1 Mineral Matter and Trace Elements in Coal HAROLD J. GLUSKOTER
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
Illinois State Geological Survey, Urbana, Ill. 61801 The term, "mineral matter in coal," refers to mineral phases or species present in coal and also to all chemical elements in coal that are generally considered to be inorganic. Most mineral matter occurs in coal as silicates, sulfides, and carbonates. Four coals, separated into series of specific gravity fractions, have been analyzed. The trace elements, germanium, beryllium, and boron, have the greatest organic affinities, whereas Hg, Zr, Zn, As, Cd, Pb, Mn, and Mo are generally inorganically combined in the coal. Each of the other trace elements determined apparently occurs in both organic and inorganic combination. P, Ga, Sb, Ti, and V are more closely associated with the elements having strong organic affinities while Co, Ni, Se, Cr, and Cu are more closely associated with the elements having strong inorganic affinities. ' " p h e t e r m , " m i n e r a l m a t t e r i n c o a l , " is w i d e l y u s e d , b u t its m e a n i n g A
varies a p p r e c i a b l y .
T h e term usually includes a l l inorganic non-coal
m a t e r i a l f o u n d i n c o a l as m i n e r a l phases a n d also a l l elements i n c o a l t h a t are c o n s i d e r e d i n o r g a n i c . T h e r e f o r e , a l l elements i n c o a l except c a r b o n , h y d r o g e n , o x y g e n , n i t r o g e n , a n d s u l f u r are i n c l u d e d i n this b r o a d d e f i n i t i o n . F o u r of these five o r g a n i c elements also a r e f o u n d i n coals i n i n o r g a n i c c o m b i n a t i o n a n d therefore are p a r t of t h e m i n e r a l matter. C a r b o n is, present i n carbonates
[ C a ( F e , M g ) C 0 ] ; h y d r o g e n i n free w a t e r a n d 3
w a t e r of h y d r a t i o n ; o x y g e n i n w a t e r , oxides, carbonates, sulfates, a n d silicates; a n d s u l f u r i n sulfides
(primarily pyrite a n d marcasite) a n d
sulfates. Interest i n m i n e r a l m a t t e r i n c o a l arises p r i m a r i l y because some of the m a t e r i a l s m a y h a v e d e t r i m e n t a l effects d u r i n g c o a l use.
Because
m e t h o d s of u s i n g c o a l are b e c o m i n g m o r e s o p h i s t i c a t e d a n d i n c r e a s i n g l y large amounts of c o a l are b e i n g u s e d at single locations, these d e t r i m e n t a l effects s h o u l d b e c o n s i d e r e d f u r t h e r . 1 In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
2
TRACE
ELEMENTS
IN
FUEL
A l t h o u g h the a m o u n t of m i n e r a l m a t t e r i n coals varies c o n s i d e r a b l y , i t is n o r m a l l y l a r g e e n o u g h to be significant h o w e v e r the c o a l is used. I n a s t u d y of 65 I l l i n o i s coals, R a o a n d G l u s k o t e r ( J ) f o u n d the m i n e r a l m a t t e r content to r a n g e f r o m 9.4 to 2 2 . 3 % , c o r r e s p o n d i n g to a n
ash
content of 7.3 a n d 1 5 . 8 % , r e s p e c t i v e l y . O ' G o r m a n a n d W a l k e r (2)
found
a n e v e n larger r a n g e ( 9 . 0 5 - 3 2 . 2 6 % )
i n 16
w h o l e c o a l samples
from
i n m i n e r a l m a t t e r content
a w i d e d i s t r i b u t i o n of locations i n N o r t h
A m e r i c a . I f 1 5 % is a reasonable estimate of the average v a l u e of m i n e r a l m a t t e r content i n coals m i n e d i n N o r t h A m e r i c a , t h e n , unless p a r t i a l l y r e m o v e d b y c l e a n i n g , that a m o u n t enters e a c h c o a l u t i l i z a t i o n process. 6
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
S i n c e a p p r o x i m a t e l y 590 X 1 0 tons of c o a l w e r e p r o d u c e d i n the U n i t e d States i n 1973 i t is e s t i m a t e d that 89 X 1 0
6
tons of this w a s n o r m a l l y
u n w a n t e d m i n e r a l matter. Interest i n m i n e r a l m a t t e r content of c o a l intensified as e l e c t r i c p o w e r plants b e c a m e larger a n d the boilers b e g a n to operate at h i g h e r t e m p e r a tures.
P r o b l e m s of fireside b o i l e r - t u b e f o u l i n g a n d c o r r o s i o n , w h i c h be-
c a m e i n c r e a s i n g l y severe at the h i g h e r temperatures, w e r e r e l a t e d to the sulfur, c h l o r i n e , a l k a l i , a n d ash content of the coals ( 3 ) . W i t h i n the past s e v e r a l years, the g e n e r a l p u b l i c has b e c o m e m o r e interested
in both
a i r a n d w a t e r p o l l u t i o n . T h e r e f o r e , b o t h the c o a l c o n s u m e r a n d the p r o d u c e r n e e d a m o r e t h o r o u g h k n o w l e d g e of the m i n e r a l m a t t e r i n c o a l a n d of the p r o d u c t s a n d b y - p r o d u c t s of the m i n e r a l m a t t e r p r o d u c e d w h e n c o a l is c o m b u s t e d .
M u c h of this interest has b e e n d i r e c t e d to the forms
of sulfur i n c o a l a n d c o a l refuse, to the sulfur oxides f o r m e d d u r i n g c o a l c o m b u s t i o n , a n d to the sulfates f r o m c o a l o x i d a t i o n . T h e r e has b e e n a c o n s e q u e n t d e m a n d for d a t a r e l a t i n g to t h e o r i g i n , d i s t r i b u t i o n , a n d reactions of sulfur i n c o a l . T h e r e is also m u c h d e m a n d f o r d a t a o n t h e trace elements i n c o a l s : t h e i r concentrations a n d d i s t r i b u t i o n s i n coals, t h e i r v o l a t i l i t y , a n d t h e i r p o t e n t i a l effects o n t h e e n v i r o n m e n t . M o r e r e c e n t l y , there has b e e n m u c h c o n c e r n a b o u t
the
possible
effects of the m i n e r a l m a t t e r i n c o a l o n processes u s e d to c o n v e r t c o a l to other fuels s u c h as gasification, l i q u e f a c t i o n , a n d p r o d u c t i o n o f c l e a n s o l i d fuels.
N o t o n l y is r e m o v i n g a n d d i s p o s i n g of the m i n e r a l m a t t e r
a p r o b l e m , b u t also the p o s s i b l e c h e m i c a l effects s u c h as catalyst p o i s o n i n g , w h i c h m i g h t b e e x p e c t e d i n the m e t h a n a t i o n of gas f r o m c o a l , s h o u l d be considered. N o t a l l of the interest i n m i n e r a l m a t t e r i n coals is s t i m u l a t e d b y its d e t r i m e n t a l effects d u r i n g c o a l use.
I n s e v e r a l instances c o a l is a source
of d e s i r e d elements
U r a n i u m has b e e n p r o d u c e d
a n d materials.
from
l i g n i t e ; g e r m a n i u m a n d sulfur c o u l d be p r o d u c e d f r o m c o a l ; a n d c o a l ash has b e e n u s e d for c o n s t r u c t i o n m a t e r i a l s s u c h as b r i c k , l i g h t w e i g h t aggregate, a n d r o a d p a v i n g m a t e r i a l .
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
Mineral
GLUSKOTER
Minerals
Matter
and Trace Elements
3
in Coal
in Coal
S e v e r a l d o z e n m i n e r a l s are r e p o r t e d i n coals, a l t h o u g h most of these o c c u r o n l y s p o r a d i c a l l y or i n trace amounts. T h e o v e r w h e l m i n g m a j o r i t y of the m i n e r a l s i n c o a l are i n one of f o u r g r o u p s : a l u m i n o s i l i c a t e s , c a r bonates, sulfides, a n d s i l i c a ( q u a r t z )
(Figure 1). C l a y m i n e r a l s are the most
Aluminosilicates—Clay Minerals.
com-
m o n l y o c c u r r i n g i n o r g a n i c constituents of coals a n d of the strata assoc i a t e d w i t h the coals. M u c h of t h e w o r k o n clays r e p o r t e d i n the l i t e r a t u r e is c o n c e r n e d w i t h these strata, not the coals themselves.
M a n y different
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
c l a y m i n e r a l s h a v e b e e n r e p o r t e d i n coals, b u t t h e most c o m m o n illite
[(OH) K (Si 4
2
6
· Al )Al 0 o], 2
4
2
kaolinite
[(OH) Si Al O 8
4
4
1 0
],
are and
m i x e d - l a y e r i l l i t e - m o n t m o r i l l o n i t e . R a o a n d G l u s k o t e r ( 1 ), i n a n i n v e s t i g a t i o n of 65 coals f r o m the I l l i n o i s B a s i n , r e p o r t e d a m e a n v a l u e of 5 2 % for c l a y i n t h e m i n e r a l m a t t e r . O ' G o r m a n a n d W a l k e r ( 2 ) also f o u n d t h a t t h e c l a y m i n e r a l s m a k e u p the greater p a r t of t h e m i n e r a l m a t t e r i n most of the coals t h a t t h e y s t u d i e d . Sulfides and Sulfates.
P y r i t e is the d o m i n a n t sulfide m i n e r a l i n c o a l .
M a r c a s i t e has also b e e n r e p o r t e d f r o m m a n y different coals.
Pyrite and
m a r c a s i t e are d i m o r p h s , m i n e r a l s that are i d e n t i c a l i n c h e m i c a l c o m p o s i t i o n ( F e S ) b u t differ i n c r y s t a l l i n e f o r m ; p y r i t e is c u b i c w h i l e m a r c a s i t e 2
is o r t h o r h o m b i c .
O t h e r sulfide m i n e r a l s that h a v e b e e n f o u n d i n coals,
a n d sometimes i n significant a m o u n t s , are s p h a l e r i t e ( Z n S )
a n d galena
(PbS). Sulfates are not c o m m o n
a n d often are n o t present at a l l i n coals
that are fresh a n d u n w e a t h e r e d .
P y r i t e is v e r y s u s c e p t i b l e to o x i d a t i o n
a n d d e c o m p o s e s to v a r i o u s phases of i r o n sulfate m i n e r a l s at r o o m t e m p e r a t u r e . T h e f o l l o w i n g i r o n sulfate m i n e r a l phases are associated w i t h I l l i n o i s coals that h a v e b e e n subjected to o x i d i z i n g c o n d i t i o n s ( 4 ) : szomolnokite
FeS0
4
· H 0
rozenite
FeS0
4
· 4H 0
melanterite
FeS0
4
· 7H 0
coquimbite
Fe (S0 )
roemerite
FeS0
jarosite
u s u a l l y a s o d i u m jarosite
2
2
2
2
4
4
* 9H 0
3
2
· Fe (S0 ) 2
4
3
· 12H 0
(Na,K)Fe (S0 ) (OH) 3
4
2
2
6
Sulfides a n d sulfate m i n e r a l s m a k e u p 2 5 % of the m i n e r a l m a t t e r content of I l l i n o i s coals ( 1 ). Carbonates. T h e c a r b o n a t e m i n e r a l s , i n g e n e r a l , v a r y w i d e l y i n c o m p o s i t i o n b e c a u s e of the extensive s o l i d s o l u t i o n of c a l c i u m , m a g n e s i u m , i r o n , manganese, etc. that is p o s s i b l e w i t h i n t h e m . T h e r e is also a w i d e r a n g e of m i n e r a l c o m p o s i t i o n s for the c a r b o n a t e m i n e r a l s i n coals. relatively pure end members, calcite ( C a C 0 ) 3
a n d siderite
The
(FeC0 ),
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
TRACE ELEMENTS
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
IN FUEL
1.
GLUSKOTER
Mineral
Matter
have commonly been reported.
and Trace Elements
5
in Coal
H o w e v e r the most f r e q u e n t l y r e p o r t e d
c a r b o n a t e m i n e r a l s f r o m t h e m a j o r i t y of t h e coals i n the w o r l d are d o l o m i t e (CaC0
3
· MgC0 )
a n d ankerite ( 2 C a C 0
3
3
· MgC0
3
· FeC0 ). 3
T h e r e are significant differences i n t h e c a r b o n a t e m i n e r a l o g y of coals f r o m different parts of the w o r l d .
C a l c i t e is n e a r l y t h e o n l y
carbonate
m i n e r a l o b s e r v e d i n I l l i n o i s coals ( 1 ) w h e r e a s a n k e r i t e is the d o m i n a n t c a r b o n a t e m i n e r a l i n B r i t i s h coals (5,6), are c o m m o n i n A u s t r a l i a n coals (7).
a n d siderite, a n k e r i t e , a n d c a l c i t e
T h e carbonate minerals make u p 9 %
of the t o t a l m i n e r a l m a t t e r content of coals f r o m the I l l i n o i s B a s i n ( 1 ).
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
Silica ( Q u a r t z ) . (I)
Q u a r t z is u b i q u i t o u s i n a l l coals. R a o a n d G l u s k o t e r
r e p o r t e d t h a t , o n the average, 1 5 % of the m i n e r a l m a t t e r i n coals
f r o m the I l l i n o i s B a s i n w a s q u a r t z . 1-20%
O ' G o r m a n and W a l k e r (2)
found
q u a r t z i n 16 w h o l e c o a l samples f r o m v a r i o u s parts of the U n i t e d
States. Mineral Matter in Coal and High-Temperature
Coal Ash
T h e m i n e r a l m a t t e r content of c o a l cannot be d e t e r m i n e d q u a l i t a t i v e l y or q u a n t i t a t i v e l y f r o m the ash t h a t is f o r m e d w h e n the c o a l is o x i d i z e d . N o r m a l h i g h - t e m p e r a t u r e a s h i n g of c o a l at 7 5 0 ° C , as d e s i g n a t e d b y A S T M standards ( 8 ) , causes a series of reactions i n v o l v i n g t h e m i n erals i n the c o a l .
O f the f o u r m a j o r m i n e r a l groups o n l y q u a r t z is not
altered d u r i n g high-temperature ashing. Clay Minerals. T h e c l a y m i n e r a l s i n c o a l a l l c o n t a i n w a t e r b o u n d w i t h i n t h e i r lattices. K a o l i n i t e contains 1 3 . 9 6 % , i l l i t e 4 . 5 % , a n d m o n t morillonite 5 %
b o u n d water.
I n a d d i t i o n , t h e m o n t m o r i l l o n i t e i n the
m i x e d - l a y e r clays also contains i n t e r l a y e r or a d s o r b e d w a t e r . A l l of the w a t e r is lost d u r i n g the h i g h - t e m p e r a t u r e a s h i n g . Iron Sulfide Minerals.
D u r i n g h i g h - t e m p e r a t u r e a s h i n g , the p y r i t e
m i n e r a l s are o x i d i z e d to f e r r i c oxide a n d s u l f u r d i o x i d e .
Some of
the
s u l f u r d i o x i d e m a y r e m a i n c o m b i n e d w i t h c a l c i u m i n the ash, b u t m u c h is lost. I f a l l the s u l f u r d i o x i d e w e r e e m i t t e d d u r i n g a s h i n g , t h e r e w o u l d b e a 3 3 % w e i g h t loss w i t h respect to the w e i g h t of p y r i t e or m a r c a s i t e i n the o r i g i n a l sample. Figure 1. Scanning electron photomicrographs of minerals from coals. The minerals were studied and photographed by a Cambridge Stereoscan microscope with an accessory energy-dispersive x-ray spectrometer at the Center for Electron Microscopy, University of Illinois. A. Pyrite framboids from the low-temperature ash of a sample from the DeKoven Coal Member. B. Pyrite: cast of plant cells from the low-temperature ash of a sample from the Colchester (No. 2) Coal Member. C . Kaolinite (left) and sphalente (right) in minerals from a cleat (vertical fracture), Herrin (No. 6) Coal Member. D. Calcite from a cleat in the Herrin (No. 6) Coal Member. E. Kaolinite "books" from a cleat in the Herrin (No. 6) Coal Member. F. Galena: small crystals in the low-temperature ash of a sample from the DeKoven Coal Member.
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
6
TRACE
Calcite.
ELEMENTS
IN FUEL
T h e c a l c i u m c a r b o n a t e is c a l c i n e d to l i m e ( C a O ) d u r i n g
h i g h - t e m p e r a t u r e a s h i n g , w i t h a loss of c a r b o n d i o x i d e . T h i s results i n a 4 4 % w e i g h t loss. Q u a r t z . T h e stable m i n e r a l q u a r t z ( S i 0 ) is the o n l y m a j o r m i n e r a l 2
f o u n d i n c o a l w h i c h is i n e r t d u r i n g h i g h - t e m p e r a t u r e a s h i n g . T h e changes i n t h e m i n e r a l m a t t e r content i n c o a l d u r i n g a s h i n g h a v e l o n g b e e n r e c o g n i z e d . A n u m b e r of w o r k e r s h a v e suggested schemes for c a l c u l a t i n g t h e t r u e m i n e r a l m a t t e r content f r o m d e t e r m i n a t i o n s m a d e d u r i n g the c h e m i c a l analyses of c o a l . P a r r ( 9 ) r e p o r t e d one of the earliest
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
of s u c h schemes i n w h i c h o n l y the t o t a l s u l f u r a n d ash contents
were
c o n s i d e r e d i n d e v e l o p i n g the c o n v e r s i o n f o r m u l a e . T h i s is s t i l l the most w i d e l y used procedure. K i n g et al. (10),
A m o r e s o p h i s t i c a t e d m e t h o d w a s suggested
by
w h i c h considers b o t h the c a r b o n d i o x i d e loss f r o m c a r -
bonates a n d the c h l o r i d e d e c o m p o s i t i o n i n a d d i t i o n to t h e factors
con-
s i d e r e d b y the P a r r f o r m u l a . F u r t h e r m o d i f i c a t i o n s of these t e c h n i q u e s h a v e b e e n suggested b y B r o w n et al. (11), a n d M i l l o t (12).
R e c e n t l y G i v e n (13)
Pringle and Bradburn (5),
discussed i n d e t a i l the p r o b l e m of
c o n v e r t i n g r a w c h e m i c a l a n a l y t i c a l d a t a to a p u r e c o a l basis b y s u b t r a c t i n g the c a l c u l a t e d m i n e r a l m a t t e r content. Analyses of Minerals in Coal Separation of Minerals from Coal. T h i s section concerns m i n e r a l s i n t h e strict s e n s e — n a t u r a l l y o c c u r r i n g , i n o r g a n i c substances w i t h definite c h e m i c a l c o m p o s i t i o n a n d o r d e r e d a t o m i c a r r a n g e m e n t — a n d not
indi-
v i d u a l c h e m i c a l elements. T h e r e h a v e b e e n m a n y studies i n w h i c h w o r k ers h a v e a n a l y z e d m i n e r a l s t h a t w e r e p i c k e d b y h a n d f r o m c o a l seams, f r o m c o a l p a r t i n g s , or f r o m cleats or t h a t w e r e s e p a r a t e d f r o m t h e c o a l b y a m e t h o d b a s e d o n differences i n specific g r a v i t y b e t w e e n the c o a l a n d the m i n e r a l s c o n t a i n e d i n i t . A s a first step, these studies w e r e i m p o r t a n t c o n t r i b u t i o n s , b u t i t q u i c k l y b e c a m e a p p a r e n t that the large a m o u n t of i n s e p a r a b l e m i n e r a l m a t t e r i n coals r e s u l t e d i n i n c o m p l e t e a n a l y t i c a l d a t a . I n the next stage i n this r e s e a r c h the coals w e r e ashed at 3 0 0 ° - 5 0 0 ° C , t e m p e r a t u r e s b e l o w that of n o r m a l c o m b u s t i o n , or at r o o m t e m p e r a t u r e s i n an oxygen
stream.
This provided additional information, but
l i m i t e d because m a n y of the m i n e r a l s w e r e o x i d i z e d a l o n g w i t h
was the
organic fraction. W i t h i n the past d e c a d e the t e c h n i q u e of e l e c t r o n i c ( r a d i o f r e q u e n c y ) l o w - t e m p e r a t u r e a s h i n g has b e e n u s e d to investigate m i n e r a l m a t t e r i n coal.
I n a l o w - t e m p e r a t u r e asher, o x y g e n is passed t h r o u g h a r a d i o f r e -
q u e n c y field, a n d a d i s c h a r g e takes p l a c e . A c t i v a t e d o x y g e n thus f o r m e d passes over the c o a l s a m p l e , a n d the o r g a n i c m a t t e r is o x i d i z e d at r e l a t i v e l y l o w t e m p e r a t u r e s — u s u a l l y less t h a n 1 5 0 ° C
(14).
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
GLUSKOTER
Mineral
Matter
and Trace Elements
7
in Coal
T h e effects of l o w - t e m p e r a t u r e a s h i n g a n d of the o x i d i z i n g gas stream o n the m i n e r a l s i n c o a l are m i n i m a l .
N o o x i d a t i o n of m i n e r a l phases
present has b e e n r e p o r t e d , a n d the o n l y phase changes o b s e r v e d
were
those e x p e c t e d at 150 ° C a n d 1 torr. T h e r e f o r e , most of t h e m a j o r m i n e r a l constituents of coals, i n c l u d i n g p y r i t e , k a o l i n i t e , i l l i t e , q u a r t z , a n d c a l c i t e , are unaffected b y the r a d i o f r e q u e n c y a s h i n g . R e c e n t studies of mineral matter i n coal w h i c h used radiofrequency low-temperature ashing i n c l u d e G l u s k o t e r ( 1 5 ) , E s t e p et al. (16), Walker (2), and Rao and Gluskoter
Wolfe (17), O'Gorman and
(1).
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
Identification of Minerals in Coal. O n c e the l o w - t e m p e r a t u r e m i n e r a l m a t t e r r e s i d u e has b e e n o b t a i n e d b y r a d i o f r e q u e n c y a s h i n g , the m i n e r a l s c a n b e i d e n t i f i e d , a n d t h e i r concentrations c a n be d e t e r m i n e d b y a v a r i e t y of i n s t r u m e n t a l t e c h n i q u e s .
T h e best d e v e l o p e d ,
most
inclusive, and
p r o b a b l y most r e l i a b l e m e t h o d u s e d thus f a r i n d i s t i n g u i s h i n g m i n e r a l s i n c o a l is x - r a y d i f f r a c t i o n analysis. It has b e e n u s e d extensively G l u s k o t e r (15),
W o l f e (17),
by
O'Gorman and Walker (2), and Rao and
G l u s k o t e r ( I ) a n d has b e e n s o m e w h a t successful i n q u a n t i f y i n g m i n e r a l analyses. E s t e p et al. (16) 200 c m "
1
u s e d i n f r a r e d a b s o r p t i o n b a n d s i n the r e g i o n 6 5 0 -
to a n a l y z e q u a n t i t a t i v e l y as w e l l as q u a l i t a t i v e l y for m i n e r a l s
i n l o w - t e m p e r a t u r e ash.
O'Gorman and W a l k e r (2)
also a p p l i e d this
t e c h n i q u e i n t h e i r investigations. D i f f e r e n t i a l t h e r m a l analyses ( D T A ) of m i n e r a l s i n a h i g h - t e m p e r a ture c o a l ash h a v e b e e n r e p o r t e d b y W a r n e (18, 19).
T h e method was
a p p l i e d to the m i n e r a l m a t t e r f r a c t i o n of f o u r samples b y O ' G o r m a n a n d Walker (2). E l e c t r o n m i c r o s c o p y , e v e n t h o u g h it has r a p i d l y i n c r e a s e d i n p o p u l a r i t y as a m i n e r a l o g i c a l r e s e a r c h t o o l , has not b e e n u s e d extensively to i d e n t i f y m i n e r a l s i n coals.
D u t c h e r et al.
(20)
reported on a limited
i n v e s t i g a t i o n w h i c h u s e d the e l e c t r o n p r o b e to a n a l y z e m i n e r a l m a t t e r i n coal.
S c a n n i n g electron m i c r o s c o p y w i t h a n e n e r g y - d i s p e r s i v e x - r a y
system accessory has b e e n u s e d to a l i m i t e d extent to s t u d y m i n e r a l s o b t a i n e d f r o m the l o w - t e m p e r a t u r e a s h i n g of c o a l (21, 22, 23). of
5 7
F e M o s s b a u e r spectra i n coals b y L e f e l h o c z et al. (24)
A study
demonstrated
t h e v a l i d i t y of a p p l y i n g this t e c h n i q u e to c o a l a n d suggested the presence of h i g h - s p i n i r o n ( I I )
i n s i x - f o l d c o o r d i n a t i o n i n several of the samples
studied. M a s s s p e c t r o m e t r i c investigations of isotopes i n c o a l a n d c o a l m i n erals h a v e also b e e n v e r y l i m i t e d i n scope. R a f t e r ( 2 5 ) p u b l i s h e d s u l f u r isotope d a t a o n 27 N e w Z e a l a n d c o a l samples b u t d i d n o t d r a w a n y c o n c l u s i o n s f r o m these d a t a . S m i t h a n d B a t t s (26)
d e t e r m i n e d the iso-
t o p i c c o m p o s i t i o n of s u l f u r i n a n u m b e r of A u s t r a l i a n coals a n d c o n c l u d e d that, f r o m this t y p e of d a t a , one m i g h t d e d u c e the o r i g i n of the o r g a n i c a l l y
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8
TRACE ELEMENTS
IN FUEL
c o m b i n e d s u l f u r , the d e p t h of p e n e t r a t i o n of sea w a t e r i n t o u n d e r l y i n g c o a l measures, a n d the factors c o n t r o l l i n g r e d u c t i o n of sulfates to sulfides b y b i o g e n i c residues. Investigation of Minerals in Coal in Situ. T h e c o a l p e t r o g r a p h e r uses t h e o p t i c a l m i c r o s c o p e , u s u a l l y i n reflected l i g h t m o d e , to c h a r a c t e r i z e the o r g a n i c f r a c t i o n ( m a c é r a i s ) i n coals. T h e science of c o a l p e t r o g r a p h y has d e v e l o p e d a h i g h degree of p r e c i s i o n , p a r t i c u l a r l y d u r i n g the last 25 yrs.
H o w e v e r , these t e c h n i q u e s h a v e not b e e n n e a r l y as successful i n
investigating m i n e r a l matter i n coal.
P y r i t e , because of its h i g h reflect-
ance a n d its a b u n d a n c e i n coals, is the most l i k e l y m i n e r a l to b e s t u d i e d Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
microscopically. microscopes
Several automated
have been developed
M c C a r t n e y a n d E r g u n (27)
microscopes
and
image-analyzing
that c o u l d be u s e d i n s u c h a s t u d y .
r e p o r t e d o n a n a u t o m a t e d reflectance s c a n -
n i n g m i c r o s c o p e system of t h e i r o w n d e s i g n a n d i n c l u d e d results of p y r i t e analyses. Geochemistry of Mineral Matter in Coal A s p r e v i o u s l y discussed the m a j o r p r o b l e m of o b t a i n i n g a n u n a l t e r e d m i n e r a l - m a t t e r r e s i d u e has b e e n a l l e v i a t e d s o m e w h a t b y u s i n g r a d i o f r e q u e n c y l o w - t e m p e r a t u r e a s h i n g . A n o t h e r serious p r o b l e m , a n d one less a m e n a b l e to s o l u t i o n , is the c o m p l e x i t y of this system of m i n e r a l m a t t e r i n c o a l . T h e c o m p l e x i t y results f r o m the v a r i e t y of p h y s i c a l a n d c h e m i c a l c o n d i t i o n s i n w h i c h the c o a l - f o r m i n g m a t e r i a l s w e r e d e p o s i t e d a n d i n w h i c h the c o a l f o r m e d .
T h e system of m i n e r a l m a t t e r i n c o a l is a r e l a -
t i v e l y l o w - t e m p e r a t u r e , l o w - p r e s s u r e system w i t h m a n y c o m p o n e n t phases. It is a n o p e n system w i t h m a n y m o b i l e components.
T h e r e is also the
f u r t h e r c o m p l i c a t i o n t h a t t h e system has b e e n active a n d m a y h a v e b e e n c h a n g i n g at a n y t i m e since its genesis ( a p p r o x i m a t e l y 300 m i l l i o n yrs f o r coals of the P e n n s y l v a n i a n system ). A l t h o u g h the system is c o m p l i c a t e d , i n t e r p r e t i n g i t s h o u l d not b e i m p o s s i b l e , for the m i n e r a l s associated w i t h c o a l a n d w i t h a l l other s e d i m e n t a r y rocks are not the results of r a n d o m d e p o s i t i o n . T h e y are the p r e d i c t a b l e e n d p r o d u c t of a definite set of b i o logical, chemical, a n d physical conditions, w h i c h provided an environment i n w h i c h the m i n e r a l s c o u l d b e d e p o s i t e d or i n w h i c h t h e y c o u l d f o r m . T h e m i n e r a l m a t t e r a n d the ash i n c o a l h a v e often b e e n i n f o r m a l l y classified as i n h e r e n t ( s t e m m i n g f r o m the p l a n t m a t e r i a l i n t h e
coal
s w a m p ) or as a d v e n t i t i o u s ( a d d e d after the d e p o s i t i o n of the p l a n t m a t e r i a l i n the s w a m p ) .
T h i s classification is m i s l e a d i n g a n d difficult to
a p p l y , e s p e c i a l l y f o r those m i n e r a l s that are c o n t e m p o r a n e o u s
w i t h the
p e a t s w a m p b u t w e r e not i n c o r p o r a t e d b y the plants. T h e r e are s t a n d a r d terms a p p l i e d to sediments a n d s e d i m e n t a r y rocks that c a n b e u s e d w i t h c o a l m i n e r a l s . T h o s e m i n e r a l s w h i c h w e r e t r a n s -
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
GLUSKOTER
Mineral
Matter
and Trace Elements
9
in Coal
p o r t e d b y w a t e r or w i n d a n d d e p o s i t e d i n the c o a l s w a m p are a l l o g e n i c or d e t r i t a l . A l l of the m i n e r a l s w h i c h f o r m e d w i t h i n the c o a l s w a m p , i n the peat, or i n the c o a l are a u t h i g e n i c . T h e t e r m syngenetic a p p l i e s to the m i n e r a l s that w e r e c o n t e m p o r a n e o u s
w i t h the c o a l f o r m a t i o n , a n d e p i -
genetic refers to those w h i c h w e r e f o r m e d later, s u c h as cleat Chemical
fillings.
Analyses of Mineral Matter and Trace Elements in Coal
I n a s m u c h as m i n e r a l m a t t e r has b e e n defined b r o a d l y to i n c l u d e a l l
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
i n o r g a n i c elements
i n coals, the c h e m i c a l c h a r a c t e r i z a t i o n of m i n e r a l
m a t t e r i n v o l v e s the d e t e r m i n a t i o n of m a n y elements. ical
analyses
of
chemical methods
geological
materials have
I n general, chem-
progressed
from
to s o p h i s t i c a t e d i n s t r u m e n t a l m e t h o d s .
the
The
wet major
elements i n the m i n e r a l constituents of c o a l , S i , A l , T i , C a , M g , F e , P , S, N a , K , are the same as those i n silicate rocks a n d are often d e t e r m i n e d b y x-ray
fluorescence
spectroscopy
and
flame
photometry.
T h e m i n o r a n d trace elements i n coals are c u r r e n t l y d e t e r m i n e d b y several t e c h n i q u e s , the most p o p u l a r of w h i c h are o p t i c a l e m i s s i o n a n d a t o m i c a b s o r p t i o n spectroscopy.
N e u t r o n a c t i v a t i o n analysis is also a n
excellent t e c h n i q u e for d e t e r m i n i n g m a n y elements, b u t it r e q u i r e s a n e u t r o n source, u s u a l l y a n a t o m i c reactor. I n a d d i t i o n , x - r a y spectroscopy,
e l e c t r o n spectroscopy
s p a r k source mass spectroscopy
fluorescence
for c h e m i c a l analyses ( E S C A ) , a n d
h a v e b e e n successfully a p p l i e d to the
analyses of some m i n o r a n d trace elements i n coal. U n t i l r e c e n t l y , c h e m i c a l analyses of coals w e r e d o n e o n ash p r o d u c e d f r o m t h e c o a l at r e l a t i v e l y h i g h temperatures.
T h i s w a s the s t a n d a r d
a p p r o a c h for m a n y years, a n d analyses of trace elements i n coals d o h a v e a l o n g h i s t o r y . A n e a r l y a r t i c l e o n a n element as rare as c a d m i u m i n c o a l w a s p u b l i s h e d 125 yrs ago
(28).
O n e l i m i t a t i o n of
high-temperature
ash s a m p l e is that v o l a t i l e elements m a y b e lost d u r i n g c o m b u s t i o n a n d w i l l not be detected.
A n o t h e r p r o b l e m w h i c h a p p l i e s e s p e c i a l l y to a n a l y -
ses for trace a n d m i n o r elements is that there h a v e not b e e n a n y c o a l standards a v a i l a b l e u n t i l v e r y recently. Recent comprehensive
investigations i n v o l v i n g a large n u m b e r
of
c o a l samples a n d d e t e r m i n a t i o n s of m a n y elements i n c l u d i n g trace elements h a v e b e e n u n d e r t a k e n b y the U . S . G e o l o g i c a l S u r v e y (29), U . S . B u r e a u of M i n e s (30), and
the I l l i n o i s State G e o l o g i c a l S u r v e y
T h e P e n n s y l v a n i a State U n i v e r s i t y
Literature
the (23),
(2).
of Trace Elements and Mineral Matter in Coal
A d e t a i l e d r e v i e w of the w o r l d l i t e r a t u r e c o n c e r n e d
with mineral
m a t t e r a n d trace elements i n c o a l is w e l l b e y o n d t h e scope of this c h a p -
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
10 ter.
TRACE
ELEMENTS
IN FUEL
S u c h a r e v i e w w o u l d i n v o l v e the d i s c u s s i o n of several t h o u s a n d
books, j o u r n a l articles, a n d other p u b l i c a t i o n s a n d w o u l d itself c o m p o s e at least a modest v o l u m e .
H o w e v e r , the a n n o t a t e d b i b l i o g r a p h y at t h e
e n d of this c h a p t e r lists several r e v i e w articles that m a y be of h e l p to anyone
interested i n o b t a i n i n g f u r t h e r i n f o r m a t i o n o n trace
elements
a n d m i n e r a l matter i n coal. Occurrence
of Trace Elements in Coal
T h e m o d e r n investigations of trace elements i n coals w e r e p i o n e e r e d b y G o l d s c h m i d t , w h o d e v e l o p e d the t e c h n i q u e of q u a n t i t a t i v e c h e m i c a l Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
analysis b y o p t i c a l e m i s s i o n spectroscopy these earliest w o r k s , G o l d s c h m i d t (31)
a n d a p p l i e d it to c o a l ash. I n
w a s c o n c e r n e d w i t h the c h e m i c a l
c o m b i n a t i o n s of the trace elements i n coals.
I n a d d i t i o n to i d e n t i f y i n g
trace elements i n i n o r g a n i c c o m b i n a t i o n s w i t h the m i n e r a l s i n c o a l , h e p o s t u l a t e d the presence of m e t a l o r g a n i c complexes observed
a n d a t t r i b u t e d the
concentrations of v a n a d i u m , m o l y b d e n u m , a n d n i c k e l to the
presence of s u c h complexes i n coal. Goldschmidt
(32)
also i n t r o d u c e d the c o n c e p t of a
geochemical
classification of elements, i n w h i c h the elements are classified o n the basis of t h e i r affinities a n d tendencies to o c c u r i n m i n e r a l s of a single group. fides.
T h e c h a l c o p h i l e elements are those w h i c h c o m m o n l y f o r m s u l I n a d d i t i o n to sulfur, t h e y i n c l u d e Z n , C d , H g , C u , P b , A s , S b ,
Se, a n d others. W h e n present i n coals, these elements w o u l d b e
expected
to o c c u r , at least i n p a r t , i n sulfide m i n e r a l s . Sulfides other t h a n p y r i t e a n d m a r c a s i t e h a v e b e e n n o t e d i n coals, b u t , except i n areas of l o c a l c o n c e n t r a t i o n , t h e y o c c u r i n trace or m i n o r amounts. T h e l i t h o p h i l e elements
are those t h a t g e n e r a l l y o c c u r
i n silicate
phases a n d i n c l u d e a m o n g others: S i , A l , T i , K , N a , Z r , B e , a n d Y .
These
w o u l d be e x p e c t e d to o c c u r i n coals i n some c o m b i n a t i o n w i t h the silicate m i n e r a l s : k a o l i n i t e , i l l i t e , other c l a y m i n e r a l s , q u a r t z , a n d stable h e a v y detrital minerals. T h e carbonate m i n e r a l s i n coals o c c u r p r i m a r i l y as e p i g e n e t i c f r a c ture
fillings
(cleat
filling).
M a g n e s i u m , i r o n , a n d m a n g a n e s e are often
associated w i t h the s e d i m e n t a r y c a r b o n a t e m i n e r a l s a n d w o u l d r e a s o n a b l y b e e x p e c t e d to be associated w i t h the cleat fillings i n c o a l . A large n u m b e r of silicate, sulfide, a n d c a r b o n a t e m i n e r a l s h a v e b e e n i d e n t i f i e d f r o m c o a l seams, a n d the elements c o m p o s i n g t h e m necessarily o c c u r i n coals i n i n o r g a n i c c o m b i n a t i o n .
However, mineralogical investi-
gations of coals h a v e not g e n e r a l l y b e e n q u a n t i t a t i v e , a n d w h e t h e r a n element occurs o n l y i n i n o r g a n i c c o m b i n a t i o n or p e r h a p s is also present i n o r g a n i c c o m b i n a t i o n has not c o m m o n l y b e e n N i c h o l l s (33)
approached
considered.
this p r o b l e m b y p l o t t i n g the a n a l y t i c a l
d a t a f o r the c o n c e n t r a t i o n of a s i n g l e element i n c o a l or i n c o a l ash
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
GLUSKOTER
Mineral
Matter
and Trace Elements
11
in Coal
against the ash content of t h e c o a l . D i a g r a m s d e p i c t i n g a n u m b e r of s u c h p o i n t s for a single c o a l seam or for a g r o u p of c o a l seams i n a single geographic
area w e r e
affinity of the element.
i n t e r p r e t e d for d e g r e e of i n o r g a n i c or Nicholls concluded
organic
(33):
. . . one element, b o r o n , is l a r g e l y , almost e n t i r e l y , associated w i t h the o r g a n i c f r a c t i o n i n coals; some elements, s u c h as b a r i u m , c h r o m i u m , c o b a l t , l e a d , s t r o n t i u m , a n d v a n a d i u m are, i n the m a j o r i t y of cases, asso c i a t e d w i t h the i n o r g a n i c f r a c t i o n ; a n d a t h i r d g r o u p i n c l u d i n g n i c k e l , g a l l i u m , g e r m a n i u m , m o l y b d e n u m , a n d c o p p e r , m a y be associated w i t h either of b o t h fractions.
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
H e t h e n s u b d i v i d e d t h e t h i r d g r o u p i n t o n i c k e l a n d c o p p e r , w h i c h are i n i n o r g a n i c c o m b i n a t i o n w h e n f o u n d i n l a r g e concentrations, a n d g a l l i u m , g e r m a n i u m , a n d m o l y b d e n u m , w h i c h are l a r g e l y i n o r g a n i c c o m b i n a t i o n w h e n f o u n d strongly concentrated. H o r t o n a n d A u b r e y ( 34 ) h a n d p i c k e d p u r e v i t r a i n samples f r o m coals a n d s e p a r a t e d t h e m i n t o five different specific g r a v i t y fractions. t h e n a n a l y z e d these for 16 m i n o r elements.
They
T h e y c o n c l u d e d that for the
three v i t r a i n s t h e y s t u d i e d , b e r y l l i u m , g e r m a n i u m , v a n a d i u m , t i t a n i u m , a n d b o r o n w e r e c o n t r i b u t e d almost e n t i r e l y b y the i n h e r e n t ( o r g a n i c a l l y combined)
m i n e r a l m a t t e r a n d that manganese,
phosphorus,
and tin
w e r e associated w i t h t h e a d v e n t i t i o u s ( i n o r g a n i c a l l y c o m b i n e d ) m i n e r a l matter. A m u c h m o r e a m b i t i o u s series of investigations of the o r g a n i c - i n o r g a n i c affinities of trace metals i n coals w a s u n d e r t a k e n a n d r e p o r t e d o n b y Z u b o v i c a n d c o - w o r k e r s at the U . S . G e o l o g i c a l S u r v e y (35, 36, 37, 38, 39). I n the most recent a r t i c l e , Z u b o v i c ( 3 9 ) l i s t e d the f o l l o w i n g 15 elements i n o r d e r of percent o r g a n i c affinity: G e ( 8 7 ) , B e ( 8 2 ) , G a ( 7 9 ) , T i (78), Β (77), V (76), N i (59), C r (55), C o (53), Y (53), M o (40), C u ( 3 4 ) , S n ( 2 7 ) , L a ( 3 ) , a n d Z n ( 0 ) . H e c o n c l u d e d that this series w a s a p p a r e n t l y r e l a t e d to the c h e l a t i n g properties of the metals. T h e I l l i n o i s State G e o l o g i c a l S u r v e y has r e c e n t l y b e e n extensively i n v e s t i g a t i n g trace elements i n c o a l (23, 40). A s a p a r t of this s t u d y f o u r sets of float-sink samples w e r e a n a l y z e d for a n u m b e r of trace a n d m i n o r elements. T h r e e coals, c r u s h e d a n d s i z e d to % i n . b y 28 m e s h , w e r e s e p a r a t e d i n t o six specific g r a v i t y fractions b y floating t h e m i n m i x t u r e s of p e r c h l o r o e t h y l e n e a n d n a p h t h a . T h e heaviest of these six fractions (1.60 s i n k ) was t h e n separated i n t o t w o parts u s i n g b r o m o f o r m (specific g r a v i t y 2.89). T h e f o u r t h c o a l w a s also separated i n p e r c h l o r o e t h y l e n e a n d n a p h t h a , b u t o n l y t w o fractions w e r e a n a l y z e d , one w i t h specific g r a v i t y of less t h a n 1.25 a n d one w i t h specific g r a v i t y h e a v i e r t h a n 1.60. B y use of a t e c h n i q u e s i m i l a r to that of Z u b o v i c ( 3 9 ) , the trace elements d e t e r m i n e d i n these samples are l i s t e d i n o r d e r of d e c r e a s i n g affinity for t h e c l e a n c o a l fractions, o r d e c r e a s i n g o r g a n i c affinity ( T a b l e I ) . T h e sequence was d e t e r m i n e d b y c o m p a r i n g ratios of the a m o u n t of a n ele-
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
12
TRACE
ELEMENTS
IN
FUEL
m e n t i n the lightest float f r a c t i o n ( a l w a y s less t h a n 1.30 specific g r a v i t y ) to the a m o u n t of the element i n the 1.60 s i n k f r a c t i o n . T h e n u m e r i c a l values thus d e t e r m i n e d are not g i v e n because they v a r y w i t h the p a r t i c l e size d i s t r i b u t i o n of the c o a l , the specific g r a v i t y of the l i q u i d u s e d to m a k e t h e first ( l i g h t e s t ) s e p a r a t i o n , a n d the size d i s t r i b u t i o n of the m i n e r a l fragments i n a single c o a l . H o w e v e r , the sequence g i v e n i n T a b l e I does i n d i c a t e w h i c h elements
are p r i m a r i l y
i n organic
combination,
w h i c h are i n i n o r g a n i c c o m b i n a t i o n , a n d w h i c h are, a p p a r e n t l y , b o t h i n o r g a n i c a l l y a n d o r g a n i c a l l y c o m b i n e d i n coals of t h e I l l i n o i s B a s i n .
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
Table I.
Affinity of Elements for Pure Coal and Mineral Matter as Determined from Float—Sink Data Davis Coal
DeKoven Coal
Β Ge Be Ti Ga Ρ V Cr Sb Se Co Cu Ni Μη Zr Mo Cd Hg Pb Zn As
Ge Ga Be Ti Sb Co Ρ Ni Cu Se Cr Μη Zn Zr V Mo Pb Hg As
Clean coal—lightest specific g r a v i t y f r a c t i o n (elements i n " o r g a n i c combination ) ,,
M i n e r a l matter—specific g r a v i t y greater t h a n 1.60 (elements i n " i n o r g a n i c combination")
Colchester (No. 2) Coal
Herrin (No. 6) Coal
Ge Β Ρ Be Sb Ti Co Se Ga V Ni Pb Cu Hg Zr Cr Mn As Mo Cd Zn
Ge Β Be Sb V Mo Ga Ρ Se Ni Cr Co Cu Ti Zr Pb Mn As Cd Zn Hg
T h e sequences s h o w n i n T a b l e I c a n be d i v i d e d i n t o several g e n e r a l groups.
F i r s t , there are those elements w h i c h are a l w a y s i n t h e
most closely associated w i t h the c l e a n c o a l a n d w h i c h , therefore, t h e greatest o r g a n i c
affinities.
These
group have
are g e r m a n i u m , b e r y l l i u m , a n d
b o r o n , w h i c h are three of the t o p five elements l i s t e d b y Z u b o v i c
(39).
A t the other e n d of the list are the elements w i t h t h e least affinity f o r t h e o r g a n i c p o r t i o n of the c o a l . T h e elements m e r c u r y , z i r c o n i u m , z i n c , arsenic, a n d c a d m i u m are n e a r the b o t t o m i n a l l f o u r coals s t u d i e d , a n d l e a d , manganese, a n d m o l y b d e n u m are near the b o t t o m i n three of the four.
T h e r e m a i n i n g elements, those that are a p p a r e n t l y associated
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
to
1.
GLUSKOTER
Mineral
Matter
and Trace Elements
13
in Coal
v a r y i n g degrees w i t h b o t h the o r g a n i c a n d i n o r g a n i c p o r t i o n s of the coals, c a n also be d i v i d e d i n t o t w o g r o u p s : those elements t h a t t e n d to b e m o r e g e n e r a l l y a l l i e d to the elements
with
organic
gallium, antimony, titanium, and vanadium) t e n d to be
more
i n o r g a n i c a l l y associated
affinities
(phosphorus,
a n d those elements
(cobalt,
that
nickel, chromium,
s e l e n i u m , a n d c o p p e r ) . T h i s s u m m a r i z e d sequence g e n e r a l l y agrees w i t h that g i v e n b y Z u b o v i c ( 3 9 )
w i t h o n l y a f e w m i n o r discrepancies.
elements l i s t e d i n T a b l e I i n c l u d e 12 of the 15 elements discussed
The by
Z u b o v i c ( 3 9 ) as w e l l as n i n e a d d i t i o n a l elements. A l t h o u g h a n element is l i s t e d a m o n g those w i t h the highest o r g a n i c Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
affinities, its o c c u r r e n c e cluded.
i n i n o r g a n i c c o m b i n a t i o n i n coals is not p r e -
B o r o n , w h i c h is a m o n g those f o u n d i n h i g h concentrations i n
the cleanest c o a l fractions, occurs i n amounts u p to 200 p p m i n t h e c l a y m i n e r a l i l l i t e f r o m I l l i n o i s coals (41).
S i m i l a r l y , a p o r t i o n of those ele-
ments u s u a l l y c o n c e n t r a t e d most h e a v i l y i n the h i g h specific g r a v i t y f r a c tions m a y also be i n o r g a n i c c o m b i n a t i o n .
This d u a l occurrence
p o s t u l a t e d for the m e r c u r y content of I l l i n o i s coals b y R u c h et al.
was (42),
a n d m e r c u r y is i n c l u d e d here w i t h the elements h a v i n g the l o w e r o r g a n i c affinities. The
float-sink,
o r w a s h a b i l i t y , d a t a c a n be d i s p l a y e d as w a s h a b i l i t y
curves a n d as histograms. W a s h a b i l i t y curves a n d histograms for a series of elements are g i v e n i n F i g u r e s 2 - 5 .
T h e figures are p r e s e n t e d i n order
of the i n c r e a s i n g tendencies of the elements to b e c o n c e n t r a t e d i n the heavier fractions
(decreasing
organic affinity).
T h e washability curve
is a t y p e of c u m u l a t i v e c u r v e f r o m w h i c h one c a n r e a d t h e
expected
c o n c e n t r a t i o n of a n element at a n y g i v e n r e c o v e r y rate of a c o a l , a s s u m i n g s e p a r a t i o n b a s e d o n specific g r a v i t y differences. scissa is " r e c o v e r y of float c o a l — p e r c e n t "
T h e r e f o r e , the a b -
a n d s h o u l d be a p p l i c a b l e to
a n y specific g r a v i t y s e p a r a t i o n w i t h o u t r e g a r d to the m e d i u m i n w h i c h it is d o n e or the m e t h o d used. T h e r a w c o a l c o n c e n t r a t i o n of a n element is r e a d at the 1 0 0 % r e c o v e r y p o i n t , a n d c o n c e n t r a t i o n i n the cleanest coals ( m o s t m i n e r a l m a t t e r - f r e e ) is r e a d at the l o w r e c o v e r y e n d of the c u r v e (20-30%
recovery).
F i g u r e 2 shows the w a s h a b i l i t y c u r v e a n d h i s t o g r a m for g e r m a n i u m i n a s a m p l e f r o m the D a v i s C o a l M e m b e r .
G e r m a n i u m is the
element
w i t h the highest o r g a n i c affinity i n the coals s t u d i e d . T h e n e g a t i v e slope of the c u r v e i n d i c a t e s that g e r m a n i u m is c o n c e n t r a t e d i n the c l e a n c o a l fractions; this is also a p p a r e n t f r o m the h i s t o g r a m . T h e h i s t o g r a m i n d i cates that there is a h i g h e r c o n c e n t r a t i o n of g e r m a n i u m i n the 1.60-2.79 specific
g r a v i t y f r a c t i o n t h a n i n the greater-than-2.79
specific
gravity
f r a c t i o n . A p p a r e n t l y , a greater p o r t i o n of the g e r m a n i u m is c o n c e n t r a t e d w i t h the c l a y m i n e r a l s t h a n w i t h the sulfide m i n e r a l s , w h i c h c o m p o s e the m a j o r i t y of the 2.79 sink f r a c t i o n .
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
14
TRACE
0
20 Recovery
2.79 1.29 1.31 1.40 1.60 2.79 S p e c i f i c gravity of coal fraction
Figure 2. Germanium in specific gravity fractions of a sample from the Davis Coal Member. Upper: washability curve. Lower: distribution of germanium in individual fractions. A l l of t h e w a s h a b i l i t y curves s h o w n a r e d r a w n w i t h t h e ordinates the same l e n g t h a n d t h e o r i g i n at zero c o n c e n t r a t i o n so t h a t t h e slopes c a n b e c o m p a r e d a n d i n t e r p r e t e d . F i g u r e 3, w h i c h shows b e r y l l i u m i n the D a v i s C o a l M e m b e r , presents a flat w a s h a b i l i t y c u r v e a n d also a r e l a t i v e l y u n i f o r m h i s t o g r a m . B e r y l l i u m i s , therefore, r a t h e r e v e n l y d i s t r i b u t e d i n the c l e a n c o a l samples a n d is also present, i n s o m e w h a t lesser a m o u n t s , i n t h e h e a v i e r sink fractions. N i c k e l i n a s a m p l e f r o m the C o l c h e s t e r ( N o . 2 ) C o a l M e m b e r ( F i g u r e 4 ) is d e f i n i t e l y c o n c e n t r a t e d i n the h e a v i e r specific g r a v i t y fractions. H o w e v e r , t h e w a s h a b i l i t y c u r v e r e m a i n s w e l l a b o v e t h e abscissa a n d does n o t a p p e a r t o a p p r o a c h t h e o r i g i n i n t h e cleanest f r a c t i o n ( p u r e s t
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
GLUSKOTER
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
1.
Mineral
Matter
and Trace Elements
in Coal
15
Figure 3. Beryllium in specific gravity fractions of a sample from the Davis Coal Member. Upper: washability curve. Lower: distribution of beryllium in individual fractions. coal).
T h i s p a t t e r n m a y be i n t e r p r e t e d as s h o w i n g n i c k e l i n o r g a n i c as
w e l l as i n i n o r g a n i c c o m b i n a t i o n . T h e final w a s h a b i l i t y c u r v e a n d h i s t o g r a m ( F i g u r e 5 ) are of arsenic i n a s a m p l e f r o m the H e r r i n ( N o . 6 )
Coal Member.
The washability
c u r v e shows a n intense c o n c e n t r a t i o n of arsenic i n the h e a v i e r fractions. T h e c u r v e approaches
the abscissa a n d i f e x t r a p o l a t e d w o u l d intersect
the o r d i n a t e near the o r i g i n . A r s e n i c is one of the least o r g a n i c a l l y r e l a t e d elements i n a l l f o u r of the coals s t u d i e d . F i g u r e s 2 - 5 present examples of g r a p h i c representations of the org a n i c - i n o r g a n i c affinities of several elements i n coals.
A larger number
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
16
TRACE
ELEMENTS
IN
FUEL
/
NICKEU
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
Colchester
20 Recovery
r
40 of float
1.26
1I
Specific
gravity
I
1.24-
Coal
60 coal (percent)
Member
80
1
60
2.89
2.89
of c o a l fraction
Figure 4. Nickel in specific gravity fractions of a sample from the Colchester (No. 2) Coal Member. Upper: washability curve. Lower: distribution of nickel in individual fractions. of s u c h curves f o r the e l e m e n t a l d i s t r i b u t i o n of these coals a n d statistical s u m m a r i e s of major, m i n o r , a n d trace element d i s t r i b u t i o n s i n 101 coals f r o m the U n i t e d States are g i v e n i n R u c h et al. (40). Conclusions M i n e r a l m a t t e r i n c o a l , as t h e t e r m is g e n e r a l l y u s e d , i n c l u d e s t h e m i n e r a l phases ( s p e c i e s ) present i n t h e c o a l seam as w e l l as those elements g e n e r a l l y t h o u g h t to b e i n o r g a n i c , e v e n i f t h e y are present i n coals i n organic combination.
T h e m a j o r m i n e r a l s f o u n d i n coals a r e silicates
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
Mineral
GLUSKOTER
Matter
and Trace Elements
in Coal
17
ARSENIC Herrin (No. 6) C o a l
Ε 7.0
V
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
_
Member
20
40 Recovery
3
of float
60 coal
__u
80
100
(percent)
1.25- 1.28- 1.33- 1.40- 1.60- : 1.28 1.33 1.40 1.60 2.89 Specific gravity of coal fraction
Figure 5. Arsenic in specific gravity fractions of a sam ple from the Herrin (No. 6) Coal Member. Upper: washability curve. Lower: distribution of arsenic in individual fractions. ( k a o l i n i t e , i l l i t e , m i x e d - l a y e r c l a y m i n e r a l s , a n d q u a r t z ) , sulfides marily pyrite a n d marcasites), ankerite, or ferroan
a n d carbonates
(calcite,
(pri
siderite, a n d
dolomite).
T h e t w o major p r o b l e m s e n c o u n t e r e d i n i n v e s t i g a t i n g m i n e r a l m a t t e r i n c o a l are that the m i n e r a l m a t t e r a n d c o a l are so i n t i m a t e l y m i x e d that p h y s i c a l separation of the t w o is not feasible i n a q u a n t i t a t i v e s t u d y a n d that t h e g e o c h e m i c a l
system is extremely c o m p l i c a t e d
a n d difficult t o
c h a r a c t e r i z e . T h e first p r o b l e m is o v e r c o m e i n p a r t b y r e f i n i n g the t e c h -
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
18
TRACE
ELEMENTS
n i q u e s u s e d to p r e p a r e samples for analyses ( r a d i o f r e q u e n c y
IN FUEL
low-tem-
p e r a t u r e a s h i n g , for e x a m p l e ) , b u t the s e c o n d p r o b l e m is a n i n h e r e n t p a r t of the system a n d is less a m e n a b l e to s o l u t i o n . T h e literature c o n c e r n e d w i t h trace elements a n d m i n e r a l s i n coals has i n c r e a s e d i n q u a n t i t y as the interest i n these m a t e r i a l s , c a u s e d b y c o n c e r n a b o u t e n v i r o n m e n t a l q u a l i t y a n d energy a v a i l a b i l i t y , has i n creased.
A n u m b e r of excellent r e v i e w articles, p a r t i c u l a r l y t h a t b y
W a t t (43),
have been published and provide comprehensive summaries
of the e x i s t i n g literature. F o u r I l l i n o i s coals, separated i n t o series of specific g r a v i t y fractions, Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
h a v e b e e n a n a l y z e d for 21 trace a n d m i n o r elements.
T h e degree to
w h i c h a n element is associated w i t h the lightest specific g r a v i t y f r a c t i o n a n d therefore w i t h the purest c o a l is a measure of t h a t e l e m e n t s o r g a n i c affinity i n c o a l .
I f the element is c o n c e n t r a t e d i n the heaviest specific
g r a v i t y f r a c t i o n , it is t h e n i n i n o r g a n i c c o m b i n a t i o n . G e r m a n i u m , b e r y l l i u m , a n d b o r o n h a v e b e e n d e t e r m i n e d to h a v e t h e greatest
organic
affinities, a n d H g , Z r , Z n , A s , C d , P b , M n , a n d M o are g e n e r a l l y i n o r ganically combined.
T h e o t h e r elements t h a t w e r e d e t e r m i n e d a l l s h o w
degrees of i n o r g a n i c a n d o r g a n i c associations, w i t h P , G a , S b , T i , a n d V t e n d i n g to b e a l l i e d w i t h t h e other elements h a v i n g o r g a n i c affinities a n d C o , N i , C r , Se, a n d C u m o r e closely associated w i t h the i n o r g a n i c a l l y c o m b i n e d elements. T h i s series is v e r y s i m i l a r to a series of elements i n coals p r e s e n t e d i n o r d e r of d e c r e a s i n g o r g a n i c affinities b y Z u b o v i c
(39).
Acknowledgments T h e c h e m i c a l a n a l y t i c a l d a t a o n w h i c h T a b l e I a n d F i g u r e s 2 - 5 are b a s e d w e r e d e t e r m i n e d b y the A n a l y t i c a l C h e m i s t r y S e c t i o n of the I l l i n o i s State G e o l o g i c a l S u r v e y . T h e S u r v e y research r e p o r t e d is sponsored, i n p a r t , b y G r a n t N o . R-800059 a n d C o n t r a c t N o . 68-02-0246 f r o m the U . S. E n v i r o n m e n t a l P r o t e c t i o n A g e n c y , D e m o n s t r a t i o n Projects B r a n c h , C o n t r o l Systems L a b o r a t o r y , R e s e a r c h T r i a n g l e P a r k , N . C . Annotated 1.
Bibliography
W a t t , J . D . , " T h e Physical, and Chemical Behaviour of the M i n e r a l Matter in C o a l U n d e r Conditions M e t i n Combustion Plant. Part I, The Occurrence, O r i g i n , Identity, Distribution, and Estimation of the M i n e r a l Species in British Coals," British C o a l Utilization Research Association, Literature Survey, 121 p., Leatherhead, Surrey, E n g l a n d , 1968. This excellent review of minerals i n coal and the chemical composition of coals does not, as the title may suggest, limit itself to British coals. The literature of the rest of Europe and of North America is generously cited. A large section devoted to the various methods of determining the amount of mineral matter is included. There is also a section concerned with the methods of identifying mineral species i n coals.
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
GLUSKOTER
Mineral
Matter and Trace Elements
in Coal
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
2.
19
Nicholls, G . D . , " T h e Geochemistry of Coal-bearing Strata" i n " C o a l and Coal-bearing Strata" ( D . G . Murchison and T. S. Westoll, E d s . ) , p. 2 6 9 307, Oliver and B o y d , E d i n b u r g h and L o n d o n , 1968. M a n y data on trace elements i n coal are included i n the chapter. The emphasis is on the geochemistry of the trace elements, w i t h discussions of the concentration levels of trace elements i n coals, the organic (or inor ganic) affinities of the trace elements, and the geochemical controls of associations of elements. This and the following significant review article are contained w i t h i n a single volume. 3. Mackowsky, M . T h . , " M i n e r a l Matter in C o a l " i n " C o a l and Coal-bearing Strata" ( D . G . Murchison and T. S. Westoll, E d s . ) , p. 309-321, Oliver and B o y d , E d i n b u r g h and London, 1968. Mackowsky discusses the mineral phases found i n coals and differenti ates those phases w i t h geologically different genetic histories. A number of the mineral phases are shown i n a series of photomicrographs of p o l ished sections of coals. 4. W i l l i a m s , F . Α., Cawley, C . M . , "Impurities i n C o a l and Petroleum" i n " T h e Mechanism of Corrosion by F u e l Impurities" ( H . R. Johnson and D . J . Littler, E d s . ) , p. 2 4 - 6 7 , Butterworths, L o n d o n , 1963. In addition to discussing the major minerals and the elemental com position of coals, the authors discuss methods of removing impurities from coal and the effects of the impurities on several aspects of coal utilization. 5. Magee, E . M . , H a l l , H . J . , Varga, Jr., G . M . , "Potential Pollutants i n Fossil Fuels," Environmental Protection Technology Series, E P A - R 2 - 7 3 - 2 4 9 , 293 p., U . S . Environmental Protection Agency, 1973. The data on sulfur, nitrogen, and trace elements i n coal and i n oil are summarized. Emphasis is placed on the geographic and geologic distribution of the trace elements. 6. Abernethy, R. F . , Gibson, F . H . , "Rare Elements i n C o a l , " Information Circular 8163, 69 p., U . S . Bureau of Mines, 1963. This circular reviews the occurrence of 34 trace elements i n coal and the occurrence and distribution of chlorine, phosphorus, titanium, and manganese, w h i c h are not considered rare i n coal. Separate chapters are devoted to germanium, gallium, and uranium i n coal. 7. Averitt, Paul, Breger, I. Α., Swanson, V . E . , Zubovic, Peter, Gluskoter, H . J . , " M i n o r Elements i n C o a l — A Selected Bibliography, July 1972, Pro fessional Paper 800-D, p. D - 1 6 9 - D - 1 7 1 , U . S . Geological Survey, 1972. This bibliography lists 65 selected references to articles on trace ele ments i n coals. Most articles cited are i n English and are concerned w i t h North American coals. 8. Swaine, D . J . , "Trace elements i n C o a l " (originally written i n E n g l i s h ) . Published i n Russian as S vein, D . D z h . , "Mikroelementy ν ugliakh" i n " O c h e r k i sovremonnoï geokhimii i analiticheskoï k h i m i i " ( Symposium v o l ume i n honor of the 75th anniversary of Academician A . P. Vinogradov) ( A . I. Tugarinov, E d . ) , p. 482-492, M o s k v a : " N a u k a " Publishers, 1972. This review contains sections on the occurrence of 13 trace elements in coals and a summary of trace element distribution i n coals. 9. Thiessen, Gilbert, "Composition and Origin of the M i n e r a l Matter in C o a l " i n "Chemistry of C o a l Utilization" ( H . H . L o w r y , E d . ) , v. 1, p. 4 8 5 - 4 9 5 , John W i l e y and Sons, Inc., N e w York, 1945. The relationships of mineral matter to ash content are discussed. C o n centrations of chemical elements are mentioned, and the mineral matter contents of pétrographie components are summarized. 10. Ode, W . H . , " C o a l Analysis and Mineral Matter" i n "Chemistry of C o a l Utlization, Supplementary V o l u m e " ( H . H . L o w r y , E d . ) , p. 202-231, John
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
20
TRACE
ELEMENTS
IN F U E L
W i l e y a n d Sons, Inc., N e w York, 1963. Methods of coal analysis are given more attention than i n most other reviews. D a t a on mineral matter a n d trace elements are reviewed, and 116 references to them are included. 11. Breger, Irving Α., "Geochemistry of C o a l , " Econ. Geol. (1958) 53, 8 2 3 841. This introduction to the geochemistry of coal includes discussions of the origin a n d the physical a n d chemical structure of coal i n addition to a discussion of the composition of coal.
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
Literature Cited 1. Rao, C. Prasada, Gluskoter, H. J.,"Occurrenceand Distribution of Min erals in Illinois Coals," Ill. StateGeol.Surv. Circ. (1973) 476, 56 pp. 2. O'Gorman, J. V., Walker, P. L., Jr., "Mineral Matter and Trace Elements in U.S. Coals," Office of Coal Research, U.S. Department of the Interior, Research and Development Report No. 61, Interim Report No. 2 (1972) 184 pp. 3. Crossley, Η. E., "A Contribution to the Development of Power Stations," J. Inst. Fuel (1963) 36, 228-239. 4. Gluskoter, H. J., Simon, J. Α., "Sulfur in Illinois Coals," Ill. State Geol. Surv. Circ. (1968) 432, 28 pp. 5. Pringle, W. J. S., Bradburn, E., "The Mineral Matter in Coal. II—The Composition of the Carbonate Minerals," Fuel (1958) 37, (2), 166-180. 6. Dixon, K., Skipsey, E., Watts, J. T., "The Distribution and Composition of Inorganic Matter in British Coals. Part 3: The Composition of Carbonate Minerals in the Coal Seams of the East Midlands Coalfields," J. Inst. Fuel (1970) 43, (354), 229-233. 7. Kemežys, M., Taylor, G. H., "Occurrence and Distribution of Minerals in Some Australian Coals," J. Inst. Fuel (1964) 37, (284), 389-397. 8. "Annual Book of ASTM Standards," Part 19, pp. 438-439, ASTM Std. D1374-73, American Society for Testing and Material, Philadelphia, 1973. 9. Parr, S. W., "The Classification of Coal," Univ.Ill.Eng. Exp. Sta. Bull. (1928) 180, 62 pp. 10. King, J. G., Maries, M. B., Crossley, H. E., "Formulae for the Calculation of Coal Analyses to a Basis of Coal Substance Free of Mineral Matter," J. Soc. Chem. Ind. London (1936) 57, 277-281. 11. Brown, R. L., Caldwell, R. L., Fereday, F., "Mineral Constituents of Coal," Fuel (1952) 31, (3), 261-273. 12. Millot, J. O., "The Mineral Matter in Coal. I—The Water of Constitution of Silicate Constituents," Fuel (1958) 37, (1), 71-85. 13. Given, P. H., "Problems of Coal Analysis," Pennsylvania State Univ. Rept. SROCR-9, submitted to the U.S. Office of Coal Research under Contract No. 14-01-0001-390, 40 pp., 1969. 14. Gluskoter, H. J., "Electronic Low-temperature Ashing of Bituminous Coal," Fuel (1965) 44, (4), 285-291. 15. Gluskoter, H. J., "Clay Minerals in Illinois Coals," J. Sediment Petrology (1967) 37, (1), 205-214. 16. Estep, P. Α., Kovach, J. J., Karr, C., Jr., "Quantitative Infrared Multicomponent Determinations of Minerals Occurring in Coal," Anal. Chem. (1968) 40, (2), 358-363. 17. Wolfe, D. F., "Noncombustible Mineral Matter in the Pawnee Coal Bed, Powder River County, Montana," M.S. Thesis, Montana College of Mineral Science and Technology, 1969.
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
1.
GLUSKOTER
Mineral
Matter
and Trace Elements
in Coal
21
18. Warne, S. St. J., "Identification and Evaluation of Minerals in Coal by Differential Thermal Analysis,"J.Inst. Fuel (1965) 38, (292), 207-217. 19. Warne, S. St. J., "The Detection and Identification of the Silica Minerals Quartz, Chalcedony, Agate, and Opal, by Differential Thermal Analysis," J. Inst. Fuel (1970) 43, (354), 240-242. 20. Dutcher, R. R., White, E. W., Spackman, W., "Elemental Ash Distribution in Coal Components—Use of the Electron Probe," Proc. 22nd Ironmaking Conf., Iron Steel Div., Metallurgical Soc., Amer. Inst. Mining Eng., New York (1964) 463-483. 21. Gluskoter, H. J., Ruch, R. R., "Iron Sulfide Minerals in Illinois Coals," Geol. Soc. Amer. Abstr. 3, 582. 22. Gluskoter, H. J., Lindahl, P.C.,"Cadmium: Mode of Occurrence in Illinois Coals," Science (1973) 181, (4096), 264-266. 23. Ruch, R. R., Gluskoter, H. J., Shimp, N. F., "Occurrence and Distribution of Potentially Volatile Trace Elements in Coal," Ill. StateGeol.Survey Environ. Geol. Note (1973) 61, 43 p. 24. Lefelhocz, J. F., Friedel, R. Α., Kohman, T. P., "Mössbauer Spectroscopy of Iron in Coal," Geochim. Cosmochim. Acta (1967) 31, (12), 22612273. 25. Rafter, Τ. Α., "Sulfur Isotope Measurements on New Zealand, Australian, and Pacific Islands Sediments," Proc. Nat. Sci. Found. Symp., Yale Uni versity (April 1962) 42-60. 26. Smith, J. W., Batts, B. D., "The Distribution and Isotopic Composition of Sulfur in Coal," Geochim. Cosmochim. Acta (1974) 38, 121-133. 27. McCartney, J. T., Ergun, S., "An Automated Reflectance Scanning Micro scope System for Study of Coal Components. Application to Analysis of Pyrite Distribution," U.S. Bureau of Mines, unpublished data. 28. Liebig, J., Kopp, H., "Jahresbericht über die Fortschritte der Reinen, Pharmaceutischen, und Technischen Chemie," "Physic, Mineralogie, und Geologie für 1847-1848," p. 1120, Giessen, 1849. 29. Swanson, V. E., "Composition of Coal, Southwestern United States," U.S. Geological Survey, Southwest Energy Study, Coal Resources Work Group, Part II, 61 pp., 1972. 30. Kessler, T., Sharkey, A. G., Jr., Friedel, R. Α., "Analysis of Trace Elements in Coal by Spark-source Mass Spectrometry," U.S. Bur. Mines Rept. Invest. (1973) 7714, 8 pp. 31. Goldschmidt, V. M., "Rare Elements in Coal Ashes," Ind. Eng. Chem. (1935) 27, 1100-1102. 32. Goldschmidt, V. M., in "Geochemistry" (A. Muir, Ed.), 730 pp., Clarendon, Oxford, 1954. 33. Nicholls, G. D., "The Geochemistry of Coal-bearing Strata," "Coal and Coal-bearing Strata" (D. G. Murchison and T. S. Westoll, Eds.), pp. 267-307, Oliver and Boyd, Edinburgh and London, 1968. 34. Horton, L., Aubrey, Κ. V., "The Distribution of Minor Elements in Vitrain: Three Vitrains from the Barnsley Seam," J. Soc. Chem. Ind., London (1950) 50 (suppl. issue 1), 541-548. 35. Zubovic, P., "Minor Element Content of Coal from Illinois Beds 5 and 6 and Their Correlatives in Indiana and Western Kentucky," U.S. Geo logical Survey, openfilereport, 79 pp., 1960. 36. Zubovic, P., Stadnichenko, T., Sheffey, Ν. B., "The Association of Minor Elements with Organic and Inorganic Phases of Coal," U.S. Geol. Survey Prof. Paper (1960) 400-B, B84-B87. 37. Zubovic, P., Stadnichenko, T., Sheffey, Ν. B., "Chemical Bases of Minor Element Associations in Coal and Other Carbonaceous Sediments," U.S. Geol. Surv. Prof. Pap. (1961) 424-D (Article 411) D345-D348.
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by 120.32.115.112 on February 10, 2016 | http://pubs.acs.org Publication Date: September 1, 1975 | doi: 10.1021/ba-1975-0141.ch001
22
TRACE
ELEMENTS
I N FUEL
38. Zubovic, P., Stadnichenko, T., Sheffey, Ν. B., "Distribution of Minor Ele ments in Coal Beds of the Eastern Interior Region," U.S. Geol. Surv. Bull. (1964) 1117-B, 41 pp. 39. Zubovic, P., "Physiochemical Properties of Certain Minor Elements as Con trolling Factors of Their Distribution in Coal," ADVAN. CHEM. SER. (1966) 55, 221-246. 40. Ruch, R. R., Gluskoter, H. J., Shimp, N. F., "Occurrence and Distribution of Potentially Volatile Trace Elements in Coal," Ill. State Geol. Surv. Environ. Geol. Note (1974) 72, 96. 41. Bohor, B. F., Gluskoter, H. J., "Boron in Illite as a Paleosalinity Indicator of Illinois Coals," J. Sediment. Petrology (1973) 43, (4), 945-956. 42. Ruch, R. R., Gluskoter, H. J., Kennedy, E. J., "Mercury Content of Illinois Coals," Ill. State Geol. Survey Environ. Geol. Note (1971) 43, 15 pp. 43. Watt, J. D., "The Physical and Chemical Behaviour of the Mineral Matter in Coal under the Conditions Met in Combustion Plant, Part I. The Occurrence, Origin, Identity, Distribution and Estimation of the Mineral Species in British Coals," Literature Survey, 121 pp., British Coal Utiliza tion Research Association, Leatherhead, Surrey, England, 1968. RECEIVED April 11, 1974
In Trace Elements in Fuel; Babu, Suresh P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.