ION EXCHANGE ROBERT KUNIN AND F. X. MCGARVEY ROHM AND HAAS CO., PHILADELPHIA, PA.
c
The past year has revealed several important deyelopments in the realm of ion exchange unit operation. These developments have included a pronounced interest in ion exchange in fields other than the classic water conditioning operations, water softening, and deionization. Of considerable interest and importance i s the commercial activity in the synthesis and applicstion of ion exchange membranes. This development may represent a r(avolutionary change in electrochemical operations.
vestigators (154,196, 219, 256, 590). Chromatographic studies related to ion exchange problems have also been considered (544,556). A system for the classification of ion exchange materials has been developed by Swietoslowski (567). Kinetic ion exchange measurements have been reported by Zimmermann (412). A report on the columnar rinse problem has been presented by Crosier (114). Zeegers (dl 1 ) has examined several methods for the presentation of ion exchange data while Smith (550) described several demonstration experiments for the illustration of ion exchange theory. A useful tool for the examination of ion exchange structure has resulted from a n infrared study by Waldock (594).
N EXCELLENT review article has been prepared by Boyd (55) summarizing the newer theories of ion exchange. Cassidy (79) gave a detailed account of ion application for separation and purification processes. Several review articles have also appeared in the foreign literature (9, 33, 96, 169, 208, 257, 986, 307, 334, 578, 576, 384, 588, 410). These articles indicate a steady growth of interest in ion exchange in both Europe and South America.
*
THEORY
ION EXCHANGE MEMBRANE
The development of ion exchange theory has continued along the lines presented in the previous review in this series. Efforts to assign activities to the ionic components in the resin phase have not been entirely successful. Duncan (152) has reviewed the current theory and Glueclrauf (155) has extended exchange theory employing a consideration based upon the similarity between concentrated solutions and the ion exchange resin phase. Thermodynamic relationships are derived which include volume change and ionic strength as variables. New data on exchange equilibria have been presented by Wiklander (402) for various mixtures of ions; by Saunders (550) for organic bases on carboxylic acid exchanges; by Peterson (995)for equilibria between aliphatic acids on a strong base resin; by Mysels (248) and Eriksson (159) on p H measurements; and by Mongar (242) on cation exchange in alginates. Coleman (105) has studied the thermochemistry of exchange reactions and Davies (118) has obtained swelling values on weak base resins. Bonner (51, 68) has determined activity values for cation exchanges under a variety of conditions and has concluded that the Gibbs-Duhem relationship can be applied t o the data. Babcock (26) has presented a discussion of free energy relationships in exchange. Application of the ion exchange equilibria theory has been attempted for the purpose of determining activity coefficients of mixed electrolytes (40). Bregman (55) has reported on the equilibria for phosphonic-type cation exchange resins. Equilibria data have also been reported by Eriksson (140)on minerals and by Oda (261), Bhatnagar (@), Sakai (521, 329), and Honda (175). Kressman (207) and Partridge (283) have examined the pore size of exchangers with the aid of large ionic species. Glueckauf (154)has presented a discussion of the factors affecting pore size and swelling while Hogfeldt (175) has examined the influence of compound formation on activity curves for binary ionic mixtures. The dynamic aspects of ion exchange have continued t o demand attention by many investigators. Tunitskir (579) and Todes (573)have prepared a detailed analysis of this problem. Spiegler (556) has examined electromigrational effects in exchanger beds. Studies on diffusion-controlled processes have been reported by many workers ( 1 1 1 , 142, 164; 370). The kinetics of fixed bed operation under solid diffusion controlling conditions was developed by Rosen (816) by means of an excellent mathematical treatment. Effects of diffusion were examined by several in-
Studies during the past year have indicated a marked progress in the new field of ion exchange membranes. Membranes containing ion exchange groups have been commercially produced and studied. Storeman (561) has developed the theory of nonequilibrium thermodynamics for membrane processes and Opatowski (974) has presented a theory for permeability properties in membranes. Kobatake (906)has discussed the permeation velocity of ions using Eyring’s theory of diffusion potential. A basic discussion of Donnan potentials in cellulose membranes has been reported by Neale (268). The potentials of various cationic films were reported by Juda (191). Anionic film potentials were reported by Clark (IO$),Manche (231), and Tofima (874). The electrical conductivity of various ion exchange resins (49, 60, 961) and membranes of cellophane and cellulose were also examined (66,l43,171,178, 996, 559, 555, 595). Of the numerous applications for the ion exchange membranes, the greatest attention has been directed toward the use of these materials for the deionization of sea water (77, 82, 90, 94, 97, i76, 255, 387). Other applications include t h e separation of ionic mixtures (56),water analyses (167), sugar purification (119, 168, @a), and the electrodialysis of milk ( 7 ) . WATER SOFTENING
The major developments involving the use of ion exchange for the softening of water include the evaluation of the field performance of several new installations (68, 72, 81, 108, 281, 296, 405). Benoit (38)has reviewed the history of water treatment in the textile industry. Rubinov (518) has described water softening practice in Russia and Leick (215) has reported on German water softening practice. The development of various exchanges for water treatment was reported in several Japanese contributions (265). Becker (37) has reviewed the requirements for water in the brewing industry and Thompson (371) has described a new development consisting of a one-step water softening and alkalinity reduction process. Corrosion in treatment systems was discussed (109, 405). Other developments include: the correlation of pressure drop data (SI),the use of resins for the treatment of water containing sulfuric acid (34), a small unit for scale control and corrosion reduction in automobiles (83),and a n electrical and catalytic treatment process for water treatment (1.35).
83
a4
INDUSTRIAL AND ENGINEERING CHEMISTRY
Vol. 45, No. 1
DEIONIZATION
WASTE TREATMENT
Recent deionization developments have shown this unit operation t o be a standard practice for t h e preparation of make-up water for high pressure boilers and other applications requiring high quality and low-silica water. The field performance of several very large deionization systems has been reported ( 5 9 , 9 S ) . Methods for reducing silica in water supplies have been reported and compared by Stassert (359) and Sanborn (327). Leick (216 ) reported on hydrogen cycle operation in Germany. Various improvements in operation of deionization plants have been recommended during the past years ( 6 , 190, 264, 275, 280, 290, 328, 357). Many applications studies for deionization have been presented including the preparation of water for television tube manufacture (181), the removal of ammonia from condensate ( 5 7 ) , a small scale deionization unit for household applications (loo),fluoride removal (260, 389), and small units which deionize and sterilize water supplies (299). Methods for preparing briquets for emergency sea water deionization have been revealed (243, 291 , 407). Dupre (133)and Gregor (162) have developed a n ion exchange procedure for the treatment of photographic wash waters.
Prevention of stream pollution, critical water shortages, and scarcity of metals have stimulated interest in the ion exchange treatment of industrial waste streams. I n these processes, exchange has been employed as a concentrator. Cooper (210) has reviewed the plating waste problem, McGarvey et al. (827, 228) have reported on the treatment of metallurgical waste, and Ostrof (276)has reviewed the various ion exchange processes under study. The recovery of waste chromium and of chromic acid anodizing baths has been described (92, 95, 284, 380). Lead concentration on ion exchangers has been of considerable interest in Europe (122, 158). The treatment of radioactive waste (65,312)and sulfite liquors ( 17 , 2 1 0 )has been considered.
BIOCHEMICAL SEPARATIONS
Ion exchange materials have been widely employed as laboratory and industrial tools for use in the fractionation, purification, and isolation of many complex biochemical mixtures. Amino acid fractionation with ion exchange resins has been deveIoped into a routine procedure on a laboratory scale (19, 43, 63, 64, 78, 163,170,177,209,239,b77,882,394 , 310,360, 565,366,368,369, 381 ), Adreotropic hormones (123, lag), pituitary hormones (60), and adenosinephosphate mixtures were analyzed ( 8 , 47, 256) and various enzymatic systems (152, 198, 206, 311, 336) have been studied by means of ion exchange reactions. Other biochemical studies include the concentration of coenzyme A on a carboxylic exchanger (73, 163), peptide and protein separations (127, 361), exchange techniques using radioactive tracers (4,18, 196, 363), metabolic studies (30, 61, 74, 76, 103, 128, 151, 238, 377), vitamin B and Bo (270, 292), general biochemical preparation (306, 817,356), and the analyses of plant tissue components (62, 141, 404). Practically all of these studies have found the ion exchange techniques t o be of considerable assistance.
CATALYSIS
Many catalytic processes employing ion exchange have been considered on a laboratory scale and have been found t o be of interest. The kinetics for the hydrolysis of various esters has been reported (119, 214, 253). Schmidle (333) has d e scribed a wide variety of reactions based upon exchange catalysis. Exchangers have been used as polymerization catalysts (116), for the preparation of 2,4,5-trichlorophrioxyaceticacid ( i 5 0 ) , and condensation agents ( 8 8 ) . The hydrolysis of sucrose by cation exchange resin catalysts was extensively studied (I 78, $03, 319). The use of ion exchange resins catalysts for glucoside preparation (104, 127), amino acid racemization (138), and the preparation of phenol from cumene has been considered (81). ION EXCHANGE RESIN SYNTHESES
A large host of patents and of papers appeared describing various methods for the preparation of ion exchange resins. Amphoteric polymers were described which have both cationic and anionic activity depending upon pH ( 9 , 10). Efforts t o prepare metal-selective exchangers were also reported (203). Special adsorbing resins were obtained which decolorize sugar (193). The following references are t o cation exchange resin preparation (1, 2, 11, 41, 48,93, 99, 116, 129, 131, 179, 182, 20.4, .829, 230, 249, 268,259, 262, 265, 267,268,278,279,3@, 347,348, 375, 386, 397, 399) and the following are to anion exchange resin preparation (12, 13, 36, 48,54, 69, 70, 71, 117, 149, 167, 179, 198,213, 221-3, 266, 304, 308,364,400,401).
RECOVERY, PURIFICATION, PREPARATION, AND ANALYSIS
Ion exchange resins have played a n outstanding role in the recovery, purification, and analysis of many complex systems. Considerable effort was placed toward this application in sugar refining (14, 16, 169, 273, 285, 301, 379, 387), and for the analysis of sugar solution (3, 199, 800, 253, 312, 413); and in glycerol recovery (67, 86, 113, 309, 332). Rare earths and other metals have been purified by ion exchange (80, 87, 91, 197, 217, 218, 243, 264, 936,336, 341, 364, 398). The ionic character of several complex salts has been studied ( 166,166,201 , 202,272,324, 326, 840, 842, 843, 362). The preparation of inorganic sols, polymers (147, 185, 186, 320, 378), and alkali metal salts (6, 36, 971, 389,409) has been described. Bacteria and virus substances were concentrated by exchange (28,247); and silver precipitated in exchanger beds has been found to sterilize water (29). Other ion exchange studies include the reduction of oil acidity (390); reduction of hydrogen sulfide and purification of petroleum (21, 24, 237); emulsions and monomer treatment (38, 338); processing of organic compounds by exchange (156, 194, 314, 392); separation of weak electrolytes (174, 323); application of electronic exchange (329); modification of growth media (236, 346); treatment of wine (28, 160, 187, 331), coffee (386), bentonite (349), wool (306), and nicotine (250); recovery of flavonoid compounds (244);recovery of lactose (408); concentration of pectin and citric acid (104); preparation of alginates (44,46, $20); and preparation of sorbitol (84).
MEDICAL APPLICATIONS
Medical application of ion exchange resins has followed EP pattern similar t o previous years (22, 65, 88, 188, 313). B y far, the greatest attention has been directed toward sodium reduction therapy for the relief of a variety of edemic conditions (39, 76, 80, 101, 125, 136, 136, 144, 145, 184, 224, 226, 234, 245, 246, 287, 289, 393, 406). Peptic ulcer therapy has been critically evaluated (161, 233). Ion exchange has been proposed as the mechanism for the in vivo hydrochloric acid production (120). A method for the examination of gastric juices without intubation has been evaluated (309). Alginic acid and a chelating agent have been compared with ion exchange for the removal of metals from the body (144, 148). Ion exchangers have been used extensively in blood processing ( 9 9 )and in bone decalcification (89). APPARATUS AND PROCESSES
Interest in the apparatus and processing has been directed toward continuous operation and electrochemical methods. Several continuous ion exchange processes were reported (27, 106, 183, 339, 896). Various methods for apparatus control have been described (137, 189, 288). Mixed bed and Monobed processes have been developed (210, 211). Various processes employing ion exchange resins in electrolytic operations have been reported (107, 149, 300, 301).
t,
January 1953
85
INDUSTRIAL AND ENGINEERING CHEMISTRY ACKNOWLEDGMENT
The authorswish t o acknowledge the assistance of Dr. H. Tucker and her associates in the procurement of the many articles reviewed in this paper. BIBLIOGRAPHY
Abbey, A., Brit. Patent 654,487 (June 20, 1951). Zbid., 670,145 (Aug. 15, 1951). Abdel-Akker, M., Hamilton, J., and Smith, F., J. Am. Chem. SOC., 73, 4691-2 (1951). Abrams, R., and Clark, I., Zbid., 74,4609-10 (1952). Akaboric, S., and Xamada, M., Japan. Patent 179,487, (June 29, 1949). Akeroyd, E,, Chemistry &Industry, 53, 1187-8 (Dec. 31, 1951). Al, J., and Wiechus, S., Research (London), 5, 256-60 (June 1952). Alberty, R., Smith, R., and Bock, R., J . Biol. Chem., 193, 425-34 (1951). Alfrey, T., Fuoss, R., Morowetz, H., and Rinner, H., J . Am. Chem. SOC., 74,438-41 (1952). Alfrey, T., and Morawetz, H., Zbid., 74, 436-8 (1952). Alginate Industries, U. S. Patent 2,504,508 (Nov. 11, 1951). Ibid., 2,586,770 (Feb. 26, 1952). Ibid., 2,686,883 (Feb. 26, 1952). Alston, P., and McGinnis, R., Sugar, 47,33-7 (1952). Am. Profess. Pharmacist, 17, No. 4, 331-3 (1951). Anderson, A., Sugar, 47,42-3,48 (May 1952). Anderson, C., Can. Patent 478,026 (July 2, 1952). Anher, R., and Boehne, J., J . Am. Chem. Soc., 74,2431-2 (1952). Aquist, S., Acta Chenz. Scand., 5, Nos. 7-8, 1031-45 (1951). Argersinger, W., and Davidson, A . , J . Phys. Chem., 56, 92-6 (July 1952). Armstrong, E., and Butcosk, R., U. S. Patent 2,605,225 (Nov. 29, 1952). Arnold, W., New Engl. J . Med., 245,331-6 (1951). Austeriweil, G., and Richeur, P., Compt. rend. 233, 1190-1 (1951). Ayers, F., Geerts, M., and Krewer, W., U. S. Patent 2,592,523 (May 16, 1952). ENG.C ~ E M43,1516-21 ., (1951). Ayes, J., IND. Babcock, K., Davis, L., and Overstreet, R., Soil Sci., 72,253-60 (1951). Barnell, A., and Ricker, W., U. S. Patent 2,595,627 (June 6, 1952). Barnes, R., Can. Patent Office Record 485,843 (Aug. 19, 1952). Barnes, R., and Ham, G., Zbid., 485,844 (Aug. 19, 1952). Barnhurst, J., and Henessy, D., J. Am. Chem. SOC.,74, 353-5 (1952). Barth, W., Chem.Zng. Tech., 12,289-93 (1951). Basdekis, C., and Jackson, E., U. 8. Patent 2,609,387 (Sept. 2, ‘ 1952). Basinski, A,, WiadomoSci Chemi., 5,133, 152 (1951). Battarel, M., Rev. Znd. minirule, 32, 76-81 (1951). Bauman, W., U. S. Patent 2,606,098 (Aug. 5, 1952). Bauman, W., and Hensted, G., Ibid., 2,601,202 (June 17, 1952). Becker, K., Tech. Processing 63rd Am. Conv. Master Brewers Assoc. of America, pp. 125-39 (1950). Benoit, A., Am. Dyestu$ Rptr., 41,390-1 (June 23, 1952). Best, M., Indiana State Med. Assoc. J., 44, 1168-9 (1951). Betts, R., and McKenzie, A., Can. J . Chem., 30, 146-62 (1952). Bhatnagar, M., and Nigam, P., J . Appl. Chem. (London), 1,517-20 (1951). Zbid., pp. 520-2. Black, A., Kleiber, M., and Smith, H., J. Bid. Chem., 197, 365-70 (1952). Black, W., Cornhill, W., Dewar, E., and Woodward, F., J . Appl. Chem. (London), 1 , 505-17 (1951). Black, W., Dewar, E., and Woodward, F., Zbid., 1, 414-24. Block, R., Stekal, J., and LOQSli,J. ,Arch. Biochem and Biophys 33, 353-63 (1951). Bock, R., and Alberty, R., J . Biol.Chem., 193,435-42 (1951). Bodamer, G., U. S. Patents 2,597,437-40 (May 20, 1952). Bonhoeffer, K., Miller, L., and Schindewolf, N., 2. Phys. Chem., 198, 270-80 (1951). Bonhoeffer, K., and Schindewolf, N., 2. physik. chem., 198, 281-5 (1951). Bonner, O., Argersinger, W., and Davidson, A,, J . Am. Chem. SOC.,74, 10447 (1952). Bonner, O., Davidson, A., and Argersinger, W., Zbid., 74, 1047-50 (1952). Boyd, G., Ann. Rev. Phys. Chem., 2,309-43 (1951). Braithwaite, D., and D’Amico, J., U. S. Patent 2,582,098 (Jan. 8, 1952).
(55) Bregman, J., and Murate, Y . , J. Am. Chem. Soc., 74, 1867-8 (1952). (56) Brewer, A., U.S. Patent 2,566,308 (Aug. 4,1951). (57) Bright, F., Brit. Patent 675,316 (Oct. 17, 1951). (58) Brindisi, P., Power, 11,84-5, 210-14 (March 1951). (59) Brines, M., Zbid., 96,94-7,206-8 (June 1952). (60) Brink, N., Kinhl, F., Richter, J., Bozemore, A., Meisinger, M., Ayer, D., and Folkers, K., J . Am. Chem. SOC.,74, 2120-1 (1952). (61) Brodie, B., Axelrod, J., and Reichenthil, J., J . Biol. Chem., 194.215-22 (1952). (62) Brown, R., Nos, A.; and Bermitt, A., U. S. Patent 2,586,295 (Feb. 15, 1952). (63) Brunner, M., and Frey, R., Helv. Chim. Acta, 34, 1701-11 (1951). (64) Bryant, F., TextileResearch J.,22,525-8 (1952). (65) Buche, J., ArzneimitteLForsch., 1, 247-57 (1951). (66) Burch, R., Caldwell, M., and Carroll, B., J . Colloid. Sci., 6, 372-3 (1951). (67) Busby, G., and Grosoenor, D., J . Am. Oil Chemists’ Soc., 29, 318-20 (1952). (68) Busch, H., Halbert, R., and Potts, V., J . Biol. Chem., 196, 717-27 (1952). (69) Butler, G., Paint Manuf., 21,416 (November 1951). (70) Butler. G.. Bunch., R... and Indes. - - . F.. J . Am. Chem. Soc.. 74, 2543’ (1952). (71) Butler, G., and Goette, R., Ibid., 74, 1939-41 (1952). (72) Butler, W. S., Power Eng., 56, No. 1, 80-2 (1952). (73) Buyske, D., Handschumacher, R., Higgins, H., King, T., Strong, F., Cheldelin, V., Tephy, I., Messellen, G., J . Biol. Chent., 193, 307-16 (1951). (74) Cadotte, J., Smith, F., and Spriestersbach, D., J . Am. Chem. Soc.. 74. 1501-4 (1951). (75) Callahan, E., Frank, N.,’Kraus, H., and Ellis, L., Am. J . Med. S C ~ 223, . , 117-25 (1952). (76) Campbell, P., and Work, T., Biochem. J . , 50,449-54 (1952). (77) Can. Chem. Processing, 36,77 (June 20, 1952). (78) Carey, Z., Markam, A,. Tooney, R., and McCarthy, J.. Trend, 23,17-20 (1950). (79) Cassidy, H., “Techniques of Organic Chemistry,” Vol. V, N. Y., Interscience Publishers, 1951. (80) Chapman, D., Ponnill, F., and Skoggs, R., Am. Practitioner and Dig.Treatment, 2, 945-50 (1951). (81) C h m . Eng., 58,215-18 (October 1951). (82) Ibid., 59, 102 (March 1952). (83) Ibid., p. 194. (84) Zbid., pp. 215-22. (85) Zbid., pp. 230-1 (April 1952). (86) Ibid., pp. 260-5 (May 1952). (87) Zbid., p. 104 (August 1952). (88) Chem. Eng. News, 29, 2919 (1951). (89) Ibid., 30, 276 (1952). (90) Zbid., PP. 898-900 (1952). (91) Zbid., pp. 1200-1 (1952). (92) Chem. Processing, 15, 34 (April 1952). (93) Ibid.. a. 65. i94j Zbid.; pp. 10-11 (June 1952). (95) Ibid., pp. 18-19. (96) Chemistry & Zndustry, 30, 737-9 (July 1952). (97) Chem. Week, 69, 15 (July 14, 1951). (98) Ibid.. 69, 16 (December 1951). (99) Zbid., pp: 22A. (100) Zbad., 71, 41 (July 26, 1952). (101) Chen, J., and Freeman, S., J. Lab. Clin. Med., 35, 99-110 (1950). (102) Clark, J., Marinsky, J., Juda, W., Rosenberg, N., and Alexander, S., J. Phys. Chem., 56, 100-5 (1952). (103) Cohn, W., and Volkin, E., Arch. Biochem. and Biophys., 35 465-7 (1952). (104) Cole, G., U. S. Patent 2,577,232 (Dec. 4, 1951). (105 Coleman ,N., Soil Sci., 74,115-26 (1952). (106) Collier, D., U. S. Patent 2,563,006 (Aug. 7, 1951). (107) Collings, G., Brit. Patent 648,201 (Jan. 3, 1951). (108) Combustion, 23,49-52 (November 1951). (109) Connor, G., and Hanlon, R., P u l p & Paper Mug. Can., 53, 65-70 (1952). (110) Cooper, J., Sewage andZnd. Wastes, 23,245-308 (1951). (111) Cooper, L., Ph.D. thesis, Washington University, 1951. (112) Cornwell, R., and Zender, J., U. S. Patent 2,593,540 (April 22, 1952). (113) Craver, A., Zbid., 2,571,210 (Oct. 16. 1951). (114) Crosier, H., and Brownell, L., IND.ENG.CHEM.,44, 631-5 (1952). (115) D’klelid, G., U. S. Patent 2,593,417 (April 22, 1952). (116) Daul, G., and Reid, J., Zbid., 2,592,544 (April 15, 1952). (117) Zbid., 2,609,360 (May 15, 1952). I
INDUSTRIAL AND ENGINEERING CHEMISTRY Davies, C., and Jones, T., J . Chem. SOC.,1951,2615-24. Davies, C., and Thomas, C., Ibid., 1952, 1607-10. Davies, R., and Wyatt, P. W., Szabo, Z., and Csauyi, L., Experientia, 8, 199-200 (1952). Dean, G., and Pyle, R., U. S.Patent 2,606,186 (Aug. 5, 1952). DiLattu, A,, Bull. centre belge Btude et document. eaux (Lidge), 7.416-20 11950). Dixbn, H., 'Mooh, S., Stack-Durme, M., and Young, F., Nature, 168, 1044-5 (1951). Dixon, H., Stack-Durme, M.,Young, F., Cater, D., Ibid., 168, 1084-5 (1951). Donowski, T., Greenman, L., Peters, J., and Mateer, F., J . Chem. Investigation, 30, No. 9, 979-1031 (1951). Donowski, T., Greenman, L., Peters, J., Mateer, F., Weigand, F., and Tarail, R., Am. Internal Med., 35,529-41 (1951). Dowmont, P., and Fruton, J., J . Biol. Chem., 197, 271-83 (1952). Drysdoli, G., Plant, G., and Lardy, H., Ibid., 193,533-8 (1951). Dudley, J., Can. Patent Ofice Record485,845 (Aug. 19, 1952). Dudley, J., U. S. Patent 2,582,194 (Jan. 8, 1952). Ibid., 2,595,779 (May 6, 1952). Duncan, J., Nature, 169, 22-4 (1952). Dupre, C., Photo Eng., 2,110-15 (1951). Edeskutz, F., and Ammundson, W.,IND.ENG.CHEM.,44, 1698-703 -.. . 11952). Elrasseum, R., and Uhlig, H., J . Am. Water W o r k s Assoc., 44, 576-82 (1952). Emerson. X.. Kahn, S., Vester, J., and Nelson, K., Arch. I n t ~ n aMed., l 88,605-17 (1951). Emmett, S., and Matthews, H., Brit. Patent 671,307 (April 30, 1952). Emmick, R., U. S. Patent 2,586,154 (Peb. 19, 1952). Eriksson, E., Kgl, Lautbruks-Hogskol, Ann., 17, 92-100 (1950). Eriksson, E., Soil Sci., 74, 103-13 (August 1952). Fager, J., Arch. Biochem. and Biophys., 37, 5-14 (1952). Fanchor, P., Southworth, R., and Thomas, H., J . Chem. Phys., 20, 151-60 (1952). Farrar, J., and Neale, S., J . ColloCd Sei., 7, 186-95 (1952). Feinberg, A , , and Rosenberg, B., Am. Heart J . , 42, 5698-709 (1951). Feldman, J., and Havill, J., J . Am. Chem. SOC.,74, 2337-40 (1952). Feldman, J., Urbach, K., Norgeli, C., Ryan, F., and Doermer, A , , Proc. SOC.Exptl. Biol. &led., 79, 43944 (1952). Firiedman, J. S.,Arch. Internal Med., 89, 99-106 (1952). Foreman, H., I-Inff, R., Oda, J., and Garcia, J., Proc. Soc. Ezptl. Biol. Med., 79, 520-4 (1952). Furness, W., U. S.Patent 2,573,788 (Kov. 6, 1951). Galat, A,, J. Am. Chem. SOC.,74, 3890-1 (1952). Genevois, L., Brewers Dig., 27, 5 2 4 (1952). Gillespie, J., Jermyn, M., and Woods, E., Nature, 169, 487-9 (1952). Gilvary, C., and Block, K., J . B i d . Chem., 193, 339-46 (1951). Glueckauf, E., Discussions Faraday SOC.,11, 155 (1951). 214A,217-25 (1952). Glueckauf, E., Proc. R o y SOC., Goebel, M., Iler, R., U. S. Patent2,592,273 (Jan. 8, 1952). Goetz, A,, Gilman, R., and Rawn, A , , J . Am. Water W o r k s Assoc., 44, 471-83 (1952). Golovatyi, R., Gigiena i Sanit., 1951, No. 1, 55-6. Gottfried, J., L'. S. Patent 2,599,757 (June 10, 1952). Grasso, S., Riv. titicolt. e enol (Conegliano),5 , 195-9 (1952). Greenblatt, J., Mendel, J., and Cohen, T.. Am. J . Digest. Diseases, 18, 362-8 (1951). Gregor, H., Photo Eng., 2, 102-9 (1951). Gregor, J., Novelli, G., and Lipmann, F., J . Am. Cham. Soc., 74, 854 (1952). Grossman, J., and Adamson, A , , J . Phys. Chem., 56, 97-100 (1952). Gustavson, K., J. Ant. Leather Chemists' Assoc., 47, 151-65 (1952). Gustavson, K., J. Soc. Leather Trades' Chemists, 36, 182-200 (1952). Hartough, ET., Caeser, P., and Lakasiewicz, S., U. S. Patent 2.585.652 (Feb. 12, 1952). (168) Hayden, J., Proc. Intern. SOC.Sugar-Cane Technol., 7, 561-4 (1950). (169) Henrick, K., Wasser, Vonz, 18, 360-79 (1950-51). (170) Hirs, C., Moore, S., and Stein, W., J . Biol. Chem., 195, 669-83 (1952). (171) Hirsch, P., Rec. trav. chim., 71, 354-60 (1952). (172) Ibid., pp. 525-44. (173) Hogfeldt, E., Acta Chem. Scand., 5, 1400-02 (1951). (174) Holm, L., Research, 5 , 286-8 (1952). (175) Honda, M., J. Chem. SOC.( J a p a n ) ,71, 3440-3 (1950). (176) Howe, E., J . Am. Water W o r k s Assoc., 44, 690-700 (1952).
Vol. 45, No. 1
Howe, E., and Tishler, M., U. S. Patent 2,579,329 (May 20, 1952). Hughes, M., McCalip, M., Paine, H., and Rosenberg, W., Ibid., 2,594,440 (April 29, 1952). Hwa, J., Ibid., 2,597,491-4 (May 20, 1952). Hyde, E., J . Am. Chenz. Soc., 74, 4181-4 (1952). IND. ENG.CHEbf.,43,17 A-20 A (September 1951). Ibid., 15A, 17A (October 1951). Ind. Lab., 3, No. 2,16 (February 1952). Irwin, L., Berger, E., Rosenberg, B., and Jackenthal, R., J . Chemical Invest.. 28. 1403-11 (1949). Isler, R., U. S. Patent 2,588,389 &arch 11, 1952). Ibid., 2,597,872 (May 27, 1952). Ito, K., and Kawaiski, J., Nippon J8zb KyBkai Zasshi, 45, 385-91 (1950). Jordan, A., Practitioner, 167,647-54 (1951). Juda, W., U. S. Patent2,609,341(Sept. 2, 1951). Juda, W., and Carron, M., Ibid., 2,599,598 (June 10, 1952). Juda, W., Rosenberg, N., Marinsky, H., and Kasper, C., J . Am. Chem. SOC.,74,3736-8 (1951). Kaiser, D., U. S. Patent 2,596,930 (June 13, 1952). Kantebeen, L., Brit. Patent 668,377 (March 19, 1952). Karabinos, J., Paulson, R., and Smith, W., J . Research Nadl. Bur. Standards, 4 8 , 3 2 2 4 (1952). Karow, E., Peck, R., Rosenblum, C., and Woodbury, D., J. Am. Chem. Soc., 74, 3056-9 (1952). Kasten, P., and Ammundson, N., IND. ENG.CHEM.,44, 1704-7 (1952). Kayas, C., and Sue, P., Bull. SOC. chim. France, 1950, 1145-7. Kearney, E., and England, S., J . Biol. Chem., 193, 821-34 (1951). Khym, F., and Doherty, D., J . Am. Chem. Soc., 74, 3199-3200 (1952). Khym, F., and Bill, L., Ibid., 74,2090-4 (1952). King, E., and Dismukes, E., Ibid., 74, 1674-5 (1952). King, E., and Walters, R., Ibid., 74,4471-2 (1952). Klyachko, V., Doklady Akad. N a u k S.S.S.R., 81,235-7 (1951). Koaka, Y., J. Fuel SOC.Japan, 30,179-89 (1951). Kobatake, Y., and Nogasawa, M., J . Chem. SOC. Japan, Pure Chem. Sect., 72, 378-81 (1951). Kornberg, D., and Pricer, W.,J . Biol. Chem., 193, 481-95 (1951). Kressman, T., J.Phys. Chem., 56, 118-23 (1952). Kressman, T., M f g . Chemist, 23, 93-5, 98, 149-51, 160, 194-7, 212-19,241-3 (1952). Kunin, R., Brit. Patent 658,669 (March 4, 1952). Kunin, R., and XkGarvey, F., C. S. Patent 2,578,937 (Doc. 18, 1951). Ibid., 2,578,938 (Dec. 18, 1951). Lapidus, L., and Ammundson, U., J . Phys. Chem., 56, 373-83 (1952). Lautasch, W.,Broser, W., Rothkeyai, W., Riedermann, W., Doernig, V., and Zoschke, H., J . Polymer Sei., 8, 191-213 (1952). Lautasch, W.,and Rothkegel, W.,2. Naturfbrsch, 66, 365-9 (1951). Leick, J., Wasser, Vom, 18,346-59 (1950-51). Ibid., pp. 380-407. Lister, B., J. Chem. SOC.,1951, 3123-8. Lister, B., and Hutcheon, J., Research (London), 5, 291-2 (1952). Logan, K., and Purves, C.,Tappi, 35,284-8 (1952). Ludwig, B., Holfeld, \I7., and Berger, F., Proc. Soc. Exptl. Bid. &fed., 79, 176-9 (1952). Lundberg, L., Can. Patent 0.fice Record, 480, 206 (Jan. 15, 1952). McBurney, C., U. S.Patent 2,591,573 (lipril 1, 1952). Ibid., 2,591,574 (April 1, 1952). McChesney, E., Proc. SOC.Exptl. Biol.Med., 79, 531-4 (1952). McChesney, E., Dock, W.,and Tainter, M., Medicine, 30, NO. 2, 183-95 (1951). McDonald, H., Urbin, hl., and Williamson, M., J . Colloid Sei., 6, 236-44 (1951). MoGarvey, F., Chem. A g e (London), 66, 93540, 965-6 (1952). MoGarvey, B.Tenhoor, R., and Nevers, R . , IND.ENG.CHEM., 44, 534-41 (1952). Maeda, S.,Japan. Patent 1273 (1950). Maka, A,, and Sasaki, T., Mem. Fac. Sei. KyEsyG Univ., 1, 211-16 (1950). Manche, G., and Bonhoeffer, K., 2. Ekktrochem., 55, 475-81 (1951). Mariani, E., Ann, chim. appl., 39,717-26 (1949). Martin, G., and Wilkinson, J., U. S. Patent 2,581,035 (Jan. 1, 1952). Matee, F., Erhard, L., Price, M., Weigand, F., Peters, J.,
January 1953
e
.,
INDUSTRIAL AND E N GINEERING CHEMISTRY
Donowski, *T.,Tarail, R., and Greenman, L., J . Clin. Invat., 30, 1018-26 (1951). (235) Mehlich, A., Soil Sci., 73, 361-74 (1952). ENQ.CHEM.,44, 1922-30 (1952). (236) Michaels, A,, IND. (237) Miller, G., U. S. Patent 2,566,353 (Sept. 4, 1951). (238) Miller, H., Gershbein, L., and Ivy, A., Arch. Biochem. Biophys., 35, 176-83 (1952). (239) Miller, H., and Wallsch, H., Zbid., 35, 176-83 (1952). (240) Mizuguchi, J., Shimizu, M., Suruki, S., and Osawa, J., J . Pharm. SOC.Japan, 71, 1284-7 (1951). (241) Modern Plastics, 29, 90-1 (November 1951). (242) Mongar, I., and Wassuman, A., J.Chem. Soc., 1952,492-513. (243) Moore, G., and Kraus, K., J . Am. Chem. Soc., 74,843-4 (1952). (244) Morris, Q., Gage, T., and Wender, S.,Proc. Oklahoma Acad. Sci., 31, 140 (1950). (245) Morton, F., Lancet, 260, 825-7 (1951). (246) Moser, R., Rosenak, B., Pickett, R., and Fisch, G., Gastroenterology, 19, 336-43 (1951). (247) Muller, R., and Rose, H., Proc. SOC.Exptl. Biol. Med., 80,27-9 (1952). (248) Mysels, K., Science, 114, 424-5 (1951). (249) Nagasawa, F., Japan. Pateat 173,621 (September 1946). (250) Nagasawa, F., and Sakarai, Y., Zbid., 181,067 (December 1949). (251) Nayamatsu, M., J . Electrochem. Soc. Japan, 19, 369-72 (1951). (252) Neale, S.,and Standring, P., Proc. Roy. Soc., 213A, 530-45 (1952). (253) Ness, R., Fletcher, H., and Hudson, C., J . Am. Chem. SOC., 73, 4759-61 (1951). (254) Newham, J., Ibid., 73, 5899 (1951). (255) Nichols, H., and Colton, F., Natl. Geog. Mag., 102, No. 2, 269-86 (1952). (256) Novikoff, A., Hecht, L., Podber, E., Ryan, J., J. Biol. Chem., 194,153-70 (1952). (257) O'Brien, A,, Chem. Eng., 59, No. 1,320,322 (Jan. 1952). (258) Oda, R., and Shimizie, H., Chem. High PoEymers ( J a p a n ) , 6,14-17 (1949). (259) Ibid., pp. 29-31. (260) Ibid., pp, 337-46. (261) Zbid., pp. 346-65. (262) Oda, R., Shimizie, H., and Nakayama, Y., I b i d . , 5, 21-4 (1948). (263) Zbid., pp. 24-7, 84-91. (264) Zbid., PP. 112-15. (265) Ibid., pp. 115-16, 179-81. (266) Ibid., pp. 205-6, 271-4, 294-5. (267) Zbid., pp. 274-5. (268) Oda, R., Shimizie, H., and Nakayonia, Y., Rept8. Inst. Chem. Research, Kyoto Univ., 16,43-5 (1947). (269) Oda, R., Shimizie, H., and Tanade, T., Bull. Znst. Chem. Research, Kyoto Univ., 24, 86 (1951). (270) Oda, R., Shimizie, H., and Yamanaka, Y., Repts. Znst. Chem. Research, Kyoto Univ.. 16, 42-3 (1947). (271) Okayoma, Y., JaQan. Patent 172,643 (May 9,1946). (272) Okill, R., J . Soc. Leather Trades' Chemists, 35, 225, 229 (1951). (273) Ongaro, D., Ricerche sez. sper. zuccheri, Univ. studi Padova, Zst. chim. ihd., 5 , 83-106 (1950). (274) Opatowski, D., Bull. Math. Biophys., 13, 119-32 (1951). (275) Osmun, R., Can. Patent 485,627 (Sept. 15, 1952). (276) Ostrof, B., and Thum, E., Metal Progr., 60,67-74 (July 1952). (277) Ostwald, R., Adams, P., and Tulbert, B., J . Am. Chem. Soc., 74,2425-7 (1952). (278) Otto, J., U. S.Patent 2,590,449 (March 25, 1952). (279) Otto, J., and Gilbert, E., Zbid., 2,571,286 (Oct. 10, 1951). (280) Page, G., Brit. Patent 672,754 (June 17, 1952). (281) Paradiso, S., J . Am. Water Works Assoc., 44, 484-90 (1952). (282) Partridge, J., and Brimley, R., Biochem. J., 51, 628-39 (1952). Nature, 169, 496-7 (1952). (283) Partridge, S., (284) Paulson, C., Wastes Eng., 23, 208-9 (1952). ENG.CHEM., (285) Payne, J., Kortschel, H., and Gill, R., IND. 44,1411-21 (1952). (286) Pedinelli, M., and Bovelocci, F., Chimica e industria ( M i l a n ) , 32,271-6 (1950). (287) Penman, R., Am. J . Med. Sci., 222,193-6 (August 1951). (288) Permberton, R., and Holmes, E., U. S. Patent 2,606,870 (Aug. 12, 1952). (289) Permutit Co., Brit. Patent 662,164 (Dec. 5, 1951). (290) Zbid., 672,327 (May 21, 1952). r(291) Zbid., 672,626 (May 21, 1952). (292) Peterson, E., Sober, H., and iMeister, A,, J . Am. Chem. SOC., 74, 570-1 (1952). (293) Peterson, S., and Jeffers, R., Ibid., 74, 1605-6 (1952). (294) Pies, K., Tooper, E., and Fosdick, L., J . Biol. Chem., 194, 669-72 (1952). (295) PEastics News Letter, 1 2 , l (March 31, 1952). (296) Power, 96,144 (June 1952).
*
87
(297) Power Eng., 55,95,113-14 (October 1951). (298) Quentin, G., Zucker, 4,342-4 (1951). (299) Quinn, D., U. S. Patent 2,595,290 (May 6, 1952). (300) Raffinerie Tiremontoise Societe Anon., Brit. Patent 672,270 (May 1952). (301) Zbid., 675,253 (July 1952). (302) Rahles, W., Rients, A., and Stronquist, D., J . Am. Oil Chemists' SOC., 29, 133-6 (1952). (303) Rttmondt, D., Starke, 3, 194-6 (1951). (304) Ramondt, D., U. S.Patent 2,582,849 (Jan. 15, 1952). (305) Rappaport, D., and Hassid, W., J . Am. Chem. Soc., 73, 5524-5 (1951). (306) Reides, M., U. S. Patent 2,541,780 (Feb. 13, 1951). (307) Rept. Chem. Research, 1950, 64-74 (Teddington, England). (308) Research Today, 3, 50-69 (1951). (309) Reyneso, M., thesis, University of Mexico, 1952. (310) Roberts, E., U. S. Patent 2,590,209 (March 25, 1952). (311) Roboy, E., Barratt, R., and Tatum, E., J. Bid. Chem., 195, 459-71 (1952). (312) Rodger, W., and Fineman, P., Chem. Eng., 58, No. 12, 146-50 (1951). (313) Romeo, J., Rev. clin. espafi., 41,421-7 (1951). J . Am. Chem. SOC.,74,4467-8 (1952). (314) Roseman, S., (315) Roseman, S., Abeles, R., and Dorfman, A., Arch. Biochem. Biophys., 36, 232-7 (1952). (316) Rosen, J., J . Chem. Phys., 20, 387-94 (1952). (317) Rosenfeld, D., Richtinger, N., and Hudson, C., J . Am. Chem. SOC.,73, 4907-10 (1951). (318) Rubinov, Y., Sakharnaya Prom., 23, No. 12, 11-15 (1949). (319) Ruggeberg, H., Starke, 3,34-8 (1951). (320) Rule, J., U. S. Patent 2,577,484 (Dec. 4, 1951). (321) Sakai, W., J . Electrochem. Soc. Japan, 20,21-4 (1952). (322) Sakai, W., Seryanna, T., and Mayamatsu, M., Zbid., 19, 343-5 (1951). (323) Saldadze, K., Doklady Akad. N a u k . S.S.S.R., 77, 457-60 (1951). (324) Salmon, J., J . Chem. Soc., 1952,2316,2323. (325) Samuelson, O., Svensk Kem. Tzdskr , 63, No. 8, 183-93 (1951). (326) Sanadi, D., Arch. Biochem. Biophys., 35,268-77 (1952). (327) Sanborn, W., Can. Patent Office Record, 485, 846 (Aug. 19, 1952). (328) Ibid., 485, 847. (329) Sansoni, B., Naturwissenschuf~en,39, No. 12,281 (June 1952) (330) Saunders, L., and Srivastora, R., J . Chem. Soc , 1952, 2111-18. (331) Scandura, C., Riv. viticolt. e enol. (Conegliano),4, 323-8 (1951). (332) Schlenker, E., Fette u. Seifen, 54, 165-7 (1952). (333) Schmidle, C., and Mansfield, R., IND.ENG.CHEM.,44, 138890 (1952). (334) Schon, J., Magyar K e m . Lapja, 6, 51-8 (1951). (335) Schubert. J.. J. Phws. Chem.. 56. 113-18 (1952). (336j Schubert; J.', and hndenbaum,' A., J . Am. Chern. Soc., 74, 3529-32 (1952). (337) Science News Letter, 61, 150 (March 1952). (338) Scott, M., Jackson, E., and Basdekis, C., U. S. Patent 2,580,325 (December 1951). (339) Selke, W., and Bliss, H., Chem. Eng. Progr., 47, 529-33 (1951). (340) Sharp, J., and White, A., J . Chem. Soc., 1952, 110-16. (341) Sheline, R., and Stoughton, R., Phys. Rev., 87,l-4 (1952). (342) Ibid., pp. 34-44. (343) Shuttleworth, S., J. Am. Leather Chemists' Assoc., 47, 387-403 (1952). (344) Signer, R., Chemica, 5,245-9 (1951). (345) Signer, R., and Demagistri, A., J . chim. phys., 47, 704-7 (1950). (346) Skankar, K., and Bard, R., J . Bacterid., 63,279-90 (1952). (347) Skogseid, A., U. S. Patent 2,592,349 (April 8, 1952). (348) Zbid., 2,592,350 (April 8, 1952). (349) Slabough, W., J . Am. Chem. Soc., 74, 4462-4 (1952). (350) Smith. J. B.. J . Chem. Educ.. 29. 292-4 (1952). (351) Sober, H., Kegles, G . , and Gutter, F., J. Am. Chem. Soc., 74, 2734-40 (1952). (352) Sollner, K., and Gregor, H., J . Colloid Sci., 6, 557-70 (1951). (353) Zbid., 7, 37-52 (1952). (354) Spedding, F., Fulmer, E., Powell, J., Butler, T., and Yaffe, J., J . Am. Chem. Soc.. 73, 4840-7 (1951). (355) Spedding, F., and Powell, J., Ibid., 74,856-7 (1952). (356) Spiegler, K., and Coryell, C., J . Phys. Chem., 56, 106-13 (1952). (357) Spiegler, K., Juda, W., and Carron, M., J . Am. Water Works ASSOC., 4 4 , 8 0 4 (1952). (358) Stadmhn, E,, J.Biol.Chem., 196,527-34 (1952). (359) Stassert, M., Bull. centre belge gtude et document. eaux ( L i d g e ) , NO.6,371-6 (1949). (360) Stevens, A,, Brit. Patent 671,042 (April 30, 1952). (361) Storeman, A., Trans. Faraday Soc., 48, 176-85 (1952). (362) Striokland, J., Nature, 169, 620 (1952).
INDUSTRIAL A N D ENGINEERING CHEMISTRY Strisorver, E., Chaikoff, J., and Weinman, E., J . Biol, Chem., 192,453-63 (1951).
Stroh, G., U. S.Patent 2,586,882 (Feb. 26, 1952). Suzuki, T., Hagwara, F., and Kubota, NI., Japan. J . Pharm. & Chem., 23, 191-3 (1951). Ibid., pp. 246-7. Swietoslowski,IT., Przemysl Chem., 29, 6,41-3 (1950). Tabor, H., and Hayaiski, O., J . B i d . Chem., 196, 171-5 (1952). Tabor, H., Mehler, A., Hayaiski, O., White, J., Ibid., 196, 1218 (1952).
Thomas, H. C . , J . Chem. Phus., 19,1213 (1951). Thompson, J., Power, 96, 108-9, 220 (May 1952). i372) Tiselius, A., Endeavour, 11, 5-16 (1952). (373) Todes, O., and Bikson, Y., Doklady Aicad. N a u k S.S.S.R., 75, ,
727-30 (1950). (374) Tofima, S., and Kasaka, Y . , J . Electrochem. Soc. ( J a p a n ) , 18, 363-6 (1950). (375) Tonake, U., Japan. Patent 178,608 (April 1949). (376) Topp, N., Science Progr., 39, 640-57 (1951). (377) Topper, Y., and Stetten, D., J . Biol. Chem., 193, 149-55 (1951). (378) Trail, H., T;. S.Patent 2,573,743 (Nov. 6, 1951). (379) Tunitskil, N., and Cherneva, E., J . Phys Chem. (S.S.S.R.), 24, NO. 11, 1350-60 (1950). (380) Tyler, R., Moshe, W., and Westin, M., Sewage and I n d . Wastes, 23,1032-5 (1951). (381) Uezuki, S., Japan. Patent 180,531 (October 1949). (382) Ibid., 173,576 (September 1951). (383) Ulmer, R., and Caro, P., Sugar, 47,46-8 (1952). (384) Ulrich, W., &err. Apoth. Ztg., 6 , 7 7 4 (1952). (388) Underwood, G., and Deatherage, F., Science, 115, 95-6 (Jan. 25, 1952). (386) Vajna, S., Magyar K h .Folioirat, 56, 88-96 (1950). (387) Vajna, S., and Pechler, E., Acta. Chim. Acad. Sei. Hung., 1 , 196-206 (1951). (388) Van der Flies, G., Chem. Weekblad, 48, 380-5 (1952).
DZ
Vol. 45, No. 1
Vankataranisknan, K., Kreshnaswary, N., and Romaknishnan, T., Indian J . Med. Research, 39,211-17 (1951). Venkatasabrahanianian, T., and De, S.,Science and Culture (India), 17, 180-1 (1951). Vermenlen, T., and Hiester, K., IND.ENG.CHEX.,44, 636-51 (1952). Vines, S., U. S.Patent 2,579,283 (December 1951). Voyles, C., and Orgain, E., New Engl. J . Med., 245, 808-11 (1951).
Waldock, K., and Frizzell, L., J . Phys. Ckem., 56, 654-7 (1952).
Wall, F., Ondryein, J., and Pikramenon, M., J . Am. Chem. S O C .73, , 2821-5 (1951). Weil, H., Chimica e industvia ( M i l a n ) ,33, 287-94 (1951). ;CVeiss,9.,and Hofmann, U., 2. Naturforsch., 66, 405-9 (1951j. Werner, L., and Perkman, J., J . Am. Chem. SOC.,73, 5215-17 (1951).
Wheaton. R.. and Harrineton. D.. IND.EXG.CHEM.. , 44., 1796800 (1952):
Whittaker, D., and Allen, G., Brit. Patent 666,410 (Feb. 13, 1952).
Whittaker, D., and Allen, G., U.S.Patent 2,588,784 (March 11, 1952).
Wiklander, L., Acta Agr. Scand., 1, 190-202 (1951). Wilkes, F., Corrosion, 8, 1-2 (June 1952). Williams, K., and Bevennue, A , , J . Assoc. Ofic. A g r . Chemists, 34,817-21 (1951).
Wirth, L., Southern P u l p Paper M f r . , 14, 14-18 (Oct. 15,1951). Wood, J., Ferguson, D., and Lawrence, P., J . Am. Med. Assoc., 148, 820-4 (March 1952). Wood, IT,,U. S.Patent 2,600,719 (June 17, 1952). Wyeth, Inc., U. S. Patent 2,584,158 (Feb. 5, 1952). Yamamura, T., and Nomiyana, Y . , Japan. Patent 181,089 (Dec. 7, 1949). Yufera, E., Rea. cienc. apl. (Madrid),5, 216-34 (1951). Zeegers, J., Chem. Weekblad, 48, 356-61 (1952). Zimmermann, RI., Angew. Chem., 64, 107-10 (February 1952). Zinner, H., Chem. Ber., 8 4 , 7 5 0 4 (1951).
RICHARD L. SPEAKER
71 17 NORTH LONGACRE RD., MILWAUKEE 11, WIS.
This year a great deal of literature appeared on the use of belt conveyors for long-distance transmission ofbulk material. There were several new devices to aid handling of material in bins. Production line conveyors began to realize their potential by adopting automatic control and coordination. Textbooks and films show promise of introducing a much-needed technical approach to this subject.
2. The material can be supplied and 3. consumed The operation continuously* continues long enough to offset the high initial cost. 4. The distances traveled are not too great (within 10 miles
T
Special conditions may, of course, justify belts under other circumstances-such as those surrounding the proposed Riverlake belts spanning 103 miles across Ohio.
Belt conveyors are winning economic battles against railroad haulage, trucking, earth movers, and tractor-trailer trains. This trend seems t o have received its greatest impetus in solving t h e problem of aggregate removal for construction of the huge government dams of the last decade-Grand Coulee, Shasta, Hungry Horse, etc. These conveyors, carrying aggregate from gravel supply stations up to 10 miles from the dam site, proved able t o reduce haulage costs spectacularly, After the jobs were completed, the contractors found i t possible t o reaell the components of the conveyors for a further tidy profit. NaturaLly, the reason for this popularity is t h a t the particular application is peculiarly well adapted t o the economics of belt conveyor haulage. Belts are most easily justified where: 1. The material is nonfriable and otherwise suitable for handling on belts.
Belts are used extensively in coal mining (WT), in spite of thefact t h a t undesirable degradation in the coal occurs at transfer pointe. Apparently other handling methods available produce equivalent product damage. Improved belt strength would reduce this disadvantage. The maximum possible length of a n individual flight is limited by the tensile strength of cotton fabric in ordinary belting. When this maximum length is reached, the commodity must be transferred to another belt, with consequent possible degradation of the material. The maximum length has been sharply increased in recent years by the introduction of a steel cable fabric in place of the cotton fabric (26). This important development has permitted the installation of a single conveyor extending over 2 miles from a coal washery t o a barge loading station at the Wierton Mine near Morgantown, W. Va. (36). It has also permitted a single coal mine belt operating a t 18’ incline t o extend to the surface from a depth of 860 feet below ground (26). Because they have negligible stretch, steel cable belts are also being specified where dimensional stability is important.
HE Rise of the Rubber Railroad” is not only the title of a very complete and accurate digest of t h e economic and engineering aspects of long overland conveyor systems (db), but it also aptly describes the direction and motivation of the belt conveyor industry today. BULK-HANDLING CONVEYORS
or so).