoring (212, 217), electrical conductivity (482),and the hydrogen flame ionization detector (26) have been used. Temperature gradient elution has been applied to inorganic ions (321). Progress has been made on detectors for liquid chromatography. Two coulometric detectors are described (236, 516) and a n amperometric detector based on the carbon paste electrode (256). When these detectors are used in conjunction with reagents fed into the column effluent, they have great versatility; for example, nohreducible metal ions can be monitored by feeding a solution of mercury-EDTA into the effluent before it enters the detector. A recording fluorescence detector is described (191, 462), and a general-purpose detector which uses the small volume changes produced in an ion-exchange membrane (271).A liquid chromatograph has been coupled to a mass spectrometer (327),a development t h a t was badly needed. INORGANIC APPLICATIONS Table I1 lists many of the applications to inorganic analysis that have appeared since the last review. Developments that are not listed in the Table, or t h a t deserve special comment, are these: Qualitative Analysis. Two schemes are given for systematically separating and identifying a large number of cations by ion exchange. One uses anion and cation exchange exclusively (140), while the other begins with a thioacetamide precipitation (330). Concentration of T r a c e Metals from Water. The use of membranes or ion-exchange resin papers for this purpose has been noted. Resin columns have been used to collect groups of heavy metals (251, 199, 351) and ions of Sr, P b , Ra, from environmental samples (178).They have been used to collect traces of Ag spread by cloud seeding (546), Co in reactor cooling water (227), Mo (366), V (253), and U (100, 273, 449) in sea water; also Cd (20, 5I9), Na (557), and Zn (343). Cellulosic exchangers were used to collect trace metals from solvents (436). Mixed Solvents: Quantitative S e p a r a t i o n s of Complex Mixtures. Mixtures of water with alcohols, ketones, and other polar solvents give very good results in ion-exchange separations, and intensive studies of the effect of solvents on selectivity have been made (148, 238, 375, 435, 439, 485, 489, 526, 531). S o have other studies of a more empirical nature (94, 108, 109, 187, 234, 252, 294, 299, 417, 437). The research group that has done most to exploit the possibilities of ion exchange in mixed solvents is that of Korkisch. A great series of papers by Koch and Korkisch (259, 272) describes the combining of ion exchange with solvent extraction to analyze nuclear raw materials (275) and other complicated mixtures. First they extract with tributyl phosphate from 6 M HC1. This removes uranium, gallium, germanium. gold. and other high-valence metals. The tributyl phosphate extract is now mixed with 2methoxyethanol (methyl glycol) and 12M HCI, giving a 406R
ANALYTICAL CHEMISTRY. VOL
homogeneous solution which is passed through a n anionexchange resin. Metals whose tributyl phosphate complexes are very stable, like Au, are not absorbed by the resin, but U, whose T B P complex is only moderately stable, is absorbed. The combination of selective extraction with selective ion exchange makes many separations possible. Trace impurities can be separated from uranium (251). Complexing agents like cupferron (271) can be introduced into the solvents if desired. In an 85-page review, Strelow ( A I l , Vol. 5 ) has described his work on separation of elements by ion exchange, which stands as a model of accurate analysis of complex materials. Much of it concerns the analysis of rocks. Cation exchange in acetone-HC1 was used to separate lead and copper cleanly from other elements (505) and to separate TI, In, Ga, Al, and As in semiconductors (506). Cation exchange in aqueous HCI, HBr, and ” 0 3 separated La, Th, Zr, and many other elements (501, 502). Distribution coefficients and selectivity orders of many elements are given for cation exchange in perchloric acid (503) and anion exchange in oxalic acid-HC1 (507).A most instructive paper, showing the value of ion exchange procedures in rock analysis, describes the determination of low concentrations of N a and K in silicate rocks (504). Previous estimates had varied greatly and were much too high, because of reagent contamination and incomplete separation. Other authors describe anion separations in alkaline media (152) and analysis of fertilizers by ion exchange (532).Anion exchange distributions of 65 elements in acetic acid-water mixtures are given (549, .550) and cation exchange distributions of 12 elements in a solution of an unusual complexing agent (564). The technique of ‘‘anion exchange gas chromatography” is reported, in which the stationary phases are eutectic mixtures of complex halides (77). Displacement Chromatography: Isotope Separation. Displacement chromatography was used to separate lanthanides and estimate their amounts by the lengths of their zones in a column (14, 55j, but the most important application has been to separate isotopes. We shall review the work of Rosset and his colleagues. The boron isotopes are of special interest because of their nuclear properties. Suppose natural boric acid containing the isotopes 10 and 11 is passed into a very long column of anion-exchange resin carrying a weakly-absorbed anion. Let the borate ions occupy a zone of moderate length. Now pass a solution of hydrochloric acid. The borate zone is driven along the column as a plug of constant length and, as it moves, the more strongly absorbed isotope, log,lags behind while the more weakly absorbed isotope, IlB, moves ahead. The leading end of the zone becomes richer in llB, the trailing end in log. Calculations based upon plate theory show that the concentration profile along the zone reaches a steady state. A certain maximum enrichment can be achieved, but no more. The point in the zone where the isotope ratio is the same as in the original solution will normally not be a t the center of the zone, but will be displaced toward the end of the zone which carries the less abundant isotope. The iheoretical treatment is developed in several papers (72, 87-89, 91) and experimental data are given for boron (89)and nitrogen isotopes (90). Other separations of isotopes of boron (208, 276), uranium ( 6 7 ) , and strontium ( 1 ) were performed, and a separation of carbon isotopes was suggested by the chromatography of 14C-labeledenzymes (161). ORGANIC, BIOCHEMICAL Table I11 embodies the advances in this area. The major advances have been in liquid chromatographic techniques, which we have already discussed. The most important chemical factor is the interaction between the exchanger matrix and the organic molecule, and this is an extremely difficult effect to predict or to categorize. One can only emphasize the strong interaction between an aromatic resin matrix, like that of the styrene-divinylbenzene polymer, and aromatic solutes. Sometimes this is exploited for its own sake. Thus, non-ionized, water-soluble benzene derivatives, like salicylamide and p-ethoxyacetanilide
46. NO. 5 , A P R I L 1974
Table 111. O r g a n i c and Biochemical Applications" Compounds
Acids, aliphatic Aldonic Ascorbic Citric Citric, ascorbic E D T A homolog F a t t y acids Folic acids Gluconic H o p bitter acids Hydroxy, fatty Hydroxy, fatty Methyl malonic Nitrilotriacetic Nitrilotriacetic, EDTA Polyunsaturated Uronic Various Acids, aromatic Benzoic, vanillin, etc. Benzene polycarboxylic C hlorobenzoic Chloro-, hydroxybenzoic acids Cinnamic, caffeic Hydroxybenzoic Hydroxy benzoic Sulfonic Various Amino acids (all by high resolution): General General General General General General General Acidic, neutral Aminobutyric Arginine, histidine Basic, a.a. Cysteic, homocysteic Dopa Dopa Histidine, histamine Hydroxyproline Indole derivs. Iodoamino acids Methionine deriv. Phenylalanine, tyrosine Proline Tryptophane Sulfur-containing Peptides General General General Dipeptides Glycyl peptides Proteins, enzymes Alcohols Alcohols Aldehydes, ketones
Exchanger
A A A C C
Eluent
Nates
HOAc, HCl H3POh Formate H,S04,
A C-TLC A A A* A, c A A A*
NaOH NaCl
1192, 2x9) iIS7) 122) 110) (415)
High-resolution
(124) 284) i.1.?9) t 5.77) (243)
Fruit, plants Urine Water, sewage Water, sewage
126, 29) (174) (22, 75, 446) i 324)
AgNOa-silica gel I n soil Sugar juice
( 170) 1 34 7 ) (460)
In food additives
(381)
Ionic strength varied
(23)
Sep. from phenol H-resin best
1403)
, . .
(
Formate Acetate NaHS04NaN03 Formate HC1 HC1, HCOOH Borate
I
c, A
...
C, .A
HzS04 Formate
A*
BorateNaN03 BorateNaN03
A*
...
Dehydroascorbic, etc. I n sewage Pharmaceutical Preparative
lief
Gradient ...
A C
...
Special L C C A
EtOH EtOH NaCl CaCI? C02-MeOH
Vegetable acids Metal ion varied Salting-out Petroleum distillates
(11) (150, 154) I 156) (155) '.?48)
C
...
Column operation
(til, 182, 184,
C
Li buffers
C C c,p C C -TLC C C c,A
... ...
Fluorimetric det. Internal standards I n water I n meteorite Amino sugars also Derivatized Sep. from others I n blood
214, 320, 327, 530) ,353, .354, 559, 562) 178, 168, 331) (30, 144) 1400) (307) 1106, 1.75, 216) '497) I 358) 230)
...
... . . .
Citrate EtOH
...
...
105, 302, 562) 139)
C A
Citrate HCI
C c,A C
Various Borate Phosphate
C A, C C C
Citrate HOAc
c
Special C C C Chel-Cu A C C Cell. Special C, A* A
(5331
Metabolites in urine I n wine
...
... ...
HzS04
Citrate 3" 3"
...
CHCl, E tOH-HZO NaCl
66) 6 8 , 78, 385) ( 349) 1457) 1.353, 440) I
1 102) 1215) 1232)
Amino acid analyzers Amino acids sep. as Cu complexes
121, 190, 196, ,325) t 46) (413) 1194, 278) i 39) 1254,362, 459) i 143) 1.396) (2, 249)
...
Citrate
1411)
Optical isomers sep. I n cereals
Citrate Various H20, NHa
93, 99, 1.32, 534) 445)
G l to G7 resolved Exchangers described Vinylpyridine resin Cyclitols Bisulfite form
A N A L Y T I C A L CHEMISTRY, V O L . 46, NO
5, A P R I L 1974
407R
Table I11 (Continued) Compounds
Phenols, etc. Phenols, etc. Phenols, etc. Bromophenol C hlorophenols Amines, aliphatic Alkylamines Mono-, diamines Mono-, diamines Di-, polyamines Ethanolamines, aziridines Putrescine Hexosamines Glucosamine ethers Amines, aromatic Amines, aromatic Imidazolines Melamine N-Heterocyclics Phenazone, pyridines Pyridine derivs. Quaternary Amine drugs, biologically active amines: Amphetamines Amphetamines Biogenic Catecholamines Dopamine, etc. Histamine Sympathomimetic Analgesic drugs Antibiotics Antibiotics Barbiturates Caffeine, etc. Morphine alkaloids Porphyrins Purines Sulfa drugs Xanthines Xanthines, drugs Sugars, carbohydrates General Lactose General Nucleic acids and derivatives:
... ...
... ... ...
Cholines Soaps Sterol acetates Sulfobetaines Vitamins Hydrocarbons Petroleum distillate Tobacco smoke Urine “L
=
408R
Exchanger
Notes
Eluent
Ref.
A* Non-ionic A A* A
Borate-N03 NaOH, CH,OH CUCIZ-CH~OH
Waste water Potable water
...
Radiolysis products
137 ) 160, 146, 180) (309) (38)
Buffer
...
(116)
C ell.-TLC C-TLC C* C L
Various HCl
1374) (315) (363, 443, 536) 1469, 512) 1474)
C C* C A L-TLC A, C* C L* C C C
Citrate
Biol. amines too Mono, di- sepd. Of biol. interest Incl. histamine
“3
...
HC1 Phosphate Citrate
...
Phosphate HCl CH8CN Acetate NHiCl NHiCl
L* A* TLC-Cell.
“3
Borate-NaN03 E tOH-H,O
, . .
C* C A, C* C* C C-TLC A*
...
PH 4
Plus T L C
Chloro, nitro Cd, Zn acetates High p H On AgN0, ...
1466) (269, 318, 323) (310) (153, 244) (556) (352) 1157) 1543) 1158) 124)
“Paraquat”
(36)
Ephedrine, etc. Ephedrine, etc. Local anaesthetics Metabolites also Catecholamines Sep. fr. amino acids
1204) (71) 1374)
..
(186) 1256, 350) t 522) 1487) 1304, 364) (404) 1402) (444)
E tOH-HZO H?SOI NaOAc BorateNaN03 E tOH-heptane Borate HCl HCI ... HCl, acetate EtOH, formate
Resins compared Streptomycin
C* C* A, c
EtOH-H*O E tOH-H,O
Counter-ion effect I n milk
...
...
A, C* A*
...
Exchangers compared
(611
Phosphate
I n physiol. fluids Cyclic A M P Inosic acid
Formate Carbonate Formate HC1 pH 8.6
Ion exclusion chrom. Thymine sep. Inosic acid A1 resin
(95, 118, 159, 160, 267, 365, 493) ( 79) (477) (538) (52) 1479-481)
Partition A, C* A A, C ...
A, C* C*
A* A* A* C* C* C* C L Cell. TLC C C TLC
...
Alkaloids also
... I n urine I n urine ...
Coffee also
. . .
...
. . .
HC1 NaCl-C3H?OH
From lecithin
. . .
Ag-impregnated
C C A, C
N ~ O H - cH,OH
Fluorescence det. I n water With mass spec.
L A, C*
E tOH-NH3 Various
Cu-binding ligands UV-absorbing consts. (summaries)
A,
c
, . .
1554) (257, 544) (115) (393) (281) 1498, 500) 1364)
(210) ( 209) 1125, 193, 515)
(166) (162) 1277) (246, 282, 303) 1314, 328, 527) (223) (147) 1221) 1262)
‘191) 160) (233) (137) (462, 463)
ligand exchange. Other abbreviations as in Table 11. An asterisk (*) indicates high resolution, usually with pellicular resin.
A N A L Y T I C A L C H E M I S T R Y , VOL
46, NO 5. A P R I L 1974
(phenacetin) are absorbed by polystyrene-type added. In other cases, especially when ligand-metal forces are also present, the aromatic interaction is unacceptably strong and causes broad bands and much tailing. An interesting effect was noted by Singhal and Cohn (479-482) and has been exploited by others. A cation-exchange resin in an aqueous (or aqueous-alcoholic) solution of a weak organic acid will tend to exclude the acid by the Donnan equilibrium if conditions favor the ionization of the acid. The sodium form of the exchanger, therefore, excludes the acid to a much greater degree than does the hydrogen form. The ammonium form acts intermediately, since the ammonium ion is an acid and represses the ionization of the organic acid. By using buffers, the degree of exclusion of the acid can be adjusted, sometimes over a wide range. Superimposed on the Donnan exclusion is the matrix-solute interaction mentioned above. The chromaLITERATURE CITED
Books and Reviews ( A l ) Brinkman, U. A. Th., de Vries, G., J. Chem. Educ., 49, 244 ( 1 9 7 2 ) . ( A 2 ) Brinkman, U. A. Th , de Vries, G., Kuroda, R., J . Chromatogr., 85, 1 8 7 ( 1 9 7 3 ) . ( A 3 ) Dorfner, K., "Ion Exchangers, Properties and Applications," Translated from 3rd German ed.. Ann Arbor Science Publishers, Ann Arbor, Mich., 1972. ( A 4 ) Fuller, M. J., Chromatogr. Rev., 14, 45 (1971). (A5) Green, H., Talanta, 20, 139 ( 1 9 7 3 ) . ( A 6 ) Inczedy, J.. Rev. Anal. Chem., 1, 1 5 7 (1972). ( A 7 ) IUPAC. Pure Appl. Chem., 29, 617-624 (1972). ( A 8 ) Jandera, P., Churacek, J., J . Chromatogr., 86, 351, 4 2 3 ( 1 9 7 3 ) . ( A 9 ) Kokotov. Yu, A,. Pasechnik, V. A,. "lonExchange Equilibria and Kinetics," Khimiya, Leningrad, 1970. (AlO) Kuehne, G., Chem.-Ztg.. 96, 239 (1972). ( A l l ) Marinsky, J. A., Marcus, Y . , Ed., "Ion Exchange and Solvent Extraction," Vols. 4 and 5 , Marcel Dekker. New York, 1973. (A12) Muzzarelli, R. A. A., "Natural Chelating Polymers," Pergamon Press, Oxford, 1973. (A13) Myasoedova, G . V . . Eliseeva, 0. P.. Savvin. S. B , Zh. Anal. Khim.. 26, 2172 (1971). (A14) Ohashi, S.. Waki, H., Yoza, N.. Masuda. Y . , Zaitsu. K . , Ohkura, Y . , Bunseki Kagak u , 1972,93R-l06R. ( A l 5 ) Przeszlakowski, S.. Chromatogr. Rev., 15, 29 (1971) (A16) Qureshi. M., Qureshi. S. Z., Gupta, J. P., Rathore, H. S., Separ. Sci., 7, 615 (19 7 2 ) . (A17) Saldadze. K. M., Kopylova, V. D . , Zh. Anai. Khim., 27, 956 ( 1 9 7 2 ) . ( A 1 8 ) Samsonov, G. V . , Trostyanskaya, E. B., El'kin, G. E., "Ion Exchange Sorption of Organic Materials," Moscow, 1971 (A19) Sladkov. A. M., Ed., "Chemistry and Technology of High-Molecular Weight Compounds," Vol. 4 , Moscow, 1973. ( A 2 0 ) Vesely. V . , Pekarek, V., Talanta, 19, 219, 1245 ( 1 9 7 2 ) . (A21) Yaguchi, M.. Rose, D.. J. Dairy Sci., 54, 1725 ( 1 9 7 1 ) . Journals ( 1 ) Aaltonen, J.. Acta Chem. Fenn., 45, 141 (1972). ( 2 ) Abatangelo, G.. Daga-Gordini, D., J. Chromatogr., 78, 371 ( 1 9 7 3 ) . (3) Acquaye. D . K . , Ankomah. A. B . , Kanabo. I . , J. Sci. Food Agr.. 23, 1035 ( 1 9 7 2 ) ; Anai. Abstr., 24, 1897 ( 1 9 7 3 ) . ( 4 ) Afanas'ev, Y . A,, Ryabinin, A. I., Karuna, A. G., Radiokhimiya, 15, 435 (1973). ( 5 ) Akatsu. E., Aratono. Y., Bahk, C. Y.. J. Nucl. Sci. Techno/., i o , 4 5 3 ( 1 9 7 3 ) . ( 6 ) Akiyama, T., Tomita, I.. J. Inorg. Nucl. Chem , 35, 2971 ( 1 9 7 3 ) . ( 7 ) Albert!. G., Costantino, U . , Zsinka, L . , ibid.. 34, 3549 ( 1 9 7 2 ) . (8) de Albuquerque, C. A. R . , Muysson, J. R., Chem. Geol., 9, 1 6 7 ( 1 9 7 2 ) . ( 9 ) Ali, S. A , Eberle, S. H . , Inorg. Nucl. Chem. Lett., 7 , 1 5 3 (1971)
tographic retention volume is maximum a t low pH and minimum, possibly as low as the void volume, at high pH. "Ion exclusion chromatography" is used to separate organic acids of differing strengths. It has been applied to nucleic acid derivatives (479)and to xanthines (364). Since ion exchangers absorb organic solutes that are non-ionic, one may ask why the ionic functional groups of the exchanger are necessary, Their function is to make the resin permeable through solvation and swelling. However, swelling is not as important with macroporous and pellicular resins as with gel-type resins, nor is the presence of fixed ions in these absorbents. On the other hand, subtle differences of polymer structure have large effects on chromatographic behavior. As we have observed, the lines around "ion exchange" are becoming harder to draw. The concept of "dynamic polymers" or "interactive polymer networks" is a useful one.
( 1 0 ) Ali, S. L., Arch. Pharm., Berlin. 305, 219 (1972). ( 1 1 ) Alibert, G., J. Chromatogr., 80, 1 7 3 (1973). ( 1 2 ) Alluli, S., Cardini, G., J. Inorg. Nucl. Chem., 34, 339 ( 1 9 7 2 ) . ( 1 3 ) Aly. H. F., Marei, S., Zakareia, N., Mikrochim. Acta, 1973, 1. (14) Amer Amezaga. S., An. Quim., 67, 739 (1971). ( 1 5 ) Andrianov. A. M., Koryukova, V. P.. Zh. Prikl. Khim. (Leningrad), 46, 425 (1973). (16) Araki, S . ,Suzuki, S., Yamada. M., Talaflta. 19, 577 ( 1 9 7 2 ) . ( 1 7 ) Archimbaud, M . , Noel, A,, Chim. Anal. (Paris), 53, 161 (1971). ( 1 8 ) Armitaqe, G. M., Lyle, S. J., Talanta, 20, 315 (1573). ( 1 9 ) Arslanova, S. S., Rakhimov. Kh. R., Sorochan. A. M.. Senvavin. M. M.. Ref. Zh. Kh,m., 1973,' 2 G ' 1 3 ; Chem. Abstr., 79, 61156h ( 1 9 7 3 ) . ( 2 0 ) Ashizawa, T., Hosoya, K., Bunseki Kagaku, 20, 1416 ( 1 9 7 1 ) . ( 2 1 ) Atassi, M . 2.. Perlstein, M. T., Rosemblatt, M. C.. Rocek, P., Anal. Biochem., 49, 164 (1972). ( 2 2 ) Aue, W. A,. Hastings, C. R., Gerhardt. K . , Pierce, J. O., Hill, H. H.. Moseman. R. F . , J. Chromatogr., 72, 259 (1972). ( 2 3 ) Aurenge. J . , ibid.. 84, 285 ( 1 9 7 3 ) . ( 2 4 ) Avots, A,. Smorodina, I. V., Ulaste. V., Lazdins, I., Ret. Zh. Khim., 19 GD, No. 2 G 204 ( 1 9 7 3 ) ; Anal. Abstr., 25, 3166 (19 7 3 ) . (25) Babayan, G. G., Kapantsyan, E. E., Oganeysan, E. N . , Armyan. Khim. Zh.. 25, 291 (1972); Anal. Abstr., 25, 160 ( 1 9 7 3 ) . ( 2 6 ) Baker, D . W.. J. Ass. Offic. Ana/. C h e m , 56, 1257 ( 1 9 7 3 ) . (27) Baratta, E. J., Knowles, F. E., ibid., p 213. ( 2 8 ) Barsukova, K. V., Rodionova, G. N., Radiokhimiya, 14, 228 ( 1 9 7 2 ) . ( 2 9 ) Barta, A. L., Osmond, C. A,, J. Agr. Food Chem., 21, 3 1 6 (1973). (30) Bates, L. S., Anal. Biochem., 41, 158 (1971). ( 3 1 ) 6elen"kii. B. G.. e t a / . , Zh. Anal. Khim , 27, 587 11972). ( 3 2 ) Belyovskaya, T. A., Brykina, G. D . , lsaeva, L. E., Vest. Mosk. Gos. Univ., Ser. Khim.. 12, 468 ( 1 9 7 1 ) . (33) Benson, J. V., Anal. Biochem., 50, 477 (1972). ( 3 4 ) Benz. C., Analusis, 2, 5 6 ( 1 9 7 3 ) . ( 3 5 ) Beranova, H.. Tejnecky, M., Collect. Czech. Chem. Commun., 37, 3579 ( 1 9 7 2 ) . ( 3 6 ) Berry, D. J., Grove, J.. Ciin. Chim. Acta, 34, 5 ( 1 9 7 1 ) . ( 3 7 ) Bhatia, K.. Anal. Chem., 45, 1344 ( 1 9 7 3 ) . (38) Bhatia, K.. Schuler, R . H . , J. Phys. Chem., 77, 1356 ( 1 9 7 3 ) . ( 3 9 ) Billiet, H. A,, Chromatographia, 5, 275 (1972). ( 4 0 ) Bishay. T. Z., Anal. Chem., 44, 1087 (1972). (41) Blaedel, W. J., Brower, L. E., James, T. L., Noggle, J. H., ibid., p 982. ( 4 2 ) Blaedel, W. J.. ibid., p 2109. ( 4 3 ) Blasius, E.. Lohde. H . , Hausler, H., Fresenius' 2. Anal. Chem., 264, 278 (1973) ( 4 4 ) BlOUnt, C. W., Channell, R . E.. Leyden, D . E . , Anal. Chim. Acta. 56, 456 ( 1 9 7 1 ) .
( 4 5 ) Blouri, J., Revel, G., J. Radioanal. Chem., 10, 121 ( 1 9 7 2 ) . ( 4 6 ) Boisseau. J., Jouan, P., Buli. SOC. Chim. Fr. ( 1 ) . 1973, 153. ( 4 7 ) Bourrelly, I . N., Deschamps, N., J. Radioanal. Chem., 8, 303 ( 1 9 7 1 ) . (48) Brajter, K.. Chem. Anal. (Warsaw), 18, 125 ( 1 9 7 3 ) . ( 4 9 ) Brandone, A., Meloni. S., Girardi. F., Sabbioni, E., Analusis, 2, 300 ( 1 9 7 3 ) . (50) Braun, T.. Bekeffy, O., Haklits, I . , Kadar, K . , Majoros, G., Anal. Chim. Acta, 64, 4 5 (1973). (51) Braun. T., Farag, A. B., Klimes-Szmik, A,. ibid., p 71 ( 5 2 ) Breter. H. J . , Zahn. R. K., Anal. Biochem.. 54, 3 4 6 ( 1 9 7 3 ) . (53) Brouchek, F. I . , Berishirli, L . A,, Tr. Gruz. Politeckh. l n s t . , 1972, 40. ( 5 4 ) Brown. P. R., Parks, R . E., Anal. Chem.. 45, 9 4 8 ( 1 9 7 3 ) . ( 5 5 ) Brunisholz. G.. Collet, P.. Klipfel, L., R O U let. R , R e v Chim. Miner., i o , 131 (1973) ( 5 6 ) Bryklna, G. D.. Isaeva, L. B., Belyavaskaya, T. A., Radiokhimiya, 14, 515 ( 1 9 7 2 ) . ( 5 7 ) Buksak, D., Chow, A,, Radiochem Radioanal. Lett.. 8, 7 ( 1 9 7 1 ) . ( 5 8 ) Burney, G A., Harbour, R. M., RadiochfmicaActa, 16, 6 3 ( 1 9 7 1 ) . ( 5 9 ) Burney. G. A., Thompson, G. H., Radiochem. Radioanal. Lett., 12, 207 (1972) ( 6 0 ) Burnham, A. K . , Calder, G. V.. Fritz, J. S Junk, G. A,, Svec, H. J., Willis, R., Anal. Chem., 44, 139 ( 1 9 7 2 ) . ( 6 1 ) Burtis. A. C.. Munk, M. N., MacDonald, F. R., Clin. Chem., 16, 667 ( 1 9 7 0 ) . ( 6 2 ) Busev, A. I . , Bagbaniy, I . L.. Zh. Anal. Khim., 25, 1374 ( 1 9 7 0 ) . (63) Caletka, R . , Konecky. C., Radfochem. Radioanai. Lett., 9 , 285 ( 1 9 7 2 ) . ( 6 4 ) /bid., 12, 325 ( 1 9 7 2 ) . ( 6 5 ) Caletka, R.. Konecny. C., Simkova, M.. J. Radioanal. Chem., 10, 5 ( 1 9 7 2 ) . ( 6 6 ) Callahan, P. X . , Shepard. J. A,, Ellis, S . , Anal. Biochem., 49, 155 (1972) ( 6 7 ) Calusaru, A . , Bunus. F., Radiochim. Acta, 18, 23 ( 1 9 7 2 ) . (68) le Cam, A , , J. Chromatogr., 77, 450 (1973). ( 6 9 ) Campbell, D . 0.. J . lnorg. Nucl. Chem., 35, 3911 ( 1 9 7 3 ) . (70) Casey, W. J . , Pietrzyk, D. J., Anal. Chem., 45, 1404 ( 1 9 7 3 ) . ( 7 1 ) Cashman, P. J , Thornton, J. I., Shelman. D . L., J. Chromatogr. SCi., 11, 7 (1973) ( 7 2 ) Caude. M.. Leger, A,, Rosset. R., Buli. SOC. Chim. Fr. ( l ) ,1973, 540. ( 7 3 ) Cerimele, B. J . , Clapp, D. C.. Cokinos, G. C., Obermeyer. B. D., Wolen, R. L., Clin. C h e m , 18, 744 ( 1 9 7 2 ) . ( 7 4 ) Chapman, J. N., Beard, H. R.. Anal. Chem., 45, 2268 ( 1 9 7 3 ) . ( 7 5 ) Chau. Y . K . , Fox, M . E., J. Chromatogr. SCl.. 9, 271 ( 1 9 7 1 ) . ( 7 6 ) Chen, Y. M.. Liao, S. C.. J . Chin. Chem. SOC. (Taipei). 19, 9 3 ( 1 9 7 2 ) . ( 7 7 ) Chester, S. N . , Juvet, R. S., J . Chromatogr. s c i . . 11, 320 ( 1 9 7 3 ) . (78) Chilcote, D. D., Mrochek, J. E., Clin. Chem.. 18, 778 (1972) (79) Chiicote, D. D . , Mrochek, J. E , Anal. Lett., 6, 531 ( 1 9 7 3 ) . (EO) Chmutov, K. V., Nazarov, P P., Maslova.
A N A L Y T I C A L CHEMISTRY, VOL. 46, NO. 5, A P R I L 1974
409R
G. E.. Sheptunov, V. N . , J. Chromatogr. (125) Ehmann, A,, Bandurski. R. S., J. ChromaK.. Zahn. R. K., Fresenius' 2. Anai. 59, 415 (1971). togr., 72, 61 (1972). Chem., 259, 183 (1972). (81) Clanet, F., Ballada, J.. Lucas. J.. Gil, C. , (126) Eliott, W. N.. Mostyn, R. A,, Analyst (Lon- (167) deGelis. P.,Chim. Anal., 53,673 (1971). Health Phys., 23, 244 (1972). don), 96,452 (1971). (168) Georgiadis. A. G., Coffey, J. W.. Anal. (82) Clearfieid. A., Blessing, R. H., J . Inorg. (127) Ergozhin, E. E., Zhubanov. B. A,, Prusova, Biochem., 56, 121 (1973). Nucl. Chem.. 34, 2643 (1972). V. N . , Rafikov, S. R., Izv. Akad. Nauk (169) Gertner, A., Grdinic, V., Milic. J.. Acta Pharm. Jugoslav., 23, 107 (1973) (83) Clearfield, A., Duax, W. L.. Garces, J. M. SSSR, Ser Khim., 1972,972. Medina. A. S., ibid., p 329. (128) Erikson, T. E., Engman, S. O., Acta (170) Ghosh, A., Hoque, M., Dutta, J., J. Chro(84) Clearfield, A., Medina, A. S., ibid.. 35, mafogr., 69, 207 (1972). Chem. Scand., 26,3333 (1972). 2985 (1973). (129) Eristavi, V. D., Soobshch. Akad. Nauk (171) Gilbert, T. W., Dobbs, R. A,, Anal. Chem., (85) Coleman, M. L., Anal. Chim. Acta, 60, 42Ei ' 45, 1390 (1973). Gruz. S.S.R., 71, 105 (1973); Chem. (1972). (172) Gill, J. S.. Tandon, S. N.. Talanta, 19, Abstr., 79, 142531 d (1973). 1355 (1972). (86) Collins, C. H.. Collins. K. E., Ackerhalt, R. 130) Ermolenko, I . N., Lyubliner, I . P. AlekseiE., J. Radioanal. Chem., 8, 263 (1971). chik, N. A,, Zh. Anal. Khim., 28, 3996 (173) Gill, J. S.. Tandon, S. N . , J. Inorg. Nucl. Chem., 34, 3885 (1972). (87) Conrard, P., Separ. Sci., 8, 1, 269 (1973). (1973). (88) Conrard. P., Caude, M., C. R. Acad. Sci., 131) Ernst, O., Szolnoki, G., Fresenius' Z. Anal. (174) Giorgio, A. J., Malloy, E., Black, T.. Anal. Lett., 5, 13 (1972). Ser. C, 272, 764 (1971). Chem., 258, 263 (1972). (89) Conrard, P.. Caude, M., Rosset, R., Separ. 132) Fahn, S., Prasad, A. L. N., Delesie, R.. (175) Glennie-Holmes, M., Pestic. Sci., 3, 681 (1972). SCi., 7,465 (1972). Anal. Biochem., 46, 557 (1972). (90) Conrard. P., Rosset, R . , ibid., p487. 133) Fedora, M . D . , Fokina, L. S..Makarov, M. (176) Govindaraju, K.,Analusis, 2, 367 (1973). (177) Grafova, Z. M., Morozova, V. N.. Og(91) Conrard, P., Rosset. R., Analusis, 2, 37 K., Ret. Zh. Khim., 19GD, No. 13 G 211 nevskaya. N. A,, Uch. Zap., Yarosiav. (1973). (1971);AnaL Abstr., 23, 148 (1972). Tekhnoi. Inst., 22, 58 (1971); Anal. (92) Conrad. H. E., Varboncoeur. E., James, M . 134) Fedoroff, M., Debove. L., C. R. Acad. Abstr., 23, 2318 (1972). E., Anai. Biochem.. 51, 486 (1973). Sci.. Ser. C, 275, 1 189 ( 1972), (93) Coppi, G., Vida, A.. Bonardi, G., J. Pharm. (135) Ferenczi, S . . Bati, J., Devenyi, T., Acta (178) Gregory, L. P., Anal. Chem., 44, 2113 (1972). S o . , 61, 1460 (1972). Biochim. Biophys. Hung., 6, 123 (1971). (94) de Corte. F.. Van Acker, P., Hoste, J., (136) Filatova. T. P.. Viktorov. E. V., Chernova, (179) Grieser, M. D., Wilks. A. D.,Pietrzyk, D. J . , ibid., p 671. Anal. Chim. Acta. 64, 177 (1973). M . A , Yarmarkin, V. K., Ref. Zh. Khim.. 1973, No. 1 G 128; Chem. Abstr.. 79, (180) Grieser, M. D., Pietrzyk, D. J., ibid., 45, (95) Cory, J. G., Russell, F. A,, Mansell, M. M., 1348 (1973). Anai. Biochem.. 55, 449 (1973) 1 2 1 5 4 3 ~(1973). (96) Crocket, J. H., Geochim. Cosmochim. (137) Finelli, V. N.. Menden. E. E., Petering. H. (181) Grushka, E.. Scott, R. P. W., ibid., p 1626. (182) Guertier, L. G.. J. Chromatogr., 76, 255 Acta. 36, 517 (1972). G., Environ. Sci. Techno/.. 6, 740 (1972). (1973). (97) Csajka, M., Radiochem. Radioanal. Lett., (138) Foldzinska, A,, Chem. Anai. (Warsaw), (183) Guertler, O., Chu-Xuan-Anh. Hoizapfel, H., 13, 151 (1973). 16, 821 (1971). Acta Chim. Hung., 75, 227 (1973). (98) Cucheval, M. A., De Gelis, P., Henriet, D . , (139) Fowler, B., Robins, A. J.. J. Chromatogr., (184) Guire. P., Anal. Biochem.. 42, 1 (1971). Prat, A. M . , Anal. Chim. Acta, 65, 437 72, 105 (1972). (185) Guiko. A., Feigenbaum, H., Schmuckler. (1973). (140) Frache, R., Dadone, A,, Chromatographia. G., Anal. Chim. Acta, 59, 397 (1972). 5 , 581 (1972). (99) Curzon. G., Kantamaneni, B. D., Trigwell. J , Clin. Chim. Acta, 37, 335 (1972). (141) Frankel, L. S., Anal. Chem., 45, 1570 (186) Gupta, S. K . , Sharma, R. C., Arora, R. B., J. Sci. lnd. Res., India, 31, 38 (1972). (1973). (100) Danielsson, A., Ronnholm, E., Kjeilstrom, (187) Gupta, C. E., Tandon, S. N., Separ. Sci.. L. E., Ingman, F.. Talanta, 20, 185 (142) Freeman, D. H., J. Chromatogr. Sci., 11, 7, 513 (1972) (1973) 175 (1973). (188) Gurvich, A M I Gapon, T B , Zh Anal (101) Das, H. A., Janssen, R . , Zonderhuis, J., (143) Freeman, D. H., Angeles. R. M.. EnagoKhim., 27, 933 (1972). Radiochem. Radioanal. Lett., 8, 257 nio. D. P., May, W., Anal. Chem., 45, 768 (189) Hallaba, E., Misak, N. Z., Salama, H. N., (1971). (1973). 580 11973) Indian J. Chem.. 11. - r - - (102) Davankov, V. A , Rogozhin. S. V., Serne- (144) Friedman, M . , Noma, A. T., Masri, M. S . . (190) Hartley. R. W.,, Anal. Biochem., 46, 676 chkin, A. V., Sachkova. T. P., J. ChromaAnal. Biochem., 51, 280 (1973) (1972). togr.. 82, 359 (1973). (145) Fritz, J. S., Sickafoose, J. P., Talanta. 19. (191) Hatano, H.. Yamamoto, Y., Saito, M.. Mo(103) De, A. K.. Bhattacharyya, C. R . . Anal. chida, E., Watanabe. S., d. Chromatogr., Chem.. 44, 1686 (1972). 83, 373 (1973). (104) De, A K..Roy, U. S . , Separ. Sci . 6, 443 (192) Havlicek, J., Samuelson. 0..ibid.. p 45. (1971). (193) Havlicek. J . . Peterson, G., Sarnuelson. O., (105) Devenyi, T., Acta Biochim. Biophys. Acta Chem. Scand.. 26, 2205 (1972). Hung.. 6, 129 (1971). (148) Fuertig. D., Guertler, O., Holzapfel, H.. Z (194) Haworth. C., J. Chromatogr., 67, 315 Chem. (Leipzig), 12, 185 (1972). (106) Devenyi, T., Bati, J . , Kiss, P., Kovacs, J., (1972). ibid.. 7. 237 11972) (149) Fujimoto, M.. Suga, T., Buli. Chem. SOC. (195) Heathcote, J. G . , Davies. D. M., Haworth -, (107) Dingrnan, Jr.. J., Siggia. S., Barton, C.. Jap.. 44, 1425 (1971). C.. Clin. Chim. Acta, 32, 457 (1971). Htscock, K. B., Anal Chem.. 44, 1351 (150) Fujimura, K., Koyama, T., Tanigawa. T . , (196) Heathcote. J. G., Washington, R . J., (1972). Funasaka. W., J. Chromatogr.. 85, 101 Keogh, B. J., Glanville, R. W., J. Chroma(108) Dodova, L., C. R. Acad. Bulg. Sci., 24, (1973). togr.. 65, 397 (1972); ibid., 78, 181 1199, 1207, 1373 (1971) (151) Fukasawa. T., Bunseki Kagaku. 22, 453 (1973). (109) Dodova. L.. Shishkova, L. G , ibfd., p (1973). (197) Hegenauer, J.. Saltman, P.. ibid., 74, 133 1203. (152) Fukasawa, T., Kano, S.. Ono, H., Mizuike, (1972). (110) Dedkov, Y . M . , Eliseeva, 0. P., Errnakov, A.,ibid.. 19, 1417 (1970). (198) Heitner-Wirguin. C.. Gantz, M., J. inorg. A. N., Savvin, S. B , Slotintseva, M. G . , (153) Funasaka. W.. Hanai, T.. Fujimura, K . , Nucl. Chem.. 35, 341 (1973). Zh. Anal. Khim.. 27, 726 (1972). Ando, T., J. Chromatogr., 72, 187 (1972). (199) Hellrnann, H., Griffatong. A,, Fresenius' Z. (111) De Laeter, J. R., Geochim. Cosmochim (154) ibid.. 78,424 (1973). Ana;. Chem.. 257, 343 (1971). Acta, 36, 735 (1972). (155) Funasaka. W.. Fujimura, K . , Bunseki Ka- (200) Henry, R. A., Schmidt, J. A,, Williams, R. (112) Dolmatov. Y . D , Bulavina. Z . N., Dolrnagaku, 19, 1513 (1970). C., J Chromatogr. Sci.. 11, 358 (1973) tova. M. Y . , Radiokhimiya. 14, 526 (156) Funasaka. W., Fujimura, K., Kushida, S., (201) Hercules, D. M., Cox, L. E., Onisick, S . . 119791 _._,. J . Chromatogr., 64, 95 (1972). Nichols, G. D., Carver, J. C . , Anal. Chem.. (113) Dorninguez, G. D , Adrada. J., An. Quim.. (157) Furusawa, M . , lwasaki, S.. Saito, K . , 45, 1973 (1973). 67, 591 (1971). Aoki, M., Nippon Kagaku Kaishi. 1973, (202) Hering. R . , 2. Chem. (Leipzig). 12, 272 (114) Donaidson. J. D.. Fuller, M . J . , J , inorg. 1797 345 (1972). Nucl. Chem.. 33. 4311 (1971). (158) Gaal. J . , lnczedy. J . , Acta Chim. Hung., (203) Herrnann, A., Baraniak, L., lsotopen(115) Doss. M., Schmidt, A,,-Z.' Klin. Chem. 76, 113 (1973). praxis. 8, 106 (1972). Klin. Biochem.. 9, 415 (1971). (159) Gabriel. T. F., Michalewsky, J . , J. Chro- (204) Hernandez, C. M. de, Walton. H. F.. Anal. (116) Drahonovsky. J . , Vacek, Z., Collect matoar.. 67. 309 (19721. Chem , 44, 890 (1972). Czech. Chem Commun.. 36, 3431 (1971). (160) Gabrlel. T. F.. Michalewsky, J. E.. ibid.. (205) Heurtebise. M . , J . Radioanal. Chem., 7, (117) Dranitskaya, R. M . . Tetervak. A . G., Zh. 80, 263 (1973). 227 (1971). Ana;. Khim., 27, 1214 (1972). (161) Gaitonde, M. K . . Nixey, R. W K.. Anal. (206) Heurtebise, M., Ross, W J . , Anal. Chem., (118) Drobishev, V. I., Mansurova. S. E., KuBiochem., 5 0 , 416 (1972). 44, 596 (1972). laev, I S., J . Chromatogr., 69, 317 (162) Ganguli. P. K., Reiner. A,, Gyenes, L., (207) Hill, J. M . , J. Chrornatogr.. 76, 455 (1972). i b i d . 42, 91 (1971). (1973). (119) Dubuquoy. C., Gusrnini, S . . Poupard, D., (163) Ganopol skii, V. I . , Krivonozhnikova. L. G., (208) Hirao, T., Kotaka, M . , Kakihana, H., Nipibid.. 70, 216 (1972). Errnoienko, I . N.. Zh Anal. Khim.. 26, pon Kagaku Kaishi, 1973, 1477. (120) Duca, A., Calu. C., Rev. Roum. Chim., 17, 1757 (1971). (209) Hobbs. J. S., Lawrence, J. G., J . Sci. Fed. 125 (1972). (164) Ganzerli-Vaientini. M . T.; Maxia, V., MeioAgr , 23, 45 (1972). (121) Dybczynski, R . , J . Chromatogr., 71, 507 ni, S., Martinelii, A,, Radiochem. Radioan- (210) Hobbs, J. S . . Lawrence, J. G , J . Chroma(1972). al. Lett., 7, 163 (1971); ibid.. 11, 179 togr.. 72, 311 (1972). (122) Eby. G. N..Anai. Chem.. 44, 2137 (1972). (1972). (211) Hooton, K. A., Parsons, M . L., Anal. Lett., (123) Eccles, H . , Vernon, F.. Anal. Chim. Acta, (165) Ganzerli-Valentini. M. T., Meloni, S., 6, 461 (1973). 66, 231 (1973). Maxia, V., J. Inorg. Nucl. Chem., 34, 1427 (212) Horwitz, E. P., Bloomquist. C. A . A , , J . (124) Egashira, S., Bunseki Kagaku, 22, 571 (1972). Inorg. Nucl. Chem.. 34, 3851 (1972) (1973). (166) Gauchel, G., Gauchel, F. D., Beyerrnann. (213) Horyna. J., Vesely, V., ibid., p 1739. I
\ . -
\
~
I
410R
A N A L Y T I C A L C H E M I S T R Y , VOL. 46, NO. 5 , A P R I L 1974
- I
(214) Houot. O.,Houpert, Y., Panek, E., Siest, (258) G., Bonnin. M., Bull. SOC. Pharm. Nancy, 89, 24 (1971); Anal. Abstr.. 23, 2691 (259) (1972). (215) Howe, J . M., Yamamura, Y., Clark, H. E., Cereal Chem., 49, 566 (1972) (260) (216) Hrabak. A.. J. Chromatogr., 84, 204 (1973). (261) (217) Huber, J . F. K.. van Urk-Schoen, A. M., (262) Anal. Chim. Acta, 58, 395 (1972) (218) Hunter, G., Analyst. (London). 97, 233 (1972). (263) (219) Husain, S W., Kazmi, S. K . , Experientia. 28, 988 (1972) (264) (220) Husain. S. W..Analusis. 1. 314 (1972). (221) Idler, D. R.. Safe, L. M., Steroids. 19, 315 (265) (1972). (222) lida, T., Yamabe, T., J . Chromatogr.. 56, (266) 373 (1971). (223) Iliingworth, D. R., Portman, 0 . W., ibid., 73, 262 (1972). (224) Isaeva. L. B . , Belyavskaya. T. A,, Brykina, G. D . , Vest. Mosk. Gos. U n i v . . Ser. Khim., 12, 586 (1971). (225) Issa. I . M . , Issa. R. M., Ahmed, Y . 2 . . Microchem. J . , 18, 569 (1973). (226) Jaehnig, W.. Z. Chemie (Leipzig), 12, 271 (1972); ibid., 13, 227 (1973). (227) James, H., Analyst (London), 98, 274 (1973). (228) Jardy, A., Rosset. R., Bu/l SOC.Chim. F r . , ( 1 ) . 1973, 156. (229) Jardy, A., Rosset, R . . J. Chromatogr., 83, 195 (1973). (230) Jarzebinski. J., Dmowska, L., Farm. Pol., 26, 767 (1970). (231) Jarzebinski, J., ibid.. 28, 895 (1972); Anal. Abstr., 24, 3038 (1973) (232) Jeppson. J. C..Karlsson. I . M.. J . Chromatogr.. 72, 93-103 (1972). (233) Jewell, D. M.. Weber, J. H., Bunger, J. W., Plancher, H.. Latham, D. R . . Ana/. Chem.. 44, 1391 (1972). (234) Jha, S. K., DeCorte. F . , Hoste. J . . Ana/. Chim. Acta. 62, 163 (1972). (235) Johansson, C. E., Talanta. 19, 1349 (1972). (236) Johnson, D. C . , Larocheile, J., ibid.. 20, 959 (1973) (237) Jones, E. A., Watson, A. E.. Dixon, K., Rep. Nat. lnst. Metali.. No. 1428 (1972): Anal. Abstr., 23, 3801 (1972). (238) Jones, J . G.. Thomas, J . D. R . . Talanta, 19, 961 (1972). (239) Jones, T. M., Albersheim. P., Plant Physio/.. 49, 926 (1972). (240) Joon, K.. den Boef. R . , de Wit, R . , J . Radioanal Chem.. 8, 101 (1971). (241) Joshi. B. D . . Patel. B. M., Page, A. G., Anal. Chim. Acta. 57. 379 (1971). (242) Kadlec. V . . Matejka, 2 . . J Appi Chem. Biotechnoi.. 23, 41 (1973) (243) Kaiser U. J . , Chromatographia. 6, 387 (1973). (244) Kamata, S.. Nippon Kagaku Kaishi, 1972, 88: i b i d . . 1973, 287 (245) Katsman. B. K . , Zh. Anai. Khim., 26, 2344 (1971). (246) Kaufman. D. G . . Grisham. J. W., J. Chromatogr.. 57, 275 (1971). (247) Kawabuchi. K., Riley, J . P., Anal Chim. Acta. 65, 271 (1973). (248) Kawazu, K., Fritz, J. S . , J . Chromatogr., 77, 397 (1973). (249) Keen. A. R . , Walker, N J.. Ana/. Biochem.. 52, 475 (1973). (250) Khalizova, V. A.. Alekseeva, A . Y.. Smirnova. E. P., Krasyukova. N G., Zh. Ana/. Khim.. 25, 1525 (1970). (251) Khater, M . M.. Korkisch, J., Taianta. 18, 1001 (1971). (252) Kim, J . I . , Lagally, H.. Born. H. J . , Anal. Chim. Acta, 64, 29 (1973) (253) Kiriyama, T., Kuroda. R . , i b i d , 62, 464 (1972). (2541 Kirkegaard. L. H . . Johnson. T. J . A,, Bock, R . M., Ana/. Biochem., 50, 122 ( 1972). (255) Kirkland, J . J.. J . Chromatogr Sci., 10, 129 (1972). (256) Kissinger, P. T., Refshauge. C., Dreiling, R . , Adams, R . N . , Anal. Lett., 6, 465 (1973). (257) Knox. J. H.. Jurand. J . . J . Chromatogr.. 82, 398 (1973).
Kobayashi. E.. Nippon Kagaku Kaishi. 1973, 1437. Koch, W., Korkisch, J.. Mikrochim. Acta, 1972, 687; ibid., 1973, 101, 117, 225, 245, 263, 877. Kocheva. L. L.. Gecheva, R., C. R. Acad. BUlg. SCi., 25, 1375, 1379 (1972). Kocheva, L. L., Gecheva, R . , Talanta, 20, 910 (1973). Koenig, Fresenius' 2. Anal. Chem., 259, 191 (1972). Koenig, K. H . , Eckstein, G., J . lnorg. Nucl. Chem., 34, 3771 (1972). Koenig, K. H., Graf, H., J . Chromatogr., 67, 200 (1972). Kogan, L., Ratner. R . , ibid., 62, 449 (1971). Kojdl. I., Fresenius' 2. Anal. Chem.. 259, 118 (1972).
(301) Lambert, J . L . , Manzo, D. J.. Anal. Chim. Acta, 54, 530 (1971) (302) Lange, H. W., Loewer, R . , Hempel, K.. J , Chromatogr., 76, 252 (1973) (303) Lapidot, Y., Barzilay, I . , ibid., 71, 275 (1972). (304) Larson. P., Murgia. E., Tong-Jung Hsu, Walton, H. F.. Anal. Chem., 45, 2306 (1973). (305) Lastit, A., Alimarin. I . P., Belyavskaya. T. A , , Vest. Mosk. Gos. U n i v , Ser. Khim., 12, 582 (1971). (306) Lawas. I . C., del Callar, k . , Feria, J. A , . J. Radioanal. Chem.. 13, 75 (1973) (307) Lawless, J. G., Geochim. Cosmochim. Acta, 37, 2207 (1973) (308) Lederer. M.. Bichi. S., Polidori, F., J . Chromatogr.. 77, 135 (1973). (309) Lee, K. S.. Lee, D. W.. Chung, Y S . , Ana/. Chem.. 45, 396 (1973) (267) Kolodkina I . I . lvanova E. A. Yurkevich A , M,, Zh,' ~ h ; ~g ; , ,GD,' N ~ 8 ,~ 2 3 4(310) Lee, Y. C., Scocca. J R , Ana/ Biochem.. 39, 24 (1971). (1971):Anal, Abstr., 22, 1769 (1972). (268) Komarovskii, A. G., Vasileva, L. A,, ~ ~ k h o (311) Leitch, R . E.. De StefanO, J. J , J. Chromirova, N. N., Zavod. Lab.. 37, 179 matogr. Sci.. 11, 105 (1973). (1971). (312) Leont'eva, G. V . , Vol'khim. V V . , Zh. Anal. Khim.. 28, 1209 (1973) (269) Kopacz-Jodczyk, T., Glowacka, D., Chem. (313) Lepri, L., Desideri, P. G , J. Chromatogr.. Anal. (Warsaw), 16, 1319 (1971). 84, 155 (1973). (270) Kopylova, V. D., Asambadze, G . D., Karapetyan. L. P., Saldadze, K.. Zh. Prikl. (314) Lepri, L . , Desideri. P. G , Coas, V., ibid.. Khim., 46, 1210 (1973). 64, 271 (1972). (271) Korkisch, J . , Khater, M. M . , Taianta. 19, (315) /bid.. 79, 129 (1973). (316) Lepri. L., Desideri. P. G.. Mascherini, R., 1654 (1972). (272) Korkisch. J., Koch, W., Mikrochim. Acta, ibid.. 70, 212 (1972). 1973, 865. (317) Lewandowski. A , , Chem. Ana/ (Warsaw), 17, 849 (1972). (273) Korkisch. J . , Steffan, I . , ibid.. 1972, 837. (318) Lewandowski. J., Ana/. Biochem . 54, 325 (274) /bid., 1973, 273. (275) /bid., pp 533, 545, 651. (1973). (276) Kotaka. M . , Murayama, K . , Kakihana, H., (319) Leyden, D. E., Channell, R E., Blount, C. Nippon Kagaku Kaishi. 1973, 1482. W., Anal. Chem., 44, 607 (19721. (277) Kothari. R. M., J. Chromatogr, 64, 85 (320) Liao, T. H., Robinson, G . W.. Salnikow, J., (1972). ibid.. 45, 2286 (1973). (278) Kowalczyk, J . , Stasinska, B . , Janicki, J . . (321) LiteanU, c., Gocan, s . , Hodisan. T., Anal. Biochem., 41, 297 (1971). Nascu, H., Marutoiu, C . . Rev. Roum Chim.. 17, 497 (1972). (279) Kraehenbuhi, U., Rotli, H. P I von Gunten. (322) Lochmueller. C. H., Galbraith, J., Joyce. H. R., Helv. Chim. Acfa, 55, 697 (1972) (280) Kraft, G., Dosch, H . , Gabbert, K . , FresenJ . , Anal. Lett.. 5 , 943 (1972) (323) Lohmander, S., Biochim Biophys Acta. ius' Z. Ana/. Chem., 267, 106 (1973). 264, 411 (1972). (281) Kram. T. C., J . Pharm. Sci.. 61, 254 (1972). (324) Longbottom, J . E., Ana/. Chem , 44, 418 (282) Krauss. G.. Wasternack, C., Reinbothe. (1972), H., J. Chromatogr., 76, 248 (1973) (325) Lou, M. F., Ana/. Biochem. 55, 51 (283) Kreshkov, A. P., Sayushkina. E. N . , Ti(1973). masheva. N. A . , Tr. Mosk. Khim.-Tekhno/, (326) Loveless, A. J., Yanagita. S , Mabuchi, Inst. D. 1. Mendeleeva. 68, 274 (1971): M . , Ozirna, M , Russell, R D , Geochim. Ana/. Abstr.. 23, 3765 (1972). Cosmochim. Acta. 36, 685 (1972) (284) Kreuzig, F., Fresenius' Z. Anal. Chem.. (327) Lovins, R E.. Ellis, S. R . , Tolbert. G. D.. 255, 126 (1971). McKinney, C. R . , Anal. Chem. 45, 1553 (285) Krogh, T. E., Geochim. Cosmochim. Acta. (1973) 37, 485 (1973) (328) Lust, J . , Sahud, M. A , . J. Chromatogr. (286) Kroschwitz, H . . Pungor. E . , Ferenczi, S., 71, 127 (1972). Talanta. 19, 695 (1972) (329) Lyons. H.. Quinn, F. E., Clin Chem.. 17, (287) Krtil. J.. Moravec, A,, Mencl, J , , Radi152 (1971). ochem. Radioanal. Lett., 10, 83 (1972). (330) Machiroux. R., Merciny. E . . Schreiber. A , , (288) Ku, S. M.. Chemistry (Taipei), 1971, 85. Mikrochim. Acta, 1973, 829. (289) Kunbazarov, A., Sorochan, A. M . , Senyov- (331) Maeda, M , Tsuji, A,, Ganno, S., Onishi, in, M. M . , Zh. Neorg. Khim.. 16, 651 Y., J. Chromatogr.. 77, 434 (1973) (1971). (332) Maenhaut, W.. Adams. F.. Hoste, J.. Anal. (290) Kurbatova, V. I . , Emasheva, G. N., FedoChim. Acta. 59, 209 (1972) rova, N. D.. Ref. Zh. Khim.. 19 GD. No. (333) Mahan. A.. Dey. A. K . , ibid.. 63, 85 90124 (1972); Anal. Abstr.. 24, 125 (1973). (1973). (334) Mahan, A . . Ghose. A. K , Dey, A K , (291) Kurbatova, V. I . , Stepin, V. V . , ibid.. 19 Separ. S o . . 6, 781 (1971). GD, No. 8 G160 (1972); Ana/. Abstr, 24, (335) Maksimova. K. V., Ref. Zh. K h i m . 1973, 7 G 51: Chem. Abstr.. 79, 1 0 0 1 7 8 ~(1973). 144 (1973). (292) Kurbatova, V. I . , Stepin. V. V., Ponosov, (336) Maleszewska. H., Dybczynski. R . . RadiV. L., Novikova, E. V., Emasheva, G. N , ochem. Radioanal. Lett., 6, 7 (1971). Kalashnikova, L. Ya., Zavod. Lab., 37, 413 (337) Marei. S., A,, Aly. H. F., Zakareia, N . , (1971). Fresenius Z. Ana/. Chem.. 258, 282 (293) Kuroda, R . , Kondo, T . , J. Chromatogr.. 80, (1972). 241 (1973). (338) van der Mark, M., Das, H. A , J . Radioan(294) Kuroda, R . , Kondo, T., Ogurna, K., Talanai. Chem.. 13, 107 (1973). fa. 19, 1043 (1972); i b i d . 20, 533 (1973). (339) Marshall, L. M.. Appiah, A , . J . Chroma(295) Kuroda. R., Oguma, K , Kono, N . . Takatogr.. 73, 257 (1972). hashi, Y., Anal. Chim. Acfa. 62, 343 (340) Martin, A,, Elejalde. C.. An. Quim.. 68, (1972). 1237 (1972) (296) Kuroda, R., Oguma. K . , Watanabe, H., J. (341) Massart. D. L.. Janssens, C . . Kaufman, Chromatogr., 86, 167 (1973). L . . Srnits, R . , Ana/ Chem., 44, 2390 (297) Kuroda, R . , Ono, T., Ishida, K . , Bunseki (19721 Kagaku. 20, 1142 (1971). (342) Massart. D. L , Kaufrnan. L., Smits. R . . (298) Kuroda, R., Kawabuchi. K.. Fresenics' Z. Fresenius' Z. Anal. Chem.. 264, 273 (1973) Ana/. Chem.. 261, 394 (1972). (299) Kurokawa. K.. Kakihana, H.. Nippon Ka- (343) Matsui, H.,Anal. Chim. Acta, 66, 143 gaku Kaishi. 1972, 925 (1973). (300) Lacroix. J. P., Steiner. J , Dreze, P. Anal (344) Matsuzuru. H . . Wadachi, Y . , Nippon KaLett., 6, 565 (1973). gaku Kaishi. 1973, 643.
~ ~ i ,
A N A L Y T I C A L CHEMISTRY, VOL. 4 6 , NO. 5, APRIL 1974
411 R
(345) Maura, G . , Rinaldi, G., Anal. Chim. Acta, 53, 466 ( 1 9 7 1 ) . (346) Maury, M . d.R.. Poitrenaud. C . , Tremillon. B., Chem. Anal., (Warsaw), 17, 1059 (1972). (347) McGrath. D . , Geoderma, 5, 261 (1971). (348) McKay. J. F., Jewell, D . M., Latham, D. R., Separ. Sci., 7, 361 (1972). (349) Miedema, K., Boelhouwer, J., Otten, J. W., Clin. Chim. Acta, 32, 367 (1971). (350) Minard, F. N., Grant, D. S., Biochem. Med., 6, 46 (1972). (351) Miroshnikova, 2 . P., Tr. Voronezh. Gos. ( 1 9 7 1 ) ; Anal, Abstr,, 22, Univ,, 82, 4556 (1972) (352) Mollica, J. A,, Podmanabhan, G. R., Struz, R., Anal. Chem., 45, 1859 (1973). (353) Mondino, A . , Bongiovanni, G.,J. Chromatogr., 67, 49 ( 1 9 7 2 ) .
(387) Novak. V. P., Martynov, A . P.. Mal'tsev, (433) Qureshi, M . , Zehra, N . , Nabi, S A . , V. F., Zavod. Lab., 37, 412 (1971). Kumar. V.. Talanta, 20, 609 ( 1 9 7 3 ) . (388) Novikov, V. P., Myasoedov. B . F., Ivano- (434) Rahman, M. K . , Haq. A. M . S., Maroof, F. va, S. A . , Zh. Anal. Khim.. 27, 6 3 ( 1 9 7 2 ) . B. A,, J . Chromatogr.. 67, 389 (1972). (389) Ohlweiler, 0. A , . de Oliveira, J., Porto, C. (435) Rao, A , P., Dubey, S. P., Anal. Chem.. 44, L., Silva, S.. Anal. Chim. Acta, 61, 57 686 ( 1 9 7 2 ) . (1972). (436) Remport-Horvath. Z., Ordogh, M., MikrO(390) Ohyoshi, E., Bull. Chem. SOC. Jap., 46, chim. Acta, 1972, 491 2758 (1973). (437) Renault, M. N . , Deschamps, N.. Radi(391) Okochi, H., Bunseki Kagaku, 20, 1381 ochem. Radioanal. Lett., 9, 199 ( 1 9 7 2 ) . (1971). (438) /bid., 13, 207 ( 1 9 7 3 ) . (392) Oldfield, J. F. T.. Parslow. R . , Shore, M . , (439) Renault, N . , Deschamps, N . , Eourelly, I . Int. Sugar '.* 7 5 * 3-6, 44 (1973). N., Anal. Chim. Acta, 64, 19 (1973) (393) Orrell. D . H.. Haynes, G. R . . Raine, D. N.. (440) Rey, F.. Sivy, M.. Rey. J . , Eur. J. Clin. Ann. Clin. Biochem., 9, 5 3 ( 1 9 7 2 ) . Bioi. Res.. 17, 221 (1972). (394) Otmakhova, Z. I . , Chashchina, 0. V., T I . (441) Roeiandts, I . , Radiochem. Radioanal. Tomsk. Gos. Univ.. 204, 140 ( 1 9 7 1 ) ; Anal. Lett.. 12, 89 ( 1 9 7 2 ) . Abstr., 23, 3769 ( 1 9 7 2 ) . (442) Rogozhin. S. V.. Davankov, V. A,, Yam(395) Owens, c . w., Radiochem. Radioanal. skov. I . A,, Kabanov, V. P., Zh. Obshch Lett., 13, 325 (1973). Khim., 42, 1614 (1972). (354) Mondino, A . , Bongiovanni, G., Fumero, s., (396) Paart, E., Samuelson. o., J . Chromatogr., (443) Rokushika, S., Funakoshi, S.. Murakami, ibid., 71, 363 ( 1 9 7 2 ) . 8 5 , 9 3 (1973). F., Hatano. H.. J. Chromatogr., 56, 137 (355) Montoloy. F., Heurtebise, M., Lubkowitz, (397) Padmanabhan. P. K., Venkateswarlu, C.. (1971). J . , J . Radioanal. Chem., 11, 1 6 7 (1972). C. R. Acad. Bulg. Sci., 26, 407 ( 1 9 7 3 ) . (444) ROOS, R. W.. J. Pharm. Sci., 61, 1979 (356) Moody, G. J., Thomas, J. D. R., Lab. (398) Paez, D. M.. Guagnini. 0. A,, Mikrochim. (1972). Pract., 21, 717, 797, 8 0 5 (1972). Acta, 1971, 220. (445) Routh, J. I . , Bannow, R . E., Fincham, R. (357) Morard, P.. Bourrier, E.. Chim. Anal., 53, (399) Palmer, R., Dixon, K.. Rep. Nat. lnst. M e W . , Stoll, J. L.. Clin Chem., 17, 867 315 (1971). tall., No. 1324 (1971) (1971). (358) Morisi, G., Levi, G . , Ann. 1st Sup. Sanita, (400) Paluch, J., Stangret, s., Fortschr. WaSSer- (446) Rudling, L., Water Res.. 5, 831 ( 1 9 7 1 ) . 8, 136 ( 1 9 7 2 ) : Anal. Abstr., 24, 2968 chem. lhrer Grenzgeb., 14, 6 7 ( 1 9 7 2 ) ; (447) Ruvarac, A. L.. Marijanac, V. D., J. Chro(1973). Chem. Abstr.. 79, 1 0 8 0 0 3 ~(1973). matogr.. 76, 221 ( 1 9 7 3 ) . (359) M ~ T, M , , Vanaeva, ~ L, ~ v,, Zh, (401) ~ Pankhurst, ~ R. J..~ O'Nions. ~R. K., Chem. ~ (448) ~Ruvarac, ,A. L., Trtanj, M. I . , J . lnorg. Geol., 12, 127 (1973). Nucl. Chem., 34, 3893 (1972) Anal. Khim., 25, 2374 (1970). ~W , c,, ~ R~ ~~w, T,, , ~ (402)~ Pauncz, ~ J. ~K.. J . ,Antibiot.. Budapest, 25, (449) Ryabinin, A. I . , Lazareva, E. A,. Dorosh(360) Mrochek, J E,, B Burlis, C . A,. Clin. Chem.. 17, 72 ( 1 9 7 1 ) . 677 (1972). enko, G. A,, Radiokhimiya, 15, 437 (403) Pavlovich. M. L., Skorokhod, 0. R., Ref. (1973). (361) Mulokozi, A. M., Analyst (London), 97, Zh. Khim., 1973, 6 6 1491; Chem. Abstr., (450) Saavedra Alonso, J , Garcia Sanchez, A., 79 973379 (1973). 8 2 0 (1971) A n . Ouim., 68, 335 ( 1 9 7 2 ) . (362) Munier, R . L,, Draper, A . M., Faivre. B., (404) Pirevozkaya, N. A., Yakhontova, L. F., (451) Sagortschew, B.. Chem. Anal. (Warsaw), Chromatographia, 6, 305 ( 1 9 7 3 ) . Bruno, B. P., Khimiko-Farm. Zh., 5 ( 1 0 ) . 17, 973 (1972). (363) Murakaml. F., Rokushika, S., Sumizu, K., 3 6 (1971). (452) Sahakundu. S. M., Marathe, S. G . , Rao, H., KagL'ku, 19, 1664 (405) Pesek, J. J.. Frost, J. H . , Anal. Chem.. V. K.. Bhargava, V. K . , lyer, R H..J . Ra(1970). 45, 1762 (1973). dioanal. Chem., 13, 37 ( 1 9 7 3 ) . (364) Murgia, E.,Richards. p . , Walton, H. F., J . (406) Pesek, J., Petru, F.. Collect. Czech. (453) Saito, Y . , Tomita, I., J. Chromatogr., 71, Chromatogr.. 87, 5 2 3 (1973). Chem. Commun., 3 7 , 2 5 2 8 (1972). 538 (1972). (365) Murthy' M. R. v . $ Ranjekar, p. K . , ;bid., (407) PetrU. F.. Pesek, J., ibid.. 36, 3752, (454) Sakamoto, T., Nakashima, T,, Fukuda, K , 76, 337 ( 1 9 7 3 ) . (1971). Mizuike, A . , Bunseki Kagaku. 19, 1218 (366) Muzzarelli, R . A. A , , Rocchetti. R., Anal. ( 4 0 8 ) pfrepper, G., Z. Chem.. 13, 6 7 (1973). (1970). Chim. Acta, 64, 371 ( 1 9 7 3 ) . (409) Pitt. W. W., Scott, C. D . , Jones, G., C h (455) Saldadze, K. M . , Kargman. V. B . . Kopylo(367) Muzzarelli. R . A A . , Rocchetti, R., MaranChem., 18, 767 (1972). va, V. D.. Gintsberg, E . G., Kovarskaya. gio, G., J . Radioanal. Chem., 10, 1 7 (410) Plantin, L.-o.. J. Radioanal. Chem.. 12, B. M . , Zh. Anal. Khim.. 25, 1698, 1870 (1972). 441 ( 1 9 7 2 ) . (1970). (368) Muzzarelll, R . A A., Spalia, B.,,iFid., p Z 7 . (411) Plumas, B.. Sautier, C., Ann. Falsi. Ex- (456) Saldadze. K. M.. Kargman, V. B., Kopylo(369) Muzzarelli. R . A. A , . Tubertini, O., ibid.. pert. Chim., 65, 322 (1972). va, V. D., Larina, T. P., ibid.. 27, 246 12, 431 ( 1 9 7 2 ) . (412) Pohlandt. C., Robert, R. V. D . , Vallee, A . (1972). (370) Myasoedov, 8 . F., Barsukova. K. V., RodiM . , Rep. Nat. lnst. Metall.. No. 1500, (457) Salvatore, F., Utili, R . , Zappia, V , Anal. onova, G. N.. Radiochem. Radioanal. 1973; Anal. Abstr., 25, 2944 ( 1 9 7 3 ) . Biochem., 41, 16 (1971) Lett.. 7, 269 ( 1 9 7 1 ) . (413) Polzhofer, K. P.. Ney. K. H.. Tetrahedron, (458) Sanchez-Batanero, P., Rodriquez-Ponce. (371) Myasoedova, G V., Savvin. S. B . , Uryan28, 1721 ( 1 9 7 2 ) . M., Burriel-Marti, F.. Inform. Ouim. Anal , skaya. N. I . , Zh. Anal. Khim., 26, 1820 (414) Popova. M . , Krachanov. K.. J . Chroma26, 8 4 , 262 ( 1 9 7 2 ) . (1971). togr.. 72, 192 ( 1 9 7 2 ) . (459) Schell, H. D . , Ghetie. V., Rev. Roum. Bio(372) Myasoedova, G. V., Bol'shakova, L. I., (415) Powell, J . E . , Johnson, @ . A., ibid., 74, chim.. 9 , 165 (1972); Anal. Abstr.. 23, Savvin, S. B , ibid., p 2081 ( 1 9 7 1 ) ; 28, 269 ( 1 9 7 2 ) . 5057. 1550 (1973). (416) Pracht, L. E . . Jones, C. E., J. Ass. Oftic (460) Schneider, F.. Emmerich. A,, Reichel. C., (373) Myasoedeva. G. V.. Eliseeva, 0. P., SavAnal. Chem., 56, 8 4 6 (1973) Wedler. A.. ZUCker. 25, 679 ( 1 9 7 2 ) . vin, S. 6.. Uryanskaya, N. I . . ;bid.. 27, (417) Qureshi, M., Husain, K., Anal. Chim. Acta. (461) Schott. H., Angew. Chem.. lnt. Ed. Engl.. 2004 ( 1 9 7 2 ) . 57, 387 ( 1 9 7 1 ) . 11, 824 ( 1 9 7 2 ) . (374) Nagasawa, K . , Ogamo, A., Sekiguchi. M . . (418) Qureshi, M . , Kumar. R . , Rathore. H. S., (462) Scott. C. D . , Chilcote. D . D., Katz, S., Chem. Pharm. Bull Tokyo, 20, 1006 Anal. Chem., 44, 1081 ( 1 9 7 2 ) . Pitt, W. W., J. Chromatogr. Sci.. 11, 9 6 (1972). (419) Qureshi, M., Kumar, R., Rathore, H. S . , (1973). (375) Nandan, D., Gupta, A. R . , Shankar, J., l n Talanta. 19, 1377 ( 1 9 7 2 ) . (463) Scott. C. D.. Chilcote, D. D , Lee, N . E., dian J. Chem., 11, 655 (19 7 3 ) . (420) Qureshi, M., Kumar. V., Zehra, N . , J. Anal. Chem., 44, 8 5 ( 1 9 7 2 ) . (376) Naqvi, S. J.. Nucleus. 6, 76 (1971). Chromatogr.. 57, 351 (1972) (464) Scott. C. D . , Lee, N. E.. J Chromatogr.. (377) Naqvi, S. J., Huys, D., Baetsie. L. H., J. (421) Qureshi. M . , Gupta. J. P. Sharma. V.. 83, 3 8 3 (1973) lnorg. Nucl. Chem., 33, 4317 ( 1 9 7 1 ) . Anal. Chem.. 45, 1901 ( 1 9 7 3 ) . (465) Scott, C. D., Pitt, W W , J . Chromatogr. (378) Natsume, H , Umezawa. H., Okazaki. S., (422) Qureshi. M . , Nabi, S. A,, Talanta. 19, 1033 Sci.. 1 0 , 740 ( 1 9 7 2 ) . J , Nucl. Sci. Techno/., 9, 737 ( 1 9 7 2 ) . (1972). (466) Seller, N . , Askar, A , , J. Chromatogr.. 62, (379) Neirinckx, R D., Anal. Chim. Acta, 58, (423) Qureshi. M., Qureshi. S. Z . , Separ. Sci.. 7, 121 ( 1 9 7 1 ) . 237 (1972) 187 (1972). (467) Sellers, N . G . , Anal. Chem.. 44, 410 (380) Neirinckx, R . D . . van der Merwe, M . J.. (424) Qureshi, M., Qureshi. S. Z . , Zehra, N., Ta(1972). Radiochem. Radioanal Lett.. 8, 41 lanta. 19, 377 ( 1 9 7 2 ) . (468) Seymour, M. D.. Fritz, J. S., ibid.. 45, (1971) (425) Qureshi, M.. Rawat. J. P., Separ. Sci., 7 , 1394, 1632 ( 1 9 7 3 ) . (381) Nelson, J. J., J. Chromatogr. S o . . 11, 28 297 ( 1 9 7 2 ) . (469) Shaw, G. G., Eur. J , Pharmacy. 20, 389 (1973). (426) Qureshi. M . , Rawat, J. P , Sharma, V., Ta(1972). (382) Nemirovskaya. I . A , . Belyavskaya, T. A , , lanta. 20, 267 (1973) (470) Sherief, M . K . . Grass, F.. AtomkernenerVest. Mosk. Gos U n i v . , Ser. Khim., 12, (427) Qureshi. M., Sharma, S. D., Anal. Chem., gie, 17, 124 ( 1 9 7 1 ) . 621 ( 1 9 7 1 ) ;Anal. Abstr., 23, 91 (1972). 45, 1283 (1973). (471) Sherma. J., Smolens, P., Anal. Chim. (383) Nikanorov. G. S., Kist, A . A., Zh. Anai. (428) Qureshi, M., Varshney, K. G.. Kabiruddin. Acta, 60, 450 ( 1 9 7 2 ) . Khim.. 27, 2438 ( 1 9 7 2 ) . (472) Shestakov, G. I . , Zh. Anal. Khim.. 26, 273 S. K . , Can J. Chem., 50, 2071 ( 1 9 7 2 ) . (384) Nishimura, S . , Shiga-Kenritsu Tanki Dai- (429) Qureshi, M., Varshney, K. G., Kaushik, R . (1971). gaku Gakuiutsu Zasshi. 14, 1 5 ( 1 9 7 3 ) : C., Anal Chem.. 45, 2433 ( 1 9 7 3 ) . (473) Shigetomi, Y., Arimoto, R . , Nagahota. T., (430) Qureshi, M.. Varshney, K. G., Khan, F.. J . Chem. Abstr , 79, 87094m ( 1 9 7 3 ) . ralanta. 19, 1210 ( 1 9 7 2 ) . (385) Nishino, M.. Noguchi. T., Kido, R.. Anal. Chromatogr.. 6 5 , 547 (1972) (474) Shimomura, K . . Tong-Jung Hsu. Walton, Biochem., 45, 314 (1972). (431) Qureshi, M., Varshney, K. G., Khan, F., H F., Anal. Chem.. 45, 501 ( 1 9 7 3 ) . Separ. Sci.. 6, 559 ( 1 9 7 1 ) . (475) Shishkova. L. G., C. R. Acad Bulg. Sci., (386) Nomura, M., Abe, M., Ito, T., Nippon Kagaku Kaishi. 1972, 529. (4321 lbrd.. 8, 279 (1973) 25, 1371 (1972) Hatanom
412R
A N A L Y T I C A L C H E M I S T R Y , V O L . 46, NO. 5, A P R I L 1 9 7 4
Shishkova. L. G . , Dodova. L.. ibid., 24, 1369 (1971) Shmukler. H. W.. J Chromatogr S c i . 10, 137 (19721 -, Shrimai, R. L.. Taianta. 18, 1235 (1971). Singhal. R . P.. Arch. Biochem. Biophys.. 152,800 (1972). Singhal. R . P., Cohn, W E., Anal. Biochem., 45,585 (1972). Singhal, R. P., Cohn. W. E.. Biochim. Biophys. Acta. 262,565 (1972). Sisson. D. H., Mode, V. A,. Campbell, D . O., J . Chromatogr.. 66, 129 (1972) Sitaram. R . , Khopkar, S. M., Chromatographia,,5, 408 (1972) /bid.. 6, 198 (1973). Sixta. V., Suicek, Z., Collect. Czech. Chem. Commun., 37,88,2386 (1972). van Siageren, R., den Boef. G.. van der Linden, W. E.. Talanta, 20, 739 (1973). Smith, D . J., J. Ass. Offic. Anal. Chem., 55, 596 (1972). Smith, J. D.. Anal. Chim. Acta, 57, 371 (1971). Smits, R . . van den Winkel, P., Massart. D . L., Juillard. J.. Morel, J. P., Anai. Chem., 45,339 (1973). Smuts, T. W., Pretorius. V . , ibid., 44, 121 (1972). Snyder, L. R., J . Chromatogr. Sci., 10, 200, 369 (1972). Snyder, R . V.. Angeiici. R. J., Meck, R. B . , J . Amer. Chem. Soc.. 94, 2660 (1972). (493) Stahi, K . W . , Schlimme, E., Bojanowski. D., J . Chromafogr., 83,395 (1973). (494) Starobinets, G. L., Zakhartseva. E. P., Ref. Zh. Khim., 19 GD, No. 10G82 (1971); Anal Abstr., 22,2264 (1972). Steinbach, S., Hering. R., Z. Chem., 11, 350 (1971); ibid., 12,33 (1972). Steinnes, E., Radfochim. Acta, 1 7 , 119 (1972). Stepanov, V. M., Katrukha. S. P., Baratova, L. A . . Belyanova, L. P., Korghenko, V. P., Anal. Biochem., 43,209 (1971). Stevenson, R. L., Burtis, C. A,. Clin. Chem.. 17,774 (1971). Stevenson, R. L., Freiser, H . , Chem. Anal. (Warsaw). 17,675 (1972). Stoehrer, G . , Corbin, E., Brown, G. B.. Anal. Biochem.. 53, 288 (1973). Streiow. F. W. E.. Boshoff, M . P.. Anal. Chim. Acta. 62,351 (1972). Streiow, F. W. E.. Gricius, A. J., Anal. Chem.. 44, 1898 (1972). Strelow. F. W. E., Sondorp. H., Talanta. 19, 1113 (1972). Strelow, F. W. E . , Toerien, F. von S., Weinert. C. H. S. W., Anai. Chim. Acta. 50,399 (1970) Streiow, F W E , Victor, A H., f b l d , 59, 389 (1972) I
~
Strelow. F. W. E., Victor, A. H . , Taianta. 19,1019 (1972). Strelow, F. W. E., Weinert, C. H. S. W., Eloff, C.. Anal. Chem.. 44,2352 (1972). Strubert, W., Chromatographia, 6, 51 (1973). Sulcek, 2 . . Sixta, V., Collect. Czech. Cheni. Commun.. 37, 1993 (1972) Sykora, V.. Dubsky, F.. ibid., p 1504. Szczepaniak, W., Chem. Anai. (Warsaw), 16,853 (1971). Tabor. H.. Tabor, C. W., Irreverre, F., Anai. Biochem., 55,457 (1973) Tackett, S. L.. et a/. Anal. Lett., 6, 355 (1973). Takahashi, T., Imamura. T.. Fujimoto. M.. Mikrochim. Acta, 1973,69. Takahashi, Y.. Agr. Biol. Chem., 36, 2575 (1972). Takata. Y., Muto. G.. Anai. Chem.. 45, 1864 (1973). Talasek, V., Eliasek. J., Collect. Czech. Chem. Commun., 37, 2521 (1972). Talasek, V.. Mostecky, J.. Vosta, J . , Eliasek, J., Matejka, Z., Chem. Prum., 22, 69 (1972):Anal. Abstr.. 23,2333 (1972). Tanaka. H., Yamamoto. T., Bunseki Kagaku, 20,784 (1971). Tandon, S. N., Gill, J. S., Talanta 20, 585 (1973). Tanos, F., Tavkozlesi Kut. Kozlem., 18, 109 (1973); Chem. Abstr., 79, 61223c (1973). Tartarini, S., J. Pharm. Sci.. 61, 960 (1972). Tartaru, S., David, B., Filip, G., v. Roum. Chim.. 16,625 (1971). Tatsumoto. M . , Geochim. Cosmochfm. Acta. 37, 1079 (1973). Thompson, G. H., Radiochem. Radioanal. Lett., 10,223 (1972) Todorova, N.. Dodova, L., C. R. Acad. BUig. SCi., 25, 1387 (1972). Tomasz. J., J. Chromatogr., 84, 208 (1973). Tominaga, M., Nakamura. T., Ohashi, S., J . Inorg. Nucl. Chem., 34, 1409 (1972) Torok. G . , Schelenz, R . . Fischer, E., Diehl. J. F . , Fresenius' Z. Anal. Chem., 263, 110 (1973). Tschesche, H., Frank, C.. Ebert, H.. J. Chromatogr.. 85,35 (1973). Tsitovich, I . K., Zh. Anal. Khim., 26, 1908 (1971). Ibid.. 27, 1188 (1972). Tsitovich, I . K . , Sernenova, E. I., ibid., p 763. Tuerler, K., Kaeser, H . , Clin. Chfm. Acta, 32,41 (1971). Ukrainskaya, L. M.. Kuznetsov-Fetisov. L. I . , Ret. Zh. Khim.. 19GD, No. 10G81 (1971); Anal. Abstr., 22,2230 (1972).
Vandekerhove, P.. Henderickx. H. K., J. Chromatogr., 82, 379 (1973). Vanheertum, R.. Chromatographia, 6, 217. 390 (1973). Vesilek, J . , Davidek, J.. Fleischwirtschaft. 52,364 (1972). Verdizade, A. A,, Mekhtiev. M. M.. Ret. Zh. Khim., 19GD, No. 10G79 (1971); Anal. Abstr.. 22,2156 (1972). Vernon. F.. Eccles. H.. Anal. Chim. Acta. 63,403 (1973). Vinter. I . K.. Boichinova, E. S., Denisova, N. E., Chetverina, R . E., Zh. Prikl. Khim., 46, 1117, 1471 (1973). Vitek, V., Vitek. K., J. Chromatogr., 60, 381 (1971). Vivilecchia, R., Thiebaud, M . , Frei, R. W., J. Chromatogr. Sci., 10,411 (1972). Vysotskaya, E. S., Mushinskaya. S. K.. Shostenko. Yu. V.. Zh. Fiz. Khim., 47, 1797 (1973). Wald, M., Soyka.'W., Kaysser. E.. Talanta, 20,405 (1973) Warburton, J. A,, Young, L. G.. Anai. Chem., 44,2043 (1972). Wilks, A. D., Pietrzyk, D . J.. ibid., p 676. Williams, A. I . , Analyst (London), 98, 233 (1973). van den Winkei, P.. de Corte, F., Hoste, J.,Anal. Chim. Acta, 56,241 (1971). van den Winkel, P., de Corte. F., Hoste. J., J . Radioanai Chem., 10, 139 (1972). Wodkiewicz, L.. Dybczynski. R., J. Chromatogr., 68,131 (1972). Wolf, F . , Z. Chem. (Leipzig), 12, 184 (1972). Wolf, F.. Schallert, U.. ibid., p 266. Wu, C.. Siggia. S.. Anal. Chem.. 44, 1499 (1972). Yamabe, T., J . Chromatogr., 83, 59 (1973). Yasuda. K., !bid., 72, 413 (1972); ibid., 74, 142 (1972). Yasuienis. R . Yu., Luyanas. V. Yu.. Kekite, V. P., Radiokhimfya, 14, 650 (1972) Yoshida, H., Yonezawa. C.. Bunseki Kagaku, 22,929 (1973). Young, J. L., Yamarnoto, M.. J ChromatOgr., 78,221, 349 (1973). Zagorchev, B . , Chem. Anal. (Warsaw), 17, 973 (1972). Zagorchev. B . , Todorova, N.. Balushev, E.. C. R. Acad. Bulg. Sci., 24, 1063 (1971). Zamorani. A . , Russo. C.. Campisi, S., lnd. Agr., 10, 463 (1972): Anal. Abstr.. 25, 1799 (1973). Zlatkis, A., Bruening, W., Bayer, E., Anal. Chim. Acta, 56,399 (1971). Zukreigelova. M . . Sulcak, Z., Povondra. P., Collect. Czech. Chem. Commun.. 37, 68. 560 (1972). Zweidinger, R . A,, Barnett, L.. Pitt. C. G., Anal. Chem., 45, 1563 (1973).
Kinetic Aspects of Analytical Chemistry Ronald A. Greinke Union Carbide Corporation, Carbon Products Division, Parma Technical Center, 12900 Snow Road, Parma, Ohio 44 130
Harry B. Mark, Jr. Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45227
This review surveys the literature from December 1971 through November 1973. A few papers published prior to December 1971 have also been included where t h e material discussed is especially relevant for introduction to some of t h e subjects or recent papers reviewed here. Papers pertaining to mechanistic and kinetic studies of reactions were not included unless the results of the study were applied to kinetic analysis. The format is similar to the 1972 Annual Review. I t is interesting to note that, although the concept of
using analytical methods based on kinetics or reaction rates goes back 50 or more years to t h e early literature in biochemistry, radiochemistry and gas-phase diffusion (125), and although there has been extensive use of enzymatic and other catalytic type reactions (37,178) in analysis, especially in clinical applications .(57), it was not until the 1950's in the work of Lee and Kolthoff (100) t h a t the broad inherent potentialities and advantages in many chemical situations of kinetic-based analytical methods with respect to conventional equilibrium methods were
A N A L Y T I C A L C H E M I S T R Y , VOL. 4 6 , NO. 5, A P R I L 1 9 7 4
413R