Microbes and Microbial Products as Herbicides - ACS Publications

mechanisms, the general practice of crop rotation (forcing host- specific pathogens to survive in absence of their host), is often an effective method...
0 downloads 0 Views 733KB Size
Chapter 10

Microbes and Microbial Products as Herbicides Downloaded from pubs.acs.org by SWINBURNE UNIV OF TECHNOLOGY on 11/26/18. For personal use only.

Biotechnological Approaches to Control of Weeds with Pathogens D. C. Sands , R. V. Miller , and E. J. Ford 1

2

1

Department of Plant Pathology, Montana State University, Baseman, M T 59717 Mycogen Corporation, 3303 McDonald Avenue, Hasten, LA 71270 1

2

Plant pathogens have rarely been successfully used as biocontrol agents of weeds. One reason for this is that they are usually not lethal enough at low concentrations. In addition, they are usually not host specific. Our approach has been to mutate lethal broad host-range pathogens to obtain isolates that are still lethal to target hosts, but reduced in host range, survival capacity, or otherwise biologically contained. Two such types of biological containment are presented in a fungus, Sclerotinia sclerotiorum, a lethal pathogen of 40 different weeds. Modern g e n e t i c technology h a s t h e p o t e n t i a l t o advance t h e p r a c t i c e s of medicine, a g r i c u l t u r e , and environmental protection. Potential d a n g e r s o f t h i s new t e c h n o l o g y do e x i s t a n d must b e a v o i d e d . Opponents t o r e l e a s e s o f g e n e t i c a l l y a l t e r e d organisms c i t e examples of the destruction incurred by unintentional releases o f plant pathogens such as t h e Dutch e l m fungus. During the course o f our s t u d i e s , m u t a n t s o f S. sclerotiorum induced with u l t r a v i o l e t i r r a d i a t i o n were o b t a i n e d t h a t e x h i b i t e d i n c r e a s e d h o s t - r a n g e s (Table I) . T h e f a c t t h a t many i n d u c e d m u t a n t s ( c h e m i c a l o r i r r a d i a t i o n ) e x h i b i t e n h a n c e d v i r u l e n c e (1.2) s u p p o r t s t h e u s e o f reasonable caution before r e l e a s i n g c e r t a i n types o f g e n e t i c a l l y modified organisms. Our charge i s t o determine i f i t i s p o s s i b l e t o a v o i d t h e k i n d s o f d i s a s t e r s t h a t o f t e n accompany new t e c h n o l o g i e s v i a containment systems, g e n e t i c a l l y engineered o r otherwise. Natural

Containment

Systems

Containment o f microorganisms w i t h i n a s p e c i f i c niche o r w i t h i n a c e r t a i n a r e a i s n o t a n o v e l phenomenon. Most p l a n t pathogens, f o r i n s t a n c e , a r e g e n e t i c a l l y d e l i m i t e d to a s p e c i f i c n i c h e , such as plant host species or climate. The mechanisms o f h o s t range 0097-6156790/0439-0184506.00/0 © 1990 American Chemical Society

10. SANDS ET AL

Biotechnological Contrai of Weeds with Pathogens

d e l i m i t a t i o n are complex and not understood i n t h e i r e n t i r e t y . N u t r i t i v e f a s t i d i o u s n e s s , absence of t r i g g e r m e t a b o l i t e s , specific b i n d i n g , a n d enzyme p r o d u c t i o n a r e a l l i n v o l v e d . Whatever the mechanisms, the g e n e r a l p r a c t i c e of crop r o t a t i o n ( f o r c i n g h o s t s p e c i f i c pathogens to s u r v i v e i n absence of t h e i r h o s t ) , i s o f t e n an e f f e c t i v e m e t h o d o f c o n t r o l o f many p l a n t p a t h o g e n s . Perhaps these n a t u r a l c a s e s o f s e l f - c o n t a i n m e n t c a n be u s e d as models i n t h e development of containment systems f o r s a f e l y r e l e a s i n g g e n e t i c a l l y a l t e r e d microbes. A Non-Engineered Approach to

Containment

O u r own r e s e a r c h i n v o l v e s d e v e l o p m e n t o f g e n e t i c c o n s t r a i n t s i n broad host-range p l a n t pathogens. T h e p a t h o g e n we w o r k w i t h , Sclerotinia sclerotiorum, a t t a c k s o v e r 40 n o x i o u s broad-leafed w e e d s , a n d a s many c r o p s i n m o s t c o u n t r i e s . By d e l e t i o n m u t a g e n e s i s , we h a v e o b t a i n e d a n a u x o t r o p h i c m u t a n t , A l - p y r , t h a t has p y r i m i d i n e s as an a b s o l u t e growth r e q u i r e m e n t ( 3 ) . This n u t r i t i o n a l r e q u i r e m e n t i s complemented f u l l y by c y t o s i n e s u p p l e m e n t s a n d t o a l e s s e r e x t e n t b y u r a c i l ( F i g . 1) a d d e d t o a m o d i f i e d Czapek s o l u t i o n agar (4). Thymidine supplements were i n e f f e c t i v e i n overcoming the auxotrophy of t h i s mutant. The e f f e c t of c y t o s i n e , concomitantly w i t h the mutant fungus on seven h o s t s u n d e r greenhouse c o n d i t i o n s , i s shown i n F i g . 2. Preliminary e v i d e n c e f r o m l i m i t e d f i e l d t r i a l s i n d i c a t e s t h a t when A l - p y r i s a p p l i e d w i t h an e x t e r n a l source of c y t o s i n e , i t k i l l s p l a n t s i n the t a r g e t a r e a ; b u t t h e fungus f a i l e d t o i n f e c t p l a n t s when e x t e r n a l cytosine i s absent. T a b l e I . Expanded H o s t Ranges

of

S. sclerotiorum Percent K i l l e d

Host Alfalfa Bean* Canada T h i s t l e Clover Dandelion Leafy Spurge* Lentil Lettuce Lupine Poppy Rape Safflower S p o t t e d Knapweed Sunflower

Wildtype Parent 0 0 50 •0 75 0 85 100 0 100 85 100 40

11

B-326 0 70 100 0 75 30 70 85 0 65 85 100 65 100

Mutants Plants

Mutant B-850 100 70 100 60 50 65 100 100 65 100 100 100 85 100

• L e s i o n s d e v e l o p e d w i t h w i l d t y p e p a r e n t b u t d i d n o t succumb to the disease. (Reproduced w i t h p e r m i s s i o n from R e f . 9 . 1986 E n v i r o n m e n t a l P r o t e c t i o n A g e n c y . )

185

186

MICROBES AND MICROBIAL PRODUCTS AS HERBICIDES

16 32 CYTOSINE (mg/l)

64

128

F i g u r e 1. R a d i a l g r o w t h r e s p o n s e o f S. eclerotiorum to p y r i m i d i n e supplements added t o m o d i f i e d Czapek s o l u t i o n a g a r . C o l o n y d i a m e t e r (mm), 48 h r a f t e r i n o c u l a t i o n o n t o m o d i f i e d Czapek s o l u t i o n agar. Mean o f t h r e e r e p l i c a t i o n s .

Ν U M Β Ε R Ο F Ρ Ο

τ s

1 -

F i g u r e 2. E f f e c t o f e x t e r n a l c y t o s i n e (50 m g / l ) on v i r u l e n c e o f S. sclerotîorwn Al-pyr. A p p l i e d on c o t t o n plugs to s i t e of i n o c u l a t i o n (PDA c u l t u r e s ) o f S . eclerotioiwi Al-pyr. Number o f p o t s showing d i s e a s e on s e e d l i n g s . Two t o t e n s e e d l i n g s o f e a c h species per pot.

10. SANDS ET AL

Biotechnological Control of Weeds with Pathogens

A n o t h e r S. sclerotiorum mutant o b t a i n e d i n t h i s s t u d y , S L - 1 , cannot form s c l e r o t i a . S c l e r o t i a are morphological s t r u c t u r e s that s e r v e s b o t h as p r e c u r s o r s f o r f r u i t i n g b o d i e s ( a s c o c a r p s ) and f o r dormant s u r v i v a l d u r i n g a d v e r s e c o n d i t i o n s (5). T h i s mutant i s u n a b l e t o make s p o r e s , o r s u r v i v e t h e w i n t e r , o r u n d e r g o s e x u a l r e c o m b i n a t i o n , r e s u l t i n g i n i t s demise d u r i n g the w i n t e r months. S L - 1 may b e s l i g h t l y l e s s v i r u l e n t e v i d e n c e d b y i t s t e n d e n c y t o cause d i s e a s e i n l o w e r p e r c e n t a g e s o f h o s t p l a n t s ( F i g . 3). However t h e a p p a r e n t h o s t r a n g e was u n c h a n g e d i n r e s p e c t t o t h e p l a n t s t e s t e d ( F i g . 3). As the w i l d t y p e fungus i s w i d e l y endemic, the u n l i k e l y occurrence of back mutations to prototrophy or s c l e r o t i a l formation would not s i g n i f i c a n t l y increase r i s k to crops. Neither o f t h e s e m u t a n t s a r e g e n e t i c a l l y e n g i n e e r e d a n d b o t h h a v e met requirements necessary for safe experimental releases. They are p r e s e n t l y b e i n g t e s t e d i n EPA r e v i e w e d s m a l l s c a l e f i e l d t e s t s i n Montana. The v a l u e o f s u c h o r g a n i s m s l i e s i n t h e i r b r o a d h o s t range, l e t h a l i t y , ease o f c u l t u r e , and r e s t r i c t e d d i s s e m i n a t i o n . In t h e f u t u r e , t h e y may b e e n g i n e e r e d w i t h t h e c y t o s i n e r e q u i r e m e n t o r s c l e r o t i a l formation attached behind a host specific promoter. G e n e t i c a l l y - E n g i n e e r e d Containment

Systems

Containment systems, u s e f u l , but often not c r i t i c a l i n none n g i n e e r e d s i t u a t i o n s , may w e l l b e c r i t i c a l p r i o r t o r e l e a s e o f many genetically-engineered microorganisms. To d a t e , t h r e e s t r a t e g i e s have been proposed f o r c o n t a i n i n g these organisms. The f i r s t s t r a t e g y , ( 6 . 7 ) . i n v o l v e s i n c o r p o r a t i o n o f recombinant genes to a s u i c i d e v e c t o r . By m e t h y l a t i o n , t h e s u i c i d e p o r t i o n of the v e c t o r i s turned o f f w h i l e the organism i s i n the presence of a s p e c i f i c substrate (e.g. crude o i l ) . The c a r r i e r m i c r o o r g a n i s m t h e n s e l f d e s t r u c t s once t h e s u b s t r a t e become l i m i t i n g i n the environment. S i m i l a r l y , B e j e t a l . (8) c o n s t r u c t e d a s u i c i d e v e c t o r t h a t i s turned o f f i n the presence of c a r b e n i c i l l i n . N e i t h e r o f t h e s e s y s t e m s e x c l u d e t h e p o s s i b i l i t i e s t h a t r e c o m b i n a n t DNA c o u l d be t r a n s f e r r e d t o o t h e r m i c r o o r g a n i s m s w h i l e i n t h e p r e s e n c e of the necessary s u b s t r a t e , and t h a t a l t e r n a t e organisms might a l l o w p e r s i s t e n c e o f the c l o n e d genes w i t h o u t s e l f - d e s t r u c t i n g . These s u i c i d e s y s t e m s do n o t p r e c l u d e m u t a t i o n s a r o u n d t h e s u i c i d e m o d u l e which c o u l d r e s u l t i n n o n - d e s t r u c t i v e r e t e n t i o n of the cloned genes. T h e s e c o n d s t r a t e g y , p r o p o s e d b y P e t e r S i d e r i u s (9) involves c o - i n d u c t i o n o f a s u i c i d a l gene w i t h t h e gene o f i n t e r e s t ( F i g . 4). T h i s r e s u l t s i n c o n c o m i t a n t d e a t h o f t h e o r g a n i s m w i t h gene expression. T h u s , t h e d e s i r e d gene p r o d u c t i s p r o d u c e d b u t t h e gene is t o t a l l y contained. The m a j o r l i m i t a t i o n t o t h i s p r o p o s e d s y s t e m i s t h a t i t i s n o t a p p l i c a b l e t o a r e a s s u c h as b i o l o g i c a l weed c o n t r o l where a v i a b l e o r g a n i s m i s r e q u i r e d f o r a c t i v i t y . T h e t h i r d s t r a t e g y p r o p o s e d b y o u r l a b o r a t o r y (9) a t t e m p t s t o o v e r c o m e some o f t h e p r o b l e m s i n c u r r e d b y t h e o t h e r t w o s y s t e m s . T h i s s t r a t e g y i n v o l v e s s p l i t t i n g gene e x p r e s s i o n b e t w e e n two o r t h r e e d i f f e r e n t l o c i , u s u a l l y d i f f e r e n t p l a s m i d s o r genomes ( F i g . 5). As a l l l o c i must be p r e s e n t f o r gene e x p r e s s i o n , t h e r i s k o f c o n c u r r e n t t r a n s f e r i s v e r y l o w and t h e gene i s effectively contained.

187

8

!

s

i

I

S

H*

10. SANDS ET AL

BioUchtological Gmtnd ۤ Weeds with Pathogens VP2

F i g u r e 4 . A s u i c i d e gene e x p r e s s i o n c o n t a i n m e n t model s y s t e m . PI - Promoter o f i n d u c i b l e o p e r o n . VP2 - V i r a l p r o m o t e r 1 . VP2 - V i r a l p r o m o t e r 2 .

INDUCE8

REPRES8E8

DESIRED GENE PRODUCT

LETHAL GENE PRODUCT F i g u r e 5. A m o d e l t r i p l i c a t e s a f e g u a r d c a s s e t t e f o r f u n g i . Note: C a r r i e r s i n c l u d e genomic o r autonomous e l e m e n t s .

189

190

MICROBES AND MICROBIAL PRODUCTS AS HERBICIDES

V i r a l promoters, r e s t r i c t i o n nucleases, and host s p e c i f i c p r o m o t e r s may a l l b e b o r r o w e d f r o m p l a n t p a t h o g e n s f o r u s e i n development o f c e l l u l a r s e l f - d e s t r u c t systems ( 6 , 1 0 ) . Reasons

f o r Containment

F r o m o u r o w n a n a l y s i s o f p o t e n t i a l r i s k s , we f i n d i t d i f f i c u l t t o see how a n y p u b l i c i n s t i t u t i o n o r p r i v a t e c o r p o r a t i o n w o u l d c o n s i d e r r e l e a s e o f g e n e t i c a l l y m o d i f i e d m i c r o b e s w i t h o u t i n c o r p o r a t i n g some s o r t o f containment system. F i r s t i s the problem, perceived o r actual, of l i a b i l i t y . S e c o n d l y , t h e y may f i n d t h a t t h e i r p r o d u c t p e r s i s t s too long, i n t e r f e r i n g with future sales and with i n t r o d u c t i o n s o f improved s t r a i n s . F i n a l l y , g o v e r n m e n t a p p r o v a l may t a k e a n i n o r d i n a t e amount o f t i m e r e v i e w i n g t h e r i s k f a c t o r s o f a n o n - c o n t a i n e d system, as compared t o one w i t h a p r o v e n type o f containment. Reasons

A g a i n s t Containment o f Engineered Microbes

Few c o n t a i n m e n t s y s t e m s c u r r e n t l y e x i s t , a n d n o n e h a v e b e e n extensively tested. A requirement f o r containment might hinder research andinvestment i n b i o c o n t r o l agents considered safe b y v i r t u e of host s p e c i f i c i t y . S i n g l e d e l e t i o n s , done b y r e c o m b i n a n t m e t h o d o l o g y , r a t h e r t h a n b y c h e m i c a l m u t a g e n e s i s , a l s o seem t o present low r i s k andshould n o t require containment systems. Conclusions C o n t a i n m e n t s y s t e m s may b e v a l u a b l e a d d e n d a t o r e l e a s e d m i c r o b e g e n e t i c systems t o reduce l i a b i l i t y e x p o s u r e , enhance i n v e s t m e n t , and e x p e d i t e e v a l u a t i o n o f e n v i r o n m e n t a l s a f e t y . Even n o n engineered microbes c a n be e f f e c t i v e l y c o n s t r a i n e d b y auxotrophy o r developmental blocks.

Literature Cited 1. Miller, R. V.; Ford, E. J.; Sands, D. C. Phytopathology 1987, 77, (12):1720 (Abstr.). 2. Simons, M. D. Ann. Rev. Phytopath. 1979, 17, 75-96. 3. Miller, R. V.; Ford, E. J.; Zidack, Ν. K.; Sands, D. C. J. Gen. Micro. 1989, in press. 4. Wong, A. L.; Willetts, H. J. Trans. Brit. Mycol. Soc. 1975, 61, 167-178. 5. Miller, R. V.; Ford, E. J.; Sands, D. C. Can. J. Microbiol 1989, 35:517-520. 6. Cusky, S. M. Appl Environ. Micro. 1989, in press. 7. McCormick, D. Biotechnology 1986, 4, 762. 8. Bej, Asim K.; Perlin, M. H.; Atlas, R. M. App. Environ. Micro. 1988, 54, 2472-2477. 9. Miller, R. V.; Siderius, P. G.; Sands, D. C. 1986. p. 43-64. In Terrestrial Biotechnology: Research Imperatives for 1987. Environmental Research Laboratory, Corvallis, Oregon, Environmental Protection Agency. 10. Molin, S.; Klemm, P.; Poulsen, L. K.; Biehl, H.; Gerdes, K.; Andersson, P. Bio Tech. 1987, 5, 1315-1318. RECEIVED February 2,

1990