Mass Spectrometry of Inorganic Halides - Advances in Chemistry

Jul 22, 2009 - 2 Present address: Virginia Polytechnic Institute, Blacksburg, Va. 3 Present address: Texas Instruments, Dallas, Texas. Mass Spectromet...
0 downloads 0 Views 3MB Size
12 Mass Spectrometry of Inorganic Halides 1

2

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

ROBERT W. KISER, JOHN G. DILLARD and DONALD L. DUGGER

3

Kansas State University, Manhattan, K a n .

A mass spectrometric TaCl ,

ZnCl ,

5

PSF .

and

ZnBr ,

2

3

2

Heats

mass spectra

HgCl , 2

HgBr ,

of formation

are calculated

have aided

in the assignments

the formation except

and

processes of positive

thiophosphoryl

- c o n t a i n i n g molecules from a molecular contribute

for the metastable

NbCl ,

PBr ,

POCl ,

4

PCl , 3

3

various

5

3

ions in

studies path-

to be unimportant

ions from all compounds

fluoride.

Ionization the removal

to which

the

potentials

transition

of the fragmentation

were found

involves

orbital

2

TiCl ,

from the appearance

Clastograms

Ion-pair

HgI ,

2

measured. ways.

The

study has been made of

the halogen

of

the

of the

in

studied metalelectron

atom

orbitals

significantly.

s t u d y of gaseous i n o r g a n i c ions u s i n g mass s p e c t r o m e t r i c analysis dates b a c k to the classic studies c o n d u c t e d b y T h o m s o n ( 2 0 3 )

Aston (2).

and

T h o m s o n w a s the first to r e c o g n i z e the a p p l i c a b i l i t y of the

mass spectrometer as a p o w e r f u l a n a l y t i c a l t o o l a n d w a s successful i n i d e n t i f y i n g i n o r g a n i c species f o r m e d b y d e c o m p o s i t i o n i n e l e c t r i c a l d i s charges.

Aston's p i o n e e r i n g w o r k c o n c e r n e d the d e t e r m i n a t i o n s of the

r e l a t i v e a b u n d a n c e s of n a t u r a l l y - o c c u r r i n g isotopes of the c h e m i c a l elements (2).

Interest i n the s t u d y of e l e c t r o n i m p a c t processes a n d t h e

f o r m a t i o n of gaseous ions w a s s t i m u l a t e d b y D e m p s t e r s (23)

design a n d

c o n s t r u c t i o n of a mass spectrometer e q u i p p e d w i t h a n i o n source c a p a b l e of f o r m i n g ions w i t h n e a r l y t h e same energy a n d u s i n g a m a g n e t i c

field

to c a r r y o u t t h e mass analysis of t h e ions. D u r i n g the e n s u i n g d e v e l o p m e n t of mass s p e c t r o m e t r y , the i n v e s t i g a t i o n of i n o r g a n i c c o m p o u n d s

a s s u m e d a s e c o n d a r y i m p o r t a n c e to the

d e s i g n a n d i m p r o v e m e n t of a n a l y t i c a l m e t h o d s for o r g a n i c m a t e r i a l s , 1 2 3

Present address: University of Kentucky, Lexington, Ky. Present address: Virginia Polytechnic Institute, Blacksburg, Va. Present address: Texas Instruments, Dallas, Texas.

153

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

154

MASS

S P E C T R O M E T R Y

I N

INORGANIC

C H E M I S T R Y

p a r t i c u l a r l y those of p r i m a r y interest to the p e t r o l e u m i n d u s t r y .

This

decreased emphasis o n i n o r g a n i c studies also was p r o b a b l y c a u s e d i n p a r t b y a l a c k of m o r e s o p h i s t i c a t e d s u p p l e m e n t a r y e q u i p m e n t n e e d e d

for

s t u d y i n g the g e n e r a l l y less v o l a t i l e i n o r g a n i c m a t e r i a l s . W i t h i n the last t w o decades, mass spectrometric studies of the n a t u r e of the v a p o r i z e d species a n d the i o n i z a t i o n a n d dissociative i o n i z a t i o n

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

processes for these gaseous i n o r g a n i c substances h a v e r e c e i v e d

renewed

attention. T h i s has b e e n p r i m a r i l y c a u s e d b y the advances i n h i g h t e m p e r a t u r e mass s p e c t r o m e t r y a n d the significance s u c h studies h a v e h a d for i n o r g a n i c c h e m i s t r y . T o o , the renaissance of i n o r g a n i c c h e m i s t r y that has o c c u r r e d i n the past d e c a d e or so, o w i n g to increased u t i l i z a t i o n of p h y s i c a l m e t h o d s a n d t h e o r e t i c a l approaches, has occasioned

the i n o r -

g a n i c chemist to rediscover the u t i l i t y of mass spectrometry as a means of a t t a c k i n g his v a r i e d p r o b l e m s .

A l t h o u g h , as is n o t e d b e l o w , m a n y of

the r e l a t i v e l y " s i m p l e " i n o r g a n i c species h a v e b e e n subjected

to mass

spectrometric s t u d y , there is n o reason that the m o r e " c o m p l e x " m o l e c u l e s s h o u l d not b e s c r u t i n i z e d to y i e l d v a l u a b l e i n f o r m a t i o n that is either d i i f i c u l t or i m p o s s i b l e to o b t a i n b y other methods. I n subsequent p a r a g r a p h s w e present a b r i e f r e v i e w of the v a r i e t y of studies of i n o r g a n i c h a l i d e s i n w h i c h mass s p e c t r o m e t r y has p l a y e d a significant rôle, p a r t i c u l a r l y w i t h respect to mass s p e c t r a l i d e n t i f i c a t i o n a n d energetics.

N e i t h e r isotopic a b u n d a n c e s n o r isotopic separations are

i n c l u d e d . B e c a u s e of the i m p o r t a n c e of p h o t o i o n i z a t i o n studies, first d o n e b y T e r e n i n a n d P o p o v ( 199, 200, 201 ) to the energetic d a t a , references to s u c h w o r k h a v e also b e e n i n c l u d e d . T h e o r d e r i n g of this t r e a t m e n t f o l l o w s the p e r i o d i c arrangement.

T h e r e m a i n d e r of this p a p e r is c o n -

c e r n e d w i t h c u r r e n t studies of r e l a t e d h a l o g e n - c o n t a i n i n g systems that have been conducted i n our laboratory. Group I A . N u m e r o u s investigators h a v e e x a m i n e d a l l of t h e a n d / o r c h l o r i d e s of this f a m i l y save f r a n c i u m (6,

134,

fluorides

135, 137,

183).

Studies h a v e also b e e n r e p o r t e d of i n d i v i d u a l a l k a l i m e t a l h a l i d e s ; these a r e : l i t h i u m (9, 44, 72,153,154,156), (72,77).

s o d i u m (72, 77,154),

r e p o r t e d (4, 5,17,19,

25, 42, 44, 46, 51, 57, 64, 73, 76, 80, 83, 97, 99,

116, 117, 143, 144, 145, 147, 148, 149, 158, 159, 160, 204, 211,212,

213,

Group H A , fluorides

and potassium

A large n u m b e r of investigations of h y d r o g e n h a l i d e s h a v e b e e n 161,

162, 165,

115, 166,

214). A s i d e f r o m the examinations that the a l k a l i n e e a r t h

h a v e r e c e i v e d (8, 11, 15, 35, 36, 54, 66, 67, 68, 216),

m a g n e s i u m h a l i d e s h a v e b e e n s t u d i e d mass s p e c t r o m e t r i c a l l y

o n l y the (8).

Group M B and Transitional Metals. A p p a r e n t l y y t t r i u m c h l o r i d e is the sole m e m b e r of G r o u p I I I B that has b e e n s t u d i e d (132,

133).

The

o n l y i n v e s t i g a t i o n of the l a n t h a n i d e s a n d actinides that w e r e f o u n d i n

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12.

KiSER E T A L .

Inorganic

155

Halides

the present l i t e r a t u r e search i n v o l v e u r a n i u m fluoride a n d c h l o r i d e

(16,

210,214). M a r r i o t t , T h o r b u r n a n d C r a g g s (128)

investigated titanium tetra-

chloride and Sidorov, Akishin, and Belousov

have studied zir-

(188)

c o n i u m tetrafluoride. D i l l a r d (31 ) has e x a m i n e d the b i s c y c l o p e n t a d i e n y l titanium and -zirconium dichlorides.

We

report herein an additional

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

s t u d y of the t i t a n i u m t e t r a c h l o r i d e system. O u r o w n recent studies

(31)

of n i o b i u m a n d t a n t a l u m c h l o r i d e s are r e p o r t e d i n this w o r k . N u m e r o u s other investigations of first r o w t r a n s i t i o n element h a l i d e s have b e e n m a d e (15, 31, 41, 86, 90, 91, 92, 130, 131, 155, 185, 204, 219).

177, 178,

179,

A d d i t i o n a l m e m b e r s of G r o u p I I B that h a v e b e e n s t u d i e d

include cadmium chloride

and mercury chloride, bromide,

(87)

i o d i d e (15, 31, 41, 53, 204).

R e c e n t reports h a v e a p p e a r e d

r h e n i u m c h l o r i d e systems (14,

and

concerning

173).

Group IIIA. A s i d e f r o m the recent considerations of the t h a l l i u m h a l i d e s (7,93),

studies h a v e b e e n l i m i t e d to the h a l i d e s of b o r o n ( 5 5 , 66,

69, 84, 85, 98, 100, 107, 108, 122, 124, 125, 127, 129, 150, 164, 175, 190)

a n d a l u m i n u m (11, 35, 153, 156,

T h e r e h a v e b e e n m a n y investigations of energetics i n

Group I V A .

the o r g a n i c h a l o g e n systems (10, 28, 29, 30, 38, 39, 53, 58, 59, 61, 65, 71, 78, 81, 95, 109, 110, 111, 118, 123, 126, 139, 146, 157, 167, 168, 189, 190, 192, 202, 212 213). two

186,

216).

additional members

of

Studies of the this g r o u p

fluorides

70, 176,

a n d c h l o r i d e s of

include work

on silicon and

g e r m a n i u m (24, 36, 43, 62, 81, 125, 176, 191, 202, 206, 212, 213, 215,

216,

219). Nitrogen

Group V A . i n e d (13,

fluorides

h a v e b e e n rather extensively e x a m -

18, 33, 62, 63, 88, 106, 113, 169),

b e e n g i v e n to other n i t r o g e n h a l i d e s (61,

whereas l i t t l e a t t e n t i o n has 152).

S e v e r a l investigators

h a v e r e p o r t e d the results of t h e i r investigations of p h o s p h o r u s a n d c h l o r i d e s ( 5 1 , 56, 89, 94, 104, 163, 180, 207).

fluorides

N o additional work

appears to h a v e been d o n e o n a n t i m o n y h a l i d e s since t h e e a r l y efforts of K u s c h , H u s t r u l i d a n d T a t e ( 5 1 , 104).

O n l y a little m o r e a t t e n t i o n has

b e e n g i v e n to arsenic fluoride a n d c h l o r i d e ( 5 1 , 104,

179).

Group V I A . T h e p r i n c i p a l studies of the h a l i d e s of this g r o u p h a v e been concerned 174,176, 121)

w i t h s u l f u r (3,

184, 217),

119,

151,

a l t h o u g h reports of oxygen-fluorine systems (26,

22, 24, 34, 43, 68, 101,

102,

120,

h a v e a p p e a r e d recently. Group V I I A .

Various interhalogen compounds

a n d negative halide

i o n studies are to b e f o u n d i n the l i t e r a t u r e (48, 60, 79,152,193,194,

216).

Noble Gas Halides. M a s s s p e c t r o m e t r i c studies h a v e b e e n of p r i m e i m p o r t a n c e i n the e x c i t i n g investigations of this n e w class of (12, 75, 196, 197,

compounds

218).

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

156

MASS

S P E C T R O M E T R Y

Oxyhalides and Thiohalides.

I N

INORGANIC

C H E M I S T R Y

I n a d d i t i o n to the a b o v e

systems,

various o x y h a l i d e s a n d a f e w t h i o h a l i d e s h a v e b e e n e x a m i n e d mass spect r o m e t r i c a i l y (26, 27, 3 1 , 40, 56, 69, 86, 114, 120, 121, 138, 145, 170, 172, 174,

171,

176,184,207).

T h e present w o r k is a report of a p o r t i o n of c u r r e n t mass spectro­ m e t r i c studies i n these laboratories of i n o r g a n i c h a l i d e s a n d o x y -

(and

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

t h i o - ) h a l i d e s . It has b e e n f o u n d that there are some similarities as w e l l as differences b e t w e e n m e t a l a n d n o n - m e t a l h a l i d e s . A d d i t i o n a l l y , c a u ­ t i o n is u r g e d i n the assignment of i o n p a i r processes i n v o l v i n g these halides.

A f t e r d e s c r i b i n g the e x p e r i m e n t a l procedures

and

techniques

e m p l o y e d i n this w o r k , the results of our investigations are presented a n d discussed. Experimental

Apparatus

and Procedures

Mass Spectrometers and Data Reduction. T h e mass spectrometer u s e d p r i n c i p a l l y i n this s t u d y w a s a B e n d i x m o d e l 12-100 t i m e - o f - f l i g h t w h i c h has b e e n p a r t i a l l y d e s c r i b e d p r e v i o u s l y (48, 49). T h e i n s t r u m e n t has b e e n m o d i f i e d to p e r m i t studies of negative ions a n d e q u i p p e d w i t h a H e w l e t t - P a c k a r d m o d e l 175A 5 0 M c oscilloscope w i t h c a p a b i l i t i e s for r e c o r d i n g the oscilloscope trace. T h e s i g n a l f r o m the W i l e y m a g n e t i c electron m u l t i p l i e r w a s f e d t h r o u g h a n H P m o d e l 1759B d u a l trace v e r t i c a l a m p l i f i e r p l u g - i n . N e g a t i v e i o n spectra w e r e r e c o r d e d d i r e c t l y w i t h a h e a t e d - p e n g a l v a n o m e t e r o n 5 c m . s t r i p c h a r t p a p e r b y s c a n n i n g the oscilloscope trace w i t h a r a m p p u l s e generated i n the H P m o d e l 1784A recorder plug-in. A n A s s o c i a t e d E l e c t r i c a l Industries M S - 9 d o u b l e - f o c u s i n g mass spec­ t r o m e t e r w a s also e m p l o y e d i n this s t u d y . A r h e n i u m r i b b o n filament w a s h e a t e d to g i v e a t r a p c u r r e n t of 100 juamp. T h e i o n r e p e l l e r w a s n o m i n a l l y 2 volts. A t a m e d i u m r e s o l u t i o n of 1100 ( u s i n g the 2.08 Γ ι / d e f i n i t i o n ) the mass s p e c t r u m w a s s c a n n e d i n 31 s e c o n d s / o c t a v e b y d e ­ c r e a s i n g the m a g n e t i c field. H i g h r e s o l u t i o n spectra ( > 20,000) w e r e also o b t a i n e d . A f t e r s i g n a l a m p l i f i c a t i o n w i t h a n 11-stage e l e c t r o n m u l t i ­ p l i e r , the spectra w e r e t r a c e d w i t h a six-galvanometer r e c o r d e r m i r r o r i n g u l t r a v i o l e t l i g h t onto a photosensitive paper. O t h e r details of this i n s t r u ­ m e n t h a v e b e e n r e p o r t e d ( 50 ). Pressures, as d e t e r m i n e d b y A l p e r t i o n i z a t i o n gauges, w e r e m a i n ­ t a i n e d b e t w e e n 1 χ 10" a n d 1 X 10" torr i n the i o n source a n d b e l o w 1 X 10" t o r r i n the M S - 9 analyzers. S a m p l e s w e r e i n t r o d u c e d to the i o n source of the M S - 9 b y h e a t i n g a 4 / J . c a v i t y i n a q u a r t z p r o b e . T h e 0.07 m m . orifice of this c a v i t y is 2.1 c m . f r o m the e l e c t r o n b e a m . T h e t e m p e r a ­ t u r e of the s a m p l e i n the c a v i t y w a s c o n t r o l l e d b y e l e c t r i c a l l y h e a t i n g the nichrome windings. A n iron-constantan thermocouple a n d a Leeds a n d N o r t h r u p p o t e n t i o m e t e r was u s e d to m o n i t o r the t e m p e r a t u r e of the cavity. A n o m i n a l i o n i z i n g energy of 70 e.v. w a s e m p l o y e d i n d e t e r m i n i n g the p o s i t i v e i o n mass spectra i n b o t h instruments. T h e r e l a t i v e a b u n d a n c e s r e p o r t e d h e r e i n are those for the m o n o i s o t o p i c mass spectra a n d therefore 2

7

e

7

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

12.

KiSER E T A L .

Inorganic

157

Halides

i n c l u d e the c o n t r i b u t i o n s f r o m i o n currents for a l l the isotopes i n a p a r t i c u l a r i o n . N e g a t i v e i o n mass spectra w e r e t a k e n w i t h the t i m e - o f flight i n s t r u m e n t at a voltage w h e r e the ions w e r e the most intense. T h i s v o l t a g e v a r i e d f r o m c o m p o u n d to c o m p o u n d . M e t a s t a b l e transitions w e r e i n v e s t i g a t e d u s i n g t h e M S - 9 i n s t r u m e n t i n the u s u a l m a n n e r . B y a p p l y i n g a v a r i a b l e r e t a r d i n g p o t e n t i a l t o t h e e l e c t r o n m u l t i p l i e r stack i n the time-of-flight i n s t r u m e n t , i t also has b e e n possible to e m p l o y this spectrometer for metastable t r a n s i t i o n studies. C l a s t o g r a m s w e r e d e t e r m i n e d b y s c a n n i n g the entire mass s p e c t r u m as a f u n c t i o n of the e l e c t r o n energy. A t h i g h e r e l e c t r o n energies t h e s t e p p i n g i n t e r v a l w a s a p p r o x i m a t e l y 5 e.v. T h i s i n t e r v a l w a s r e d u c e d to a b o u t 1 e.v. for e l e c t r o n energies b e l o w 25 e.v. L o g a r i t h m i c clastograms w e r e c o n s t r u c t e d b y p l o t t i n g t h e l o g a r i t h m of the f r a c t i o n a l a b u n d a n c e of e a c h i o n at a n y g i v e n electron e n e r g y as a f u n c t i o n of the e l e c t r o n energy. F i g u r e 1 shows a t y p i c a l c l a s t o g r a m . I n c l u d e d i n the present 0.80

L

0.04

h

30

40

Electron

Figure 1.

Logarithmic

Energy

Clastogram

50 (ev),

60

uncorr.

for Titanium

Tetrachloride

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

70

158

MASS

S P E C T R O M E T R Y

I N

INORGANIC

C H E M I S T R Y

s t u d y is the first r e p o r t e d n e g a t i v e i o n c l a s t o g r a m , d e t e r m i n e d f o r P O C l i n essentially the same m a n n e r b y r e c o r d i n g t h e oscilloscope trace. I o n i z a t i o n a n d a p p e a r a n c e potentials w e r e d e t e r m i n e d f r o m i o n i z a ­ t i o n efficiency curves b y t h e s e m i - l o g a r i t h m i c p l o t t e c h n i q u e of L o s s i n g , T i c k n e r , a n d B r y c e (112) a n d b y the e x t r a p o l a t e d v o l t a g e difference p r o c e d u r e o u t l i n e d b y W a r r e n ( 2 0 9 ) . E n e r g y c a l i b r a n t s u s e d i n these studies w e r e n i t r o g e n ( I = 15.58 e.v.) (64), m e r c u r y ( I = 10.43 e.v.) (140,141,142), a n d w a t e r ( I — 12.59 e.v.) (213). G o o d i n t e r n a l a g r e e ­ m e n t w a s o b t a i n e d u s i n g the different c a l i b r a n t s . E r r o r values q u o t e d i n this w o r k represent t h e r e p r o d u c i b i l i t y at one s t a n d a r d d e v i a t i o n .

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

3

SAUEREISEN CEMENT

Γ

Ί

Γ

TO HEATER TRANSFORMER

MOUNTING PLATE-

*0.I5%

THERMOCOUPLE L E A D S ' ^

-0.80"-

- i.io M

HIGH

TEMPERATURE

Figure 2.

SAMPLE

CELL

High Temperature

Sample

Cell

Heats of S u b l i m a t i o n . A n additional modification i n the time-offlight i n s t r u m e n t w a s m a d e (31) i n the i o n source to p e r m i t i n s t a l l a t i o n of a h i g h t e m p e r a t u r e c e l l . T h e f o l l o w i n g d e s i g n is a n i m p r o v e m e n t to the e a r l i e r m o d e l r e p o r t e d b y Shadoff ( 1 8 5 ) . T h e c e l l (see F i g u r e 2 ) , c o n s t r u c t e d f r o m s o l i d brass stock, h a d a n e n c l o s e d c a v i t y 0.8 i n c h e s i n l e n g t h a n d 0.18 inches i n d i a m e t e r a n d t w o m e t a l w i n g s for m o u n t i n g the

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

12.

KISER

E T

A L ,

Inorganic

159

Halides

c e l l o n the l o w e r side of the i o n source. Sauereisen # 3 1 c e m e n t was u s e d as i n s u l a t i o n a n d as a means of h o l d i n g the n i c h r o m e heater c o i l a n d c h r o m e l - a l u m e l t h e r m o c o u p l e ( s e a l e d b y silver solder t h r o u g h the w a l l of the c h a m b e r ) i n p l a c e . A n effusion insert p l u g a b o u t 0.2 inches i n l e n g t h , c o n t a i n e d a h o l e centered t h r o u g h the p l u g w h i c h t e r m i n a t e d i n a 5 m i l orifice. F i f t y to one h u n d r e d m i l l i g r a m s of s a m p l e w e r e p l a c e d i n the c a v i t y a n d the c e l l was sealed b y t i g h t e n i n g the brass effusion p l u g . A f t e r a t t a c h i n g the c e l l to the i o n source, the source assembly w a s i n s e r t e d i n the flight t u b e , a p p r o p r i a t e l y sealed, a n d the mass spectrometer w a s e v a c u a t e d to a b o u t 10" torr. H e a t i n g of the c e l l a n d its contents w a s a c c o m p l i s h e d b y p a s s i n g a c u r r e n t f r o m a v a r i a b l e p o w e r s t a t (0-12.6 v o l t s ) t h r o u g h the heater c o i l . T h e t e m p e r a t u r e of the c e l l was d e t e r ­ mined w i t h a T e m p c o portable pyrometer and millivoltmeter (model P M - 1 K 1 7 ) u s i n g a r o o m t e m p e r a t u r e j u n c t i o n as the reference for the thermocouple. T h e experiments for d e t e r m i n i n g the heats of s u b l i m a t i o n w e r e u s u a l l y c a r r i e d out b y h e a t i n g the s a m p l e r a t h e r t h a n c o o l i n g because of the deleterious effects of the v a p o r i z e d species o n the s e n s i t i v i t y of the m u l t i p l i e r d y n o d e strip. P r e l i m i n a r y measurements w i t h Z n B r s h o w e d no d e v i a t i o n outside the p r e c i s i o n l i m i t s b e t w e e n h e a t i n g a n d c o o l i n g curves. T h e heats of s u b l i m a t i o n w e r e c a l c u l a t e d u s i n g the f o r m of the C l a u s i u s - C l a p e y r o n e q u a t i o n g i v e n b y H o n i g a n d c o w o r k e r s (32, 74). U s i n g this t e c h n i q u e , a plot of the i o n c u r r e n t m u l t i p l i e d b y the absolute t e m p e r a t u r e as a f u n c t i o n of the r e c i p r o c a l of the absolute t e m p e r a t u r e y i e l d s a straight l i n e . T y p i c a l plots for t w o h a l i d e s are s h o w n i n F i g u r e s 3 a n d 4. T h e a c c u r a c y i n our measurements is a b o u t 2-3 k c a l . / m o l e , as m a y b e seen f r o m T a b l e I a n d F i g u r e s 3 a n d 4. Shadoff (185) u s e d the earlier d e s i g n of this c e l l to f o l l o w the t h e r ­ m a l d e c o m p o s i t i o n o f cis, a n d trans-[Co(en)^CL]CI. T h e present d e s i g n is m u c h s u p e r i o r to the earlier m o d e l for the s t u d v of "mass t h e r m a l a n a l y s i s " (52, 1 0 5 ) . M a t e r i a l s . M o s t of the c o m p o u n d s i n v e s t i g a t e d h e r e i n w e r e o b t a i n e d f r o m c o m m e r c i a l sources, a l t h o u g h several w e r e p r e p a r e d b y t e c h n i q u e s p u b l i s h e d i n the l i t e r a t u r e . T h e p e n t a c h l o r i d e s of n i o b i u m a n d t a n t a l u m w e r e o b t a i n e d f r o m C i t y C h e m i c a l C o . , a n d t r a n s f e r r e d u n d e r a d r y n i t r o g e n atmosphere to b r e a k - s e a l containers, e v a c u a t e d , a n d sealed. M e r c u r y b r o m i d e a n d iodide, zinc bromide, and phosphorus trichloride were Baker a n d A d a m son p r o d u c t s . M e r c u r y a n d z i n c c h l o r i d e s w e r e r e c e i v e d f r o m F i s h e r Scientific C o . P h o s p h o r u s t r i b r o m i d e a n d t h i o p h o s p h o r y l c h l o r i d e w e r e p u r c h a s e d f r o m Κ & Κ L a b o r a t o r i e s a n d the titanocene a n d z i r c o n o c e n e dichlorides were obtained from Arapahoe Chemicals, Inc. T h e a d d i t i o n c o m p o u n d T a C l , · S(C Hr>):> was s y n t h e s i z e d as out­ l i n e d b y F a i r b r o t h e r a n d N i x o n (37). D i e t h y l sulfide w a s d i s t i l l e d f r o m P-jOr, a n d f r a c t i o n a t e d i n a n 18-inch c o l u m n p a c k e d w i t h b o r o s i l i c a t e glass rings. A n i n t e r m e d i a t e f r a c t i o n b o i l i n g at 90° C . w a s u s e d i n the p r e p a r a t i o n . T h e r e a c t i o n b e t w e e n the o r g a n i c sulfide a n d t a n t a l u m p e n t a c h l o r i d e w a s c a r r i e d out i n s i d e a p o l y e t h y l e n e glove b a g u n d e r a d r y n i t r o g e n atmosphere. T h e r e s u l t i n g d a r k r e d s o l u t i o n w a s v a c u u m d i s t i l l e d at about 5 X 10" torr. S m a l l v o l u m e s of y e l l o w l i q u i d w e r e n

2

r

2

;]

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

160

MASS

S P E C T R O M E T R Y

I N

INORGANIC

c o l l e c t e d i n b o r o s i l i c a t e v i a l s e q u i p p e d w i t h glass b r e a k seals. analysis b y G a l b r a i t h L a b o r a t o r i e s gave g o o d agreement w i t h l a t e d e l e m e n t a l c o m p o s i t i o n s : T a C l , · S(G>H )->; C a l e : T a , 39.24; H. 2.24; C., 1 0 . 7 6 % . F o u n d : T a , 40.19; C l , 39.31; H. r

5

C H E M I S T R Y

Elemental the calcu­ 40.58, C l , 2.14; a n d

T h e s a m p l e of t h i o p h o s p h o r y l fluoride, P S F , w a s p r e p a r e d b y t h e t e c h n i q u e o u t l i n e d b y T u l l o c k a n d C o f f m a n ( 2 0 5 ) . O n e m o l e of N a F w a s s t i r r e d w i t h 0.65 m o l e t e t r a m e t h y l e n e sulfone. A f t e r e v a c u a t i o n of the system, 0.25 m o l e P S C l a w a s s l o w l y a d d e d a n d the m i x t u r e w a s h e a t e d to 150° C . T h e t h i o p h o s p h o r y l fluoride gas e v o l v e d w a s s u b s e q u e n t l y collected i n a —78° C . trap. T h e sample, without further distillation, w a s f o u n d to b e greater t h a n 9 5 % p u r e b y mass s p e c t r o m e t r i c analysis.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

3

8 0 0 6 0 0

A H

subl.

e

2

2

-

7

kcal

mole"

4 0 0

separate

runs

2 0 0

~ IOO φ 5

8 0

3 60 >» o

t

4 0

10

:t 4

2.1

2.3

2.2

2.4

χ

Ι Ο

-

1

l/T

Figure

3.

Second-Law Heat of Sublimation of clopentadienyltitantium Dichloride

Biscy-

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12.

KiSER E T A L .

Inorganic

Halides

2.2

2.3

161

4 0 0

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

2 0 0

-

100 £

8 0

?

6 0

σ

Ι

4 0

o

+

H

2 0

10 8

6

4

2.4

2.5x10"*

l / T

Figure 4.

Second-Law Heat of Sublimation of clopentadienylzirconium Dichloride

Biscy-

A u x i l i a r y Thermochemical Data. T h e f o l l o w i n g heats of f o r m a t i o n w e r e u t i l i z e d i n c a l c u l a t i o n s of i o n i c heats of f o r m a t i o n f r o m t h e a p p e a r ­ ance p o t e n t i a l d a t a . A l l values refer to t h e gaseous species. F , 18.88 (208); F " , - 6 4 . 7 (208); C I , 29.08 (208); B r , 26.74 ( 208); I., 25.54 ( 208); O , 59.55 (208); S, 66.64 ( 208); S", 17.42 (208); Z n , 31.19 (178); a n d H g , 14.54 (178) k c a l . / m o l e . Experimental Results. T h e e x p e r i m e n t a l d a t a o b t a i n e d i n these studies a r e g r o u p e d together a n d p r e s e n t e d b e l o w ; a b r i e f d i s c u s s i o n of these d a t a is i n c o r p o r a t e d i n t o this p r e s e n t a t i o n . T I T A N I U M T E T R A C H L O R I D E . T h e a p p e a r a n c e potentials a n d r e l a t i v e a b u n d a n c e s f o r t h e p o s i t i v e ions f o r m e d f r o m T i C l a r e g i v e n i n T a b l e I I . M a r r i o t t , T h o r b u r n , a n d C r a g g s ( 128 ) u s e d a L o z i e r t u b e to s t u d y T i C l a n d f o u n d t h e i o n i z a t i o n p o t e n t i a l of T i C l to b e 11.7 e.v. a n d o b s e r v e d the a p p e a r a n c e potentials of T i C V a n d C I " i n a n i o n p a i r process t o b e 12.9 e.v. I t is r e a d i l y seen u p o n e x a m i n i n g T a b l e I I , that these a p p e a r a n c e 4

4

4

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

162

MASS

Table I.

S P E C T R O M E T R Y

Molecule

This Study

Others

References

ZnBr HgCl Hgl Ti(C H ) Cl Zr(C H ) Cl Fe(C H )

30.0 19.3 20.5 22.7 22.8

30.1 18.50,19.85 20.46

(178) (20,178) (178)

16.81

(82)

2

2

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

2

5

5

2

2

5

5

2

2

5

Table II.

2

Appearance Potentials and Heats of Formation for Positive Ions Produced from Titanium Tetrachloride''

Ion

+

+

s

2 + 2 +

2 +

2 +

AH (TiCl ( )) f

Appearance Potential (e.v.)

53.5 100.0 33.0 39.0 40.8 1.9 6.9 13.0 3.0

+

+

fl

5

Rehtive Abundance at 70 e.v.

2

C H E M I S T R Y

(kcal./mole)

subl

4

INORGANIC

Comparison of Measured and Accepted Heats of Sublimation AU

TiCl TiCV TiCl TiCl Ti TiCl TiCL, TiCl Ti

I N

4

=

g

H.65 13.3 16.7 20.6 25.0 30.0 32.1 35.6 39.1

± ± ± ± ± ± ± ± ±

0.1 0.3 0.3 0.3 0.3 0.5 0.8 0.9 1.3

T i C l -> -> -» -> -> -> -> 4

5

A H (ion) (kcal./mole) f

Probable

Process

87 96 145 206 279 481 500 552 604

TiCl T i C l + CI T i C l o + 2C1 T i C l + 3C1 T i + 4C1 T i C l , + CI TiCl + 2C1 T i C l + 3C1 -> T i + 4C1 +

4

s

+

+

+

+

2 +

2

2 +

2 +

2 +

(1).

- 1 8 1 . 6 kcal./mole

potentials are i n reasonable agreement w i t h the d a t a r e p o r t e d h e r e i n . T h e r e is n o d o u b t c o n c e r n i n g the process c o r r e s p o n d i n g to the a p p e a r a n c e p o t e n t i a l for the T i C l i o n ; h o w e v e r , o u r assignment of the p r o b a b l e process for t h e f o r m a t i o n of T i C l i o n f r o m T i C l does n o t agree w i t h that of M a r r i o t t , et al. (128). U s i n g the a p p e a r a n c e p o t e n t i a l g i v e n i n T a b l e I I for T i , a heat of f o r m a t i o n of T i is c a l c u l a t e d to b e 279 k c a l . / m o l e , i n g o o d a g r e e m e n t w i t h a v a l u e of 269 k c a l . / m o l e d e t e r m i n e d b y c o m b i n i n g I ( T i ) = 6.83 e.v. (140, 141, 142) w i t h AH (Ti) = 112 k c a l . / m o l e (176). W e c o n ­ c l u d e , therefore, t h a t the process for the f o r m a t i o n of T i c a n not i n v o l v e a C I " i o n . It is difficult to u n d e r s t a n d w h y the T i C V i o n s h o u l d b e f o r m e d w i t h C I " i o n i n a n i o n p a i r process. T h e i o n i n t e n s i t y of T i C l is s i g n i f i ­ c a n t l y greater t h a n ( i t w a s n o t possible to o b t a i n a q u a n t i t a t i v e r a t i o ) that o b s e r v e d for the C I " i o n ; this too is difficult to u n d e r s t a n d i f the TiCl a n d C I " ions s h o u l d b e f o r m e d i n a n i o n p a i r process. F u r t h e r , i f t h e T i C l i o n w e r e f o r m e d i n a n i o n p a i r process AH (TiCh ) w o u l d be — 180 k c a l . / m o l e r a t h e r t h a n the 96 k c a l . / m o l e assigned i n T a b l e I I ; i n this case the heats of f o r m a t i o n of the T i C l . / ions w o u l d not e x h i b i t a r e a s o n a b l y m o n o t o n i e increase as χ is v a r i e d f r o m f o u r to zero. 4

+

3

+

4

+

+

f

{g)

+

3

3

+

+

3

+

f

+

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12.

KiSER E T A L .

Inorganic

163

Halides

A l o w i n t e n s i t y metastable i o n at m * = 126.45 ( f o r the most a b u n d a n t i s o t o p i c species ) w a s o b s e r v e d i n t h e mass s p e c t r u m of T i C l . T h i s corresponds to the metastable t r a n s i t i o n 4

TiCl

4

+

-> T i C l

H

+

+ CI.

(1)

S u c h a t r a n s i t i o n is i n agreement w i t h the c l a s t o g r a m f o r T i C l , s h o w n i n F i g u r e 1, i n w h i c h the T i C V i o n is o b s e r v e d to increase s h a r p l y , pass t h r o u g h a m a x i m u m , a n d decrease s l o w l y s i m u l t a n e o u s w i t h a m o n o t o n i e decrease i n the i n t e n s i t y of the T i C l i o n as the i o n i z i n g energy of t h e electrons is i n c r e a s e d . T h a t is, T i C V is f o r m e d f r o m T i C l and further decomposes to other species. T h u s , w e are f o r c e d to c o n c l u d e t h e p r o b a b l e process for t h e f o r m a t i o n of T i C V i o n g i v e n i n T a b l e I I , a n d t h e a c c o m p a n y i n g A H / ( T i C l ) . I n t e r e s t i n g l y , the d a t a of M a r r i o t t , T h o r b u r n , a n d C r a g g s (128) c a n b e m a d e c o m p a t i b l e w i t h the assignments g i v e n i n T a b l e I I b y e m p l o y i n g the i o n p a i r process

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

4

4

+

+

4

3

+

T i C l - » CI" + T i C l 4

2

+ CI.

(2)

T w o n e g a t i v e ions, C I " a n d T i C l " , w e r e o b s e r v e d to b e f o r m e d i n resonance processes f r o m T i C l . T h e s e are l i s t e d i n T a b l e I I I . T h e i n t e r m e d i a t e values d e t e r m i n e d for the resonance potentials ( a t t h e p e a k m a x i m a ) are i n agreement w i t h the n a t u r e of a d i s s o c i a t i v e e l e c t r o n c a p t u r e r e a c t i o n . T h e d a t a i n d i c a t e also a h i g h e l e c t r o n affinity of T i C l 3 . F i g u r e 1 also suggests t h a t the T i C V i o n u n i m o l e c u l a r l y d e c o m p o s e s to f o r m T i C l t h r o u g h the loss of a C I a t o m ; i n t u r n , the T i C l ion cons e c u t i v e l y decomposes to T i C l , a n d finally to T i . T h e energetic d a t a g i v e n i n T a b l e I I suggest the same c o n s e c u t i v e u n i m o l e c u l a r d e c o m p o s i t i o n of the r a t h e r a b u n d a n t d o u b l y - c h a r g e d ions. The T i C l i o n w a s not o b s e r v e d ; it is suggested that T i C l r is a " p s e u d o p a r e n t " d o u b l y - c h a r g e d i o n f o r m e d i n the i n i t i a l e l e c t r o n i m p a c t process. T h e c l a s t o g r a m d a t a s u p p o r t this m e c h a n i s m . 3

4

2

+

2

+

4

2 +

Table III.

Ion TiCLf ciNbCl " ciTaCl " ci4

4

+

+

+

:

Negative Ion Processes for Some Group I V B and V B Metal Chlorides Resonance Potential (e.v.)

Resonance Process

5.5 6.5 2.3 4.7 2.6 5.5

T i C l -> T i C L f + C I T i C l - » C I " 4- T i C l N b C l , -> N b C l " + CI N b C l -> C I " + N b C l T a C l - » T a C l " + CI TaCl CI" + T a C l 4

4

3

4

5

4

5

4

5

4

N I O B I U M A N D T A N T A L U M P E N T A C H L O R I D E S . T h e appearance potentials f o r the p r i n c i p a l ions f r o m a n d mass spectra of n i o b i u m a n d t a n t a l u m p e n t a c h l o r i d e are g i v e n i n T a b l e s I V a n d V , r e s p e c t i v e l y . T h e c l a s t o g r a m f o r t a n t a l u m p e n t a c h l o r i d e is s h o w n i n F i g u r e 5; t h a t f o r n i o b i u m p e n t a c h l o r i d e is s i m i l a r a n d therefore has not b e e n i n c l u d e d here. U n l i k e the t i t a n i u m t e t r a c h l o r i d e , the p a r e n t ions f r o m these c o m p o u n d s are e x t r e m e l y l o w i n t e n s i t y ions ( T a C l w a s not d e t e c t e d ) . 5

+

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

164

MASS

Table I V .

S P E C T R O M E T R Y

I N INORGANIC

C H E M I S T R Y

Appearance Potentials and Heats of Formation for Positive Ions Produced from Niobium Pentachloride α

Relative Abundance at 70 e.v.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

Ion NbCl NbCl NbCl NbCl NbCl Nb NbCl NbCl NbCl NbCl Nb

5 4 3 2

0.3 100.0 30.0 27.1 24.9 19.8 0.8 trace 8.5 7.5 1.8

+ + + +

+

+

4 3 2

2 + 2 + 2 +

2 +

2 +

a b

4

TaCl TaCl TaCl TaCl TaCl Ta TaCl TaCl TaCl TaCl Ta

4 3 2

+ + + +

+

+

4 3 2

2 + 2 + 2 +

2 +

2 +

R

Process 5

4

2

6

(80)» 59 (99) 173 236 327

• NbCl • NbCl + CI • N b C V + 2C1 • N b C l o + 3C1 • N b C l + 4C1 • N b + 5C1 +

+

b

+

+

+

(178,187).

Appearance Potentials and Heats of Formation for Positive Ions Produced from Tantalum Pentachloride" Relative Abundance at 70 e.v.

5

A H (ion) (kcal./mole) f

Probable NbCl

6

5

Ion

6

(11.0) 11.3 ± 0 . 2 (14.3) 18.8 ± 0.3 22.8 ± 0.5 28.0 ± 0.7

AH,( NbCl (g> ) = - 1 7 3 . 3 kcal./mole Estimated values.

Table V .

a

Appearance Potential (e.v.)

Appearance Potential (e.v.) (11.6) 12.0 ± 0.28 15.0 ± 0.4 19.6 ± 0.6 25.0 ± 0.5 29.5 ± 0.4 6

100.0 22.9 23.9 17.9 13.0 2.3 11.5 7.2 3.9 1.9

A H (ion) (kcal./mole) f

Probable Process T a C l -> T a C l -»TaCl ->TaCl -» TaCl -> T a C l -»Ta + 5

4

3 2

+

+

5 + + +

+

+ Cl + 2Cl + 3C1 + 4C1 5Cl

(84) 64 104 181 277 352

6

A H ( T a C W ) = - 1 8 3 . 3 kcal./mole (103,178). Estimated values. r

T y p i c a l of t h e h a l i d e s is t h e f a c t t h a t t h e ( p a r e n t m i n u s o n e h a l o g e n ) * i o n is t h e most intense i o n i n t h e mass s p e c t r u m . A l s o t y p i c a l of t h e m e t a l h a l i d e s is t h e r e l a t i v e l y large intensities of t h e d o u b l y - c h a r g e d ions. T h e fragmentation mechanisms are proposed to be similar to the m e c h a n i s m suggested f o r t h e t i t a n i u m t e t r a c h l o r i d e s t u d y . T h i s p r o p o s a l is s u p p o r t e d b y t h e clastograms. T h e clastograms f o r t h e d o u b l y - c h a r g e d i o n , a l t h o u g h n o t as w e l l defined as f o r t h e s i n g l y - c h a r g e d ions, s i m i l a r l y argue f o r s u c h m e c h a n i s m s . O n this basis, a n d o n t h e basis of t h e energetic d a t a , t h e processes s h o w n i n T a b l e I V a n d V h a v e b e e n assigned a n d heats of f o r m a t i o n f o r

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12.

RISER

E T

A L .

Inorganic

165

Halides

the ions c a l c u l a t e d . F r o m a r g u m e n t s s i m i l a r to those e m p l o y e d i n t h e t i t a n i u m t e t r a c h l o r i d e case, w e d o n o t b e l i e v e that C I " f o r m e d b y a n i o n p a i r process is significant i n a n y of the processes s t u d i e d here. B e c a u s e of t h e v e r y l o w a b u n d a n c e of the p a r e n t ions, i o n i z a t i o n potentials w e r e n o t d e t e r m i n e d . H o w e v e r , b y u t i l i z i n g the s t a t i s t i c a l t h e o r y of mass s p e c t r a i t is p o s s i b l e to estimate t h a t t h e i o n i z a t i o n p o t e n t i a l s w i l l b e 0.3 to 0.4 e.v. b e l o w t h e l o w e s t a p p e a r a n c e p o t e n t i a l . T h e r e f o r e , w e estimate I ( N b C l ) ^ 11.0 e.v. a n d I ( T a C l ) ^ 11.6 e.v. B e c a u s e t h e mercury background interfered w i t h a direct determination, A P ( N b C l ) — 14.3 e.v. has b e e n e s t i m a t e d b y i n t e r p o l a t i o n f r o m t h e r e g u l a r v a r i a t i o n i n the a p p e a r a n c e potentials a n d heats of f o r m a t i o n . T a b l e I I I records the n e g a t i v e ions o b s e r v e d a n d t h e i r energetics of f o r m a t i o n . It is e a s i l y seen t h a t these m o l e c u l e s b e h a v e v e r y m u c h l i k e titanium tetrachloride under electron impact. F r o m the i o n i c heats of f o r m a t i o n f o r the v a r i o u s M C 1 species i n T a b l e s I I , I V , a n d V , the i o n i z a t i o n potentials of the MC1„ w e r e c a l c u l a t e d u s i n g the heats of f o r m a t i o n for t h e T i C L , ( 1 , 1 7 6 ) a n d T a C l „ (103,176) moieties. T h e s e c o n d i o n i z a t i o n potentials of t h e T i C l species w e r e d e t e r m i n e d i n l i k e m a n n e r . A f f ^ N b C l s ) a n d A f f , ( N b ) are q u i t e s i m i l a r

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

5

3

3

M

+

f (

-J 20

Figure 5.

I •

I

I

30 40 50 E l e c t r o n Energy (ev)

Logarithmic

Clastogram chloride

L. 60

for Tantalum

Penta-

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

+

166

MASS

S P E C T R O M E T R Y

I N INORGANIC

C H E M I S T R Y

to AHf(TsiClô) a n d A f f , ( T a ) , r e s p e c t i v e l y , so that A H ( N b C l „ ) w e r e r e a d i l y e s t i m a t e d b y c o m p a r i s o n t o t h e A H ( T a C l „ ) values. T h e results of t h e c a l c u l a t i o n s a r e p r e s e n t e d i n T a b l e V I a n d c o m p a r e d t o t h e first i o n i z a t i o n p o t e n t i a l s o f t h e metals. I t is o b s e r v e d t h a t I ( M C I ) — I ( M ) , b u t as c h l o r i n e atoms a r e successively a d d e d , I ( M C 1 ) increases, a n d t h a t f o r T i C l , N b C l a n d T a C l the i o n i z a t i o n p o t e n t i a l s are m u c h greater a n d a p p r o a c h I ( C I ) . A l t h o u g h e x h i b i t i n g t h e same t r e n d , t h e s e c o n d ionization potentials of TiCl„ d o not approach the second ionization p o t e n t i a l of c h l o r i n e as d i s t i n c t l y . /

/

W

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

4

5

Table V I .

5

Ionization Potentials for Some G r o u p I V B and V B Metal Chlorides Spectroscopic

Molecule TiCl TiCl TiCl TiCl Ti

11.65 9.7 9.3 8.1

4

s

2

NbCl NbCl NbCl NbCl NbCl Nb TaCl TaCl TaCl TaCl TaCl Ta 1

First Ionization Potential (e.v.)

3

2

8.3 7.5 7.6 6.7

s

2

± 0.15 ± 0.3 ± 0.3 ± 0.4 6.82

(140,141,142)

6.84

(140,141,142)

7.88

(140,141,142)

16.7 15.4 15.0 14.1

± ± ± ±

0.6 0.9 1.0 1.4

11.0 ± 0.3 ± 0.3 ± 0.4 ± 0.5 11.6 ± 0.3 ± 0.3 ± 0.6 ± 0.5 e

5

4

Ref.

Second Ionization Potential (e.v.)

e

5

4

First Ionization Potential (e.v.)

Values

8.9 8.1 7.9 8.2

Estimated values.

It is suggested f r o m these results t h a t t h e m o l e c u l a r o r b i t a l f r o m w h i c h t h e e l e c t r o n is w i t h d r a w n u p o n i o n i z a t i o n is o n e i n w h i c h b o t h the m e t a l a n d t h e h a l o g e n o r b i t a l c o n t r i b u t i o n s a r e i m p o r t a n t . I t w o u l d b e e x p e c t e d t h a t t h e m e t a l o r b i t a l s m a k e a greater c o n t r i b u t i o n f o r t h e l o w e r o x i d a t i o n states of the m e t a l , a n d t h a t the h a l o g e n o r b i t a l c o n t r i b u tions w o u l d b e m o r e i m p o r t a n t f o r h i g h e r o x i d a t i o n states o f t h e m e t a l ; this e x p e c t a t i o n appears t o b e b o r n e o u t b y these results a n d also b y the results o f p r e v i o u s mass s p e c t r o m e t r i c studies o f the m e t a l c a r b o n y l s . Z I N C C H L O R I D E A N D B R O M I D E . T h e mass spectra of z i n c c h l o r i d e a n d b r o m i d e ( T a b l e s V I I a n d V I I I ) w e r e o b t a i n e d b y h e a t i n g samples o f the compounds to approximately 4 0 0 ° C . i n the h i g h temperature sample

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12.

KISER

E T A L .

Table VII.

ZnCl> ZnCl Zn Cl

100.0 12.3 18.6 74.3

+

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

+

+

+

a

167

Halides

Appearance Potentials and Heats of Formation for Positive Ions Produced from Zinc Chloride (at 6 8 3 ° K . ) " Relative Abundance at 70 e.v.

Ion

Inorganic

Appearance Potential (e.v.) 11.7 13.7 14.6 19.6 5

± ± ± ±

0.2 0.2 0.3 0.3

S

A H (ion) (kcal./mole) f

Probable Process ZnCl - » -> -> -» 2

208 224 216 329

ZnCL/ Z n C l + CI Z n + 2C1 C l + Zn + CI +

+

+

àH (ZnCl (g>) = - 6 3 . 0 kcal./mole (178). f

2

Table VIII.

Appearance Potentials and Heats of Formation for Positive Ions Produced from Zinc Bromide (at 6 7 3 ° K . ) "

Relative Abundance at 70 e.v.

Ion ZnBr ZnBr

2

100.0

+

11.3 4.8 12.4 23.0

+

ZnBro Zn Br

2+

+

+

• AH (ZnBr r

2 ( g )

Appearance Potential (e.v.) 10.3 ± 0.3, 13.4 ± 0.2 9

14.7 ± 0.3 17.7 ± 0.3

A H (ion) (kcal./mole) f

Probable Process

192 234

Z n B r -> Z n B r - » ZnBr* + B r 2

2

+

237 302

- » Z n + 2Br - » B r + Z n + Br +

+

) = - 4 8 . 1 kcal./mole (178).

c e l l s h o w n i n F i g u r e 2. N o a p p a r e n t v a r i a t i o n s i n the 7 0 e.v. m o n o i s o t o p i c mass s p e c t r u m w e r e n o t e d over t h e t e m p e r a t u r e r a n g e s t u d i e d ; this i n d i cates t h a t these m a t e r i a l s v a p o r i z e d as m o n o m e r s u n d e r t h e e q u i l i b r i u m conditions (probably undersaturated) obtained w i t h the h i g h temperature c e l l . A s a result, t h e ions o b s e r v e d a r e c a u s e d b y t h e f r a g m e n t a t i o n of t h e p a r e n t m o l e c u l e i o n a n d are n o t i o n i z e d d e c o m p o s i t i o n p r o d u c t s . T h i s is also b o r n e o u t b y t h e m a g n i t u d e of t h e a p p e a r a n c e potentials d e t e r m i n e d f o r these ions. T h e processes assigned f o r t h e dissociative i o n i z a t i o n a r e consistent w i t h t h e a p p e a r a n c e potentials m e a s u r e d , w i t h t h e processes assigned f o r the other m e t a l h a l i d e s s t u d i e d i n this w o r k , a n d w i t h t h e heats of f o r m a t i o n of t h e m e t a l ions. T h e i o n i z a t i o n p o t e n t i a l d e t e r m i n e d f o r Z n C l is l o w e r t h a n the v a l u e of 12.9 e.v. f o u n d b y F o o t e a n d M o h l e r (41). T h e heat of s u b l i m a t i o n d e t e r m i n e d w i t h t h e S e c o n d L a w f o r Z n B r (see T a b l e I ) is i n g o o d agreement w i t h t h e l i t e r a t u r e v a l u e (176). I t is of p a r t i c u l a r interest to note that i n t h e mass spectra of b o t h m o l e c u l e s the p a r e n t - m o l e c u l e i o n is the most intense i o n . T h e p r o p o s e d f r a g m e n t a t i o n process f o r these c o m p o u n d s is that t h e Z n X , f o r m e d u n i m o l e c u l a r l y f r o m Z n X , decomposes via c o m p e t i t i v e paths to f o r m Z n a n d X . T h e negative h a l i d e ions w e r e o b s e r v e d i n the mass s p e c t r u m o f b o t h c o m p o u n d s at v e r y l o w electron energies (resonance potentials of a p p r o x i m a t e l y 5 e.v.). O n l y i n z i n c b r o m i d e w a s Z n X " o b s e r v e d ; this i o n w a s d e t e r m i n e d to h a v e a s h a r p resonance c a p t u r e p e a k a t 4.5 e.v. a n d 2

2

+

2

+

+

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

+

168

MASS

S P E C T R O M E T R Y

I N INORGANIC

C H E M I S T R Y

w a s n o t f o u n d t o b e p r o d u c e d i n a n y i o n p a i r process. N o Z n C l " w a s n o t e d at a n y e l e c t r o n energy. M E R C U R I C C H L O R I D E , B R O M I D E , A N D IODIDE. T h e mass s p e c t r a a n d appearance potentials for mercuric chloride, bromide, a n d iodide are r e p o r t e d i n T a b l e s I X - X I . I n e a c h o f these studies t h e H g i o n f o r m e d b y d i s s o c i a t i v e i o n i z a t i o n c o u l d not b e d e t e r m i n e d b e c a u s e of the m e r c u r y b a c k g r o u n d s p e c t r a c a u s e d b y t h e u s e of a m e r c u r y d i f f u s i o n p u m p w i t h the t i m e - o f - f l i g h t mass spectrometer. H o w e v e r , t h e H g peaks o b s e r v e d w e r e m u c h less intense t h a n t h e p a r e n t m o l e c u l e i o n . I n e v e r y case, t h e +

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

+

Table I X . Appearance Potentials and Heats of Formation for Positive Ions Produced from Mercuric Chloride (at 4 6 0 ° K . ) α

Relative Abundance at 70 e.v.

Ion HgCl HgCl HgCl HgCl Cl

72.7 9.2 1.6 0.2 100.0

+

2 +

2 +

2

2 +

+

Probable Process

AH (ion) (kcal./mole)

HgClo -> H g C l - » H g C l + CI -*HgCl -^HgCl + Cl - > C l + H g + CI

214 213 616 672 328

Appearance Potential (e.v.) 10.86 12.06 28.3 32.0 17.7

± ± ± ± ±

0.25 0.26 0.5 0.5 0.3

t

+

2

+

2 +

2

2 +

+

' A t f , ( H g C l > ) = - 3 6 . 5 kcal/mole (178). 2(g

Table X .

Appearance Potentials and Heats of Formation for Positive Ions Produced from Mercuric Bromide (at 4 5 4 ° K . ) a

Relative Abundance at 70 e.v.

Ion HgBr HgBr HgBr HgBr Br

2

100.0 17.5 6.4 2.0 34.3

+

+

2

2 +

2 +

+

AH (HgBr ( r))

ft

2 î

r

Appearance Potential (e.v.) 9.94 12.09 25.7 31.1 16.7

± ± ± ± ±

0.15 0.17 0.3 0.7 0.2

Probable

Process

HgBro-*HgBr

ΔΆ{ (ion) (kcal/mole) 208 230 571 669 322

+

2

- » H g B r + Br -*HgBr -> H g B r + Br ->Br + H g + B r +

2

2 +

2 +

+

= - 2 1 . 7 k c a l / m o l e (178).

Table X I . Appearance Potentials and Heats of Formation for Positive Ions Produced from Mercuric Iodide (at 4 4 5 ° and 4 9 3 ° K . ) a

Relative Abundance at 70 e.v.

Ion HgV Hgl Hgl

100.0 18.8 7.6 1.7 41.6

+

2

2 +

V I

+

Appearance Potential (e.v.) 8.87 ± 0.22 11.3 ± 0.4 21.4 ± 0.5

°AH,(HgI < ,) = -4.8kcal./mole 2

8

HgI -»HgIo - » H g P 4-1 ->HgI -» I + ? - • Γ + Hg + I +

2

2

2

15.5 ± 0.4

ΑΆ (ion) (kcal./mole) {

Probable Process

2 +

200 230 489

+

(178).

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

313

12.

KISER

E T

A L .

Inorganic

169

Halides

p a r e n t m o l e c u l e ions w e r e t h e most intense ions except f o r t h e H g C l s t u d y , i n w h i c h t h e p a r e n t m o l e c u l e i o n is second-most intense after t h e C l ion. T h e p r o b a b l e processes a r e consistent w i t h t h e d e t e r m i n e d a p p e a r ­ ance potentials a n d w i t h t h e heats of f o r m a t i o n of C l , B r , a n d Γ . I t is interesting t o note that t h e i o n i z a t i o n p o t e n t i a l of H g B r a n d H g l a r e less t h a n t h e i o n i z a t i o n p o t e n t i a l of t h e i r constituent atoms. I n the H g C l case, t h e i o n i z a t i o n p o t e n t i a l is o n l y s l i g h t l y greater t h a n that of m e r c u r y , b u t is s i g n i f i c a n t l y less t h a n t h e i o n i z a t i o n p o t e n t i a l of t h e c h l o r i n e a t o m , a n d is also l o w e r t h a n t h e v a l u e of I ( H g C l ) r e p o r t e d b y F o o t e a n d M o h l e r (41). T h e p a r e n t d o u b l y - c h a r g e d species i n T a b l e I X to X I are n o t e d to b e r e l a t i v e l y intense a n d that this i n t e n s i t y increases f r o m t h e c h l o r i d e t o the i o d i d e . T h e s e c o n d i o n i z a t i o n potentials c a l c u l a t e d f r o m t h e d a t a i n these tables f o r t h e c h l o r i d e , b r o m i d e a n d i o d i d e a r e 17.4 ± 0.6, 15.8 ± 0.3, a n d 12.5 ± 0.6 e.v., respectively. T h i s decrease i n t h e second i o n i z a ­ t i o n potentials as o n e goes f r o m t h e c h l o r i d e t o t h e i o d i d e p a r a l l e l s t h e decrease i n t h e first i o n i z a t i o n potentials o f these m o l e c u l e s , as w e l l as the v a r i a t i o n i n t h e second i o n i z a t i o n potentials of H g C l a n d H g B r ( 19.9 ± 0.6 a n d 19.0 ± 0.7 e.v., respectively. ) I n a s t u d y of negative i o n f o r m a t i o n f r o m these three c o m p o u n d s w e o b s e r v e d n o H g X " i o n at a n y electron energy, a l t h o u g h t h e C I " , B r ' , a n d Γ ions w e r e f o u n d to b e f o r m e d b y dissociative resonance c a p t u r e at 2 - 4 e.v. N o n e g a t i v e ions w e r e n o t e d to b e f o r m e d i n i o n p a i r processes. 2

+

+

+

2

2

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

2

2

Table X I I .

Relative Abundance at 70 e.v.

Ion PC1 PC1 PC1 Cl P

Appearance Potentials and Heats of Formation for Positive Ions Produced from Phosphorus Trichloride"

3 2

37.0 100.0 19.0 31.2 10.0

+ +

+

+

+

Appearance Potential (e.v.) 10.7 12.3 16.8 20.2 21.2 5

± ± ± ± ±

0.2 0.2 0.3 0.5 0.5

Probable Process

Δ Η , (ion) (kcal./mole)

PC1 -> PC1 - > PCL> + C I - > P C 1 + 2C1 - » C l + PCI + CI - » P + 3C1 3

3

+

+

+

+

+

179 186 261 (37) 333

b

" Δ Η , ( P C l ) = - 6 8 . 6 kcal./mole (208). *AH,(PCl< >). 3 ( g )

g

P H O S P H O R U S T R I C H L O R I D E A N D T R I B R O M I D E . T h e energetic d a t a g i v e n i n T a b l e X I I f o r p h o s p h o r u s t r i c h l o r i d e are results r e p o r t e d b y S a n d o v a l , M o s e r , a n d K i s e r (180). T h e heats of f o r m a t i o n f o r t h e p o s i t i v e ions h a v e b e e n r e c a l c u l a t e d u s i n g m o r e recent t h e r m o c h e m i c a l d a t a (208). B o t h t h e m o n o i s o t o p i c mass s p e c t r a l c r a c k i n g p a t t e r n a n d t h e energetic values a r e i n g o o d agreement w i t h d a t a r e p o r t e d s u b s e q u e n t l y b y H a l m a n n a n d K l e i n ( 5 6 ) . T h e mass s p e c t r u m r e p o r t e d h e r e i n , o b t a i n e d at 70 e.v., is i n f a i r agreement w i t h that r e p o r t e d b y K u s c h , H u s t r u l i d , a n d T a t e (104) u s i n g 120 e.v. i o n i z i n g energy. T h e m o n o i s o t o p i c mass s p e c t r u m , a p p e a r a n c e potentials of t h e p o s i ­ t i v e ions, a n d heats of f o r m a t i o n of t h e p o s i t i v e ions f r o m p h o s p h o r u s

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

170

MASS

S P E C T R O M E T R Y

I N INORGANIC

C H E M I S T R Y

t r i b r o m i d e a r e presented i n T a b l e X I I I . A c o m p a r i s o n o f T a b l e s X I I a n d X I I I reveals a m a r k e d s i m i l a r i t y i n t h e mass s p e c t r a l c r a c k i n g p a t ­ terns o f the c h l o r i d e a n d b r o m i d e c o m p o u n d s , a n d i n t h e processes f o r the f o r m a t i o n of these ions i n t h e i r t h r e s h o l d regions. It is t o b e n o t e d that the p r o b a b l e processes assigned f o r the f o r m a ­ t i o n o f t h e p o s i t i v e ions d o n o t i n v o l v e i o n p a i r f o r m a t i o n processes. H a l m a n n a n d K l e i n ( 5 6 ) h a v e suggested t h a t P C 1 i s f o r m e d f r o m P C 1 in the reaction Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

2

PX

- » PX

3

2

+

+

3

+ Χ"

(3)

U s i n g the arguments o u t l i n e d a b o v e ( e v e n t h o u g h a metastable t r a n s i t i o n w a s not o b s e r v e d ) w e c o n c l u d e that R e a c t i o n 3 does not assume a signifi­ cant rôle i n t h e f o r m i n g of P X ions f r o m P C 1 a n d P B r . A l t h o u g h a c a r e f u l search f o r metastable transitions i n these c o m p o u n d s w a s m a d e u s i n g b o t h t h e t i m e - o f - f l i g h t a n d t h e M S - 9 i n s t r u m e n t s , n o "metastable p e a k s " w e r e o b s e r v e d . T h e b e h a v i o r o f t h e P X c u r v e i n t h e clastograms indicates that P C 1 arises f r o m P C 1 . T h e s e facts are c o m p a t i b l e w i t h a "fast" metastable t r a n s i t i o n . 2

+

3

2

2

Table XIII.

3

2

60.0 100.0 30.7 — 19.0

+

+

+

+

+



ΔΗ,(ΡΒΓ ( ) = "ΔΗ,(ΡΒΓ >). 8

Β )

3

+

+

Appearance Potentials and Heats of Formation for Positive Ions Produced from Phosphorus Tribromide"

Relative Abundance at 70 e.v.

Ion PBr PBr PBr Br P

+

3

Appearance Potential (e.v.) 10.0 ± 11.4 ± 15.6 ± 17.1 ± 20.1 ±

0.2 0.2 0.3 0.5 0.5

A H (ion) (kcal./mole) f

Probable Process P B r -> -> -> -> -» 3

PBr P B r + Br P B r + 2Br B r + PBr + Br P + 3Br 3

2

197 203 273 (33) 350

+

+

+

+

+

h

- 3 3 . 3 kcal./mole (208).

( Β

T w o features w h i c h w a r r a n t a t t e n t i o n c o n c e r n i n g these p h o s p h o r u s h a l i d e systems i n contrast w i t h the m e t a l h a l i d e systems discussed a b o v e c o n c e r n d o u b l y - c h a r g e d ions a n d negative ions. A s p o i n t e d o u t earlier, the m e t a l h a l i d e s s h o w a t e n d e n c y t o f o r m r e l a t i v e l y intense d o u b l y c h a r g e d ions, whereas o n l y a f e w d o u b l y - c h a r g e d ions a r e o b s e r v e d i n p h o s p h o r u s t r i c h l o r i d e a n d t r i b r o m i d e a n d t h e y a r e of a m u c h l o w e r i n t e n s i t y . T h e r e l a t i v e intensities o f the X " ions ( t h e o n l y n e g a t i v e ions o b s e r v e d ) f o r m e d b y b o t h dissociative resonance c a p t u r e a n d b y i o n p a i r f o r m a t i o n , are m u c h greater i n the p h o s p h o r u s h a l i d e s t h a n i n the m e t a l h a l i d e s . T h e p h o s p h o r u s h a l i d e s are s i m i l a r to t h e m e t a l h a l i d e s i n o n e i m p o r t a n t respect: t h e y a l l h a v e as t h e i r base p e a k the ( p a r e n t - h a l o g e n ) ion. P H O S P H O R Y L C H L O R I D E A N D T H I O P H O S P H O R Y L F L U O R I D E . Halmann a n d K l e i n ( 5 6 ) h a v e r e p o r t e d mass s p e c t r a l d a t a f o r P O C l . T h e d a t a r e p o r t e d i n this w o r k ( T a b l e X I V ) differs i n several i m p o r t a n t respects f r o m t h e studies o f t h e e a r l i e r investigations. +

3

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12.

KISER

E T

Table X I V .

POCl POCl POCl PC1 PO P Cl

3

2

171

Halides

Appearance Potentials and Heats of Formation for Positive Ions Produced from Phosphorus Oxytrichloride"

Relative Abundance at 70 e.v.

Ion

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

Inorganic

A L .

Appearance Potential (e.v.)

44.2 100.0 4.1 6.9 37.3 12.6 23.7

+

+

+

+

+

+

+

11.4 12.8 15.6 20.2 16.6 28.1

± ± ± ± ± ±

A H (ion) (kcal./mole) f

Probable

Process

129 133 168 273 162 369

POCl -» POCl -»POCl + C l - » P O C l + 2C1

0.3 0.3 0.3 0.4 0.4 0.5

3

3

2

+

+

+

-*PCI

+

+ O + P O + 3C1 - > P + Ο + 3C1 -> C l + ? +

+

+

" A H ( P O C l ( ) = -133.48 kcal./mole (208). r

3

g )

T h e mass s p e c t r a l c r a c k i n g patterns f r o m the t w o i n v e s t i g a t i o n s are i n f a i r agreement, w i t h the e x c e p t i o n of the d a t a for three ions. H a l m a n n a n d K l e i n h a v e r e p o r t e d a 3 % a b u n d a n c e of the P C 1 i o n a n d 8% a b u n d a n c e of the P C 1 i o n . W e o b s e r v e d no P C 1 a n d o n l y a v e r y s m a l l P C 1 i o n i n t e n s i t y . W e d i d find the P O C l i o n ( w i t h a b o u t 4 % r e l a t i v e a b u n d a n c e ) a n d w e r e a b l e to o b t a i n energetic d a t a for this i o n ; H a l m a n n a n d K l e i n d i d not r e p o r t t h e presence of this i o n i n t h e i r i n v e s t i g a t i o n s of POCI3. It is b e l i e v e d t h a t t h e i r s a m p l e c o n t a i n e d some a m o u n t of P C 1 as i m p u r i t y , as e v i d e n c e d also f r o m the l o w a p p e a r a n c e potentials r e ­ p o r t e d f o r the P C l a * a n d P C 1 ions. A l t h o u g h these f e w d i s c r e p a n c i e s i n the mass s p e c t r u m of P O C l exist, the m o r e i m p o r t a n t disagreement b e t w e e n the t w o studies concerns the energetic d a t a . W e r e c a l l f r o m the i n o r g a n i c h a l i d e results d i s c u s s e d a b o v e t h a t a n increase of a p p r o x i m a t e l y 1.5 to 2.0 e.v. occurs for t h e l o w e s t a p p e a r a n c e p o t e n t i a l a b o v e the i o n i z a t i o n p o t e n t i a l i f a n y signifi­ cant a m o u n t of the p a r e n t - m o l e c u l e i o n is o b s e r v e d . I n T a b l e X I V w e s h o w that this h o l d s t r u e as w e l l for P O C l . T h e results d o n o t agree w i t h those o b t a i n e d b y H a l m a n n a n d K l e i n ( 5 6 ) w h e r e o n l y a 0.2 e.v. d i f f e r ­ ence i n the i o n i z a t i o n p o t e n t i a l a n d the lowest a p p e a r a n c e p o t e n t i a l w a s r e p o r t e d . If the a p p e a r a n c e p o t e n t i a l of the P O C l ion, reported to be 13.3 e.v., is a c c e p t e d , t h e n the i o n i z a t i o n p o t e n t i a l of P O C l is e x p e c t e d to b e / — 11.5 e.v., i n agreement w i t h o u r results. F r o m p r e l i m i n a r y studies of P O F a n d P O B r i n this l a b o r a t o r y , w e find the i o n i z a t i o n p o t e n t i a l s of these m o l e c u l e s to b e 13.4 e.v. a n d 10.46 e.v., r e s p e c t i v e l y . T h e i o n i z a t i o n p o t e n t i a l of P O C l is e x p e c t e d to b e i n t e r m e d i a t e b e t w e e n these t w o values, a g a i n s u b s t a n t i a t i n g a n i o n i z a t i o n p o t e n t i a l of P O C l d i s t i n c t l y l o w e r t h a n 13 e.v. T h e v a l u e of the a p p e a r a n c e p o t e n t i a l of P C 1 o b t a i n e d b y H a l m a n n a n d K l e i n is m u c h l o w e r t h a n the v a l u e w e r e p o r t i n T a b l e X I V . T h i s is to b e e x p e c t e d i f t h e y h a v e P C I c o n t a m i n a t i n g t h e i r P O C l s a m p l e . I n fact, the a p p e a r a n c e p o t e n t i a l of P C 1 f r o m P C 1 a n d f r o m P O C l r e p o r t e d b y H a l m a n n a n d K l e i n agree. W e c o n c l u d e , therefore, that m a n y of t h e processes assigned b y H a l m a n n a n d K l e i n are i n error. T h e p o s i t i v e i o n c l a s t o g r a m for P O C l is s h o w n i n F i g u r e 6. It is i n t e r e s t i n g to note t h a t the c o n s e c u t i v e u n i m o l e c u l a r d e c o m p o s i t i o n r e a c 3

2

2

+

3

+

+

+

+

3

2

+

3

3

2

+

3

3

3

3

3

+

3

3

+

3

3

3

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

172

MASS S P E C T R O M E T R Y

IN INORGANIC C H E M I S T R Y

tions w h i c h a p p e a r to b e the major d e c o m p o s i t i o n paths i n the m e t a l a n d p h o s p h o r u s h a l i d e systems n o longer are the o n l y p a t h w a y s o c c u r r i n g i n POCÎ3. A d e c o m p o s i t i o n scheme w h i c h i n c l u d e s b o t h consecutive a n d c o m p e t i t i v e modes of d e c o m p o s i t i o n is m o r e p r o b a b l e . T h e c l a s t o g r a m a n d energetic d a t a suggest the f o l l o w i n g d e c o m p o s i t i o n s c h e m e :

POCV

1.4 e.v. 2.8 e.v. 4.6 e.v. 7.9 e.v. -» POCL -> POCI -> PC1 -> P I 3.8 e.v. PO +

+

+

+

+

A l t h o u g h a search was m a d e for metastable transitions i n POCI3, n o n e w e r e i d e n t i f i e d . T h u s , the c l a s t o g r a m i n f o r m a t i o n is of p a r t i c u l a r i m p o r tance to this s t u d y .

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12.

KISER E T A L .

Inorganic

173

Halides

T h e f o l l o w i n g negative ions w e r e o b s e r v e d f r o m P O C l : P O C l ~ , P O C I " , P C I " , P O " , a n d C I " . E x c e p t for the P O " i o n , H a l m a n n a n d K l e i n (56) o b s e r v e d these same ions a n d PC1 ~, PC1 ~, a n d O " i n a d d i t i o n to those w e report. F i g u r e 7 is a negative i o n c l a s t o g r a m of P O C l . O n e m a y observe that this n e g a t i v e i o n c l a s t o g r a m , the first s u c h treatment of n e g a t i v e i o n spectra as a f u n c t i o n of the electron energy, is b a s i c a l l y different f r o m the p o s i t i v e i o n clastograms d i s c u s s e d a b o v e . T h e i o n intensities v a r y i n a m a n n e r u n l i k e the p o s i t i v e i o n analogs because of the t w o different types of i o n i z a t i o n processes w h i c h o c c u r w i t h n e g a t i v e ions; n a m e l y , resonance processes a n d i o n p a i r f o r m a t i o n . A b s o l u t e energetic d a t a w e r e not o b t a i n e d for these ions because of the difficulties e n c o u n t e r e d i n the c a l i b r a t i o n of the e n e r g y axis. I t is not possible to assign a u n i q u e d e c o m p o s i t i o n m e c h a n i s m of the n e g a t i v e ions f r o m F i g u r e 7. 8

3

2

2

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

3

Figure

7.

Logarithmic Clastogram of Negative Phosphoryl Chloride

Ions from

S i m i l a r to the other h a l i d e s discussed i n this w o r k , the ( p a r e n t - m i n u s one h a l o g e n ) i o n is a v e r y intense i o n i n the mass s p e c t r u m of P O C l . I n contrast to POCI3 a n d m a n y of the other h a l i d e s , t h i o p h o s p h o r y l fluoride, exhibits a l a r g e p a r e n t i o n (see T a b l e X V ) . M o r e u n u s u a l is the o b s e r v a t i o n that the S i o n is the second most intense i o n i n the mass s p e c t r u m . T h e i o n i z a t i o n p o t e n t i a l of P S F is q u i t e l o w suggesting the +

3

+

3

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

174

MASS S P E C T R O M E T R Y IN INORGANIC C H E M I S T R Y

Table X V .

Appearance Potentials and Heats of Formation for Positive Ions Produced from Thiophosphoryl Fluoride 0

Relative Abundance at 70 e.v.

Ion PSF PSF./ PF PFo PF PS F S 3

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

3

100.0 27.1 6.9 26.0 6.8 2.4 trace 73.5

+

+

+

+

+

+

+

" AH/(PSF

3 ( g

Appearance Potential (e.v.)

Probable Process

A H (ion) (kcal./mole)

11.1 ± 0 . 3 16.0 ± 0.2 14.3 ± 0.2 17.2 ± 0.3 22.9 ± 0.4 19.2 ± 0.5

PSF ->PSF - » PSF + F - » P F + S" - » PF„ + F + S" - » PF + F + S - » P S + 2 F + F~

2 96 58 106 207 216

f

3

3

2

3

+

+

+

+

+

2

+

) ) = - 2 5 4 kcal./mole (196).

removal of a n electron from a n orbital o n the phosphorus or sulfur rather t h a n t h e h a l o g e n atoms. W e h a v e h a d to treat t h e P S F , s h o w n i n T a b l e X V , i n a m a n n e r different f r o m t h e p r e c e e d i n g c o m p o u n d s ; i o n p a i r formations h a v e b e e n w r i t t e n f o r t h r e e of t h e processes assigned. F " w a s o b s e r v e d f r o m P S F at h i g h e r e l e c t r o n energies. AH (FS ) = 216 k c a l . / m o l e agrees w i t h values of 209 a n d 240 k c a l . / m o l e d e t e r m i n e d f r o m P S C 1 a n d P S B r b y W a d a (207). N o S" i o n w a s o b s e r v e d at a n y e l e c t r o n energy i n o u r studies; h o w e v e r , i t is p o s t u l a t e d i n T a b l e X V t o g i v e agreement o f A H / ( P F ) = 5 8 k c a l . / m o l e w i t h values of 78 k c a l . / m o l e f r o m W a d a ' s P F s t u d y (202), a n d a n u n p u b l i s h e d v a l u e of 4 0 k c a l . / m o l e f r o m P F . If t h e process y i e l d e d S r a t h e r t h a n S", t h e c a l c u l a t e d A i / , ( P F ) w o u l d be m u c h lower ( — 9 k c a l . / m o l e ) . Similar reasoning was used i n m a k i n g the assignment f o r t h e P F i o n i n T a b l e X V . I n a n effort t o a t t e m p t to observe T a S C l / , w h e r e η = 0 t o 3, T a C l * S ( C H ) was prepared a n d studied. Fairbrother a n d N i x o n (38) r e p o r t t h a t this c o m p o u n d w i t h s t a n d s d e c o m p o s i t i o n at r e d u c e d pressure a n d e l e v a t e d temperatures. U p o n i n t r o d u c t i o n o f this m a t e r i a l to t h e mass spectrometer i o n source, f r a g m e n t a t i o n d i d o c c u r ; h o w e v e r , o n l y f r a g m e n t ions i n d i c a t i v e of T a C l a n d S ( C H ) w e r e observed. T h e S ( C H ) f r a g m e n t a t i o n p a t t e r n a g r e e d w i t h t h e k n o w n mass spec­ t r u m of d i e t h y l sulfide, a n d t h e T a C l p a t t e r n w a s i d e n t i c a l t o t h a t o b ­ s e r v e d f o r T a C l (see a b o v e d i s c u s s i o n ) . T h e c l a s t o g r a m a n d a p p e a r a n c e potentials d e t e r m i n e d c o n f i r m e d that w e w e r e o b s e r v i n g o n l y t h e d e c o m ­ p o s i t i o n p r o d u c t s of T a C l · S ( C H ) a n d that T a S C l w a s n o t f o r m e d i n t h e d e c o m p o s i t i o n . T h e r e f o r e , a c o m p a r i s o n of this system t o other M Y X c o m p o u n d s w a s n o t possible. 3

3

+

f

3

8

3

+

5

3

3

2

5

2

5

+

2

5

2

5

+

2

5

2

2

5

5

5

2

5

2

3

3

Conclusions I n t h e m e t a l h a l i d e s , a significant c o n t r i b u t i o n o f t h e h a l o g e n o r b i t a l s to t h e h i g h e s t m o l e c u l a r o r b i t a l is d e d u c e d f r o m t h e values of t h e i o n i z a ­ t i o n potentials of these c o m p o u n d s . C o m m o n l y , t h e most intense i o n

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12.

KISER E T A L .

Inorganic

Halides

175

o b s e r v e d i n t h e 70 e.v. mass s p e c t r u m is t h e ( p a r e n t m i n u s one h a l o g e n )

+

i o n , a l t h o u g h several of t h e m e t a l h a l i d e s h a v e t h e ( p a r e n t ) i o n as t h e +

base peak. I o n p a i r processes are f o u n d g e n e r a l l y n o t to p l a y a significant rôle i n t h e f o r m a t i o n of p o s i t i v e ions. M a n y of t h e f r a g m e n t a t i o n m e c h a n i s m s , as suggested f r o m t h e clastograms a n d energetic d a t a , m a y b e d e s c r i b e d b y consecutive u n i m o l e c u l a r decompositions of t h e p a r e n t i o n .

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

A l t h o u g h a large n u m b e r of studies of i n o r g a n i c h a l i d e systems h a v e b e e n m a d e , m a n y m o r e investigations are r e q u i r e d before d e t a i l e d g e n eralizations o f t h e f r a g m e n t a t i o n p a t h w a y s a n d p r e d i c t i o n s of t h e energetics c a n b e m a d e , a n d these c o m p o u n d s constitute o n l y a s m a l l f r a c t i o n of i n o r g a n i c c h e m i s t r y .

Studies of t h e m e t a l c a r b o n y l , v a r i o u s m e t a l

alkyls, a n d sandwich compounds studies of W e r n e r complexes substituted

acetylacetonates)

linolates are u n d e r w a y .

(45) h a v e b e e n r e p o r t e d .

Currently,

s u c h as t h e m e t a l acetylacetonates ( a n d (198),

glyoximates

( 9 6 ) , a n d 8-quino-

W h a t is r e q u i r e d t o a i d i n u n d e r s t a n d i n g t h e

r e a c t i o n o f gaseous i n o r g a n i c ions ( a n d t h e effects o f t h e v a r i a t i o n o f t h e m e t a l atoms i n s i m i l a r c o m p o u n d s ) is a large effort i n s t u d y i n g m a n y systems mass s p e c t r o m e t r i c a l l y . T h e t e c h n i q u e s a n d i n s t r u m e n t a t i o n are n o w a v a i l a b l e to p e r m i t these investigations w h i c h s h o u l d b e of p a r t i c u l a r value i n inorganic chemistry; it w o u l d indeed b e w o r t h w h i l e to attempt to o b t a i n r o u t i n e l y at least t h e mass s p e c t r u m of e a c h n e w i n o r g a n i c c o m p o u n d s y n t h e s i z e d f o r these purposes. Acknowledgments T h e authors w i s h to t h a n k R . M . T e e t e r a n d E . J . G a l l e g o s a n d C h e v r o n R e s e a r c h C o m p a n y for a i d i n o b t a i n i n g some of t h e metastable t r a n s i t i o n d a t a w i t h t h e M S - 9 at t h e R i c h m o n d L a b o r a t o r i e s . T h i s w o r k has benefited f r o m t h e financial s u p p o r t of t h e U . S . A t o m i c E n e r g y C o m m i s s i o n a n d t h e D e p a r t m e n t of t h e A r m y . O n e o f us ( J . G . D . ) h e l d a N a t i o n a l A e r o n a u t i c s a n d Space A d m i n i s t r a t i o n F e l l o w s h i p d u r i n g t h e tenure o f these studies a n d wishes t o e x t e n d h i s a p p r e c i a t i o n f o r this a i d . Literature

Cited

(1) Altman, D., Farber, M., Mason, D. M., J. Chem. Phys. 25, 531 (1956). (2) Aston, F. W., "Mass Spectra and Isotopes," 2nd ed., Edward Arnold and Co., London, 1942. (3) Asundi, R. K., Craggs, J. D., Proc. Phys. Soc. (London) 83, 611 (1964). (4) Barton, Η. Α., Phys. Rev. 25, 469 (1925). (5) Barton, Η. Α., Phys. Rev. 30, 614 (1927). (6) Berkowitz, J., Chupka, W. Α., J. Chem. Phys. 29, 653 (1958). (7) Berkowitz, J., Chupka, W. Α., J. Chem. Phys. 45, 1287 (1966). (8) Berkowitz, J., Marquait, J. R., J. Chem. Phys. 37, 1853 (1962). (9) Berkowitz, J., Tasman, Η. Α., Chupka, W. Α., J. Chem. Phys. 36, 2170 (1962).

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

176

MASS S P E C T R O M E T R Y I N INORGANIC

CHEMISTRY

(10) Blanchard, L. B., LeGoff, P., Can. J. Chem. 35, 89 (1957). (11) Botter, R., "Advances in Mass Spectrometry," R. M . Elliott, ed., Vol. 2, pp. 540-554, Pergamon Press, Oxford, England, 1963. (12) Boudreaux, Ε. Α., J. Chem. Phys. 40, 246 (1964). (13) Bralsford, R., Harris, P. V., Price, W. C., Proc. Roy. Soc. (London) A258, 459 (1960). (14) Büchler, Α., Blackburn, P. E., Stauffer, J. L., J. Phys. Chem. 70, 685 (1966). (15) Büchler, Α., Stauffer, J. L., Klemperer, W., J. Chem. Phys. 40, 3471 (1964). (16) Burhop, E. H . S., Massey, H . S. W., Watt, C., in "The Characteristics of Electrical Discharges in Magnetic Fields," Guthrie and Wakerling, eds., Div. I, Vol. 5, p. 145, McGraw-Hill Book Co., New York, 1949. (17) Burns, J. F., Carbide and Carbon Chemical Co., K-25 Plant, Rept. K-1147, Oct. 8, 1954. (18) Colburn, C. B., Johnson, F. Α., J. Chem. Phys. 33, 1869 (1960). (19) Coope, J. A. R., Frost, D. C., McDowell, C. Α., Nature 179, 1186 (1957). (20) Cubicciotti, D., Eding, H., Johnson, J. W., J. Phys. Chem. 70, 2989 (1966). (21) Cullen, W. R., Frost, D. C., Can. J. Chem. 40, 390 (1962). (22) Curran, R. K., J. Chem. Phys. 34, 1069 (1961). (23) Dempster, A. J., Phys. Rev. 11, 316 (1918). (24) Dibeler, V. H., Mohler, F. L., J. Res. Natl. Bur. Stds. 40, 25 (1948). (25) Dibeler, V. H., Reese, R. M., J. Chem. Phys. 31, 282 (1959). (26) Dibeler, V. H., Reese, R. M., Franklin, J. L., J. Chem. Phys. 27, 1296 (1957). (27) Dibeler, V. H., Reese, R. M., Mann, D. E., J. Chem. Phys. 27, 176 (1957). (28) Dibeler, V. H., Reese, R. M., Mohler, F. L., J. Chem. Phys. 20, 761 (1952). (29) Dibeler, V. H., Reese, R. M., Mohler, F. L., J. Res. Natl. Bur. Stds. 57, 113 (1956). (30) Dibeler, V. H., Reese, R. M., Mohler, F. L., J. Chem. Phys. 26, 304 (1957). (31) Dillard, J. G., Ph.D. Dissertation, Kansas State Univ., Manhattan, Kan., 1967. (32) Drowart, J., Honig, R. E., J. Phys. Chem. 61, 980 (1957). (33) Dubov, S. S., Khokhlova, A. M., Zh. Obshch. Khim. 34, 586 (1964). (34) Duncan, A. B. F., J. Chem. Phys. 20, 951 (1952). (35) Ehlert, T. C., Blue, G. D., Green, J. W., Margrave, J. L., J. Chem. Phys. 41, 2250 (1964). (36) Ehlert, T. C., Margrave, J. L., J. Chem. Phys. 41, 1066 (1964). (37) Fairbrother, F., Nixon, J. F., J. Chem. Soc. 1962, 150. (38) Farmer, J. B., Henderson, I. H. S., Lossing, F. P., Marsden, D. G. H., J. Chem. Phys. 24, 348 (1956). (39) Fisher, I. P., Homer, J. B., Lossing, F. P., J. Am. Chem. Soc. 87, 957 (1965). (40) Flesch, G. D., Svec, H. J., J. Am. Chem. Soc. 81, 1787 (1959). (41) Foote, P. D., Mohler, F. L., Phys. Rev. 17, 394 (1921). (42) Fox, R. E., J. Chem. Phys. 32, 385 (1960). (43) Fox, R. E., Curran, R. K., J. Chem. Phys. 34, 1595 (1961). (44) Friedman, L., J. Chem. Phys. 23, 477 (1955). (45) Friedman, L., Irsa, A. P., Wilkinson, G., J. Am. Chem. Soc. 77, 3689 (1955). (46) Frost, D. C., McDowell, C. Α., Can. J. Chem. 36, 39 (1958). (47) Frost, D. C., McDowell, C. Α., Can. J. Chem. 38, 407 (1960).

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12.

KTSER E T AL.

(48) (49) (50) (51) (52) (53)

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

(54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80) (81) (82) (83) (84) (85) (86) (87) (88) (89)

Inorganic Halides

177

Gallegos, E. J., Kiser, R. W., J. Am. Chem. Soc. 83, 733 (1961). Gallegos, E. J., Kiser, R. W., J. Phys. Chem. 65, 1177 (1961). Gallegos, E. J., Klaver, R. F. (unpublished data). Glockler, G., Lind, S. C., "The Electrochemistry of Gases and Other Dielectrics," pp. 333-371, John Wiley and Sons, Inc., New York, 1939. Gohlke, R. S., Langer, H . G., Anal. Chem. 37 (10), 25A (1965). Gowenlock, B. G., Haynes, R. M., Maier, J. R., Trans. Faraday Soc. 58, 1905 (1962). Green, J. W., Blue, G. D., Ehlert, T. C., Margrave, J. L., J. Chem. Phys. 41, 2245 (1964). Hall, L. H., Subbanna, V. V., Koski, W. S., J. Am. Chem. Soc. 86, 3969 (1964). Halmann, M., Klein, Y., J. Chem. Soc. 1964, 4324. Hamano, H., Bull. Chem. Soc. Japan 30, 741 (1957). Harrison, A. G., Kebarle, P., Lossing, F. P., J. Am. Chem. Soc. 83, 777 (1961). Harrison, A. G., Shannon, T. W., Can. J. Chem. 40, 1730 (1962). Henglein, Α., Muccini, G. Α.,J.Chem. Phys. 31, 1426 (1959). Herron, J. T., Dibeler, V. H.,J.Am. Chem. Soc. 82, 1555 (1960). Herron, J. T., Dibeler, V. H. J. Chem. Phys. 33, 1595 (1960). Herron, J. T., Dibeler, V. H. J. Res. Natl. Bur. Stds. 65A, 405 (1961). Herzberg, G., "Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules," 2nd ed., pp. 456-534. D. Van Nostrand Co., Inc., New York, 1950. Herzberg, G. (private communication to C. Lifshitz and F. A. Long) 1965. Hildenbrand, D. L., Murad, E., J. Chem. Phys. 43, 1400 (1965). Hildenbrand, D. L., Murad, E., J. Chem. Phys. 44, 1524 (1966). Hildenbrand, D. L., Theard, L. P., J. Chem. Phys. 42, 3230 (1965). Hildenbrand, D. L., Theard, L. P., Saul, A. M., J. Chem. Phys. 39, 1973 (1963). Hobrock, D. L., Ph.D. Dissertation, Kansas State Univ., Manhattan, Kan., 1965. Hobrock, D. L., Kiser, R. W., J. Phys. Chem. 68, 575 (1964). Hobson, R. M., J. Chem. Phys. 23, 2463 (1955). Hogness, T. R., Lunn, E. G., Phys. Rev. 26, 44 (1925). Honig, R. E., J. Chem. Phys. 22, 126 (1954). Hoppe, R., Dähne, W., Mattauch, H., Rodden, Κ. M., Angew. Chem. 74, 903 (1962). Hughes, A. L., Dixon, Α. Α., Phys. Rev. 10, 495 (1917). Ionov, Ν. I., Doklady Akad. Nauk SSSR 59, 467 (1948). Irsa, A. P., J. Chem. Phys. 26, 18 (1957). Irsa, A. P., Friedman, L., J. Inorg. Nucl. Chem. 6, 77 (1958). Isaacs, L. D., Price, W. C., Ridley, R. G., "The Threshold of Space," M. Zelikoff, ed., pp. 143-151, Pergamon Press, Ltd., London, 1957. Johns, J. W. C., Barrow, R. F., Proc. Phys. Soc. (London) A71, 476 (1958). Kaplan, L., Kester, W. L., Katz, J. J., J. Am. Chem. Soc. 74, 5531 (1952) Karo, A. M., Allen, L.C.,J.Chem. Phys. 31, 968 (1959). Kaufman, R., Phys. Rev. 78, 332 (1950). Kaufman, R., Trans. Ν. Y. Acad. Sci. 15, 131 (1953). Keneshea, F. J., Cubicciotti, D., J. Chem. Phys. 40, 191 (1964). Keneshea, F. J., Cubicciotti, D., J. Chem. Phys. 40, 1778 (1964). Kennedy, Α., Colburn, C. B.,J.Chem. Phys. 35, 1892 (1961). Kennedy, T., Payne, D. S., Reed, R. I., Snedden, W., Proc. Chem. Soc. 1959, 133.

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

178

MASS S P E C T R O M E T R Y IN INORGANIC

CHEMISTRY

(90) Kent, R. Α., Margrave, J. L., J. Am. Chem. Soc. 87, 3582 (1965). (91) Kent, R. Α., Margrave, J. L., J. Am. Chem. Soc. 87, 4754 (1965). (92) Kent, R. Α., McDonald, J. D., Margrave, T. L., J. Phys. Chem. 70, 874 (1966). (93) Khvostenko, V. I., Sultanov, A. S., Zh. Fiz. Khim. 39, 475 (1965). (94) Kiser, R. W., Clark, R. J., Krassoi, M. A. (unpublished work) 1966. (95) Kiser, R. W., Hobrock, D. L.,J.Am. Chem. Soc. 87, 922 (1965). (96) Kiser, R. W., Sullivan, R. E. (unpublished work) 1966. (97) Knipping, P., Z. Physik 7, 328 (1921). (98) Koski, W. S., Kaufman, J. J., Pachucki, C. F., J. Am. Chem. Soc. 81, 1326 (1959). (99) Krauss, M.,J.Chem. Phys. 28, 1021 (1958). (100) Kreuzer, Η., Z. Naturforsch. 12A, 519 (1957). (101) Kuczkowski, R. L.,J.Am. Chem. Soc. 86, 3617 (1964). (102) Kuczkowski, R. L., Wilson, Ε. B., Jr., J. Am. Chem. Soc. 85, 2028 (1963). (103) Kurbanov, A. R., Suvorov, Α. V., Shchukarev, S. Α., Zh. Neorg. Khim. 9, 513 (1964). (104) Kusch, P., Hustrulid, Α., Tate, J. T., Phys. Rev. 52, 840 (1937). (105) Langer, H. G., Gohlke, R. S., Smith, D. H., Anal. Chem. 37, 433 (1965). (106) LaPaglia, S. R., Duncan, A. B. F., J. Chem. Phys. 34, 1003 (1961). (107) Law, R. W., Margrave, J. L.,J.Chem. Phys. 25, 1086 (1956). (108) Law, R. W., Margrave, J. L.,J.Chem. Phys. 34, 1003 (1961). (109) Lifshitz,C.,Long, F. Α.,J.Chem. Phys. 41, 2468 (1964). (110) Lifshitz,C.,Long, F. Α.,J.Phys. Chem. 69, 3731 (1965). (111) Lossing, F. P., Kebarle, P., De Sousa, J. B., "Advances in Mass Spec­ trometry," J. D. Waldron,ed.,pp. 431-441, Pergamon Press, Ltd., Lon­ don, 1959. (112) Lossing, F. P., Tickner, A. W., Bryce, W. Α., J. Chem. Phys. 19, 1254 (1951). (113) Loughran, E. D., Mader,C.,J.Chem. Phys. 32, 1578 (1960). (114) Lustig, M., Cady, G. H., Inorg. Chem. 2, 388 (1963). (115) Mackay, C. Α., Phil. Mag. 46, 828 (1923). (116) Mackay, C. Α., Phys. Rev. 23, 553 (1924). (117) Mackay, C. Α., Phys. Rev. 24, 319 (1924). (118) Majer, J. R., Patrick, C. R., Nature 201, 1022 (1964). (119) Malik, W. U., Salahuddin, Naturwiss. 50, 402 (1963). (120) Malone, T. J., McGee, Jr., H. Α.,J.Phys. Chem. 69, 4338 (1965). (121) Malone, T. J., McGee, Jr., H. Α.,J.Phys. Chem. 70, 316 (1966). (122) Margrave, J. L., Symp. Valence Chem. Binding, Madison, Wisconsin, June 22, 1956. (123) Margrave, J. L.,J.Chem. Phys. 31, 1432 (1959). (124) Margrave, J. L., J. Chem. Phys. 32, 1889 (1960). (125) Marriott, J., Ph.D. Dissertation, Univ. of Liverpool, 1954. (126) Marriott, J., Craggs, J. D., J. Electron. 1, 405 (1956). (127) Marriott, J., Craggs, J. D.,J.Electron. Control 3, 194 (1957). (128) Marriott, J., Thorburn, R., Craggs, J. D., Proc. Phys. Soc. (London) B67, 437 (1954). (129) Massey, A. G., Urch, D. S., Chem. Ind. 1965, 607. (130) McKinley, J. D., J. Chem. Phys. 40, 120 (1964). (131) McKinley, J. D., J. Chem. Phys. 40, 576 (1964). (132) McKinley, J. D., J. Chem. Phys. 41, 2814 (1964). (133) McKinley, J. D., J. Chem. Phys. 42, 2245 (1965). (134) Miller, R.C.,Kusch, P.,J.Chem. Phys. 25, 860 (1956). (135) Milne, Τ. Α., Cubicciotti, D., J. Chem. Phys. 29, 846 (1958). (136) Milne, Τ. Α., Klein, Η. M.,J.Chem. Phys. 33, 1628 (1960).

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

12.

KISER E T A L .

Inorganic

Halides

179

(137) Milne, Τ. Α., Klein, Η. M., Cubicciotti, D., J. Chem. Phys. 28, 718 (1958). (138) Mitra, G., J. Am. Chem. Soc. 80, 5639 (1958). (139) Momigny, J., Bull. Soc. Roy. Sci. Liege 28, 251 (1959). (140) Moore, C. E., Natl. Bur. Stds. Cit. 467, 1949. (141) Ibid., 1952. (142) Ibid., 1958. (143) Morrison, J. D., J. Chem. Phys. 19, 1305 (1951). (144) Morrison, J. D., Hurzeler, H., Inghram, M. G., Stanton, H. E.,J.Chem. Phys. 33, 821 (1960). (145) Morrison, J. D., Nicholson, A. J. C., J. Chem. Phys. 20, 1021 (1952). (146) Murakawa, Κ., Z. Physik 109, 173 (1938). (147) Nicholson, A. J. C., J. Chem. Phys. 43, 1171 (1965). (148) Nier, A. O., Hanson, Ε. E., Bull. Am. Phys. Soc. 10, 10 (1935). (149) Nier, A. O., Hanson, Ε. E., Phys. Rev. 50, 722 (1936). (150) Osberghaus, Ο., Z. Physik 128, 366 (1950). (151) Paulett, G. S., Lustig, M., J. Am. Chem. Soc. 87, 1020 (1965). (152) Petry, R. C., J. Am. Chem. Soc. 82, 2400 (1960). (153) Porter, R. F., J. Chem. Phys. 33, 951 (1960). (154) Porter, R. F., Schoonmaker, R. C., J. Chem. Phys. 29, 1070 (1958). (155) Porter, R. F., Schoonmaker, R. C., J. Phys. Chem. 63, 626 (1959). (156) Porter, R. F., Zeller, Ε. E., J. Chem. Phys. 33, 858 (1960). (157) Pottie, R. F., Lossing, F. P., J. Am. Chem. Soc. 85, 269 (1963). (158) Price, W. C., Bull. Am. Phys. Soc. 10, 9 (1935). (159) Price, W. C., Phys. Rev. 47, 419 (1935). (160) Price, W. C., Phys. Rev. 47, 510 (1935). (161) Price, W. C., Proc. Roy. Soc. (London) A167, 216 (1938). (162) Price, W. C., Chem. Revs. 41, 257 (1947). (163) Price, W. C., Passmore, T. R., Discussions Faraday Soc. 35, 232 (1963). (164) Price, W. C., Passmore, T. R., Roessler, D. M., Discussions Faraday Soc. 35, 201 (1963). (165) Price, W. C., Teegan, J. P., Walsh, A. D., Proc. Roy. Soc. (London) A201, 600 (1950). (166) Price, W. C., Tutte, W. T., Proc. Roy. Soc. (London) A174, 207 (1940). (167) Reed, R. I., Snedden, W., Trans. Faraday Soc. 54, 301 (1958). (168) Reed, R. I., Snedden, W., Trans. Faraday Soc. 55, 876 (1959). (169) Reese, R. M., Dibeler, V. H., J. Chem. Phys. 24, 1175 ( 1956). (170) Reese, R. M., Dibeler, V. H., private communication to B. G. Hobrock and R. W. Kiser. (171) Reese, R. M., Dibeler, V. H., J. Phys. Chem. 66, 155 (1962). (172) Reese, R. M., Dibeler, V. H., Franklin, J. L., J. Chem. Phys. 29, 880 (1958). (173) Rinke, K., Schäfer, H., Angew. Chem. 77, 131 (1965). (174) Roberts, J. E., Cady, G. H., J. Am. Chem. Soc. 81, 4166 (1959). (175) Robinson, D. W., J. Mol. Spectry. 11, 275 (1963). (176) Rosenbaum, O., Neuert, H., Z. Naturforsch. 9A, 990 (1954). (177) Rosenstock, H. M., Sites, J. R., Walton, J. R., Baldock, R.,J.Chem. Phys. 23, 2442 (1955). (178) Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., Jaffe, I., Natl. Bur. Stds. Circ. 500, 1952. (179) Ruff, J. K., Paulett, G., Inorg. Chem. 3, 998 (1964). (180) Sandoval, Α. Α., Moser, H. C., Kiser, R. W., J. Phys. Chem. 67, 124 (1963). (181) Schoonmaker, R. C., Friedman, A. H., Porter, R. F., J. Chem. Phys. 31, 1586 (1959). (182) Schoonmaker, R. C., Porter, R. F., J. Chem. Phys. 29, 116 (1958). (183) Schoonmaker, R. C., Porter, R. F., J. Chem. Phys. 30, 283 (1959).

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on September 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch012

180

MASS SPECTROMETRY I N INORGANIC

CHEMISTRY

(184) Seel, F., Budenz, K., Ber. 98, 251 (1965). (185) Shadoff, L. Α., Ph.D. Dissertation, Kansas State Univ., Manhattan, Kan., 1966. (186) Shapiro, I., Landesman, H., J. Chem. Phys. 33, 1590 (1960). (187) Shchukarev, S. Α., Oranskaya, Μ. Α., Shemyakina, T. S., Zh. Neorg. Khim. 5, 2135 (1961). (188) Sidorov, L. N., Akishin, P. Α., Belousov, V. I., Shol'ts, V. B., Zh. Fiz. Khim. 38, 146 (1964). (189) Steele, W. C., J. Phys. Chem. 68, 2359 (1964). (190) Steele, W. C., Nichols, L. D., Stone, F. G. Α., J. Am. Chem. Soc. 84, 1154 (1962). (191) Steele, W. C., Stone, F. G. Α., J. Am. Chem. Soc. 84, 3599 (1962). (192) Streitwieser, Α., Jr., J. Am. Chem. Soc. 82, 4123 (1960). (193) Stuckey, W. K., Ph.D. Dissertation, Kansas State Univ., Manhattan, Kan., 1966. (194) Stuckey, W. K., Kiser, R. W., Nature 211, 963 (1966). (195) Stull, D. R., "JANAF Thermochemical Tables," PB-168, 370. (196) Studier, M. H., Sloth, Ε. N., "Noble-Gas Compounds," Η. H. Hyman, ed., pp. 47-49, Univ. of Chicago Press, Chicago, Ill., 1963. (197) Svec, H. J., Flesch, G. D., Science 142, 954 (1963). (198) Teeter, R. M., Kiser, R. W., unpublished work (1966). (199) Terenin,A.,Phys. Rev. 36, 147 (1930). (200) Terenin, Α., Popov, Β., Z. Physik 75, 338 (1932). (201) Terenin, Α., Popov, B., Physik. Z. Sowjetunion 2, 299 (1932). (202) Thompson, J. C., Margrave, J. L., Timms, P. L., Chem. Commun. 1966, 566. (203) Thomson, J. J.,Phil.Mag. 24, 209 (1912). (204) Thomson, J. J., Thomson, G. P., "Conduction of Electricity through Gases," 3rd ed., p. 81, Cambridge at the University Press, London, 1933. (205) Tullock, C. W., Coffman, D. D., J. Org. Chem. 25, 2016 (1960). (206) Vought, R. H., Phys. Rev. 71, 93 (1947). (207) Wada, Y., Ph.D. Dissertation, Kansas State University, Manhattan, Kan., 1964. (208) Wagman, D. D., Evans, W. H., Halow, I., Parker, V. B., Bailey, S. M., Schumm, R. H., Natl. Bur. Std. (U.S.) Tech. Note 270-1, Oct. 1, 1965. (209) Warren, J. W., Nature 165, 810 (1950). (210) Warren, V. L., Horton, J. C., U. S. At. Energy Comm. K-1429 (1959). (211) Watanabe, K., J. Chem. Phys. 26, 542 (1957). (212) Watanabe, K., Nakayama, T., Mottl, J., Dept. Army #5B99-01-004 ORD-#TB2-0001-OOR-#1624, Contract No. DA-04-200-ORD 480 and 737 (December 1959). (213) Watanabe, K., Nakayama, T., Mottl, J. R., J. Quant. Spectry. Radiative Transfer 2, 369 (1962). (214) White, J. R., Cameron, A. E., Phys. Rev. 71, 907 (1947). (215) Wilkinson, P. G., J. Mol. Spectry. 6, 1 (1961). (216) Wilkinson, P. G., Astrophys. J. 138, 778 (1963). (217) Wilson, Ε. B., Jr., Kuczkowski, R. L., Doc. N63-17725 (1962). (218) Wilson, E. G., Jortner, J., Rice, S. Α., J. Am. Chem. Soc. 85, 813 (1963). (219) Zubkov, V. I., Tikhomirov, M. V., Andrianov, Κ. Α., Golubtzov, S. Α., Doklady Akad. Νauk SSSR 159, 599 (1964). RECEIVED November 14, 1966. Taken in part from the doctoral dissertations of John G. Dillard and Donald L. Dugger, submitted to the Graduate School of Kansas State University, Manhattan, Kansas.

In Mass Spectrometry in Inorganic Chemistry; Margrave, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.