Chapter 16
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
Formulation and Application Technology for Microbial Weed Control Donald J . Daigle and William J . Connick, Jr. Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA 70179 Fungal weed pathogens (mycoherbicides) are d i f f i c u l t to formulate into effective products because, as l i v i n g organisms, their v i a b i l i t y must be preserved throughout processing and storage. Furthermore, the pathogens, as packaged in a f i n a l product, must be able to control weeds after application under natural environmental conditions of moisture and temperature. This overview of formulation and application technology for microbial weed control describes the current developmental status of experimental and commercial products. A b r i e f review of combinations of mycoherbicides with chemical pesticides and beneficial insects i s included. There are two s t r a t e g i e s commonly employed f o r the b i o l o g i c a l c o n t r o l o f weeds. One i s the c l a s s i c a l i n which the m i c r o b i a l h e r b i c i d e , a f t e r r e l e a s e , i s capable o f s e l f - d i s s e m i n a t i o n and epidemic i n i t i a t i o n . The other strategy, inundative b i o l o g i c a l c o n t r o l , r e q u i r e s i n s t a n t i n t r o d u c t i o n o f l a r g e populations o f a p l a n t pathogen, and i t s a p p l i c a t i o n follows the same patterns as chemical h e r b i c i d e s (.43) . The inundative strategy a l s o c a l l s f o r formulation o f a d e l i v e r y system f o r the microorganism, since t h i s type o f strategy i s not dependent on the m i c r o b i a l h e r b i c i d e spreading r a p i d l y on i t s own. Formulation i s a mixing o f the a c t i v e i n g r e d i e n t with appropriate adjuvants and c a r r i e r . Today, the formulation o f chemical h e r b i c i d e s may be considered a science, whereas the formulation o f m i c r o b i a l h e r b i c i d e s remains more o f an a r t . A major d i f f e r e n c e between the two types o f h e r b i c i d e s i s that the l i f e and v i r u l e n c e o f the b i o l o g i c a l c o n t r o l organism must be maintained. To t h i s end, the d i f f e r e n t a d d i t i v e s and d i l u e n t s o f the formulation must be t e s t e d , s i n g l y This chapter not subject to U.S. copyright Published 1990 American Chemical Society
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
16.
DAIGLE &CONNICK
MknMalWeedControl
289
and i n various combinations/ t o insure the v i a b i l i t y of the mycoherbicide. These adjuvants and d i l u e n t s should a l s o increase the e f f i c i e n c y of a p p l i c a t i o n , and p a r t i c u l a r l y , the e f f i c a c y of the c o n t r o l agent. Formulation a l s o may i n v o l v e i n t e g r a t i n g the pathogens i n t o a weed management system. Researchers have found both b e n e f i c i a l and detrimental i n t e r a c t i o n s between commonly used i n s e c t i c i d e s , h e r b i c i d e s , and weed pathogens (44., j45) . In such a system the problems of a p p l i c a t i o n are magnified. A p p l i c a t i o n can i n c l u d e new or conventional a g r i c u l t u r a l equipment and v a r i a b l e s such as when, where, and how the formulation i s applied. Of course, the researcher makes compromises i n t h i s complex matrix i n an e f f o r t f o r maximum e f f i c i e n c y at minimum c o s t . This chapter discusses m i c r o b i a l weed c o n t r o l agents and t h e i r experimental and commercial formulations. Because most m i c r o b i a l h e r b i c i d e s have a narrow host s p e c i f i c i t y , they are most l i k e l y t o be used i n an i n t e g r a t e d pest management s t r a t e g y with chemical h e r b i c i d e s , i n s e c t i c i d e s , p l a n t growth r e g u l a t o r s , and i n s e c t b i o c o n t r o l agents. A l l of these research i n v e s t i g a t i o n s are presented with emphasis on f i e l d s t u d i e s , except f o r those agents i n t h e i r developmental stage. Water and Surfactant-Based Formulations Water has been the c a r r i e r of choice, e s p e c i a l l y since i t i s inexpensive, easy t o handle, and necessary f o r maintaining the l i f e of the weed pathogens. The most elementary d e l i v e r y system i s a simple mixture of the m i c r o b i a l agent and water. Such a system i s u s u a l l y the f i r s t used by the researcher i n t e s t i n g the b i o c o n t r o l p o t e n t i a l of the organism. Sometimes, t h i s s i m p l i s t i c approach i s bypassed i n favor of a c o n i d i a l suspension which contains a s u r f a c t a n t . Surfactants perform two f u n c t i o n s : they help t o disperse the spores or other fungal propagules i n the tank mix and they serve as wetting agents t o minimize runoff and the r e s u l t i n g l o s s of a c t i v e i n g r e d i e n t from the t a r g e t weed. Table I l i s t s research on water and s u r f a c t a n t based mycoherbicides that has progressed t o the greenhouse stage. In s i x of the eight i n v e s t i g a t i o n s , a s u r f a c t a n t was used. The e f f i c a c y of Protomvces gravidus was h i g h l y dependent upon the s t r i c t environmental c o n d i t i o n of a minimum of 48 hours of dew (2). These studies and others have shown that o l d e r p l a n t s r e q u i r e more spores/ml and/or longer dew periods f o r c o n t r o l . The i n v e s t i g a t i o n s l i s t e d i n Table I are based on the minimum spores/ml and minimum dew p e r i o d to k i l l at l e a s t 80% of the t a r g e t weed at the four (or fewer) t r u e - l e a f stage (young s e e d l i n g s ) .
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Protomvces q r a v i d u ? Davis (ascospores)
Giant ragweed Ambrosia t r i f i d a (L.)
(Sw.) DC.
Common p u r s l a n e P o r t u l a c a o l e r a c e a (L.)
Spurred anoda Anoda c r i s t a t a (L.) S c h l e c h t .
A b u t i l o n t h e o p h r a s t i Medik.
Velvetleaf
Prickly sida Sida s p i n o s a (L.)
F l o r i d a beggarweed Desmodium tortuosum
D i chot omophtho r a p o r t u l a c a e M e h r l i c h and F i t z ex M.B. E l l i s
A l t e r n a r i a macrospora Zimm. Fusarium l a t e r i t i u m Nees ex F r .
Fusarium l a t e r i t i u m (Nees) emend. Snyder and Hans.
Colletotrichum truncatum (Schw.) Andrus and Moore (condia)
Horse p u r s l a n e Gibbaqo trianthemae Trianthema p o r t u l a c a s t r u m (L.) Simmons ( c o n i d i a )
Colletotrichum coccodes (Wallr.) Hughes (conidia)
M i c r o b i a l Agent
Eastern b l a c k nightshade Splanum ptveanthum Dun.
Weed
Tween 20
Tween 80
Tween 20 (0.05%)
Tween 80 (0.02%)
Tween 20 (0.02%)
Tween 80 (0.05%)
Surfactant (cone.)
5 χ 10
1 χ 10
1 χ 10
1 χ 10
1 χ 10
1 χ 10
e
3
3
1 χ 10'
1 χ 10
spores/ ml
Table I . Water and S u r f a c t a n t - B a s e d Formulations
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
18
16
18
14
16
48
16
Dew (hrs)
4
3
2
Ref.
I t . DAIGLE Jk CONNICK
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
Miscellaneous
Microbial WmdControl
291
Adjuvant-Based Formulations
C e r t a i n adjuvants may s t i m u l a t e the m i c r o b i a l agent to e i t h e r germinate or i n f e c t the t a r g e t weed more effectively. Table II l i s t s adjuvants/ one of which, sucrose (.12), was reported to enhance disease development. For another adjuvant/ g e l a t i n , the f u n c t i o n was not given/ but g e l a t i n could increase the v i s c o s i t y of the formulation to reduce r u n o f f or f u n c t i o n as a humectant to improve spore s u r v i v a l . In those i n v e s t i g a t i o n s with g e l a t i n , only greenhouse r e s u l t s were reported. With the a d d i t i o n of Sorbo (64% s o r b i t o l , Atkemix Inc./ Brandford/ Ontario) i n the suspension/ the number of v i a b l e spores of C o l l e t o t r i c h u m coccodes recovered from i n o c u l a t e d leaves increased 2 0 - f o l d . Also/ three 9-hour dew periods on consecutive n i g h t s were as e f f e c t i v e f o r disease i n c u b a t i o n as one 18-hour dew p e r i o d (10). The length of the dew p e r i o d u s u a l l y c o r r e l a t e s with success or f a i l u r e i n a m a j o r i t y of the work referenced i n t h i s review. Recently/ i t has been reported that i n v e r t ( w a t e r - i n - o i l ) emulsion c a r r i e r s composed of p a r a f f i n wax, mineral ( p a r a f f i n ) oil, soybean oil, and l e c i t h i n r e t a r d e d water evaporation (13). Thus, the pathogen has water a v a i l a b l e over a longer p e r i o d of time f o r germination and i n f e c t i o n of the t a r g e t weed. I n i t i a l l y / the spores were a p p l i e d i n an aqueous c a r r i e r followed by an overspray of an i n v e r t emulsion a p p l i e d with s p e c i a l i z e d a i r - a s s i s t atomizing nozzles (14.) . Greenhouse r e s u l t s using A l t e r n a r i a c a s s i a e against s i c k l e p o d were s u c c e s s f u l (88% m o r t a l i t y ) / but the volumes sprayed were too high f o r p r a c t i c a l i t y (JL3) . Further research with a onestep a p p l i c a t i o n of A. c a s s i a e i n i n v e r t emulsions showed that the q u a n t i t y of p a r a f f i n wax and d r o p l e t deposit s i z e determined the r a t e of water evaporation (Daigle/ D. J . ; Connick/ W. J . , J r . ; Quimby/ P. C, J r . ; Evans/ J . P.; T r a s k - M o r r e l l / B.; Fulgham, F. E., USDA/ ARS/ New Orleans/ LA, and S t o n e v i l l e / MS/ unpublished r e s u l t s ) . Therefore, i n v e r t emulsions c o u l d be both a s u c c e s s f u l d e l i v e r y system and water source f o r A. c a s s i a e . However, the lack of s u f f i c i e n t m o r t a l i t y at reasonable a p p l i c a t i o n r a t e s i n d i c a t e s that the i n v e r t emulsion c a r r i e r needs other adjuvants or a more v i r u l e n t pathogen s t r a i n f o r commercial success. Another approach i s to combine chemical and microbial herbicides. I t was reported that the a d d i t i o n of s u b l e t h a l r a t e s of the h e r b i c i d e s , l i n u r o n [Ν'-(3,4-dichlorophenyl)-N-methoxy-N-methylurea], imazaquin {2-[4,5-dihydro-4-methyl-4(1-methylethyl)-5o x o - l H - i m i d a z o l - 2 - y l ] - 3 - q u i n o l i n e c a r b o x y l i c acid}, and l a c t o f e n {( + )2-ethoxy-l-methyl-2-oxoethyl-5-[2-chloro4-(trifluoromethyl)phenoxyl]-2-nitrobenzoate} to an
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Sicklepod Cassia obtusifolia
(L.)
(L.)
Schlecht.
(L.)
F i e l d bindweed Convolvulus arvensis
Spurred anoda Anoda c r i s t a t a
Medik.
Velvetleaf Abutilon theophrasti
Weed
Table
Microbial
Agent
Miscellaneous
Hughes
Alternaria J u r a i r and
cassiae Khan
A l t e r n a r i a macrosoora Zimm. (conidia)
(0.1%)
(0.75%)
2.5
5
p a r a f f i n wax 5 mineral oil soybean oil corn syrup lecithin (soybean oil)
Nonoxynol 9 (0.02% v/v) sucrose (5% w / v )
gelatin
gelatin Sorbo
1
χ
χ
χ
χ
3
10°
10
10*
10
spores/ml
Formulations
Adjuvants
Adjuvant-Based
Phomopsis convolvus Ormeno (conidia)
Colletotrichum coccodes (Wallr.)
II.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
0-16
0-24
12-24
24
Dew (hrs)
13 14 15
12
11
9 10
Ref.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
16. DAIGLE & CONNICK
Microbial Weed Control
293
invert emulsion containing A . cassiae significantly i n c r e a s e d weed c o n t r o l w i t h o u t dew ( 1 5 ) . With center p i v o t i r r i g a t i o n simulator equipment, p e a n u t a n d o t h e r v e g e t a b l e o i l s were s u p e r i o r t o p a r a f f i n i c o i l s f o r applying A . cassiae spores at rates of 0.4-8 g s p o r e s / h a t o s i c k l e p o d (Phatak, S. C , Univ. o f G e o r g i a , T i f t o n , GA, p e r s o n a l c o m m u n i c a t i o n ) . Good infection occurred at rates of 0.8-1.6 L / h a of the o i l / s p o r e m i x t u r e even w i t h o u t dew. Sicklepod control was b e s t when s p o r e s w e r e a p p l i e d i n o i l , c o m p a r e d w i t h w e t t a b l e powder o r c o n i d i a l s u s p e n s i o n . Formulations
Based
upon
Solid
Carriers
Although water has been used as a c a r r i e r o f P h y t o p h t h o r a p a l m i v o r a (Smith) Leonean, a s o i l - b o r n e fungus, i n the control of stranglervine (Morrenia odorata L . ) (36-38). t h e p o t e n t i a l o f any m i c r o b i a l a g e n t may b e l i m i t e d o n l y b y f o r m u l a t i o n a n d / o r application techniques. With s o i l - b o r n e pathogens, researchers are given the further option of using s o l i d s as c a r r i e r s (Table III). Initially, s o l i d c a r r i e r s were s i m p l e substrates on w h i c h t h e p a t h o g e n g e r m i n a t e d , grew m y c e l i a , a n d sporulated. One c a r r i e r was v e r m i c u l i t e w h i c h was m i x e d w i t h m y c e l i a o f A l t e r n a r i a m a c r o s p o r a Zimm. (24.) . A f t e r s p o r u l a t i o n a n d a i r d r y i n g , t h i s m i x t u r e was a p p l i e d , both preemergence and postemergence, to s p u r r e d anoda (Anoda c r i s t a t a S c h l e c h t ) a n d g a v e 75 t o 95% c o n t r o l o f s e e d l i n g s . However, a t l e a s t two 1 8 h o u r dew p e r i o d s a t 25 C w e r e n e e d e d f o r t h i s l e v e l o f control. The f u n g i c i d e s , PCNB (pentachloronitrobenzene) a n d ETMT [5-ethoxyl-3(trichloromethyl)-1,2,4-thiadiazole], d i d not significantly affect s p u r r e d anoda c o n t r o l w i t h A . macrospora. F i e l d r e s u l t s showed no d i f f e r e n c e between the a p p l i c a t i o n o f A ^ macrospora as a f o l i a r spray o f spores, o r as a g r a n u l a r f o r m u l a t i o n a p p l i e d t o t h e soil (25). F o r many b i o c o n t r o l a p p l i c a t i o n s , a s o l i d m a t r i x that could entrap or encapsulate microorganisms is advantageous. The u s e o f a c h e m i c a l r e a c t i o n between sodium a l g i n a t e (NaAlg) a n d c a l c i u m i o n s t o make g r a n u l e s c o n t a i n i n g any o f a wide v a r i e t y o f m y c o h e r b i c i d e s w a s i n t r o d u c e d i n 1 9 8 3 (4j>) .
2 NaAlg + C a *
->
Ca(Alg) i + 2 N a
+
2
The a l g i n a t e p r o c e s s f o r m y c o h e r b i c i d e f o r m u l a t i o n , w h i c h e v o l v e d from c o n t r o l l e d - r e l e a s e h e r b i c i d e work (47), i s c a r r i e d out i n an aqueous system a t ambient temperature and i s g e n t l e enough f o r use w i t h l i v i n g organisms (48). Uniform size, application using conventional equipment, biodégradation i n the
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Spurred anoda Anoda c r i s t a t a S c h l e c h t .
Gliocladium virens M i l l e r , Giddens & F o s t e r
Redroot pigweed Amaranthus r e t r o f l e x u s (L.) η
A l t e r n a r i a macrospora Zimm.
η
S c l e r o t i n i a sclerotiorum (Lib.) de Bary
n
Canada t h i s t l e Cirsium arvense (L.) Scot).
Prickly sida Sida spinosa (L.)
Fusarium l a t e r i t i u m Ness ex F r .
Velvetleaf Abutilon theophrasti
Medik.
π
Fusarium s o l a n i A P P . & Wr. f. sp. c u c u r b i t a e Snvd. & Hans η
M i c r o b i a l Agent
17
16
Ref
kernels
21
20
20
vermiculite
long-grain
rice
24 25
23
peat moss contg. 22 sucrose and ammonium n i t r a t e
wheat
η
a l g i n a t e - k a o l i n granules
a l g i n a t e - k a o l i n granules 18 w/wo 2% w/v soy f l o u r , 19 ground oatmeal/ cornmeal, or carboxymethyl c e l l u l o s e
a l g i n a t e - k a o l i n granules contg. 2% w/v s o y f l o u r
cornmeal/sand
Carrier
Formulations Based upon S o l i d C a r r i e r s
η
II
Texas gourd C u c u r b i t a texana (A.) Grav
Weed
Table I I I .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
16. DAIGLE Λ CONNICK
MhvMul Wmd Control
295
environment, a n d s u s t a i n e d a c t i v i t y a r e some p o s i t i v e attributes of alginate granules. Also, alginate g r a n u l e s c o n t a i n i n g k a o l i n (as f i l l e r ) a n d m y c o h e r b i c i d e c a n be p r e p a r e d and s t o r e d f o r up t o 8 months b e f o r e u s e (46). A granular inoculation of Fusarium solani App. & Wr. f . s p . c u c u r b i t a e Synd & H a n s . , p r o d u c e d on a c o r n m e a l / s a n d medium, e f f e c t i v e l y controlled (99% maximum) C u c u r b i t a texana A . Gray (Texas gourd) seedlings (Ij6) . However, a l i q u i d inoculum (2x10 spores/ml) s p r a y e d t o r u n o f f a c h i e v e d t h e same r e s u l t s . Recently, a series of papers u t i l i z i n g the alginate process w i t h t h i s mycoherbicide t o c o n t r o l Texas gourd have been p u b l i s h e d (17-19) . The a d d i t i o n o f n u t r i t i o n a l amendments ( a t 2% w / v ) s u c h a s g r o u n d oatmeal, cornmeal, or soy f l o u r s i g n i f i c a n t l y increased c o n i d i a l p r o d u c t i o n on t h e s u r f a c e o f t h e g r a n u l e s and resulted i n higher s o i l population than granular treatments w i t h o u t amendments o r g r a n u l e s containing carboxymethyl c e l l u l o s e (JL8) . G r a n u l e s amended w i t h soy f l o u r o r ground oatmeal a l s o p r o v i d e d greater control for a longer period than d i d remedial applications (19). These amended g r a n u l e s were applied up t o 6 weeks p r e e m e r g e n c e a n d g a v e g r e a t e r t h a n 80% weed c o n t r o l (18.) .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
g
Alginate granules containing Fusarium l a t e r i t i u m Ness ex F r . were as e f f e c t i v e as f o l i a r a p p l i c a t i o n s o f the fungus i n c o n t r o l l i n g e i t h e r v e l v e t l e a f (Abutilon theophrasti Medik.) or p r i c k l y s i d a (Sida spinsosa L . ) i n greenhouse studies (20). The c o n i d i a l suspensions (1.5x10 spores/ml) t h a t were s p r a y e d c o n t a i n e d Tween 80 ( 0 . 0 5 % v / v ) s u r f a c t a n t . In f i e l d t e s t s , granules were s l i g h t l y more e f f e c t i v e against v e l v e t l e a f and slightly less effective against p r i c k l y sida than the c o n i d i a l spray treatment. Throughly colonized (infected) seeds are a commonly u s e d c a r r i e r f o r b i o c o n t r o l microorganisms. For example, inoculum consisting of S c l e r o t i n i a s c l e r o t i o r u m - i n f e s t e d wheat k e r n e l s a n d s c l e r o t i a were hand-broadcast at five different locations to control Canada t h i s t l e rcirsium arvense (L.) Scop.] (21). The m e a n p e r c e n t a g e o f d e a d s h o o t s r a n g e d f r o m 20% t o 80% w h i c h showed a dependence upon l o c a t i o n a n d d a t a collection times. However, at a l l five s i t e s , the percentage o f d e a d s h o o t s was s i g n i f i c a n t l y h i g h e r i n the treated than i n the control plots. G l i o c l a d i u m v i r e n s grown on an a u t o c l a v e d longgrained rice (Orvza sativa) medium p r o d u c e d a phytotoxin, v i r i d i o l , that caused necrosis of germinating cotton (Gossvpium h i r s u t u m L . ) and r e d r o o t pigweed (Amaranthus r e t r o f l e x u s L . ) seed i n the laboratory (.23) . However, a d r i e d and ground p r e p a r a t i o n o f G . v i r e n s c u l t u r e d on r i c e a n d worked into pigweed-infested s o i l above p l a n t e d c o t t o n seed produced v i r i d i o l i n s u f f i c i e n t quantity and duration
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
296
MICROBES AND MICROBIAL PRODUCTS AS HERBICIDES
to prevent emergence of pigweed without apparent harm to emerging c o t t o n s e e d l i n g s . Sucrose and ammonium n i t r a t e on peat moss, a simple, more economical s u b s t r a t e , has r e c e n t l y r e p l a c e d the r i c e g r a i n (22). Peat moss, because of i t s a c i d i c nature, enhances the s t a b i l i t y of v i r i d i o l . Disadvantages of t h i s system i n c l u d e h i g h a p p l i c a t i o n r a t e s and l o s s of p e r s i s t e n c e . V i r i d i o l p r o d u c t i o n peaks at f i v e or s i x days a f t e r a p p l i c a t i o n and f a l l s t o undetectable l e v e l s by the end of two weeks. Because v i r i d i o l p r o d u c t i o n by £. v i r e n s r e q u i r e s a h i g h - n u t r i e n t s u b s t r a t e , a f o r m u l a t i o n such as a l g i n a t e granules w i t h a p p r o p r i a t e amendments might produce and r e l e a s e v i r i d i o l more s l o w l y and f o r a longer p e r i o d of time. Commercial Mycoherbicide
Products
Cooperation among u n i v e r s i t i e s , government, and i n d u s t r y was e s s e n t i a l i n the c o m m e r c i a l i z a t i o n of the mycoherbicides presented i n Table IV. The f o r m u l a t i o n technology of these m i c r o b i a l agents c o n s t i t u t e s p r o p r i e t a r y i n f o r m a t i o n , but t h e r e are p u b l i s h e d r e p o r t s of the u t i l i z a t i o n of these organisms i n i n t e g r a t e d pest management systems (31-36). C o l l e g o (Ecogen Inc., Langhorn, PA) i s a twocomponent product (,26) . One component i s a watersuspendable d r i e d spore p r e p a r a t i o n of the fungus C o l l e t o t r i c h u m g l o e o s p o r i o i d e s (Penz) Sacc. f . sp. aeschvnomene (CGA). The other i s a r e h y d r a t i n g agent (a sugar) used f o r w e t t i n g the spores t o improve germination. The d r i e d spore component i s packaged by the number of v i a b l e spores r a t h e r than by weight. Each package c o n t a i n s a minimum of 7.57x10 v i a b l e spores. I n i t i a l experiments w i t h C. g l o e o s p o r i o i d e s showed t h a t c o n i d i a l suspensions sprayed u n t i l r u n o f f gave good c o n t r o l of northern j o i n t v e t c h (Aeschvnomene v i r g i n i c a L., B.S.P.) (27). However, t h i s b i o c o n t r o l approach was slower than chemical h e r b i c i d e c o n t r o l by 2,4,5-T [ ( 2 , 4 , 5 - t r i c h l o r o p h e n o x y ) a c e t i c a c i d ] because the i n c u b a t i o n p e r i o d of the fungus was 4 t o 7 days, and the fungus d i d not k i l l the weeds f o r up t o 5 weeks a f t e r treatment. Higher r a t e s of inoculum a p p l i c a t i o n and humidity (warm, moist, cloudy weather and/or f l o o d i n g of the r i c e f i e l d s ) i n c r e a s e d i t s e f f e c t i v e n e s s (28-29). One of the commercial disadvantages of b i o l o g i c a l c o n t r o l i s the h o s t - s p e c i f i c i t y of the pathogen, i . e . , only one weed i s c o n t r o l l e d per a p p l i c a t i o n . The fungus, C o l l e t o t r i c h u m g l o e o s p o r i o i d e s (Penz) Sacc. f . sp. i u s s i a e a (CGJ) was found t o be h i g h l y s p e c i f i c f o r p a r a s i t i s m of winged waterprimrose (Ludwigia decurrens Walt. ) , a weed endemic i n r i c e growing regions (30.) CGJ was p h y s i o l o g i c a l l y d i s t i n c t from CGA as i n d i c a t e d by cross i n o c u l a t i o n of t h e i r r e s p e c t i v e t a r g e t weeds.
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
(L.)
* Nearing commercialization E x p e r i m e n t a l p r o d u c t - no l o n g e r
Sicklepod Cassia obtusifolia
available
Alternaria J u r a i r and
Butl.
cassiae Khan
rodmanii
Cercospora Conway
(Mart.)
Waterhyacinth Eichhornia crassipes Solms
Phvtophthora palmivora (Butl.) (chlamydospores)
Colletotrichum gloeosporioides (Penz.) Sacc. f. sp. aeschvnomene
Agent
Colletotrichum gloeosporioides f. sp. malvae
(Lindl.)
(L.)
Microbial
Round-leaved mallow Malva p u s i l l a (Sm.)
Stranglervine Morrenia odorata
Northern jointvetch Aeschvnomene v i r g i n i c a B.S.P.
Weed
Table IV. Commercial M i c r o b i a l Agents
a
b
Name
40-42
39
36-38
26-35
Ref
MYD 7 5 1 M (oil)* a n d MYX 1 0 4 (spores)
ABG-5003
BioMal
DeVine
Collego
Commercial
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
298
MICROBES AND MICROBIAL PRODUCTS AS HERBICIDES
A s p o r e s u s p e n s i o n m i x t u r e c o n t a i n i n g 2x10 spores/ml CGA a n d 1x10 s p o r e s / m l C G J a p p l i e d a t 94 L / h a c o m p l e t e l y c o n t r o l l e d b o t h weeds, g r e a t l y enhancing t h e u t i l i t y o f t h i s c o n t r o l method. To i n c r e a s e t h e m a r k e t a b i l i t y o f C o l l e g o , i t s c o m p a t i b i l i t y with chemical p e s t i c i d e s has been investigated. M i x t u r e s o f CGA w i t h p r o p a n i l [N-(3,4dichlorophenyl)propanamide], molinate [S-ethyl hexahydro-lH-azepine-l-carbothioate], 2,4,5-T, and benomyl [methyl 1-(butylcarbamoyl)-2benzimidazolecarbamate] were d e t r i m e n t a l t o C G A ' s efficacy (31). I f , however, p r o p a n i l , 2 , 4 , 5 - T , fentin hydroxide (triphenyltin hydroxide), pencycuron {N-[(4chlorophenyl)methyl]-N-cyclopentyl-N'-phenylurea}, each at 0.56 k g a i / h a , a n d SN-84364 [3'-isopropoxy-2(trifluoromethyl) benzanilide] (at 0.40 kg a i / h a ) were a p p l i e d a f t e r CGA t r e a t m e n t , disease and development w e r e n o t i n h i b i t e d (32.) . The h e r b i c i d e s , acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid) (0.56 kg a i / h a ) and bentazon [3-(1-methylethyl)(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] (0.56 t o 1.1 k g a i / h a ) , or the insecticides, malathion [diethyl(dimethoxyphosphinothioylthio)succinate] (0.56 kg a i / h a ) and carbofuran (2,3-dihydro-2,2-dimethyl-7benzofuranyl methylcarbamate), (0.56 kg a i / h a ) c o u l d be a p p l i e d w i t h CGA f r o m a s i n g l e t a n k m i x t u r e (33-34). Because a c i f l u o r f e n a p p l i e d postemergence effectively c o n t r o l s hemp s e s b a n i a rsesbania exaltata ( R a f . ) R y d b . e x A . W. H i l l ] i n s o y b e a n s (Glycine max). the combined a p p l i c a t i o n o f t h e h e r b i c i d e and CGA, respectively, c o n t r o l s hemp s e s b a n i a a n d n o r t h e r n jointvetch (35). The use o f a low-volume (21.5 L / h a ) c o n t r o l l e d d r o p l e t a p p l i c a t o r (CDA) (spinning-disc) with such a combination produced mixed r e s u l t s . If u n f a v o r a b l y d r y e n v i r o n m e n t s e x i s t e d when t h e CGA was u s e d , i n f e c t i o n was r e d u c e d r e s u l t i n g i n u n s a t i s f a c t o r y weed c o n t r o l . B e n o m y l (33) a n d p r o p i c o n a z o l {2[[2(2,4-dichlorophenyl)-4-propyl-l,3-dioxalan-2yl]methyl]-1H-1,2,4-triazole} (32) a p p l i e d sequentially 7 a n d 14 d a y s a f t e r C G A s u p p r e s s e d t h e g r o w t h a n d development of the pathogen. DeVine (Abbott L a b o r a t o r i e s , N o r t h C h i c a g o , IL) has as i t s a c t i v e i n g r e d i e n t t h e l i v e chlamydospores o f Phytophthora palmivora (Butler) Butler. The commercial formulation i s stable under r e f r i g e r a t i o n f o r only s i x weeks a n d must b e a p p l i e d t o wet s o i l . The v i a b i l i t y o f D e V i n e may b e r e d u c e d b y t h e f u n g i c i d e s Aliett [aluminum t r i s ( e t h y l phosphonate)] and Ridomil [methyl N-(2-methoxyacetyl)-N-(2,6-xylyl)-DL-alaninate]. If f u n g i c i d e s a r e t o be used, a p p l i c a t i o n s h o u l d o c c u r 4 5 60 d a y s p r i o r t o o r a f t e r t h e D e V i n e t r e a t m e n t (36-38) . H e r b i c i d e s such as d i u r o n [Ν'-(3,4-dichlorophenyl)-N,Ndimethylurea], glyphosate [N-(phosphonomethyl)glycine], and paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) also i n h i b i t e d the efficacy of DeVine. The pathogen,
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
16. DAIGLE A CONNICK
Microbial Weed Control
299
however, c o u l d be a p p l i e d t h r e e weeks a f t e r s p r a y i n g glyphosate Q l ) · The product, BioMal (PhilomBios, Saskatoon, Sask., Canada), which c o n t a i n s the mycoherbicide, C o l l e t o t r i c h u m g l o e o s p o r i o i d e s f . sp. malvae, i s n e a r i n g c o m m e r c i a l i z a t i o n ( G a n t o t t i , Β. V., PhilomBios, Saskatoon, Sask., Canada, p e r s o n a l communication). The fungus i s a pathogen o f round-leaved mallow (Malva p u s i l l a Sm.), a common p r a i r i e weed i n Canada t h a t has become a problem i n c u l t i v a t e d crops. An i n i t i a l f o r m u l a t i o n of BioMal, u s i n g standard technology such as a s i l i c a g e l c a r r i e r , has proven very e f f e c t i v e i n the f i e l d . The wettable powder f o r m u l a t i o n of t h i s h y d r o p h i l i c fungus d i s p e r s e s e a s i l y i n water and i s a p p l i e d as a spray. However, f o r e f f e c t i v e weed c o n t r o l , an overnight dew p e r i o d i s e s s e n t i a l (.39) . In s p i t e of t h e e f f o r t s of s e v e r a l r e s e a r c h groups over a 10-20 year p e r i o d , t h e r e are no m i c r o b i a l agents now i n commercial use f o r a q u a t i c weed c o n t r o l . Abbott L a b o r a t o r i e s had developed an experimental wettable powder f o r m u l a t i o n f o r Cercospora rodmanii Conway, a pathogen used t o c o n t r o l waterhyacinth r E i c h h o r n i a c r a s s i o e s (Mart.) Solms] (4£) . The f o r m u l a t i o n contained 4.54x10 propagules p e r pound and t h e spray mixture c a l l e d f o r T r i t o n X-100 t o be added by the user. One of the environmental o b s t a c l e s t o the e f f i c a c y of t h i s pathogen was temperature. I t must be a p p l i e d when daytime temperatures are above 16°C and lower than 32°C. A l s o , when t h e host growth was r a p i d , long-term b i o c o n t r o l w i t h a s i n g l e a p p l i c a t i o n was not obtained (41.) . An approach now under e v a l u a t i o n i s t h e use o f combinations of £. rodmanii and i n s e c t b i o c o n t r o l agents, o r t h e pathogen p l u s s u b l e t h a l r a t e s of chemical h e r b i c i d e s (Charudattan, R., Univ. of F l o r i d a , G a i n e s v i l l e , FL, unpublished r e s u l t s ) . Experimental r e s u l t s confirmed t h a t n e i t h e r t h e pathogens nor t h e arthropods, m o t t l e d waterhyacinth w e e v i l , Neochetina e i c h o r n i a e Warner; chevroned waterhyacinth w e e v i l , N. b r u c h i Hustache (both C o l e o o t e r a , C u r c u l i o n i d a e ) ; the moth, Sameodes a l b i g u t t a l i s (Warren) ( L e p t i d o p t e r a , P v r a l i d a e ) ; a mite, Orthogalumna t e r e b r a n t i s Wallwork (Acarina, Galumnidae); and t h e moth, Arzama densa Walker (Leoidoptera, Noctuidae), alone completely c o n t r o l l e d waterhyacinth (£0) . By combining t h e pathogen w i t h the arthropods, 99% c o n t r o l was achieved i n 7 months. L i m i t e d experiments w i t h s u b l e t h a l r a t e s of glyphosate, t h i d i a z u r o n [l-phenyl-3-(1,2,3t h i a d i a z o l - 5 - y l ) u r e a ] , ethephon (2c h l o r o e t h y l p h o s p h o r i c a c i d ) , 2,4-D [(2,4d i c h l o r o p h e n o x y ) a c e t i c a c i d ] , and diquat (1,1'e t h y l e n e - 2 , 2 ' - d i p y r i d y l i u m i o n ) , i n combination w i t h the pathogen d i d not enhance c o n t r o l o f w a t e r h y a c i n t h . An experimental f o r m u l a t i o n of A. c a s s i a e t o c o n t r o l s i c k l e p o d i n soybeans and peanuts (Arachis
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
300
MICROBES AND MICROBIAL PRODUCTS AS HERBICIDES
hvpogea) has been d e v e l o p e d by t h e Mycogen Corporation (San D i e g o , C A ) . It i s a two-component product consisting of: (a) a n e m u l s i f i a b l e p a r a f f i n i e oil ( d e s i g n a t e d MYD 7 5 1 M ) , a n d (b) s p o r e s o f A . cassiae (MYX 1 0 4 , 100% a i ) . To p r e p a r e t h e s p r a y m i x t u r e , the o i l c o m p o n e n t i s f i r s t e m u l s i f i e d i n w a t e r a t a 1% (v/v) c o n c e n t r a t i o n and t h e n t h e s p o r e s a r e a d d e d a n d d i s p e r s e d by s t i r r i n g . This formulation i s a p p l i e d at a r a t e o f about 0.4 l b s p o r e s / h a t o s i c k l e p o d i n t h e cotyledon to 2 - l e a f stage of development (Bannon, J. S . , Mycogen C o r p . , R u s t o n , LA, p e r s o n a l c o m m u n i c a t i o n ) . Integrated
Weed Management
System with
Microorganisms
In r e c e n t y e a r s , one p r i o r i t y i n a g r i c u l t u r a l research t o r e d u c e t h e amount o f h e r b i c i d e a p p l i e d . To do t h i s , r e s e a r c h e r s have d e v e l o p e d an i n t e g r a t e d weed m a n a g e m e n t s y s t e m (IWMS) (.49) . Some e x a m p l e s o f this approach have a l r e a d y been d i s c u s s e d . IWMS u t i l i z e s the d i f f e r e n t combinations and i n t e r a c t i o n s between . b e n e f i c i a l insects, chemical herbicides, microorganisms, and p l a n t growth r e g u l a t o r s t o control a b r o a d s p e c t r u m o f weeds b e c a u s e no s i n g l e a g e n t gives optimum r e s u l t s . The r u s t f u n g u s , P u c c i n i a c a n a l i c u l a t a (Schw.) Lagerh., d i d not give complete b i o l o g i c a l c o n t r o l of yellow nutsedge (Cyprus e s c u l e n t u s L.) even under the best c o n d i t i o n s f o r i n f e c t i o n and d i s s e m i n a t i o n (50). U r e d i n i o s p o r e s u s p e n s i o n s c o n t a i n i n g T r i t o n Β 1956 ( 0 . 1 % v / v ) g a v e o n l y 60% c o n t r o l (53). However, application of the chemical herbicide, paraquat, after t h e r u s t e p i p h y t o t i c w a s d e v e l o p e d g a v e 99% c o n t r o l c o m p a r e d t o 10% w i t h p a r a q u a t a l o n e . Preliminary results indicated that a beneficial interaction o c c u r r e d when a s e q u e n t i a l a p p l i c a t i o n o f r u s t followed imazaquin (51-53). E n h a n c e d c o n t r o l was a l s o observed a f t e r u s i n g a mixture of the Maryland r u s t s t r a i n and bentazon (54). Both i n s e c t - m i c r o o r g a n i s m and chemical treatmentmicroorganism i n t e r a c t i o n s have r e c e n t l y been s t u d i e d i n the c o n t r o l of v e l v e t l e a f by r e d u c t i o n of seed viability (55-57). Niesthea lousianica Sailer, a n a t i v e s c e n t l e s s p l a n t bug, has been found t o reduce production of v i a b l e v e l v e t l e a f seed d i r e c t l y through f e e d i n g and promoting i n f e c t i o n of seed w i t h detrimental microorganisms. Three main f u n g a l genera ( A l t e r n a r i a , C l a d o s p o r i u m , and Fusarium) and t h r e e b a c t e r i a l genera (Pseudomonas, E s w i n i a , and F l o r o b a c t e r i u m ) were c o n s i s t e n t l y i s o l a t e d f r o m nonviable seed. S e l e c t i o n of t h e most effective m i c r o o r g a n i s m f o r s e e d d e t e r i o r a t i o n may i m p r o v e t h i s approach. Chemical treatment of the s o i l with e t h e p h o n , AC94377 [1-(3-chlorophthalimido)cyclohexane carboximide], butylate (S-ethyl d i isobutylthiocarbamate), or carbofuran plus Fusarium sp.
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
16.
DAIGLE & CONNICK
Microbial Weed Control
301
r e s u l t e d i n nonviable seed h e a v i l y i n f e c t e d with mycelia (52) . Ethephon or carbofuran i n combination with Fusarium sp. a l s o r e s u l t e d i n a reduction i n emergence. The pathogen was d e l i v e r e d on a shredded wheat medium. Another promising IWMS strategy t o c o n t r o l v e l v e t l e a f i n v o l v e s the spray a p p l i c a t i o n of tank-mix combinations of the p l a n t pathogenic fungus C o l l e t o t r i c h u m coccodes (Wallr.) Hughes and the p l a n t growth r e g u l a t o r t h i d i a z u r o n (N-phenyl-N'-1,2,3thiadiazol-5-yl-urea) ( 5 8 - 5 9 ) . The t h i d i a z u r o n causes severe s t r e s s i n v e l v e t l e a f by i n h i b i t i n g stem elongation, l e a f development, and flowering, and the C o l l e t o t r i c h u m causes l e a f n e c r o s i s and a b s c i s s i o n . Use of t h i s combination i n f i e l d t r i a l s l e d t o s i g n i f i c a n t v e l v e t l e a f c o n t r o l and increased soybean yield. Epilogue Researchers have taken d i f f e r e n t approaches i n t h e i r e f f o r t s t o improve germination of mycoherbicides and/or i n f e c t i o n of t a r g e t weeds. One approach has c a l l e d f o r d i r e c t p r o v i s i o n of water i n c a r r i e r s formulated t o r e t a r d water evaporation. Except i n those few cases where high humidity or dew i s n a t u r a l l y present ( i n flooded r i c e f i e l d s , over ponds c o n t a i n i n g water hyacinths, or i n wet s o i l ) , p r e d i c t i o n of a dew f a l l i s u s u a l l y not adequate f o r r e l i a b l e r e s u l t s . Preliminary i n v e s t i g a t i o n of water-holding formulations have shown promise, but weed m o r t a l i t y has not been s u f f i c i e n t or consistent. A second approach, the use of humectanttype adjuvants, e.g., a sugar, has been s u c c e s s f u l i n the formulation of C o l l e g o . Sugars have a l s o been used s u c c e s s f u l l y i n s o l i d c a r r i e r formulations t o promote growth of the pathogen (22). A v i a b l e concept that has not been s u f f i c i e n t l y e x p l o i t e d i s the use of adjuvants that i n t e r a c t with the p l a n t and/or m i c r o b i a l agent t o promote the e f f i c a c y of the i n f e c t i o n process. Because each disease and host b i o l o g y combination i s unique (see Chap. 11, 12), the formulator's challenge i s formidable. M i c r o b i a l i n t e r a c t i o n on p l a n t surfaces should a l s o be considered i n the development of formulations f o r b i o l o g i c a l weed c o n t r o l . Researchers i n i n t e g r a t e d weed management s t u d i e s have proposed that a v a r i a t i o n of the concept i s p o s s i b l e now with the a d d i t i o n of chemical h e r b i c i d e s and/or i n s e c t s . The a d d i t i o n a l s t r e s s (chemical and p h y s i c a l i n j u r y ) i n f l i c t e d by these agents makes some m i c r o b i a l agents more efficacious. The promise of widespread use of m i c r o b i a l agents as h e r b i c i d e s may f i r s t be r e a l i z e d through i n t e g r a t e d weed management systems that broaden the spectrum of weeds c o n t r o l l e d by one a p p l i c a t i o n .
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
302
MICROBES AND MICROBIAL PRODUCTS AS HERBICIDES
Literature Cited 1. 2.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.
Andersen, R. Ν.; Walker, H. L. Weed Sci. 1985, 33, 902-5. Cartwright, R. D.; Templeton, G. E. Plant D i s . 1988, 72, 580-2. Mitchell, J. K. Plant D i s . 1988, 72, 354-5. Cardina, J.; L i t t r e l l , R. H.; Hanlin, R. T. Weed Sci. 1988, 36, 329-34. Walker, H. L. Weed Sci. 1981, 29, 629-31. Boyette, C. D.; Walker, H. L. Weed Sci. 1985, 33, 209-11. Crawley, D. K.; Walker, H. L.; Riley, J. A. Plant Dis. 1985, 69, 977-9. Mitchell, J. K. Plant D i s . 1986, 70, 603. Wymore, L. A.; Poirier, C.; Watson, A. K.; Gotlieb, A. R. Plant D i s . 1988, 72, 534-8. Wymore, L. Α.; Watson, A. K. Phytopathology 1986, 76, 1115-6. Ormeno-Nunez, J.; Reeleder, R. D.; Watson, A. K. Plant D i s . 1988, 72, 338-42. Walker, H. L. Weed Sci. 1981, 29, 505-7. Quimby, P. C . , J r . ; Fulgham, F. E.; Boyette, C. D.; Connick, W. J., Jr. In Pesticide Formulations and Application Systems: Hovde, D. A.; Beestman, G. B., Eds.; American Society for Testing and Materials: Philadelphia, 1988; Vol. 8, pp. 264-70. McWhorter, C. G.; Fulgham, F. E.; Barrentine, W. L. Weed Sci. 1988, 36, 118-21. Quimby, P. C . , J r . ; Fulgham, F. E.; Boyette, C. D.; Hoagland, R. E. WSSA Abstr. 1988, 28, 52. Boyette, C. D.; Templeton, G. E.; Oliver, L. R. 1984. Weed Sci. 1984, 32, 649-55. Weidemann, G. J.; Templeton, G. E. Weed Technol. 1988, 2, 271-4. Weidemann, G. J. Plant D i s . 1988, 72, 757-9. Weidemann, G. J.; Templeton, G. E. Plant D i s . 1988, 72, 36-8. Boyette, C. D.; Walker, H. L. Weed Sci. 1985, 34, 106-9. Brosten, B. S.; Sands, D. C. Weed Sci. 1986, 34, 377-80. Jones, R. W.; Lanini, W. T.; Hancock, J. G. Weed Sci. 1988, 36, 683-7. Howell, C. R.; Stipanovic, R. D. Phytopathology 1984, 74, 1346-9. Walker, H. L. Weed Sci. 1981, 29, 342-5. Walker, H. L. Proc. South. Weed Sci. Soc. 1980, 33, 65. Bowers, R. C. Weed Sci. 1986, 34(suppl. 1), 24-5. Daniel, J. T.; Templeton, G. E.; Smith, R. J., J r . ; Fox, W. T. Weed Sci. 1973, 21, 303-7. Templeton, G. E.; Smith, R. J., J r . ; TeBeest, D. O.; Beasley, J. Ν.; Klerk, R. A. Ark. Farm Res. 1981, 30, 8.
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
16. DAIGLE A CONNICK
29. 30. 31.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
32. 33. 34. 35. 36.
37. 38. 39. 40. 41. 42.
43. 44. 45. 46. 47. 48.
49. 50. 51. 52.
Microbial Wmi Control
303
TeBeest, D. O.; Templeton, G. E.; Smith, R. J., Jr. Phytopathology 1978, 68, 389-93. Boyette, C. D.; Templeton, G. E.; Smith, R. J., Jr. Weed Sci. 1979, 27, 497-501. Smith R. J., Jr. In Biological Control of Weeds with Plant Pathogens; Charudattan R.; Walker, H. L. Eds.; John Wiley and Sons: New York, 1982, pp. 189-203. Khodayari, K.; Smith, R. J., Jr. Weed Technol. 1988, 2, 282-5. Klerk, R. A.; Smith, R. J., J r . ; TeBeest, D. O. Weed Sci. 1985, 33, 95-9. Smith, R. J., Jr. Weed Sci. 1986, 34(Suppl. 1), 17-23. Khodayari, K.; Smith, R. J., J r . ; Walker, J. T.; TeBeest, D. O. Weed Technol. 1987, 1, 37-40. Anonymous. Product Use Bulletin, DeVine Biological Herbicide AG-4065; Abbott Laboratories, Chemical and Agricultural Products Division: North Chicago, IL 60604, 1988. Kenney, D. S. Weed Sci. 1986, 34(Suppl. 1), 15-6. Ridings, W. H. Weed Sci. 1986, 34(Suppl. 1), 312. Mortensen, K. Weed Sci. 1988, 36, 473-8. Anonymous. Label: ABG-5003 Biological Herbicide; Abbott Laboratories, Chemical and Agricultural Products Division: North Chicago, IL 60604, 1987. Charudattan, R.; Linda, S. B.; Kluepfel, M.; Osman, Y. A. Phytopathology 1985, 75, 1263-9. Freeman, T. Ε.; Charudattan, R. Tech. Bulletin 842; Agricultural Experiment Station, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 1984. Templeton, G. E.; TeBeest, D. O.; Smith, R. J., Jr. Ann. Rev. Phytopathol. 1979, 17, 301-10. Hasan, S. Symbiosis 1986, 2, 151-63. Charudattan, R. In Biological Control In Agricultural IPM Systems; Academic Press: New York, 1985; pp. 347-72. Walker, H. L.; Connick, W. J., Jr. Weed Sci. 1983, 31, 333-8. Connick, W. J., Jr. J. Appl. Polym. Sci. 1982, 27, 3341-8. Connick, W. J., Jr. In Pesticides Formulations: Innovations and Developments; ACS Symposium Series No. 371; Cross, B.; Sher, H.B.; Eds.; American Chemical Society: Washington, DC, 1982; pp. 24150. Quimby, P. C., J r . ; Walker, H. L. Weed Sci. 1982, 30(Suppl. 1), 30-4. Phatak, S. C. Amer. Veg. Grower 1984, 32, 44-6. Callaway, M. B.; Phatak, S. C.; Wells, H. D. Proc. South. Weed Sci. Soc. 1985, 38, 31. Phatak, S. C.; Callaway, M. B.; Vavrina, C. S. Weed Technol. 1987, 1, 84-91.
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
304
MICROBES A N D MICROBIAL PRODUCTS AS HERBICIDES
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 24, 2016 | http://pubs.acs.org Publication Date: September 25, 1990 | doi: 10.1021/bk-1990-0439.ch016
53.
Callaway, M. B.; Phatak, S. C.; Wells, H. D. Trop. Pest Manage. 1987, 33, 22-6. 54. Bruckart, W. L.; Johnson, D. R.; Frank, J. R. Weed Technol. 1988, 2, 299-303. 55. Kremer, R. J.; Spencer Ν. R. Weed Technol. 1989, 3, 322-8. 56. Kremer, R. J.; Spencer, N. R. Weed Sci. 1989, 37, 211-6. 57. Kremer, R. J.; Schulte, L. K. Weed Technol. 1989, 3, 369-74. 58. Hodgson, R. H.; Wymore, L. A . ; Watson, A. K.; Snyder, R. H . ; Collette, A. Weed Technol. 1988, 2, 473-80. 59. Wymore, L. Α.; Watson, A. K.; Gotlieb, A. R. Weed Sci. 1987, 35, 377-83. 60. Charudattan, R. Weed Sci. 1986, 34(Suppl. 1), 2630. RECEIVED January 30,
1990
In Microbes and Microbial Products as Herbicides; Hoagland, Robert E.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.